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Aims The aims of this study include (i) pursuing data-mining experiments on the Angiotensin II-Antagonist in Paroxysmal
Atrial Fibrillation (ANTIPAF-AFNET 2) trial dataset containing atrial fibrillation (AF) burden scores of patients with
many clinical parameters and (ii) revealing possible correlations between the estimated risk factors of AF and other
clinical findings or measurements provided in the dataset.

Methods Ranking Instances by Maximizing the Area under a Receiver Operating Characteristics (ROC) Curve (RIMARC) is used to
determine the predictive weights (Pw) of baseline variables on the primary endpoint. Chi-square automatic interaction
detector algorithm is performed for comparing the results of RIMARC. The primary endpoint of the ANTIPAF-AFNET
2 trial was the percentage of days with documented episodes of paroxysmal AF or with suspected persistent AF.

Results By means of the RIMARC analysis algorithm, baseline SF-12 mental component score (Pw ¼ 0.3597), age
(Pw ¼ 0.2865), blood urea nitrogen (BUN) (Pw ¼ 0.2719), systolic blood pressure (Pw ¼ 0.2240), and creatinine level
(Pw ¼ 0.1570) of the patients were found to be predictors of AF burden. Atrial fibrillation burden increases as baseline
SF-12 mental component score gets lower; systolic blood pressure, BUN and creatinine levels become higher; and the
patient gets older. The AF burden increased significantly at age .76.

Conclusions With the ANTIPAF-AFNET 2 dataset, the present data-mining analyses suggest that a baseline SF-12 mental component
score, age, systolic blood pressure, BUN, and creatinine level of the patients are predictors of AF burden. Additional
studies are necessary to understand the distinct kidney-specific pathophysiological pathways that contribute to AF
burden.
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Introduction
Atrial fibrillation (AF) is the most common sustained arrhythmia. It
is associated with relevant excess morbidity and mortality.1,2 So far,
we are unable to prevent many of the severe complications asso-
ciated with AF, despite antithrombotic therapy and management
of concomitant heart disease.1– 3 Specifically, the perceived benefit
of rhythm control therapy by antiarrhythmic drugs appears to
be offset by proarrhythmic side effects. Recently, Angiotensin
II-Antagonist in Paroxysmal Atrial Fibrillation (ANTIPAF-AFNET 2)

trial examined the hypothesis that blocking the angiotensin II type 1
receptor with olmesartan medoxomil reduces the incidence of epi-
sodes of AF in patients with paroxysmal AF during 12 months by
25% compared with standard medication without angiotensin recep-
tor blocker (ARB) therapy in a prospective, randomized, placebo-
controlled, double-blind trial.4 This trial revealed that 1 year of
ARB therapy did not reduce the number of AF episodes in patients
with documented paroxysmal AF without structural heart disease.

Data mining is the computational process that takes much of
its inspiration and methods from the intersection of artificial

* Corresponding author. Tel: +90 312 2536666; fax: +90 312 2536623. E-mail address: sercanokutucu@yahoo.com

Published on behalf of the European Society of Cardiology. All rights reserved. & The Author 2016. For permissions please email: journals.permissions@oup.com.

doi:10.1093/europace/euw084
Europace (2017) 19, 741–746

online publish-ahead-of-print 11 October 2016

Atrial fibrillation

Downloaded from https://academic.oup.com/europace/article-abstract/19/5/741/2952307
by Bilkent University Library (BILK) user
on 27 June 2018



intelligence, machine learning, statistics, and database systems for
discovering previously unknown patterns in large datasets.5,6 The
overall goal is to extract valuable knowledge from information
rich yet knowledge poor datasets and transform it into human-
readable and applicable rule-bases for further use in various
domains, including the healthcare and decision support systems.5,6

Being positioned slightly different from the hypotheses-dependent
statistical analyses, but incorporating all the statistical methods
within, data mining generates novel hypotheses in both a supervised
and an unsupervised nature. Aside from the raw analysis step, it
involves data management and pre-processing aspects, model and
inference considerations, interestingness metrics, complexity con-
siderations, post-processing of discovered structures and generated
hypotheses, visualization, and online updating.5,6 In practice, how-
ever, most hypotheses generation tasks require automated intelli-
gence to induce new knowledge from tacit relationships among
observations. For that matter, data-mining approaches often refer
to machine learning algorithms designed and optimized to extract
knowledge in an unguided manner for surfacing the effects of
relationships that have not been evaluated adequately and for the
accurate prediction of the future observations in the applied
domain.

Here, in the context of data-mining approach, we applied machine
learning methods to determine predictors of AF burden in the
ANTIPAF-AFNET 2 dataset. We primarily used the RIMARC
[Ranking Instances by Maximizing the Area under a Receiver
Operating Characteristics (ROC) Curve] algorithm5 to determine
the predictive weights of the clinical features (variables) on AF bur-
den and also used the CHAID (CHi-squared Automatic Interaction
Detection) decision tree algorithm as a supplementary approach.7,8

RIMARC algorithm operates by ranking instances based on how
likely they are to have a designated label. By means of these analyses,
we tried to extract clinically relevant information from the
ANTIPAF-AFNET 2 database and seek some factors that might
affect AF burden, which is the primary outcome of the trial.

Methods

Study design and participants
The ANTIPAF-AFNET 2 was a prospective, randomized, placebo-
controlled, multicentre trial analysing the AF burden (percentage of

days with documented episodes of paroxysmal AF) during a 12-month
follow-up as the primary study endpoint. The trial was conducted by the
German AFNET as the sponsor.9,10

Four hundred thirty patients with documented paroxysmal AF with-
out structural heart disease were randomized to placebo or 40 mg
olmesartan per day. Concomitant therapy with ARBs, angiotensin-
converting enzyme inhibitors, and antiarrhythmic drugs was prohibited.
Patients were followed up using daily trans-telephonic ECG (tele-ECG)
recordings independent of symptoms. Of note, more than 80 000 tele-
ECGs were recorded in the 430 patients throughout the trial, which is a
unique feature of that investigation. Details of the trial design have been
reported previously. A full description of ANTIPAF-AFNET 2 trial can
be found elsewhere.1,4

Data-mining experiments
To attain our aims on this dataset and extract patterns and relation-
ships within, we pursued a data-mining approach with two different
machine learning algorithms. First one is the RIMARC (Ranking In-
stances by Maximizing the Area under a Receiver Operating Character-
istics (ROC) Curve) classification algorithm4 that was used to assign
‘predictive weights’ (having values between [0, 1]) to the baseline clin-
ical parameters in determining the class label, i.e. AF burden. To calcu-
late these predictive weights, RIMARC basically learns a ranking
function over the instances by maximizing the area under the ROC
curve, as this is a commonly accepted metric for assessing the accuracy
of the results produced by a classifier.5,6 It comprises a method,
MAD2C, that applies a discretization to the continuous (real-valued)
parameters in the dataset and transforms them into categorical para-
meters with value ranges generating a maximal AUC. Thus, RIMARC
algorithm starts by discretizing all the continuous (real-valued) para-
meters until the whole dataset is made up of categorical typed para-
meters. The emphasis laid on the robustness of RIMARC towards
the missing values in a dataset is also attributed to the MAD2C method
for discretizing the continuous (real-valued) parameters.5,6 As the re-
sult of a RIMARC execution, predictive weight for each parameter
(now discretized) is calculated and respective value ranges are pro-
vided for an optimal AUC.

In this study, the class variable is AF burden and baseline variables
are all other baseline clinical parameters that affect AF burden. The
primary endpoint of the study was the percentage of days with docu-
mented episodes of paroxysmal or with suspected persistent or per-
manent AF. The AF burden was calculated as the number of days with
paroxysmal AF or with preceding documentation of suspected
persistent AF (up to a maximum of 365 days) divided by the number
of measurement days, that is, days in follow-up with at least one read-
able tele-ECG recording (up to a maximum 365 days). Regarding
these, AF burden is a valid choice for the class variable to be used in
our experiments. Apart from AF burden, the ANTIPAF-AFNET 2
dataset contains 23 baseline clinical parameters for a total of 425
patients. The clinical parameters are shown in Table 1. To build a
classifier model, a categorical class variable is needed indicating a dis-
criminative condition over the instances; therefore, we applied a
thresholding that assigns the two categories of ‘Normal’ (N) and
‘Patient’ (P) for each sample based on their corresponding AF burden
values. The AF burden score ,0.10 is set as N and .0.10 is set as
P. Following this class label discretization, RIMARC algorithm is ap-
plied to assign predictive weights to each clinical parameter for deter-
mining the AF burden of a patient.

In this dataset, clinical parameters have an overall missing value rate of
�23%. To compare RIMARC results with the widely used decision tree
classification method, we must choose a technique that is also robust to

What’s new?
† Data-mining analyses of Angiotensin II-Antagonist in Paroxys-

mal Atrial Fibrillation (ANTIPAF-AFNET 2) trial dataset with
Ranking Instances by Maximizing the Area under a Receiver
Operating Characteristics Curve and chi-square automatic
interaction detector algorithm suggest that:
o AF burden increases as

§ Baseline SF-12 mental component score gets lower
§ Systolic blood pressure, BUN and creatinine levels

become higher and the patient gets older
o The AF burden increased significantly at age .76.
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missing values like RIMARC. In the CHAID (Chi-Square Automatic
Interaction Detector) decision tree classification algorithm within which
a chi-square test is used to build the tree, missing values are treated
as a set of separate predictor category.8 Unlike many other decision
tree classification approaches generating binary node splits, CHAID
generates multi-node split decision nodes with categorization of
continuous (real-valued) parameters.8 Similar to the way RIMARC
acts, the algorithm first generates the ‘best’ set of parameter categories
performing chi-square tests using all non-missing values from the
dataset. Next, not to disregard missing valued instances, it identifies
the category that is most similar to the ‘missing’ category in hand.
Finally, it decides whether to merge the missing category with its
most similar category or to keep the missing category as a separate
category.7,8

While building its decision tree with multiple node splits, CHAID
executes a pre-pruning approach that ensures the elimination of any
redundant nodes. A node is made to split further down only when a
significance criterion is fulfilled and thus the incident of overfitting is
prevented from happening right from the start. The output of a CHAID
decision tree can also be interpreted as a rule base effectively leading an
instance towards a prediction through the divided categories for each
parameter defining the dataset.5–8

Results
The results of the application of the RIMARC algorithm on the
ANTIPAF-AFNET 2 trial dataset are presented in Table 2, which
tabulates the clinical parameters with their respective predictive
weights. To assess the significance of the RIMARC’s model, a
10-fold cross-validation is performed. For each patient instance in
the dataset, the predictive probabilities regarding the class param-
eter AF burden is calculated. To measure the accuracy characterized
by the sensitivity and specificity for this predictive model, an ROC
curve is generated with the respective c-statistics as the AUC value
(Figure 1). The AUC of the ROC curve with the value of 0.815
(standard deviation ¼ 0.046, 95%CI, P ¼ 0.001) can be interpreted
as a decent result. This can be attributed to the robustness of the
RIMARC algorithm towards the missing values in the datasets.

According to the CHAID decision tree classifier, the root par-
ameter, which is the most discriminative among the other para-
meters, is found to be the SF-12 mental component score of the
patients (Pw ¼ 0.3597) (Figure 2). With this CHAID tree classifier
built, a 10 fold cross-validation is performed and the prediction ac-
curacy of the model is assessed by the AUC value of ROC curve
generated. The AUC value is found as 0.614 (standard deviation ¼
0.060, 95%CI, P ¼ 0.001).

Baseline SF-12 mental component score, age, BUN, systolic
blood pressure, and creatinine level of the patients were found to
be predictive of AF burden by the RIMARC algorithm. The CHAID
decision tree technique also confirms the effect of baseline SF-12
mental component score on indicating AF burden as a single pre-
dictive parameter among all others.

As BUN (Pw ¼ 0.2719), systolic blood pressure (Pw ¼ 0.2240),
and creatinine (Pw ¼ 0.1570) levels of the patient increases, the
AF burden also increases (Figure 3). Furthermore, the risk of AF
burden increases as the patient gets older (Pw ¼ 0.2865). The risk
increases significantly at a higher rate after age of 76.

Discussion
Using a combination of explorative data-mining analyses, we identi-
fied that SF-12 mental component score, age, BUN, systolic blood

Table 1 Baseline clinical parameters in the analysis

Age Ischemic heart disease (Y/N)

Gender (F/M) Diabetes mellitus (Y/N)

SF-12 physical component score Aspirin (Y/N)

SF-12 mental component score Verapamil (Y/N)

Systolic blood pressure (mmHg) Diltiazem (Y/N)

Diastolic blood pressure (mmHg) Statin (Y/N)

Left ventricular ejection fraction (%) Diuretic (Y/N)

Blood urea nitrogen (mg/dL) Tri-tetracyclic antidepressant (Y/N)

Creatinine (mg/dL) Oral anticoagulants (Y/N)

Glomerular filtration rate Dihydropyridin (Y/N)

Hypertension (Y/N) Nitrate (Y/N)

NYHA Class IV (Y/N)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 RIMARC based predictive weights (Pw) of the parameters on atrial fibrillation burden

Parameter Pw Parameter Pw

Baseline SF-12 mental component score 0.3597 Aspirin 0.0418

Age 0.2865 Diuretic 0.0367

Blood urea nitrogen (mg/dL) 0.2719 Ischaemic heart disease 0.0358

Systolic blood pressure (mmHg) 0.2240 Nitrate 0.0306

Creatinine (mg/dL) 0.1570 Sex 0.0301

Left ventricular ejection fraction (%) 0.1453 NYHA class IV 0.0216

SF-12 physical component score 0.1379 Dihydropyridin 0.0200

Diastolic blood pressure (mmHg) 0.1244 Verapamil 0.0137

Oral anticoagulants 0.0882 Diltiazem 0.0079

Hypertension 0.0596 Tri-tetracyclic antidepressant 0.0079

Statin 0.0564 Glomerular filtration rate 0.0066
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Downloaded from https://academic.oup.com/europace/article-abstract/19/5/741/2952307
by Bilkent University Library (BILK) user
on 27 June 2018



pressure, and creatinine level of the patients are predictive of AF
burden. On the basis of these findings, some additional insight
into the AF burden and AF treatment is obtained.

Major finding of this analysis is the predictive power of baseline
SF-12 mental component score on AF burden. The Short-Form
12 Health Survey is a generic health-related quality-of-life (QOL)
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instrument. The items of the SF-12 assess physical component and
mental component.11,12 Patients with AF have significantly poorer
QOL compared with healthy controls, the general population,
and other patients with coronary heart disease. Studies examining
rate or rhythm-control strategies alone demonstrate improved
QOL after intervention.13 The cornerstone of treatment in patients
with AF is to reduce symptoms and improve the QOL.14 Three of
the four large randomized control trials (STAF,15 PIAF,16 RACE17)
comparing rate vs. rhythm control demonstrated a greater improve-
ment in QOL in patients receiving rate control. However, the AF-
FIRM trial18 revealed a similar improvement in QOL for both rate
and rhythm-control groups. In recent analysis of two large clinical
trials, reported by von Eisenhart Rothe et al.,11 AF patients prone
to experiencing depressed mood, particularly in persistent ones.
In accordance with our data-mining analysis, von Eisenhart Rothe
et al.12 reported association of depressed mood with AF symptom
burden over 6 months after adjustment for perceived frequency and
duration of AF episodes, pulmonary diseases, and gender. In current
analysis, we obtained SF-12 mental component score as a predictor
of AF burden by the RIMARC algorithm. Furthermore, baseline
SF-12 mental component score was the only single predictor of
AF burden among all others by CHAID decision tree technique.
This finding denotes that a lower QOL at baseline is the predictor
of high AF burden.

The second important finding of this analysis is related to the
intersection of renal function and AF burden. By means of explora-
tive analyses, BUN and serum creatinine level of the patients were
found to be predictors of AF burden. Several possible mechanisms
may explain the high rate of identified AF in patients with chronic

kidney disease (CKD), including older age and a high burden
of risk factors such as hypertension and cardiovascular disease,
excessive inflammation which has been linked to both CKD and
AF, larger left atrial and left ventricular sizes among CKD patients
and activation of the renin–angiotensin–aldosterone system.19

Other plausible pathways linking kidney disease and AF include ab-
normalities in mineral metabolism. It is possible that alterations in
these pathways may also contribute to the risk of AF in patients
with renal dysfunction through effects on cardiac structure, endo-
thelial function, and vascular calcification.19 The burden of AF is
even greater in patients with concomitant kidney disease. Recently
published studies have highlighted the often under recognized, yet
highly prevalent relation between kidney disease and AF. Further-
more, evidence has suggested that the burden of AF will likely rise
in this high-risk population, making the intersection of kidney dis-
ease and AF a highly relevant clinical problem.20 Further investiga-
tions are needed to explore unique kidney-specific biological
pathways linking AF and kidney disease, given the disproportionately
high burden of disease in this population.

The prevalence of AF is related to age. The prevalence of AF
is 2.5% in people older than 40 years and 6% in those older than
65 years. Approximately 70% of individuals with AF are between
65 and 85 years of age.2 The relationship between AF burden and
age was remarkable in our analysis. The risk of AF burden increases
as patient gets older, and AF burden risk increases significantly at a
higher rate after the age of 76.

Atrial fibrillation and hypertension are two prevalent, and often
coexistent, conditions in the general population.2,21 Both these
conditions frequently coexist and their prevalence increases rapidly
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with ageing. Hypertension is still the main risk factor for the devel-
opment of AF. Hypertension is associated with left ventricular
hypertrophy, impaired ventricular filling, left atrial enlargement,
and slowing of atrial conduction velocity.21 In our analysis, we
observed that systolic blood pressure levels of patients predict AF
burden.

Conclusions
In conclusion, on the ANTIPAF-AFNET 2 dataset, the RIMARC al-
gorithm helped reveal the predictive power of various parameters
on AF, along with the risk scores of categorical values and risk
ranges for numerical parameters. Based on the highest weighted
parameters found by RIMARC, some additional insight into the AF
burden and AF treatment is obtained. QOL is of central importance
in AF as both a treatment goal and an endpoint in the evaluation of
therapies. A number of interventions for AF have been shown to im-
prove QOL, including pharmacological and non-pharmacological
rate control, antiarrhythmic drugs, and non-pharmacological
rhythm control strategies. Collection of further data is needed to
establish the role of QOL on the course of AF. Additional studies
are necessary to understand the distinct kidney-specific patho-
physiological pathways that contribute to the development of AF
as well as the unique considerations in preventing and treating AF
specific to patients with a broad range of renal dysfunction.
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