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We study the behavior of the signature of colored links [6, 9] under the splice operation.

We extend the construction to colored links in integral homology spheres and show that

the signature is almost additive, with a correction term independent of the links. We

interpret this correction term as the signature of a generalized Hopf link and give a

simple closed formula to compute it.

1 Introduction

The splice of two links is an operation defined by Eisenbud and Neumann in [8], which

generalizes several other operations on links such as connected sum, cabling, and dis-

joint union. The precise definition is given in Section 2.1 (see Definition 2.1), but the

rough idea is as follows: the splice of two links K ′ ∪ L′ ⊂ S′ and K ′′ ∪ L′′ ⊂ S′′ along the

distinguished components K ′ and K ′′ is the link L′ ∪ L′′ in the three-manifold S obtained

by an appropriate gluing of the exteriors of K ′ and K ′′. There has been much interest in

understanding the behavior of various link invariants under the splice operation. For

example, the genus and the fiberability of a link are additive, in a suitable sense, under

splicing [8]. The behavior of the Conway polynomial has been studied in [5], and more
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recently the relation between the L-spaces in Heegaard–Floer homology and splicing

has been addressed in [13]. The goal of this paper is to obtain a similar (non-)additivity

statement for the multivariate signature of oriented colored links. As a consequence, we

show that the conventional univariate Levine–Tristram signature of a splice depends

on the multivariate signatures of the summands.

In Section 3.2, we define the signature of a colored link in an integral homology

sphere. This is a natural generalization of the multivariate extension of the Levine–

Tristram signature of a link in the three-sphere, considered in [6, 9]. The principal result

of the paper is Theorem 2.2, expressing the signature of the splice of two links in terms

of the signatures of the summands. We show that the signature is almost additive:

there is a defect, but it depends only on some combinatorial data of the links (linking

numbers), and not on the links themselves. Geometrically, this defect term appears as

the multivariate signature of a certain generalized Hopf link, which is computed in

Theorem 2.10. At the end of Section 2, we discuss a few applications of Theorem 2.2

and relate it to some previously known results: namely, we compute the signature of

a satellite knot (see Section 2.4 and Theorem 2.12) and that of an iterated torus link

(see Section 2.5 and Theorem 2.13). More precisely, we reduce the computation to the

signature of cables over the unknot. We also show that the multivariate signature of

a link can be computed by means of the conventional Levine–Tristram signature of an

auxiliary link (see Section 2.6 and Theorem 2.15).

The paper is organized as follows. Section 2 is devoted to the detailed statement

of main results, and the computation of the defect. In Section 3, we introduce the neces-

sary background material on twisted intersection forms and construct the signature of

colored links in integral homology spheres. The proofs of the main theorems are carried

out in Sections 4 and 5, where the signature of the generalized Hopf links is computed.

2 Principal Results

2.1 The set-up

A μ-colored link is an oriented link L in an integral homology sphere S equipped with

a surjective function π0(L) � {1, . . . ,μ}, referred to as the coloring. The union of the

components of L given the same color i = 1, . . . ,μ is denoted by Li.

The signature of a μ-colored link L is a certain Z-valued function σL defined on

the character torus

T μ := {
(ω1, . . . ,ωμ) ∈ (S1)μ ⊂ Cμ

∣∣ ωj = exp(2π iθj), θj ∈ Q
}
, (2.1)
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see Definition 3.5 below for details. We let T 0 := {1} ∈ C. Note that T μ is an abelian

group. Ifμ = 1, the link L ismonochrome and σL coincideswith the restriction (to rational

points) of the Levine–Tristram signature [23] (whose definition in terms of Seifert form

extends naturally to links in homology spheres). Given a character ω ∈ T μ and a vector

λ ∈ Zμ, we use the common notation ωλ := ∏μ

i=1 ω
λi
i .

Often, the components of L are split naturally into two groups, L = L′ ∪ L′′, on

which the coloring takes, respectively, μ′ and μ′′ values, μ′ + μ′′ = μ. In this case, we

regard σL as a function of two “vector” arguments (ω′,ω′′) ∈ T μ′×T μ′′
.We use this notation

freely, hoping that each time its precise meaning is clear from the context.

Clearly, in the definition of colored link, the precise set of colors is not very

important; sometimes, we also admit the color 0. As a special case, we define a (1,μ)-

colored link

K ∪ L = K ∪ L1 ∪ . . . ∪ Lμ

as a (1+μ)-colored link inwhichK is the only component given the distinguished color 0.

Here, we assumeK connected; this component, considered distinguished, plays a special

role in a number of operations.

In the following definition, for a (1,μ∗)-colored link K∗ ∪ L∗ ⊂ S∗, ∗ = ′ or ′′, we

denote byT∗ ⊂ S∗ a small tubular neighborhood ofK∗ disjoint from L∗ and letm∗, �∗ ⊂ ∂T∗

be, respectively, itsmeridian and longitude. (The latter iswell defined as S∗ is a homology

sphere.)

Definition 2.1. Given two (1,μ∗)-colored links K∗ ∪L∗ ⊂ S∗, ∗ = ′ or ′′, their splice is the
(μ′ + μ′′)-colored link L′ ∪ L′′ in the integral homology sphere

S := (S′ � intT ′) ∪ϕ (S′′ � intT ′′),

where the gluing homeomorphism ϕ : ∂T ′ → ∂T ′′ takesm′ and �′ to �′′ andm′′, respectively.

�

2.2 The signature formula

Given a list (vector, etc.) a1, . . . ,ai, . . . ,an, the notation a1, . . . , âi, . . . ,an designates that

the ith element (component, etc.) has been removed. The complex conjugation is denoted

by η �→ η̄. The same notation applies to the elements of the character torus T μ, where

we have ω̄ = ω−1.
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Fig. 1. The values of three defect functions for ω ∈ T 2. The defect is constant on the shaded

regions and on the interior of the segments dividing the squares. The values of the defect in the

extremal cases, ω1 = 1 or ω2 = 1, are given by the numbers on the left and bottom of the squares

respectively.

The linking number of two disjoint oriented circles K, L in an integral homology

sphere S is denotedby �kS(K,L), with S omittedwhenever understood. For a (1,μ)-colored

link K ∪ L, we also define the linking vector �k(K,L) = (λ1, . . . , λμ) ∈ Zμ, where λi :=
�k(K,Li).

The index of a real number x is defined via ind(x) := 	x
 − 	−x
 ∈ Z. The

Log-function Log: T 1 → [0, 1) sends exp(2π it) to t ∈ [0, 1). This function extends to

Log: T μ → [0,μ) via Logω = ∑μ

i=1 Logωi; in other words, we specialize each argument

to the interval [0, 1) and add the arguments as real numbers (rather than elements of

T 1) afterwards. For any integral vector λ ∈ Zμ, μ ≥ 0, we define the defect function

δλ : T μ −→ Z

ω �−→ ind
(∑μ

i=1 λi Logωi

)−∑μ

i=1 λi ind(Logωi).

For short, if λi = 1 for all i, we simply denote the defect δ, and omit the subscript. The

reader is referred to Figure 1 for a few examples of the defect function on T 2.

The following statement is the principal result of the paper.

Theorem 2.2. For ∗ = ′ or ′′, consider a (1,μ∗)-colored link K∗ ∪ L∗ ⊂ S∗, and let L ⊂ S

be the splice of the two links. For characters ω∗ ∈ T μ∗
, introduce the notation

λ∗ := �k(K∗,L∗) ∈ Zμ∗
, υ∗ := (ω∗)λ∗ ∈ T 1.
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Then, assuming that (υ ′, υ ′′) �= (1, 1), one has

σL(ω
′,ω′′) = σK ′∪L′(υ ′′,ω′) + σK ′′∪L′′(υ ′,ω′′) + δλ′(ω′)δλ′′(ω′′). �

Remark 2.3. Eisenbud and Neumann [8, Theorem 5.2] showed that the Alexander poly-

nomial is multiplicative under the splice. For a μ-colored link L, we denote L(t1, . . . , tμ)

the Alexander polynomial of L. Similar to Theorem 2.2, let t∗ = ∏μ∗
i=1(t

∗
i )

λ∗i . One has

L(t
′
1, . . . , t

′
μ′ , t′′1, . . . , t

′′
μ′′) = K ′∪L′(t′′, t′1, . . . , t

′
μ′) · K ′′∪L′′(t′, t′′1, . . . , t

′′
μ′′),

unless μ′ = 0 (i.e. L′ = K ′ is a knot) and λ′′ = 0, in which case

L(t
′′
1, . . . , t

′′
μ′′) = L′′\K ′′(t′′1, . . . , t

′′
μ′′).

This formula were refined by Cimasoni [5] for the Conway potential function. Moreover,

in relation with the signature of a colored link, one may consider the nullity, related

to the rank of the twisted first homology of the link complement. This nullity is also

additive under the splice operation, in the suitable sense. Detailed statements can be

found in [7]. �

Example 2.4. Consider two copies K ′ ∪ L′ and K ′′ ∪ L′′ of the (1,1)-colored general-

ized Hopf link H1,2, see Section 2.3, where K ′ and K ′′ are the single components. Then,

L = L′ ∪ L′′ = H2,2 is a (1,1)-colored link, and for ω ∈ T 1 � {±1}, we show by using

C-complexes that

σL(ω,ω) = σK ′∪L′(ω2,ω) + σK ′′∪L′′(ω2,ω) + δ(2)(ω)δ(2)(ω) = 0 + 0 + δ(2)(ω)δ(2)(ω).

This illustrates trivially that a defect appears. �

Example 2.5. For the reader convenience we add the following example. Notice the use

of the formula in Theorem 2.2 when ωi = 1 (cf. Remark 3.6). Let K ′ ∪ L′ be the (2,4)-torus

link and K ′′ ∪L′′ be the (4,2)-cable over the unknot with the core retained (cf. Section 2.5).

Then, the splice of these two links along the components K ′ and K ′′ is the (3,6)-torus link,

which we shall denote L.

In the notation of Theorem2.2,wehave λ′ = 2 and λ′′ = (1, 1). For theC-complexes

bounded by these three links one can take those depicted in Figure 2. To simplify the

resulting Hermitian matrices H , we re-denote by t0, t1, . . . their arguments (in the order

listed) and, for an index set I , introduce the shortcut πI := 1 +∏
i∈I (−ti). Then

HK ′∪L′(ξ ′,ω′) = −π̄0π̄1π01,
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Fig. 2. The leftmost link is the (2,4)-torus link, depicted as the boundary of a C-complexwith rank

1 first homology. In the middle, the (4,2)-cable over the unknot with the core retained, bounding

a rank 2 C-complex. The last diagram is the splice of the two preceding ones along K ′ and K ′′. It
represents the (3,6)-torus link.

HK ′′∪L′′(ξ ′′,ω′′
1,ω

′′
2) = π̄0π̄1π̄2

(
−π0π12 t1t2π0

π0 −π012

)
,

HL′∪L′′(ω′,ω′′
1,ω

′′
2) = π̄0π̄1π̄2

⎛⎜⎜⎜⎜⎝
−π0π12 t1t2π0 0 0

π0 −π012 t0t2π1 t0π2

0 π1 −π1π02 −t0π1π2

0 t1π2 π1π2 −π2π01

⎞⎟⎟⎟⎟⎠ ,

so that, up to units and factors of the form πi, i = 0, 1, . . ., the Alexander polynomials are

K ′∪L′ = π01, K ′′∪L′′ = t0t
2
1t

2
2 − 1, L′∪L′′ = π012(t0t1t2 + 1)2.

The computation of the signature of these matrices is straightforward: on the respective

open tori, they are the piecewise constant functions given by the following tables:

Log ξ ′ + Logω′ 1/2 3/2

σK ′∪L′(ξ ′,ω′) 1 0 −1 0 1

Log ξ ′′ + 2Logω′′ 1 2 3 4

σK ′′∪L′′(ξ ′′,ω′′) 2 1 0 −1 −2 −1 0 1 2

Logω′ + Logω′′ 1/2 1 2 5/2

σL′∪L′′(ω′,ω′′) 4 2 0 −1 −2 −1 0 2 4
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Note, however, that L′ is the unknot and L′′ is homeomorphic to K ′ ∪ L′; hence,

σK ′∪L′(1,ω′) = 0, σK ′′∪L′′(1,ω′′) = σK ′∪L′(ω′′
1,ω

′′
2).

Now, it is immediate that the identity

σL(ω
′,ω′′

1,ω
′′
2) = σK ′∪L′(ω′′

1ω
′′
2,ω

′) + σK ′′∪L′′(ω′2,ω′′
1,ω

′′
2) + δ(2)(ω

′)δ(1,1)(ω
′′
1,ω

′′
2)

given by Theorem 2.2 holds whenever ω′2 �= 1 or ω′′
1ω

′′
2 �= 1. (It suffices to compare the

values at all triples of eighth roots of unity.) If ω′2 = ω′′
1ω

′′
2 = 1, we obtain an extra

discrepancy of 1; this phenomenon will be explained in [7]. �

As an immediate consequence of Theorem 2.2, we see that the Levine–Tristram

signature of a splice cannot be expressed in terms of the Levine–Tristram signature of

its summands: in general, the multivariate extension is required.

Corollary 2.6. Let L be the splice of (1, 1)-colored links K ′ ∪ L′ and K ′′ ∪ L′′, and denote

λ′ = �k(K ′,L′) and λ′′ = �k(K ′′,L′′). Consider L as a 1-colored link. Then, for a character

ξ ∈ T 1 such that ξ g.c.d.(λ′,λ′′) �= 1, one has

σL(ξ) = σK ′∪L′(ξλ′′
, ξ) + σK ′′∪L′′(ξλ′

, ξ) − λ′λ′′ + δλ′(ξ)δλ′′(ξ),

where σL(ξ) is the Levine–Tristram signature of L. �

Proof. Consider the two-coloring on L given by the splitting L′ ∪ L′′. We have

σL(ξ , ξ) = σK ′∪L′(ξλ′′
, ξ) + σK ′′∪L′′(ξλ′

, ξ) + δλ′(ξ)δλ′′(ξ) by Theorem 2.2. On the other hand,

σL(ξ) = σL(ξ , ξ)−�k(L′,L′′), see Proposition 3.7. By [8, Proposition 1.2], �k(L′,L′′) = λ′λ′′. �

Theorem 2.2 is proved in Section 4.3. In the special case L′ = ∅, it takes the

following stronger form (we do not require that υ ′′ �= 1); it is proved in Section 4.4.

Addendum 2.7. Let L ⊂ S be the splice of a (1, 0)-colored link K ′ ⊂ S′ and a (1,μ′′)-

colored link K ′′ ∪ L′′ ⊂ S′′, and let λ′′ := �k(K ′′,L′′). Then, for any character ω ∈ T μ′′
, one

has

σL(ω) = σK ′
(
ωλ′′)+ σL′′(ω). �

Remark 2.8. The assumption (υ ′, υ ′′) �= (1, 1) in Theorem 2.2 is essential. If υ ′ = υ ′′ = 1,

the expression for the signature acquires an extra correction term, which can be proved
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to take values in [[−2, 2]]. In many cases, this term can be computed algorithmically,

and simple examples show that typically it does not vanish. Indeed, consider two

copies of the Whitehead link K ′ ∪ L′ and K ′′ ∪ L′′. If ω = eiπ/3, then σL(ω,ω) = −1, but

σK ′∪L′(1,ω) + σK ′′∪L′′(1,ω) + δ(1) = 0 and there is a non-zero extra term. (Addendum 2.7

states that the extra term does vanish whenever one of the links L′, L′′ is empty.) The

general computation of this extra term, related to linkage invariants (see, e.g., [19]), is

addressed in a forthcoming paper [7]. �

Remark 2.9. We expect that the conclusion of Theorem 2.2 would still hold without

the assumption that the characters should be rational. In fact, all ingredients of the

proof would work once recast to the language of local systems, and the main difficulty

is the very definition of the signature in homology spheres, where the link does not

need to bound a surface and the approach of [6] does not apply. (If all links are in S3, an

alternative proof can be given in terms of C-complexes.) This issuewill also be addressed

in [7]. �

2.3 The generalized Hopf link

A generalized Hopf link is the link Hm,n ⊂ S3 obtained from the ordinary positive Hopf

linkH1,1 = V∪U by replacing its componentsV andU with, respectively,m andnparallel

copies. This link is naturally (m + n)-colored; its signature, which plays a special role

in the paper is given by Theorem 2.10 below. Observe the similarity to the correction

term in Theorem 2.2; a posteriori, Theorem 2.10 can be interpreted as a special case of

Theorem 2.2, using the identity σH1,n ≡ 0 (which is easily proved independently) and the

fact that Hm,n is the splice of H1,m and H1,n. However, the Hopf links and their signatures

are used essentially in the proof of Theorem 2.2.

Theorem 2.10. For any character (v,u) ∈ T m × T n, one has σHm,n(v,u) = δ(v)δ(u). �

Certainly, Theorem 2.10 computes as well the signature of a generalized Hopf

link equipped with an arbitrary coloring and orientation of components. First, one can

recolor the link by assigning a separate color to each component (cf. Proposition 3.7

below). Then, one can reverse the orientation of each negative component Li; obviously,

this operation corresponds to the substitution ωi �→ ω̄i. For example, the orientation of

the original link can be described in terms of a pair of vectors, viz. the linking vector

ν ∈ {±1}m of the V-part of Hm,n with the U-component of the original Hopf link H1,1 and

the linking vector λ ∈ {±1}n of the U-part with the V-component. Then, assuming that

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/8/2249/3060640
by Bilkent University Library (BILK) user
on 27 June 2018



The Signature of a Splice 2257

any two linked components of Hm,n are given distinct colors, we have

σHm,n(v,u) = δν(v)δλ(u). (2.2)

For future references, we state a few simple properties of the defect function δ

and, hence, of the signature σHm,n . All proofs are immediate.

Lemma 2.11. The defect function δ : T μ → Z has the following properties:

(1) δ(1) = 0; δ ≡ 0 if μ = 0 or 1;

(2) δ(ω̄) = −δ(ω) for all ω ∈ T μ;

(3) δ is preserved by the coordinatewise action of the symmetric group Sμ;

(4) δ commutes with the coordinate embeddings T μ ↪→ T μ+1, ω �→ (ω, 1);

(5) δ commutes with the embeddings T μ ↪→ T μ+2, ω �→ (ω, η, η̄) for any

η ∈ T 1. �

2.4 Satellite knots

As was first observed in [8], the splice operation generalizes many classical link

constructions: connected sum, disjoint union, and satellites among others.

Our first application is Litherland’s formula for the Levine–Tristram signature

of a satellite knot, which is a particular case of Addendum 2.7.

Recall that an embedding of a solid torus in S3 into another solid torus in another

copy of S3 is called faithful if the image of a canonical longitude of the first solid torus

is a canonical longitude of the second one. Let V be an unknotted solid torus in S3, and

let k be a knot in the interior of V , with algebraic winding number q, that is, [k] is q times

the class of the core in H1(V). Given any knot K ⊂ S3, the satellite knot K∗ is defined as

the image f (k) under a faithful embedding f : V → S3 sending the core of V to K.

The isotopy class K∗ depends of course on the embedding f (and even its con-

cordance class, see [17]). Nevertheless, its Levine–Tristram signature is determined by

the signatures of the constituent knots and the winding number:

Theorem 2.12 (cf. [16, Theorem 2]). In the notation above, the Levine–Tristram

signatures of k, K, and K∗ are related via

σK∗(ω) = σK(ωq) + σk(ω), ω ∈ T 1. �
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Proof. Let C be the core of the solid torus S3 �V . The satellite K∗ can be written as the

splice of K ∪ ∅ and C ∪ k. By Addendum 2.7, we have

σK∗(ω) = σK(ωλ) + σk(ω),

where λ := �k(C,k). By assumption, �k(C,k) = q, and the statement follows. �

2.5 Iterated torus links

Our next application is another special case of Theorem 2.2, which provides an induc-

tive formula for the signatures of iterated torus links. In particular, this class of links

contains the algebraic ones, that is, the links of isolated singularities of complex curves

in C2. Partial results on the equivariant signatures of the monodromy were obtained by

Neumann [20].

Iterated torus links are obtained from an unknot by a sequence of cabling oper-

ations (and maybe, reversing the orientation of some of the components). In order to

define the cabling operations (we follow the exposition in [8]), consider two coprime

integers p and q (in particular, if one of them is 0, the other is ±1), a positive integer d, a

(1,μ′)-colored link K ′ ∪ L′ ⊂ S3, and a small tubular neighborhood T ′ of K ′ disjoint from

L′. Letm, l be the meridian and longitude of K ′, and K ′(p,q) be the oriented simple closed

curve in ∂T ′ homologous to pl + qm. More generally, let dK ′(p,q) be the disjoint union

of d parallel copies of K ′(p,q) in ∂T ′. We say that the link L = L′ ∪ dK ′(p,q) − K ′ (resp.

L = L′ ∪ dK ′(p,q)) is obtained from K ′ ∪ L′ by a (dp,dq)-cabling with the core removed

(resp. retained).

Let H1,1 = V ∪U be the ordinary Hopf link. The link V ∪dU(p,q) can be regarded

as either (1,d)-colored or (1, 1)-colored. We denote the corresponding multivariate

and bivariate signature functions by τdp,dq and τ̃dp,dq, respectively. By Proposition 3.7

below,

τ̃dp,dq(v,u) = τdp,dq(v,u, . . . ,u) − 1
2d(d− 1)pq.

In the case of core-removing, the link L obtained by the cabling is nothing but the splice

of K ′ ∪ L′ and V ∪dU(p,q). (Similarly, in the core-retaining case, L is the splice of K ′ ∪ L′

and V ∪ U ∪ dU(p,q).) Hence, the following statement is an immediate consequence of

Theorem 2.2.
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Theorem 2.13. Let L be obtained from a (1,μ′)-colored link K ′ ∪L′ by a (dp,dq)-cabling

with the core removed. For a character ω := (ω′,ω′′) ∈ T μ′ × T d, let

λ′ := �k(K ′,L′), λ′′ := (p, . . . ,p) ∈ Zd, and υ∗ := (ω∗)λ∗
, ∗ = ′ or ′′.

Then, assuming that (υ ′, υ ′′) �= (1, 1), one has

σL(ω) = σK ′∪L′(υ ′′,ω′) + τdp,dq(υ
′,ω′′) + δλ′(ω′)δλ′′(ω′′). �

With the evident modifications, this last corollary can be adapted to give a

formula for a (dp,dq)-cabling with the core retained.

The Levine–Tristram signature of the torus link U(p,q) (which coincides with

τ̃p,q(1, ζ ) in our notation) was computed by Hirzebruch. For the reader’s convenience,

we cite this result in the next lemma. Unfortunately, we do not know any more general

statement.

Lemma 2.14 (see [3]). Let M = {1, . . . ,p− 1} × {1, . . . ,q− 1} and let 0 < θ ≤ 1
2 . Consider

a = #{(i, j) ∈ M | θ < (i/p) + (j/q) < θ + 1},
n = #{(i, j) ∈ M | (i/p) + (j/q) = θ or (i/p) + (j/q) = θ + 1},
b = |M | − a− n.

Then, one has τ̃p,q(1, ζ ) = b− a for ζ = exp(2iπθ). �

2.6 Multivariate versus univariate signature

The last application is the computation of the multivariate signature of a link in terms

of the Levine–Tristram signature of an auxiliary link. (One obvious application is the

case where the latter auxiliary link is algebraic, so that its Seifert form can be com-

puted in terms of the variation map H1(F , ∂F) → H1(F) in the homology of its Milnor

fiber F , see [1].) This result is similar to [9, Theorem 6.22] by the second author and is

related to the computation of signature invariants of three-manifolds by Gilmer, see

[10, Theorem 3.6].

Let L = L1 ∪ . . . ∪ Lμ be a μ-colored link. For simplicity, we assume that the

coloring is maximal, that is, each component of L is given a separate color. Let [λij] be
the linking matrix of L, that is, λij = �k(Li,Lj) for i �= j and λii = 0.

Consider a character ω ∈ T μ and assume that ωi = ξni , where ξ := exp(2π i/n), for

some integers n > 0 and 0 < ni < n. (In particular, all ωi �= 1.) For i = 1, . . . ,μ, denote
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• λwi := ∑μ

j=1 njλij, the weighted linking number of Li and L � Li;

• υi := ∏μ

j=1 ωλij
j = ξλwi , where λi is the ith row of [λij].

Fix an integral vector p := (p1, . . . ,pμ) ∈ Zμ and consider the monochrome link

L̄ := L̄p(ω) obtained from L by the (ni,nipi)-cabling along the component Li for each

i = 1, . . . ,μ. In other words, each component Li of L is regarded ni-fold, and it is replaced

with ni “simple” components, possibly linked (if pi �= 0).

Theorem 2.15. In the notation above, one has the identity

σL(ω) = σL̄(ξ) −
μ∑
i=1

τ̃ni,nipi(υi, ξ) +
μ∑
i=1

(ni − 1) ind(λwi /n) +
∑

1≤i<j≤μ

λij. �

Corollary 2.16. If p = 0, the second term in Theorem 2.15 vanishes and one has

σL(ω) = σL̄(ξ) +
μ∑
i=1

(ni − 1) ind(λwi /n) +
∑

1≤i<j≤μ

λij.

For small values of μ, this identity simplifies even further:

(1) if μ = 1, then σL(ω) = σL̄(ξ);

(2) if μ = 2 and |λ12| ≤ 1, then σL(ω) = σL̄(ξ) + (n1 + n2 − 1)λ12. �

Proof of Corollary 2.16. If pi = 0, then V ∪U(ni, 0) = H1,ni is a generalized Hopf link; its

signature vanishes due to Theorem 2.10 and Lemma 2.11(1). The only other statement

that needs proof is Item (2), where we have ind(λ12ni/n) = λ12 whenever |λ12| ≤ 1 and

0 < ni < n, i = 1, 2. �

Example 2.17. Let L = H1,1 be the ordinary Hopf link, so that σL ≡ 0 by Theorem 2.10

and Lemma 2.11(1). On the other hand, taking p = 0, we obtain L̄ = Hn1,n2 ; by Theo-

rem 2.10 and Proposition 3.7, we get σL̄(ξ) = (1 − n1)(1 − n2) − n1n2, which agrees with

Corollary 2.16(2). �

Proof of Theorem 2.15. Denote L[0] := L and, for i = 1, . . . ,μ, let L[i] be the link

obtained from L[i − 1] by the (ni,nipi)-cabling along the component Li. Each link L[i]
is naturally μ-colored; we assign to this link the character ω[i] := (ξ , . . . , ξ ,ωi+1, . . . ,ωμ).

In this notation, L̄ is the monochrome version of L[μ] and, by Proposition 3.7,

σL̄(ξ) = σL[μ](ω[μ]) −
∑

1≤i<j≤μ

ninjλij. (2.3)
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Introduce the following characters:

• ω̃′[i] := (ξ , . . . , ξ) ∈ T ni ;

• ω̃′′[i], obtained from ω by replacing each ωj with nj|λij| copies of ξ sg λij , if j ≤ i,

or |λij| copies of ωsg λij
j , if j > i;

• ω̃[i], obtained from ω by replacing each ωj with nj|λij| copies of ξ sg λij .

By definition, L[i] is the splice of L[i − 1] and V ∪ niU(1,pi). Then Theorem 2.2 applies

and, for each i = 1, . . . ,μ,

σL[i](ω[i]) = σL[i−1](ω[i− 1]) + τ̃ni,nipi(υi, ξ) + δ(ω̃′[i])δ(ω̃′′[i]). (2.4)

We have Log ω̃′[i] = ni/n; since 0 < ni < n, this implies

δ(ω̃′[i]) = 1 − ni. (2.5)

One can show that δ(ω̃′′[i]) = δ(ω̃[i]) − ∑μ

j=i+1(1 − nj)λij. Indeed, ω̃[i] is obtained from

ω̃′′[i] by |λij| operations of replacement of a single copy of ωsg λij
j with copies of ξ sg λij for

all j > i; as in (2.5), one such operation increases the value of δ by (1 − nj) sg λij. The

character ω̃[i] has all entries equal to ξ or ξ̄ , with the exponent sum equal to λwi . Using

Lemma 2.11(5) and (3) to cancel the pairs ξ , ξ̄ , we get δ(ω̃[i]) = ind(λwi /n) − λwi ; hence,

δ(ω̃′′[i]) = ind(λwi /n) −
i−1∑
j=1

njλij −
μ∑

j=i+1

λij. (2.6)

Applying (2.4) inductively and taking into account (2.5) and (2.6), we arrive at

σL[μ](ω[μ]) = σL(ω) +
μ∑
i=1

τ̃ni,nipi(υi, ξ) −
μ∑
i=1

(ni − 1) ind(λwi /n) +
∑

1≤i<j≤μ

(ninj − 1)λij,

and the statement of the theorem follows from (2.3). �

3 Signature of a Link in a Homology Sphere

In the early 1960s Trotter introduced a numerical knot invariant called the signature

[24], which was subsequently extended to links by Murasugi [19]. This invariant was

generalized to a function (defined via Seifert forms) on S1 ⊂ C by Levine and Tristram

[14, 23]. It was then reinterpreted in terms of coverings and intersection forms of four-

manifolds by Viro [25, 26]. Our definition of the signature of a colored link follows Viro’s

approach and the G-signature theorem, see also [9, 12].
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3.1 Twisted signature and additivity

We start with recalling the definition and some properties of the twisted signature of a

four-manifold.

Let N be a compact smooth oriented four-manifold with boundary and G a finite

abelian group. Fix a covering NG → N , possibly ramified, with G the group of deck

transformations. If the covering is ramified, we assume that the ramification locus F is

a union of smooth compact surfaces Fi ⊂ N such that

(1) ∂Fi = Fi ∩ ∂N ;

(2) each surface Fi is transversal to ∂N , and

(3) distinct surfaces intersect transversally, at double points, and away

from ∂N .

Items (1) and (2) abovemean that each component Fi of F is a properly embedded surface.

For short, a compact surface F ⊂ N satisfying all Conditions (1)–(3)will be calledproperly

immersed. Under these assumptions, NG is an oriented rational homology manifold and

we have a well-defined Hermitian intersection form

〈 · , · 〉 : H2(N
G;C) ⊗ H2(N

G;C) → C.

Regard the homology groups H∗(NG;C) as C[G]-modules and consider the form

ϕ : H2(N
G;C) ⊗ H2(N

G;C) → C[G], ϕ(x,y) :=
∑
g∈G

〈x,gy〉g.

Since G is abelian, this form is sesquilinear, that is, ϕ(g1x,g2y) = g1g
−1
2 ϕ(x,y) for all

g1,g2 ∈ G.

Any multiplicative character χ : G → C∗ induces a homomorphism C[G] → C of

algebras with involution (zg �→ z̄g−1 in C[G] is mapped to η �→ η̄ in C). This makes C a

C[G]-module, and we can consider the twisted homology

Hχ
∗ (N ,F) := H∗(NG;C) ⊗C[G] C.

In this notation, the ramification locus F is omitted whenever it is empty or understood.

The form ϕ above induces a C-valued Hermitian form ϕχ on Hχ

2 (N ,F); explicitly, the

latter is given by

ϕχ(x ⊗ z1,y ⊗ z2) = z1z̄2
∑
g∈G

〈x,gy〉χ(g).
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We will denote by sign(N) the ordinary signature of the four-manifold N , that

is, that of the form 〈 · , · 〉 on H2(N). The twisted signature, denoted by signχ
(N ,F), is the

signature of the above Hermitian form ϕχ .

Remark 3.1. One can easily see that the twisted homology Hχ
∗ (N ,F) and twisted sig-

nature signχ
(N ,F) are independent of the group G used in the construction: they only

depend on the pair (N ,F) and the multiplicative character χ : H1(N � F) → C∗, which

must be assumed of finite order. In particular, we can always take for G the “smallest”

cyclic group, viz. the image of χ . Indeed, there is an obvious canonical isomorphism

between Hχ
∗ (N ,F) and the χ-equitypical summand

Vχ
∗ (G) := {

x ∈ H∗(NG;C)
∣∣ gx = χ(g)x for all g ∈ G

}
,

and the form ϕχ is |G|-times the restriction to Vχ (G) of the ordinary intersection index

form 〈 · , · 〉. Now, if G is replaced with a larger group G′ � G, the transfer map induces

an isomorphism Vχ
∗ (G) → Vχ

∗ (G′), multiplying the intersection index form by another

positive factor [G′ : G]; hence, the signature is preserved. �

Of particular interest is the behavior of the signature under the gluing of man-

ifolds. Recall that, by Novikov’s additivity, if N1 and N2 are two 4-manifolds such that

∂N1 = −∂N2 and N = N1 ∪∂ N2, then the ordinary and the twisted signatures of N

satisfy

sign(N) = sign(N1) + sign(N2) and signχ
(N ,F) = signχ

(N1,F1) + signχ
(N2,F2).

Of course, in the twisted version we assume that the ramification loci F1 and F2

match along the boundary, F = F1 ∪∂ F2, and the characters on N1, N2 are the restric-

tions of a character on N . If N1 and N2 are glued along a part of their boundaries

only, the above equalities may fail. This situation was completely studied by Wall in

[27]. For our purposes we only need a particular case of Wall’s theorem, which we

state below. The result is given in terms of ordinary signatures, but, as mentioned

by Wall at the end of his paper, the same conclusion holds if we consider twisted

signatures.

Theorem 3.2 (see [27]). Suppose that ∂N1 � M1 ∪M0 and ∂N2 � M2 ∪−M0, whereM0,M1,

andM2 are three-manifolds glued along their common boundary. Let N := N1 ∪M0 N2 and

X := ∂M0 = ∂M1 = ∂M2. Consider the C-vector spaces Ai := Ker[H1(X ;C) → H1(Mi;C)],
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i = 0, 1, 2, and let

K(A0,A1,A2) := A0 ∩ (A1 + A2)

(A0 ∩ A1) + (A0 ∩ A2)
.

If K(A0,A1,A2) is trivial, then we have sign(N) = sign(N1) + sign(N2). �

Remark 3.3. The additivity in Theorem 3.2 holds if at least two of A0,A1,A2 are equal.

Moreover, Wall shows in his article that the vector space K(A0,A1,A2) is independent of

the order of the Ai’s. When working with twisted signatures, we shall use the notation

Aχ

i := Ker[Hχ

1 (X) → Hχ

1 (Mi)], i = 0, 1, 2. �

3.2 The signature of a link

Let L be a μ-colored link in an integral homology sphere S. By Alexander duality, the

group H1(S � L) is generated by the meridians of the components of L. We shall denote

by mk
i the meridians of the components of the sublink Li of L of color i = 1, . . . ,μ.

Let Zμ be the free multiplicative group generated by t1, . . . , tμ. The coloring on L

gives rise to a homomorphism c : H1(S�L) → Zμ,mk
i �→ ti, i = 1, . . . ,μ. We consider mul-

tiplicative characters H1(S � L) → C∗ that respect the coloring, that is, factor through c.

They are determined by their values on the generators ti, and the group of such charac-

ters can be identified with T μ. Through this identification, the character ω ∈ T μ assigns

the meridians of the components of the sublink Li to ωi. With a certain abuse of the

language, we will shortly speak about the character ω on L and say that ω assigns ωi to

(each component of) Li.

The next proposition asserts that ω : H1(S � L) → C∗ extends to a finite order

character ω : H1(N � F) → C∗ (also denoted by the same letter ω), where N is a four-

manifold bounded by S and F ⊂ N is a certain properly immersed surface.

Proposition 3.4. Let L be a μ-colored link in an integral homology sphere S. Then, there

exists a compact smooth oriented four-manifold N and an oriented properly immersed

surface F = F1 ∪ . . . ∪ Fμ in N such that

• ∂N = S and ∂Fi = Li for i = 1, . . . ,μ,

• the group H1(N � F) � Zμ is freely generated by the meridians m̄i of Fi, and

• one has [Fi, ∂Fi] = 0 in H2(N , ∂N).
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As a consequence, any character ω ∈ T μ extends to a unique character

ω : H1(N � F) → C∗, m̄i �→ ωi. �

For short, as for characters on links, we will speak about the character ω on F

and say that ω assigns ωi to the component Fi.

We postpone the proof of this statement till Section 3.3.

Now, we are ready to define the main object of study in this paper.

Definition 3.5. The signature of a μ-colored link L ⊂ S is the map

σL : T μ −→ Z

ω �−→ signω
(N ,F) − sign(N),

where N and F are as in Proposition 3.4. �

The signature of a μ-colored link in S is related to invariants previously defined

by Gilmer [10], Smolinski [22], Levine [15] and the first author [9]. The interested reader

can find detailed history in [6]. In the case where S = S3, the signature considered in

this paper coincides with the signature defined by Cimasoni–Florens [6] for ω ∈ T with

ωi �= 1 for all i = 1, . . . ,μ. In our present work we shall deal also with the case ωi = 1.

The following remark should be clear from the definition of the signature of a colored

link.

Remark 3.6. Let L be a μ-colored link in S, and let ω ∈ T μ be a vector such that ωi = 1.

Then, the following equality holds:

σL(. . . , 1, . . . ) = σL1∪...∪L̂i∪...∪Lμ
(. . . , 1̂, . . . ). �

Another important observation is the fact that the coloring of the link is essential:

it is not enough to merely assign a value of a character to each component of the link.

More precisely, we have the following relation (whose proof for S3 found in [6] extends

to integral homology spheres almost literally: the extra term is due to the perturbation

of the union Fμ ∪Fμ+1 of two components of the ramification locus into a single surface).

Proposition 3.7 (see [6, Proposition 2.5]). Let L := L1 ∪ . . . ∪ Lμ+1 be a (μ + 1)-colored

link, and consider the μ-colored link L′ := L′
1 ∪ . . . ∪ L′

μ defined via L′
i = Li for i < μ and

L′
μ = Lμ ∪ Lμ+1. Then, for any character ω ∈ T μ, one has

σL′(ω) = σL(ω1, . . . ,ωμ,ωμ) − �k(Lμ,Lμ+1). �
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Corollary 3.8. The multivariate signature of a generalized Hopf link Hm,n does not

depend on the coloring, provided that linked components are given distinct colors. �

In particular, Proposition 3.7 provides a relation between the restriction of the

multivariate signature of a colored link to the diagonal in T μ and the Levine–Tristram

signature of the underlying monochrome link.

As asserted in the following proposition, the signature of a colored link is well

defined, that is, independent of the pair (N ,F) chosen to compute it. This is a consequence

of Novikov’s additivity and the G-signature theorem.

Proposition 3.9. For all ω ∈ T μ, the signature of (S,L) at ω

σL(ω) = signω
(N ,F) − sign(N)

does not depend on the pair (N ,F). �

Proof. Given twopairs (N ′,F ′) and (N ′′,F ′′) as in Proposition 3.4, considerW := N ′∪∂−N ′′

and F := F ′ ∪∂ −F ′′ ⊂ W . By Novikov’s additivity, the statement of the proposition would

follow if we show that signω
(W ,F) = signW .

To compute the twisted signature, we can use the group G := Cq1 × · · · × Cqμ ,

where qi is the order of ωi, i = 1, . . . ,μ, see Remark 3.1. Crucial is the fact that, under

the assumptions on (W ,F), this group results in a smooth closed manifold WG.

Consider the equitypical decomposition of the C[G]-module

H := H2(W
G;C) =

⊕
ρ

Vρ , (3.1)

where ρ runs over allmultiplicative charactersG → C∗. Since the intersection index form

〈 · , · 〉 is G-invariant, this decomposition is orthogonal. Denote by signVρ the signature

of the restriction of the form to Vρ . By Remark 3.1, we have signω
(W ,F) = signVω.

The argument below is a slight generalization of [21] (see also [4, Lemma 2.1]).

Each space Vρ can further be decomposed (not canonically) into the orthogo-

nal sum of two subspaces Vρ
+ and Vρ

− with, respectively, positive and negative definite

restriction of 〈 · , · 〉. Summation over all characters gives us a G-invariant decomposi-

tion H = H+ ⊕ H−. Recall that the G-signature of an element g ∈ G is sign(g,W) :=
traceg∗|H+ − traceg∗|H− ∈ C. It is well defined; in fact, using (3.1), we have

sign(g,W) =
∑

ρ

ρ(g) signVρ .
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Multiplying this by ω̄(g) and summing up over all g ∈ G, we arrive at

|G| signVω =
∑
g∈G

ω̄(g) sign(g,W) = |G| signV1 +
∑
g �=1

(ω̄(g) − 1) sign(g,W).

(Recall that irreducible characters are orthogonal. For the second equality, we use the

identity
∑

g sign(g,W) = |G| signV1, g ∈ G, which is the first equality with ω ≡ 1.) By the

usual transfer argument, signV1 = signW . Summarizing, we conclude that

signω
(W ,F) − sign(W) = 1

|G|
∑
g �=1

(ω̄(g) − 1) sign(g,W) (3.2)

is a linear combination of the g-signatures sign(g,W) with g ∈ G and g �= 1.

SinceW is a smooth manifold, we can use the G-signature theorem [2, 11], which

expresses the g-signature sign(g,W) in termsof the fixedpoint set of g.Weuse repeatedly

the fact that each surface Fi is connected and the covering is “uniform” along Fi; hence,

the extra factor appearing in the G-signature theorem depends on the element g ∈ G

only and does not depend on a particular component of the fixed point set.

If 1 �= g ∈ Cqi lies in one of the factors of G, its fixed point set is Fi and sign(g,W)

is a multiple of [Fi]2. By Proposition 3.4, [F ∗
i , ∂F

∗
i ] = 0 ∈ H2(N∗, ∂N∗) for ∗ = ′ or ′′; hence,

[Fi] = 0 and sign(g,W) = 0.

If g ∈ Cqi × Cqj lies in the product of two factors (but not in either of them), the

fixed point set is Fi ∩ Fj and sign(g,W) is a multiple of 〈[Fi], [Fj]〉 = 0 (since, as above,

[Fi] = [Fj] = 0).

In all other cases, the fixed point set is empty (there are no triple intersections);

hence, sign(g,W) = 0. Summarizing, sign(g,W) = 0 whenever g �= 1; in view of (3.2), this

implies that signω
(W ,F) = signW and concludes the proof. �

3.3 Proof of Proposition 3.4

Consider an integral surgery presentation for S given by a framed oriented link T =
T1 ∪ . . . ∪ Tk in S3. Since S is a homology sphere, we may assume that T is algebraically

split and that the surgery coefficients of each of its components are ±1 [18, Theorem A].

The link L can be represented by a collection of curves in S3 � T .

Let N be the four-manifold obtained by attaching two-handles to B4 along the

components of T according to their framings. Since the linking matrix of T is diagonal

with ±1 entries, we may slide the knots in L over the attached handles in order to obtain

a presentation of L in S such that �kS(Li,Tj) = 0 for all i = 1, . . . ,μ and j = 1, . . . ,k. Since
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all Li are disjoint from the attaching tori of the handles, we can consider a surface F

in B4, the 0-handle of N , such that F is a union of compact connected oriented smooth

surfaces F1, . . . ,Fμ, and each Fi is smoothly embedded with ∂Fi = Li.

We have the following commutative diagram:

0 = H1(N) −−−−→ H1(N � F) −−−−→ H2(N ,N � F) −−−−→ H2(N)⏐⏐� ⏐⏐�
H2(F , ∂F)

i∗−−−−→ H2(N , ∂N),

where, by Alexander and Lefschetz duality, the two vertical arrows are isomorphisms

and the inclusion homomorphism i∗ is trivial, as �kS(Li,Tj) = 0 and thus [Fi, ∂Fi] = 0 ∈
H2(N , ∂N) for all i = 1, . . . ,μ. It follows that H1(N � F) is canonically isomorphic to

H2(F , ∂F) = Zμ, and the latter group is freely generated by the fundamental classes

[Fi, ∂Fi]. Repeating the same computation over the finite field Fp, we get H1(F � F ;Fp) =
H2(F , ∂F ;Fp) and, since the dimension of this vector space does not depend on p, we

conclude that the homology group H1(F � F) = Hom(H1(F � F),Z) is freely generated by

the elements of the dual basis, that is, the meridians m̄i of the components Fi ⊂ N . �

4 Proof of Theorem 2.2

4.1 The auxiliary Hopf link

In the proof of Theorem 2.2, it will be useful to have some control over the surface F

used to compute the colored signatures; namely, sometimes we want the distinguished

component K to bound a disk. The proof of the following lemma is a straightforward

adaptation of the proof of Proposition 3.4.

Lemma 4.1. Let K ∪ L be a (1,μ)-colored link in S. Then, the pair (N ,F) in Proposition

3.4 can be chosen of the form (N ,D ∪ F), where D is a disk, K = ∂D, and Li = ∂Fi. �

Proof. As explained in the proof of Proposition 3.4, we can consider an integral surgery

presentation for S given by a framed oriented link T = T1 ∪ . . . ∪ Tk in S3, where T

is algebraically split and the surgery coefficients of each of its components are ±1.

Moreover, the link K ∪ L can be represented by a collection of curves in S3 �T such that

�k(K,Ti) = �k(Lj,Ti) = 0 for all i, j.

Notice that we can obtain K ∪ L ⊂ S by starting with U ∪ L ⊂ S3 � T , where U

is the unknot, and performing surgery on unknotted curves C1, . . . ,Ct in S3 � (T ∪U ∪ L)

with framings εi = ±1 to do some crossing changes on U to obtain K. It is clear that
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we might assume �k(U ,Ti) = 0 for all i and that the curves Ci may be chosen such that

�k(Ci,Cj) = 0 if i �= j and �k(Ci,Tj) = �k(Ci,U) = �k(Ci,Lj) = 0 for all i and j.

The link U ∪L in S3 bounds a properly immersed surface D∪F1 ∪ . . . in B4. Indeed,

one has

(1) Li = ∂Fi = Fi ∩ ∂B4 and U = ∂D = D ∩ ∂B4;

(2) D and each surface Fi are transversal to ∂B4, and

(3) distinct surfaces intersect transversally, at double points, and away

from ∂B4.

Consider the four-manifold N obtained by attaching two-handles to B4 along the

components of T ∪ C1 ∪ . . . ∪ Ct according to their framings. By construction we obtain

the link K ∪ L sitting in S = ∂N and bounding F . Moreover, the above conditions on the

linking numbers guarantee that the proof of Proposition 3.4 follows word by word with

the manifold N and the surface F considered in this proof. �

Let (N ,D∪F)be the pair constructed in Lemma4.1 andfix a tubular neighborhood

B ∼= D× B2 of D in N , see Figure 3. Without loss of generality, by taking B small enough,

we may assume that, up to orientation of the components, the pair (B, (D ∪ F) ∩ B)

has boundary (S3,H1,m), where m is the number of points in D ∩ F . The components of

H1,m = V ∪ U1 ∪ . . . ∪ Um inherit an orientation from D ∪ F , and we color them according

to the decomposition D ∪ F1 ∪ . . . ∪ Fμ.

L

K

L

K
B

N � B

M1

M0

M2

N1

N2

Fig. 3. This diagram represents the pairs (N ,D∪F) and (N ,D ∪F). The gray band is the four ball

N2 = B = D× B2.

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/8/2249/3060640
by Bilkent University Library (BILK) user
on 27 June 2018



2270 A. Degtyarev et al.

Assume that the original link is given a character (v,u). This character extends

to D∪F and restricts to a character, also denoted by (v,u), on H1,m. Occasionally, we will

replace D with several parallel copies, obtaining a link Hn,m, and change the character

on the V-part of Hn,m, while keeping u on the U-part. We always assume that linked

components are given distinct colors, but we allow a nonstandard orientation of the V

part, describing it by a linking vector ν, cf. the paragraph prior to (2.2).

Lemma 4.2. Consider the linkHn,m = V∪U equippedwith the coloring, orientation, and

character u on the U-part as explained above. Then, for any character v on the V-part

and any linking vector ν, one has

σHn,m(v,u) = −δν(v)δλ(u),

where λ := �k(K,L). �

Proof. The U-part of the link can be described as follows: for each i = 1, . . . ,μ, there

is a number of components, all carrying the same color and character ωi, oriented in a

random way but so that the entries of the linking vector (with respect to a fixed positive

component of the V-part) sum up to λi. (These components correspond to the geometric

intersection points, and their orientation reflects the sign of the intersection.) Hence,

the statement is an immediate consequence of (2.2) and the definition of δ, as the copies

of ±Logui would sum up to λi Logui. �

4.2 A special case

The next lemma is straightforward; it is stated for references. We will use it to apply

Wall’s Theorem 3.2. Certainly, the statement on Hχ

0 (X) extends to any topological

space X , whereas that on Hχ

1 (X) extends to any space with abelian fundamental group.

Lemma 4.3. Let X ∼= T2 be a two-torus and χ : H1(X) → C∗ a multiplicative character.

Then Hχ

1 (X) = H1(X ;C), Hχ

0 (X) = H0(X ;C) if χ ≡ 1 and Hχ

1 (X) = Hχ

0 (X) = 0 otherwise. �

We start by proving a special case of Theorem 2.2, which will be useful later

on and whose proof contains the key ingredients used to establish the general formula.

In the following lemma we study the effect on the colored signatures of changing the

component K of a (1,μ)-colored link K ∪ L ⊂ S to a collection of ν parallel curves, that

is, of performing a (ν, 0)-cabling. This operation is equivalent to the splice of K ∪ L ⊂ S

and H1,ν ⊂ S3.
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Let K ∪ L be the resulting (ν + μ)-colored link. Denote λ := �k(K,L) and, for a

character ω ∈ T μ, let υ := ωλ. For a character ζ ∈ T ν , let π := ∏ν

i=1 ζi.

Lemma 4.4. In the notation above, assuming that (υ,π) �= (1, 1), one has

σK∪L(ζ ,ω) = σK∪L(π ,ω) − δ(ζ )δλ(ω). �

Proof. The diagram in Figure 3 might help one follow the construction. Let (N ,D ∪ F)

be the pair constructed in Lemma 4.1 for the link K ∪ L ⊂ S = ∂N and fix a tubular

neighborhood B ∼= D× B2 of D in N . The pair (N ,D ∪ F) can be written as the union

(N � B,F ∩ (N � B)) ∪ (B, (D ∪ F) ∩ B)

glued along (D× S1,F ∩ ∂B). As explained in Section 4.1, the boundary of (B, (D ∪ F) ∩ B)

is (S3,H1,m), where H1,m inherits orientations of the components and coloring with the

associated character (π ,ω).

We use Wall’s Theorem 3.2 to relate the twisted and non-twisted signatures of

(N ,D∪ F) and (N � B,F ∩ (N � B)). To this end, define N1 = N � B,M1 = S � T̊(K), N2 = B,

M2 = T(K) and M0 = D× S1, where T stands for a small tubular neighborhood and T̊ is

its interior. One has ∂N1 = M1 ∪M0 and ∂N2 = M2 ∪−M0, and in both cases the manifolds

are glued along X := ∂D × S1 = K × S1. Let m and � be the meridian and longitude of

K, which generate H1(X). Following the notation of Theorem 3.2, we have A0 = A1 = 〈�〉
and A2 = 〈m〉, which implies that K(A0,A1,A2) = 0 and thus

sign(N) = sign(N1 ∪ N2) = sign(N1) + sign(N2) = sign(N1) (4.1)

since N2 is contractible.

We now make the corresponding computation with twisted coefficients.

Let ρ := (π ,ω); we will use the same notation for the extensions of ρ to the other

spaces involved. We need to study the relationship between signρ
(N1 ∪ N2,D ∪ F) and

the twisted signatures of N1 and N2. The group H1(X) is generated by m, � and, since

ρ(m) = υ and ρ(�) = π are not both trivial, we have Hρ

1 (X) = 0, see Lemma 4.3. This

trivially implies K
(
Aρ

0,A
ρ

1,A
ρ

2

) = 0, and Wall’s Theorem 3.2 yields

signρ
(N1 ∪ N2,D ∪ F) = signρ

(N1,F ∩ N1) + signρ
(N2, (D ∪ F) ∩ N2). (4.2)
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Since the boundary of (N2, (D ∪ F) ∩ N2) is (S3,H1,m), by Lemmas 4.2 and 2.11(1)

we have

signρ
(π ,ω)(N2, (D ∪ F) ∩ N2) − sign(N2) = σH1,m(π ,ω) = δ(1)δλ(ω) = 0.

Combining equations (4.1) and (4.2) with Definition 3.5 of signature, we get

σK∪L(ρ) = signρ
(N ,D ∪ F) − sign(N) = signρ

(N1,F ∩ N1) − sign(N1). (4.3)

Now, consider the link K∪L. We can assume that K lies in the tubular neighbor-

hoodM2 = ∂D×B2 ofK in S. The link K bounds a collection of ν parallel disks D ⊂ N2 = B

and the pair (N2, (D∪F)∩N2) has boundary (S3,Hν,m), with the generalized Hopf link Hν,m

carrying the character (ζ ,ω) and corresponding orientations. Similar to (4.2), one has

sign(ζ ,ω)
(N1 ∪ N2,D ∪ F) = signρ

(N1,F ∩ N1) + sign(ζ ,ω)
(N2, (D ∪ F) ∩ N2). (4.4)

Moreover, we can compute the signature of Hν,m from the pair (B, (D∪F)∩B); thus, since

N2 is contractible,

sign(ζ ,ω)
(N2, (D ∪ F) ∩ N2) = −δ(ζ )δλ(ω), (4.5)

see Lemma 4.2. Using the pair (N ,D ∪ F) to compute the signature of K ∪ L, we have

σK∪L(ζ ,ω) = sign(ζ ,ω)
(N ,D ∪ F) − sign(N)

=
(4.1),(4.4)

signρ
(N1,F ∩ N1) + sign(ζ ,ω)

(N2, (F ∪ D) ∩ N2) − sign(N1)

=
(4.3),(4.5)

σK∪L(ρ) − δ(ζ )δλ(ω). �

4.3 Proof of Theorem 2.2

The diagram in Figure 4 might be useful to follow the details. Let (N ′,D′ ∪F ′) be the pair

constructed in Lemma 4.1 for the link K ′ ∪ L′ ⊂ S′ and fix a small tubular neighborhood

B′ ∼= D′ × B2 of D′ in N ′. Since (υ ′, υ ′′) �= (1, 1), we can repeat the arguments in the proof

of Lemma 4.4 involving Wall’s theorem to obtain

σK ′∪L′(υ ′′,ω′) = sign(υ′′,ω′)
(N ′ � B′,F ′ ∩ (N ′ � B′)) − sign(N ′ � B′). (4.6)

By construction, the surface (D′ ∪F ′)∩B′ consists of the disk D′ and a union ofm′

parallel disks transversal to D′ (those coming from F ′). Consider now a pair (N ′′,D′′ ∪ F ′′)
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(N ′′,D′′ ∪ F ′′)(N ′ � B′, F ′ ∩ (N ′ � B′) (N, F )

Fig. 4. The third diagram represents the pair (N ,F) used to compute the signature of the splice of

K ′ ∪L′ and K ′′ ∪L′′. This pair is obtained identifying parts of the boundary of (N ′
�B′,F ′ ∩ (N ′

�B′))
and (N ′′,D′′ ∪ F ′′).

given by Lemma 4.1 for K ′′ ∪ L′′ ⊂ S′′. Replace K ′′ with m′ parallel copies (with the

orientations coherent with the signs of the intersection points of D′ and F ′) to obtain a

(m′ +μ′′)-colored link K′′ ∪L′′ ⊂ S′′, to which we assign the character (ω′,ω′′) : H1(S� (K′′ ∪
L′′)) → C∗. In a similar way, replace the disk D′′ with m′ parallel copies to obtain a pair

(N ′′,D′′ ∪ F ′′). We may assume that the disks constituting D′′ lie in a small neighborhood

B′′ ∼= D′′ × B2, and we color the components of D′′ in accordance with the colors of the

m′ parallel disks coming from the surface F ′ in (D′ ∪ F ′) ∩ B′.

In the boundary of B′′, we obtain a generalized Hopf link Hm′,m′′ (up to orientation

of the components, cf. Section 4.1) carrying the character (ω′,ω′′). Lemma 4.4 applied to

the (m′, 0)-cabling of K ′′ ∪ L′′ along K ′′ yields

σK′′∪L′′(ω′,ω′′) = sign(ω′,ω′′)
(N ′′,D′′ ∪ F ′′) − sign(N ′′)

= σK ′′∪L′′(υ ′,ω′′) − δλ′(ω′)δλ′′(ω′′). (4.7)

(For the last term, Lemma 4.2 is applied twice, first to ω′, then to ω′′.) Now, let us look at

the pair (N ,F) obtained as the gluing

(N ′ � B′,F ′ ∩ (N ′ � B′)) ∪ (N ′′,D′′ ∪ F ′′), (4.8)

with the solid torus T ′ = D′ × ∂B2 in the boundary of B′ identified with the solid torus

T ′′ = ∂D′′ × B2, which is a tubular neighborhood T(K ′′) of K ′′ in S′′. The identification

is made in such a way that the disk D′ ⊂ T ′ is glued to B2 ⊂ T ′′. Moreover, the m′

disks removed from the surfaces F ′ in the intersection F ′ ∩ (N ′ � B′) are filled with the
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corresponding m′ disks constituting D′′. Notice that the boundary of (N ,F) is nothing

but (S,L), that is, the splice in question. Furthermore, by the construction, the pair (N ,F)

can be used to compute the colored signature of (S,L), that is,

σL(ω
′,ω′′) = sign(ω′,ω′′)

(N ,F) − sign(N).

To complete the proof, we shall study the behavior of the twisted and classical signa-

tures ofN with respect to the decomposition (4.8). By Theorem 3.2, the signatures will be

additive with respect to this decomposition if at least two of the kernels A0,A1,A2 coin-

cide in the classical and in the twisted version. In the classical version, we are dealing

with the group H1(∂T ′), generated by mK ′ = �K ′′ and �K ′ = mK ′′ , the meridian and longi-

tude of K ′ and K ′′ which are identified in (4.8). It is clear that the kernels of the inclusion

ofH1(∂T ′) into bothH1(S
′ �intT(K ′)) andH1(T(K ′′)) are generated by �K ′ = mK ′′ , and thus,

by Wall’s theorem we have

sign(N) = sign(N ′ � B′) + sign(N ′′). (4.9)

In the twisted version, the space H (ω′,ω′′)
1 (∂T ′) = H (υ′,υ′′)

1 (∂T ′) vanishes due to Lemma 4.3

and the assumption (υ ′, υ ′′) �= (1, 1). Hence, Theorem 3.2 yields

sign(ω′,ω′′)
(N ,F) = sign(υ′′,ω′)

(N ′ � B′,F ′ ∩ (N ′ � B′)) + sign(ω′,ω′′)
(N ′′,D′′ ∪ F ′′). (4.10)

Putting these equations together, we obtain

σL(ω
′,ω′′) =

(4.9),(4.10)
sign(υ′′,ω′)

(N ′ � B′,F ′ ∩ (N ′ � B′)) + sign(ω′,ω′′)
(N ′′,D′′ ∪ F ′′)

− sign(N ′ � B′) − sign(N ′′)

=
(4.6),(4.7)

σK ′∪L′(υ ′′,ω′) + σK ′′∪L′′(υ ′,ω′′) − δλ′(ω′)δλ′′(ω′′). �

4.4 Proof of Addendum 2.7

Applying Theorem 2.2 to the splice of K ′ and K ′′ ∪ L′′, we obtain

σL(ω) = σK ′(υ ′′) + σK ′′∪L′′(1,ω′′) − δ(1)δλ′′(ω′′) = σK ′(υ ′′) + σL′′(ω′′).

Thus, it suffices to justify that, in this particular case, Theorem 2.2 holds even if υ ′′ = 1.
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Let ρ := (υ ′, υ ′′). In the proof of Theorem 2.2, the assumption ρ �= (1, 1) was only

used to establish that the twisted homology group Hρ

1 (∂T ′) is trivial, yielding (4.10). If

ρ = (1, 1), this group is no longer trivial, but we shall see that (4.10) still holds if L′ is

empty.

By Remark 3.3, we only need to show that two among the three groups Aρ

0, A
ρ

1,

and Aρ

2 are equal. We are dealing with the kernels of the inclusions Hρ

1 (∂T ′) → Hω
1 (Mi),

where M0 = S′ � intT(K ′), M1 = S′′ � intT(K ′′), and M2 = T(K ′′). Since ρ = (1, 1), the

restriction of the covering to ∂T ′ is trivial and the group Hρ

1 (∂T ′) is generated by the

lifts m̃K ′ and �̃K ′ of the meridian and longitude of K ′, which are identified, respectively,

with the longitude and meridian of K ′′. While the generators of Aρ

1 are not evident, the

groups Aρ

0 and Aρ

2 are easily seen to be equal. Indeed, since L′ is empty and υ ′′ = 1, the

group Hυ′′
1 (S′ � intT(K ′)) is the homology group of the trivial covering of M0; therefore,

�̃K ′ = m̃K ′′ generates Aρ

0. On the other hand, since L′ is empty, |λ′| = 0 and we do not need

to work with parallel copies of K ′′. It follows that the group Hυ′′
1 (T(K ′′)) is the homology

group of the trivial covering ofM2 and m̃K ′′ = �̃K ′ generatesAρ

2.We conclude thatAρ

0 = Aρ

2,

completing the proof. �

5 The Generalized Hopf Link

In this section, we compute the signature of a generalized Hopf link using the C-complex

approach of [6]. This approach works only for characters with all components distinct

from one. Thus, we define the open character torus T̊ μ, obtained from T μ by removing

all “coordinate planes” of the form ωi = 1, i = 1, . . . ,μ.

5.1 C-complexes and Seifert forms

We recall briefly the notion of C-complex of a μ-colored link and its application to the

computation of the signature. To avoid excessive indexation, we consider the special

case of the bivariate signature of a bicolored link; for the general case and further details,

see [6].

Thus, let K ∪ L be a bicolored link, with the coloring K �→ 1, L �→ 2. (We do not

assume K or L connected.) A C-complex is a pair of Seifert surfaces E for K and F for L,

possibly disconnected, which intersect each other transversally (in the stratified sense)

and only at clasps, that is, smooth simple arcs, each connecting a point of K to a point

of L. (In the general case of more than two colors, the only additional requirement is

that all triple intersections of Seifert surfaces involved must be empty.) Let S := E ∪ F .
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Then, for each pair ε, δ = ±1, one can consider the Seifert form

θεδ : H1(S) ⊗ H1(S) → Z,

defined as follows. Pick a class α ∈ H1(S) and represent it by a simple closed curve

a ⊂ S satisfying the following condition: each clasp c ⊂ E ∩ F is either disjoint from a

or entirely contained in a. It is immediate that such a curve a can be pushed off E in the

direction ε (with respect to the coorientation of E, which is part of the structure) and

off F in the direction δ, so that the resulting curve a′ is disjoint from S. Then, for another

class β ∈ H1(S), the value θεδ(α ⊗ β) is the linking coefficient of the shift a′ and a cycle

representing β.

Now, given a pair of complex units (η, ζ ) ∈ T̊ 2, consider the form

H(η, ζ ) := (1 − η̄)(1 − ζ̄ )
(
θ1,1 − ζθ1,−1 − ηθ−1,1 + ηζθ−1,−1

)
. (5.1)

The extensions of θεδ to H1(S)⊗C are chosen sesquilinear; hence, this form is Hermitian

and it has a well-defined signature. It computes the signature of K ∪ L.

Theorem 5.1 (see [6]). The restriction to the open torus T̊ 2 of the bivariate signature of

a bicolored link K ∪ L is given by

σK∪L : (η, ζ ) �→ signH(η, ζ ). �

Remark 5.2. Strictly speaking, the statement of Theorem 5.1 is the definition

of signature in [6]. This definition is equivalent to the conventional one, see

[6, Section 6.2]. �

In general, for a μ-colored link L, one should consider a μ-component C-

complex S and all 2μ possible shift directions, arriving at a Hermitian formH(ω), ω ∈ T̊ μ,

computing the signature σL(ω). The nullity nullL(ω) := nullH(ω) is also an invariant of L;

it is given by the following theorem.

Theorem 5.3 (see [6, Theorem 6.1]). For any character ω ∈ T̊ μ in the open character

torus, one has nullL(ω) = dimHω
1 (S3 � L). �
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Proposition 5.4. LetH := Hm,n be a generalizedHopf link. Then, for any (η, ζ ) ∈ T̊ m×T̊ n,

one has

nullH (η, ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m+ n− 3, if Log η ∈ Z and Log ζ ∈ Z,

m− 1, if Log η /∈ Z, Log ζ ∈ Z,

n− 1, if Log η ∈ Z, Log ζ /∈ Z,

0, otherwise.

�

Proof. The generalized Hopf link Hm,n can be thought of as the splice of the links H1,m

and H1,n. Since obviously S3 �H1,m
∼= S1 ×Dm, where Dm is anm-punctured disk, for any

pair (υ, η) ∈ T 1 × T̊ m we have

dimH (υ,η)

1 (S3 � H1,m) =
⎧⎨⎩m− 1, if υ = 1,

0, if υ �= 1.

A similar relation holds forH1,n; in view of Theorem 5.3, the statement of the proposition

follows from theMayer–Vietoris exact sequence, with Lemma 4.3 taken into account. �

5.2 Proof of Theorem 2.10

Due to Remark 3.6, we have

σHm,n(. . . , 1, . . . , ζ ) = σHm−1,n(. . . , 1̂, . . . , ζ ), σHm,n(η, . . . , 1, . . .) = σHm,n−1(η, . . . , 1̂, . . .).

These formulas agree with the statement of the theorem, see Lemma 2.11(4), and it

suffices to compute the restriction of σHm,n to the open character torus T̊ m+n.

Consider the group G := Z/m × Z/n. We will use the cyclic indexing for the

components of the link and other related objects. Let Ki, i ∈ Z/m be the first m parallel

components and Lj, j ∈ Z/n, the last n parallel components.

By an obvious semicontinuity argument, for any μ-colored link L, the mul-

tivariate signature σL(ω) is constant on each connected component of each stratum

{ω ∈ T̊ μ | nullL(ω) = const}. If L = Hm,n, the strata are given by Proposition 5.4: they

are the hyperplanes Pp × T̊ n and T̊ m ×Qq, where

Pp := {η ∈ T̊ m | Log η = p}, Qq := {ζ ∈ T̊ n | Log ζ = q}, p,q ∈ Z,

and all pairwise intersections thereof. It is immediate that the bi-diagonal η1 = . . . = ηm,

ζ1 = . . . = ζn meets each component of each stratum; hence, it suffices to compute the
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restriction of the signature function to this bi-diagonal. Due to Corollary 3.8, this is

equivalent to computing the bivariate signature σ̃ : T̊ 2 → Z, of the bicolored generalized

Hopf link (with the coloring Ki �→ 1, Lj �→ 2, (i, j) ∈ G), and the formula to be established

takes the form

σ̃ (η, ζ ) = δ[m](η)δ[n](ζ ) = (
ind(mLog η) −m

)(
ind(nLog ζ ) − n

)
, (η, ζ ) ∈ T̊ 2.

Consider m disjoint parallel disks Ei and n disjoint parallel disks Fj, so that

∂Ei = Ki, i ∈ Z/m, and ∂Fj = Lj, j ∈ Z/n. We can assume that each component Lj intersects

each disk Ei at a single point eij, so that these points appear in Lj in the cyclic order given

by the orientation. These points cut Lj into segments lij := [eij, ei+1,j], i ∈ Z/m. Likewise,

each component Ki intersects each disk Fj at a single point fij, the points appearing

in Ki in the cyclic order given by the orientation, and we will speak about the segments

kij := [fij, fi,j+1] ⊂ Ki, j ∈ Z/n. Finally, assume that the intersection Ei ∩ Fj is a segment

cij := [eij, fij] (a clasp). Then, letting E := ⋃
i Ei and F := ⋃

j Fj, the union S := E ∪ F is a

bicolored C-complex for Hm,n, and we can apply Theorem 5.1.

Remark 5.5. If m ≤ 1 or n ≤ 1, then H1(S) = 0 and the signature is trivially zero.

Hence, from now on we can assume that m,n ≥ 2. Note though that formally this case

does agree with the statement of the theorem, as δ ≡ 0 on T 0 and T 1. �

In each disk Ei, consider a collection of segments (simple arcs) eij := [eij, ei,j+1],
j ∈ Z/n, disjoint except the common boundary points and such that their union is a

circle Ci parallel to ∂Ei = Ki (and the points appear in this circle in accordance with

their cyclic order). Consider similar segments fij := [fij, fi+1,j] ⊂ Fj, i ∈ Z/m, forming

circles Dj ⊂ Fj parallel to ∂Fj = Lj. Then, the group H1(S) is generated by the classes αij

of the loops

aij := cij · fij · c−1
i+1,j · ei+1,j · ci+1,j+1 · f−1

i,j+1 · c−1
i,j+1 · e−1

ij ,

(i, j) ∈ G, connecting the points

eij → fij → fi+1,j → ei+1,j → ei+1,j+1 → fi+1,j+1 → fi,j+1 → ei,j+1 → eij

(in the order of appearance). The construction is illustrated in Figure 5. We do not assert

that these elements form a basis: they are linearly dependent. However, we will do the

computations in the free abelian group H := ⊕
i,j Zαij, (i, j) ∈ G; this change will increase

the kernel of the form, but it will not affect the signature.
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E3

E2

E1

F1 F2 F3

L1 L2 L3

K1

K2

K3

+ + +

c11

f11

c21

e21

f12

c22

c12

e11

+

+

+

Fig. 5. This diagram represents a generalizedHopf link of typeH3,3. The link is depicted bounding

a bicolored oriented C-complex S, which is the union of the disks Ei and Fj . The red loop is a11,

whose homology class α11 is an element of H1(S).

The proof of the following lemma is postponed till Section 5.3.

Lemma 5.6. Given ε, δ = ±1, the only nontrivial values taken by the Seifert form θεδ on

the pairs of generators αij are as follows:

αij ⊗ αij �→ −εδ, αij ⊗ αi−ε,j �→ εδ, αij ⊗ αi,j+δ �→ εδ, αij ⊗ αi−ε,j+δ �→ −εδ,

where (i, j) ∈ G. �

Consider the Hermitian inner product 〈 · , · 〉 on H⊗C with respect to which αij is

an orthonormal basis, and use this inner product to identify operatorsA : H⊗C → H⊗C

and sesquilinear forms α ⊗ β �→ 〈αA,β〉. (In accordance with the contemporary right

group action conventions, our matrices act on row vectors by the right multiplication.)

Then, in order to complete the proof, we need to find the eigenvalues of the self-adjoint

operator H(η, ζ ) as in (5.1). To this end, consider the unitary representation ρ : G →
U(H ⊗ C) given by the index shifts of the basis elements, viz.

ρ(p,q) : αij �→ αi+p,j+q, (p,q), (i, j) ∈ G.
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This is the regular representation of G, and its equitypical summands are all of dimen-

sion 1; letting ξk := exp(2πi/k), the summands are generated by the bi-eigenvectors

vij := 1

mn

∑
(r,s)∈G

ξ−r
m ξ−s

n αi+r,i+s, (i, j) ∈ G,

so that vij is an eigenvector of ρ(p,q) with the eigenvalue ξpim ξ qjn , (p,q) ∈ G. It is imme-

diate from Lemma 5.6 that all forms θεδ are G-invariant; hence, they all have the same

eigenvectors vij. In fact, we have more: using Lemma 5.6, one easily concludes that

θεδ = −εδ
(
ρ(0, 0) − ρ(−ε, 0) − ρ(0, δ) + ρ(−ε, δ)

)
.

Combining this with (5.1) and simplifying, we see that the spectrum of H(η, ζ ) consists

of the mn real numbers λ(η, ξ im)λ(ζ , ξ̄ jn), (i, j) ∈ G, where

λ(x,y) := i(1 − x̄)(1 − ȳ)(1 − xy).

(Note that λ(x,y) ∈ R whenever |x| = |y| = 1, which we always assume.) Thus, the signa-

ture of H(η, ζ ) equals σm(η)σn(ζ ), where σk(x) stands for the “signature” of the sequence

of real numbers λ(x, ξ ik), i ∈ Z/k.

To compute σk(x), we make the following simple observations (where x,y ∈ C

are complex units, |x| = |y| = 1):

(1) λ(x, 1) = λ(1,x) = λ(x, x̄) = 0;

(2) λ(x,−1) = λ(−1,x) = −4 Im x; and

(3) with y �= 1 fixed, the function λ(x,y), x �= 1, changes sign only at x = ȳ.

Combining Items (2) and (3), we see that sg λ(x,y) = sg(Log x + Log y − 1) for all x,y �=
1. Consider the function φ : (0, 1) → Z, t �→ σk(exp(2πit)). It follows that φ is locally

constant at eachpoint t ∈ (0, 1) such that kt /∈ Z, whereasφ(t+0)−φ(t) = φ(t)−φ(t−0) = 1

for kt ∈ Z. Together with the normalization φ( 1
2 ) = σk(−1) = 0 given by Items (1) and (2)

above, we have φ(t) = ind(kt) − k. In other words, σk(x) = ind(k Log x) − k, which

concludes the proof of the theorem. �

5.3 Proof of Lemma 5.6

We keep the notation introduced in Section 5.2.
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The cycles aij do satisfy the conditions imposed in the definition of θε,δ, see

Section 5.1. To compute the linking coefficients,we consider the�-shaped Seifert surface

�ij for aij composed of three “squares”:

• one in Ei, bounded by the loop cij · kij · c−1
i,j+1 · e−1

ij ,

• one in Ei+1, bounded by the loop ei+1,j · ci+1,j+1 · k−1
i+1,j · c−1

i+1,j, and

• one bounded by fij · ki+1,j · f−1
i,j+1 · k−1

ij , disjoint from S except the boundary.

Shift this surface together with the cycle, first off S in the direction (ε, δ), and then

“toward the reader,” in the direction of the clasp cij, that is, from eij to fij. Then, the inter-

section index of the shift�′
ij and another cycle apq, (p,q) ∈ G is easily seen geometrically;

below, we give a simple visual description of the result.

Observe that all cycles aij lie in the graph S′ := ⋃
i Ci ∪

⋃
j Dj ∪⋃i,j cij. Contracting

each clasp to a point, we project S′ to an (m × n)-grid in the torus T2, identified with

D0 × C0. The cycle aij projects to the boundary ∂sij of the (i, j)-th cell sij of the grid. (This

cell can be visualized as the projection of the third square, the one not contained in E, in

the description of �ij; the two other squares collapse to the two horizontal edges of sij.)

Let s′
ij ⊂ T2 be a small shift of sij off the grid in the direction (ε, δ). Then one has

�′
ij ◦S3 apq = −vert spq ◦T2 hor s′

ij,

where vert s stands for the sum of the two “vertical” edges in ∂s, hor s stands for the sum

of the two “horizontal” edges in the boundary of a (shifted) cell s (with their boundary

orientation), and the second intersection index is in the torus T2, oriented so that the

projection of each cycle aij is the positive boundary of the respective cell sij. From here,

the statement of the lemma is immediate. �
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