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In crowding, perception of a target usually deteriorates
when flanking elements are presented next to the target.
Surprisingly, adding further flankers can lead to a release
from crowding. In previous work we showed that, for
example, vernier offset discrimination at 98 of eccentricity
deteriorated when a vernier was embedded in a square.
Adding further squares improved performance. The more
squares presented, the better the performance, extending
across 208 of the visual field. Here, we show that very
similar results hold true for shapes other than squares,
including unfamiliar, irregular shapes. Hence, uncrowding
is not restricted to simple and familiar shapes. Our results
provoke the question of whether any type of shape is
represented at any location in the visual field. Moreover,
small changes in the orientation of the flanking shapes led
to strong increases in crowding strength. Hence, highly
specific shape-specific interactions across large parts of
the visual field determine vernier acuity.

Introduction

Object recognition is often thought to be feedfor-
ward and hierarchical (DiCarlo, Zoccolan, & Rust,
2012; Hubel & Wiesel, 1962; Hung, Kreiman, Poggio,

& DiCarlo, 2005; Riesenhuber & Poggio, 1999; Serre,
Kouh, Cadieu, & Knoblich, 2005; Serre, Kreiman, et
al., 2007; Serre, Oliva, & Poggio, 2007; Thorpe,
Delorme, & Van Rullen, 2001). The analysis of a visual
scene starts with the extraction of basic features (e.g.,
lines and contours) in the early visual cortex and
proceeds to more and more complex features (e.g.,
shapes, faces, and objects) in higher visual areas.
Complex feature detectors are created by pooling
outputs from more basic feature detectors. For
example, a hypothetical square-detecting neuron re-
ceives input from neurons sensitive to its constituting
vertical and horizontal lines. Accordingly, neural
receptive field sizes along the processing hierarchy
increase from step to step simply because a square
covers more space than its constituting lines. Therefore,
receptive fields need to be larger. One consequence of
pooling is that neurons are sensitive to context. Hence,
a prediction of such models is that elements neighbor-
ing a target element impair target processing because
features of the target and flankers are pooled, and thus
target information is lost. Indeed, this is the case for
crowding (Flom, Heath, & Takahashi, 1963; Levi,
2008; Strasburger & Wade, 2015; Whitney & Levi,
2011). For this reason, pooling models have become the
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standard in crowding research (Balas, Nakano, &
Rosenholtz, 2009; Dakin, Cass, Greenwood, & Bex,
2010; Freeman, Chakravarthi, & Pelli, 2012; Freeman
& Simoncelli, 2011; Greenwood, Bex, & Dakin, 2009,
2010; Parkes, Lund, Angelucci, Solomon, & Morgan,
2001; van den Berg, Roerdink, & Cornelissen, 2010;
Wilkinson, Wilson, & Ellemberg, 1997).

Most models of crowding have three main charac-
teristics in common. First, crowding occurs only in a
restricted region according to Bouma’s law, which
states that only flanking elements within a window of
about half the eccentricity of target presentation
compromise target processing (Bouma, 1970; Pelli,
2008; Pelli, Palomares, & Majaj, 2004; Pelli & Tillman,
2008; Rosen, Chakravarthi, & Pelli, 2014). Second,
flankers are treated as mere noise; therefore, increasing
their number can only lead to increases in crowding
strength (Parkes et al., 2001; Wilkinson et al., 1997).
Third, crowding is feature specific; that is, crowding
occurs only when target and flankers have the same
color (Kooi, Toet, Tripathy, & Levi, 1994; Põder,
2007), orientation (Andriessen, 1976), or shape (Kooi
et al., 1994; Nazir, 1992).

However, we have previously shown that none of
these characteristics universally hold true (see Herzog
& Manassi, 2015 and Herzog, Sayim, Chicherov, &
Manassi, 2015 for a review; Malania, Herzog, &
Westheimer, 2007; Manassi, Sayim, & Herzog, 2012,
2013; Saarela, Westheimer, & Herzog, 2010; Sayim,
Westheimer, & Herzog, 2010). For example, we
presented a vernier at 98 of eccentricity in the periphery.
Performance strongly deteriorated when the vernier
was surrounded by the outline of a square (Figure 1a).
This is a classic crowding effect. However, when the
vernier and the central square were flanked by further
squares to the right and left, crowding was strongly

reduced, almost to the unflanked level (Figure 1b
through d; Manassi et al., 2013).

How can these results be explained? One scenario
relies on explicit object representations. First, the
squares are computed from their constituting lines.
Next, the shape representations interact with each
other (e.g., mutual inhibition), and then vernier acuity
is determined. In a more dynamic model, all interac-
tions occur more or less concurrently. Such a scenario
requires explicit representations of squares at all
positions in the visual field, pointing to fundamental
questions about the nature of object representation.
For example, if similar effects of uncrowding are also
found with other shapes, including unfamiliar shapes,
then the human brain needs to maintain zillions of
object representations at one location of the visual
field.

Explicit object representations may not necessarily
be required to explain why adding shapes can decrease
crowding. For example, if the visual system performs a
Fourier decomposition of the incoming stimulus, then
adding lines to the image can simplify the pattern in the
Fourier domain. This is illustrated in Figure 2, where
the top row shows two images, one with a single line
and the other with many lines. The bottom row shows
the respective Fourier transforms. The single line leads
to Fourier energy distributed over a wide range of
spatial frequencies (horizontal line through the center
of the Fourier domain representation). The image with
many lines, however, has energy at only two places: the
center and the far left edge.

Alternatively, according to Balas et al. (2009) and
Freeman and Simoncelli (2011), the visual system may
extract complex features without full object represen-
tations. In models of texture processing, higher order
structures of the stimuli—but not full object represen-
tations—are computed, which may be crucial for

Figure 1. Left panel: Observers were asked to discriminate the offset direction of a vernier (dashed line). Thresholds increased when

the vernier was embedded in a square (a). Thresholds gradually decreased when the number of flanking squares increased (b through

d). Replotted from Manassi et al. (2013). Right panel: The stimulus configuration from panel d. Bouma’s law states that elements

interfere with vernier offset discrimination only within a region of 4.58, which is half of the target eccentricity (98). However, the

outmost squares are presented beyond this region and still influence vernier thresholds.
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crowding. In other models of texture perception, only
low-level cues may be important. For example, it may
be that only the vertical lines making up the squares
determine crowding strength. Of course, many more
models are conceivable, such as combinations of the
above models. Finally, regularities are often explained
by the well-known Gestalt laws.

Here, we first show that uncrowding occurs with
many shapes, including nonfamiliar and complex ones.
Second, our results support our previous conclusions
that simple models of crowding cannot explain
uncrowding. Third, our results pose challenges that
future models need to meet. For example, models need
to explain how the human brain can code shapes at
most locations in the visual field without suffering from
the curse of dimensionality. Thus, our results point to
very general questions about the representation of
objects.

Materials and method

Observers

Participants were paid students of the École
Polytechnique Fédérale de Lausanne. All observers
had normal or corrected-to-normal vision with a

visual acuity of 1.0 (corresponding to 20/20) or better
in at least one eye, measured with the Freiburg Visual
Acuity Test (Bach, 1996). Observers were told that
they could quit the experiment at any time they
wished. Participants signed an informed consent form
and were informed about the general purpose of the
experiment, which was approved by the local ethical
committee. They were paid 20 CHF/hr for their
participation.

Apparatus and stimuli

Stimuli were presented on a Philips (Amsterdam,
The Netherlands) 201B4 cathode ray tube monitor,
which was driven by a standard accelerated graphics
card. Screen resolution was set to 10243 768 pixels at a
100-Hz refresh rate. The white point of the monitor was
adjusted to D65. The color space was linearized by
applying individual gamma correction to each color
channel. Target and flankers consisted of white lines
presented on a black background. The luminance of
stimuli was 80 cd/m2. A Minolta (Tokyo, Japan) CA-
210 display color analyzer was used. All the experi-
ments were programmed and run using Matlab 2012b
(The MathWorks Inc., Natick, MA) with the Psycho-
physics Toolbox (Brainard, 1997) and Palamedes
(Prins, 2009) routines.

Viewing distance was 75 cm. Observers were
instructed to fixate a white dot (2-arcmin diameter). A
vertical vernier embedded in various shape configura-
tions was presented on the right visual field at 98 of
eccentricity. Observers were asked to indicate the offset
direction. The vernier consisted of two vertical lines (40
arcmin long) separated by a vertical gap of 4 arcmin.
The stimulus duration was 150 ms. To reduce target
position uncertainty, in Experiments 1 and 2 we added
two vertical lines (40 arcmin long) 150 arcmin above
and below the center of the target.

Procedure

An adaptive staircase procedure (QUEST; Watson &
Pelli, 1983), as implemented by the Palamedes Psy-
chometric Toolbox for Matlab (Prins, 2009), was used
to determine the vernier offset for which observers
reached 75% correct responses. We estimated both the
threshold and the slope of the psychometric function
(cumulative Gaussian) by means of maximum likeli-
hood estimation, taking all data points into account
(Wichmann & Hill, 2001). In order to avoid extremely
large vernier offsets, we restricted the QUEST proce-
dure to not exceed offsets of 33.32 arcmin (i.e., twice
the starting value of 16.66 arcmin). If vernier offset
thresholds were not stable across the experiment

Figure 2. Top row: Original images. Bottom row: Fourier

transform. In the Fourier domain, high spatial frequencies are

represented at the center of the image and lower spatial

frequencies are represented at increasing eccentricities from

the center. Orientation is represented by position around the

center. For a single line (top left image), the Fourier domain

representation contains energy at many spatial frequencies

(bottom left panel). For many lines (top right image), the

Fourier domain representation is much simpler and contains

energy at only two locations, shown by the white dots at the

center and the far left (bottom right panel).
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(because of learning or fatigue), observers were
screened out of the experiment.

Each condition was presented in separate blocks of
80 trials. All conditions were measured twice (i.e., 160
trials) and randomized individually for each observer.
To compensate for possible learning effects, the order
of conditions was reversed after each condition had
been measured once. Observers were instructed to
fixate the dot during the trial. After each response, the
screen remained blank for a maximum period of 3 s,
during which observers were required to make a
response by pushing one of two buttons. Auditory
feedback was provided after incorrect or omitted
responses. The screen was blank for 500 ms between
each response and the next trial.

Individual adjustment of stimulus configuration

In order to avoid floor and ceiling effects, we
increased or reduced shape size (and consequently
intershape spacing) individually for each observer. If
the threshold in the single-shape condition was not at
least three times higher than the unflanked vernier
threshold, we reduced shape size by 85%. If the
criterion was still not met, we reduced the ratio to 75%.
Conversely, if the threshold was 33.32 arcmin in both
single- and multishape conditions, we increased the size
and spacing in the single-shape and multishape
conditions to 115%, 132%, or 152%.

In Experiments 2 and 3, thresholds in the seven
shape condition had to be at least 70% lower compared
with the single-shape condition. If this criterion was not
met, we increased or decreased the size of the shapes
(and intershape spacing) by 85%, 115%, or 132%. In
Experiment 3, we increased stimulus eccentricity from
98 to 118 (to 108 for one subject).

Fourier model

To investigate whether uncrowding can be explained
by a simple Fourier model, we implemented a model
following the approach of Hermens, Luksys, Gerstner,
Herzog, and Ernst (2008) as follows.

First, for a left-offset image with k flankers—I(x,
y)L,k—and corresponding right-offset image—I(x,
y)R,k—we computed the Fourier transforms:

Fðu; vÞL;k ¼
Z ‘

�‘

Z ‘

�‘

Iðx; yÞL;k�e�2piðuxþvyÞdx dy ð1Þ

Fðu; vÞR;k ¼
Z ‘

�‘

Z ‘

�‘

Iðx; yÞR;k�e�2piðuxþvyÞdx dy ð2Þ

Second, we took the Euclidian norm of the real and
complex parts of F(u, v)L,k and F(u, v)R,k and normalized

by the sum of the luminance values in the original image:

F̃ðu; vÞL;k ¼
jjFðu; vÞL;kjj2Z

x

Z
y

Iðx; yÞL;kdx dy
ð3Þ

F̃ðu; vÞR;k ¼
jjFðu; vÞR;kjj2Z

x

Z
y

Iðx; yÞR;kdx dy
ð4Þ

Third, we took the absolute value of the difference
between the left and right F̃ values and integrated over
all spatial frequencies:

DF̃k ¼
Z
u

Z
v

jF̃ðu; vÞR;k � F̃ðu; vÞL;kj du dv ð5Þ

These differences indicate how different the left-
offset image’s Fourier transform is from the right-offset
image’s Fourier transform.

Fourth, to convert these differences to thresholds, we
first flipped the values so that the largest difference
corresponded to the lowest threshold (i.e., the best
performance). For a threshold data set X � [x0, x1, . . ., xk,
. . ., xn] comprising human thresholds for each of the k
numbers of flankers for a given flanker type (e.g., the
circles), we linearly rescaled DF̃ to lie on roughly the same
range r (¼maxk X – mink X) as the human threshold data:

/k ¼ max
i
ðDF̃iÞ � DF̃k ð6Þ

e/k ¼
/k �mini/i

maxi/i �mini/i

� rþ 1 ð7Þ

We further constrained themodel such that the response
to the vernier alone (i.e., with zero flankers) exactly equals
the mean subject threshold ðx̄0Þ for this condition:

e/k  
e/ke/0

� 1þ x̄0 ð8Þ

These obtained values now lie on the same range as the
human threshold data and are constrained to have the
same zero-flanker vernier offset discrimination threshold.
An illustration of the four steps in the Fourier model is
shown in Figure 3. This term e/k is plotted alongside the
human data in Figures 4 and 6 in white bars.

Results

Experiment 1: Uncrowding with seven shapes

Crowding of a vernier can be strongly reduced by
increasing the number of flanking squares (Figure 1; see
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also Manassi et al., 2013). Here, we show that
uncrowding occurs with other shapes as well. In
addition, we tested whether Fourier analysis can
account for the results.

Method

For each specific shape, different observers were
tested in three conditions: vernier alone, vernier
embedded in one shape, or vernier embedded in the
central shape of an array of seven identical shapes.
Depending on the shape, large vernier offsets may have
overlapped with the shape outlines. For this reason, we
changed the size of each shape. Accordingly, we also
increased the spacing between shapes to avoid overlap.
The shapes used in each experiment were as follows
(spacing refers to the center-to-center distance between
shapes):

�Circles: radius¼ 1.38, spacing¼ 2.88; four observers
(one female, three males), two observers with 85% size
(see Individual adjustment of stimulus configuration)
�Hexagons: radius ¼ 18, spacing ¼ 2.28; seven
observers (two females, five males), one observer with
85% size and one observer with 115% size
�Octagons: radius¼0.918, spacing¼2.28; six observers
(two females, four males), four observers with 115%
size
�Four-pointed stars: inner radius¼ 0.928, outer radius
¼ 1.608, spacing¼ 2.98; five observers (two females,
three males), one observer with 115% size
�Seven-pointed stars: inner radius¼0.988, outer radius
¼ 1.618, spacing ¼ 2.98; seven observers (three
females, four males), three observers with 115% size
�First irregular shape: horizontal and vertical axes ¼
1.728 and 2.228, spacing¼ 2.28; six observers (two
females, four males), two observers with 115% size
and three observers with 132% size
�Second irregular shape: horizontal and vertical axes¼
2.728, spacing ¼ 2.78; four observers (three females,
one male), three observers with 115% size and one
observer with 132% size

Results and discussion

When the vernier was embedded in a single shape,
thresholds increased compared with the vernier-alone
condition (p , 0.05). This is a classic crowding effect.
When the vernier was flanked by three additional
shapes on either side, thresholds decreased compared
with the single-shape condition (p , 0.05, uncrowd-
ing).

For each shape, we found that flanker configurations
increased discrimination thresholds significantly: cir-
cles, F(2, 6) ¼ 13.93, p , 0.01, gp

2 ¼ 0.82; hexagons,
F(2, 12)¼43.64, p , 0.01, gp

2¼0.87; octagons, F(2, 10)

¼ 30.65, p , 0.01, gp
2¼ 0.85; four-pointed stars, F(2, 8)

¼ 56.85, p , 0.01, gp
2¼ 0.93; seven-pointed stars, F(2,

12)¼ 28.86, p , 0.01, gp
2 ¼ 0.82; first irregular shape,

F(2, 10)¼ 52.43, p , 0.01, gp
2¼ 0.91; second irregular

shape, F(2, 6) ¼ 11.52, p , 0.01, gp
2 ¼ 0.79. Tukey’s

post hoc tests were used for pairwise comparisons.
Uncrowding with circles (Figure 4a) rules out any

explanation based on straight-line interactions. Un-
crowding with more complex shapes such as hexagons,
octagons, and stars (Figure 4b through e) shows that
the visual system is sensitive to many types of shapes,
even very complicated ones. Even highly unfamiliar,
complex stimulus configurations such as irregular
shapes (Figure 4f and g), which may not have been
experienced by observers before, led to a decrease in
crowding.

The Fourier model predictions (Figure 4, white bars)
go in the opposite direction of the human data (Figure
4, black bars). Human thresholds decrease with
increasing numbers of flankers, but the model thresh-
olds increase. This is because as more flankers are
added, the differences between the left- and right-offset
vernier representations are reduced, making the dis-
crimination task more difficult (see Figure 3 for an
example of the Fourier spectrum with circles). Taken
together, our results show that uncrowding occurs with
any kind of shape we tested and that the spatial
frequency content of the stimuli cannot account for the
results.

Experiment 2: Uncrowding and shape
orientation

In the first set of experiments, we showed that
uncrowding occurs with many kinds of shapes. Here,
we show that small changes in orientation can strongly
affect uncrowding (Figure 5).

Method

First, we determined vernier offset discrimination
thresholds with hexagons (Figure 5a). Five observers
(two females, three males) participated in the exper-
iment (three of them performed with the 115% size,
and one performed with the 132% size). As before, we
determined offset discrimination thresholds in the
three conditions: vernier alone (dashed line), vernier
embedded in a hexagon (Figure 5a), and vernier
embedded in a hexagon flanked by six identical
hexagons (Figure 5b; 08). In four further conditions,
the flanking hexagons were rotated by 2.58, 58, 108,
and 158 converging toward the central hexagon
(Figure 5c through g).

Second, we tested the influence of mirroring the
shapes on uncrowding (Figure 5b). For this purpose,
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we used the second type of irregular shape from

Figure 4g. Six observers (three females, three males)

participated in the experiment. Two of them per-

formed with the 115% size, and three performed with

the 132% size. As before, we tested the three main

conditions (Figure 5h and i), rotated the flanking

irregular shapes by 1808 compared with the central

shape (Figure 5j), or mirrored the flanking shapes

(Figure 5k and l).

Results and discussion

As in the first set of experiments, when the vernier
was embedded in a hexagon, thresholds increased
compared with the vernier-alone condition (Figure 5a);
paired t test: t(4) ¼�10.92, p , 0.01. When we added
six hexagons with the same orientation, thresholds
decreased compared with the single-shape condition
(Figure 5a and b); paired t test: t(4) ¼ 5.45, p , 0.01.

We performed a regression analysis on the individual
data, regressing thresholds against the change in
rotation of the flanking shapes (08–308). For each
subject, this analysis yielded a slope and intercept of the
regression line. We then performed t tests to determine
whether the slope of the regression lines differed
significantly from 0. When increasing the rotation of
the flanking hexagons from 08 to 308, thresholds
gradually increased and uncrowding gradually disap-
peared (Figure 5b through g): slope ¼ 121.91, t(4) ¼
3.39, p ¼ 0.02. The more the flanking shapes were
rotated compared with the central shape, the less the
vernier was uncrowded.

In the second experiment (Figure 5b), we found a
main effect of flanker configuration: F(5, 25)¼ 16.96,
p , 0.01. Tukey’s post hoc tests were used for
pairwise comparisons. As in Figure 4g, when the
vernier was embedded in the single irregular shape,
thresholds increased compared with the vernier-alone
condition (Figure 5h; p , 0.05). When we added six
identical irregular shapes, thresholds decreased
compared with the single-shape condition (Figure 5h
and i; p , 0.05). When the flanking shapes were
rotated by 1808, thresholds increased compared with
the previous condition (Figure 5i and j; p , 0.05).
When the flanking shapes were alternatingly mir-
rored, thresholds increased compared with the
condition with seven identical shapes, although the
difference was not statistically significant (Figure 5i
through k). When the flanking shapes were all
mirrored, thresholds increased compared with the
condition with seven identical shapes (Figure 5i
through l; p , 0.05).

Taken together, the results show that uncrowding is
highly sensitive to small changes in shape orientation.
Hence, the mechanism underlying uncrowding is not
shape invariant.

Experiment 3: Uncrowding and patterns of
shapes

Here, we show that uncrowding cannot easily be
predicted by simple combinations of the Gestalt rules.
It seems that complex shape interactions across large
parts of the visual field can determine crowding.

Figure 3. Illustration of the four steps in the Fourier model. For

each raw image, we start with the left- and right-offset vernier

stimuli (top of each group of three images). We next Fourier

transform the image and normalize it by dividing by the sum of

all values in the Fourier-transformed image (middle of each

group of three images). Then we take the difference between

the results for the right and left images (right left) and sum the

differences over all spatial frequencies to get the points in the

top graph on the right. These values are then flipped by

subtracting them from the maximum value, and they are scaled

to lie on the same range as the human data (bottom graph on

the right).
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Method

We determined vernier offset discrimination thresh-
olds with flanking patterns of squares and seven-
pointed stars (Figure 6) and irregular shapes (Figure 7).
Six observers (two females, four males) participated in
Experiment 3A (Figure 6). Two of them performed
with the 85% size, and two performed with the 75%
size. Observers were presented with (a) a square, (b) an
array of seven squares, (c) seven alternating squares
and stars, (d) three rows of alternating squares and

stars on a 33 7 grid, (e) a checkerboard of squares and
stars on a 3 3 7 grid, (f) squares and stars arranged in
an irregular fashion on a 3 3 7 grid, (g) condition d
without the upper and lower central squares, and (h)
seven alternating squares and stars with upper and
lower central squares. Spacing between each shape was
2.28. In addition, we applied our Fourier model to the
stimuli.

Seven observers (three females, four males) partici-
pated in Experiment 3B (Figure 7). Four of them were
presented with the 132% size. Instead of squares and

Figure 4. Uncrowding with several different kinds of shapes. Dashed lines show the thresholds for the vernier-alone condition. Black

bars show vernier offset discrimination thresholds for the human data. Higher thresholds indicate stronger crowding. When the

vernier was embedded in single shapes, thresholds increased compared with the single-vernier condition. When adding three

identical flanking shapes on either side, thresholds decreased compared with the single-shape conditions. White bars indicate

thresholds computed under a Fourier model. The Fourier model shows the opposite result (i.e., thresholds increase when increasing

the number of shapes).
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stars, we presented the second irregular shape in Figure
4g (as a square) and the same shape rotated by 1808 (as
a star). Observers were presented with the same shape
configurations as in the first experiment. Spacing
between each shape was 2.98.

Results

We found a significant main effect of flanker
configuration on discrimination thresholds in both
experiments; Figure 6: F(8, 40)¼22.93, p , 0.001; Figure
7: F(8, 48)¼ 8.95, p , 0.001. Tukey’s post hoc tests were
used for pairwise comparisons. As in Figure 1a, when the
vernier was embedded in the square, thresholds increased
compared with the vernier-alone condition (Figure 6a; p
, 0.05). When the vernier was flanked by three
additional squares on each side, thresholds decreased
compared with the previous condition (Figure 6b; p ,

0.05). When the vernier was embedded in an array of

seven alternating squares and stars, thresholds were as
high as in the single-shape condition (Figure 6a and c).
When the vernier was embedded in three rows of
alternating squares and stars, thresholds strongly de-
creased compared with the previous condition (Figure 6c
and d; p , 0.05). When the vernier was embedded in
other configurations of squares and stars, thresholds
remained as high as in the single-shape condition (Figure
6a and e through h).

The Fourier model predictions (Figure 6, white bars)
strongly differ compared with the human data (Figure
6, black bars). Human thresholds show uncrowding in
Figure 6b and d, whereas the model thresholds increase
in all conditions.

In Figure 6, when the vernier was embedded in an
irregular shape, thresholds increased compared with
the vernier-alone condition (Figure 7a). In all other
conditions, thresholds decreased compared with the
single-shape condition (Figure 7a vs. b through h; p ,

Figure 5. Uncrowding and shape similarity. Vertical white dashed lines show the thresholds for the vernier-alone condition.

Experiment A: Thresholds increased compared with the vernier-alone condition (a). When the central hexagon was flanked by six

identical hexagons, thresholds decreased compared with the single-hexagon condition (a, b). When the flanking hexagons were

rotated by 2.58, 58, 108, and 158, thresholds gradually increased (c through g). Experiment B: When the vernier was embedded in an

irregular shape, thresholds increased compared with the vernier-alone condition (h). When the central irregular shape was flanked by

six identical irregular shapes, thresholds decreased compared with the single-shape condition (h, i). When the flanking shapes were

rotated by 1808, thresholds increased compared with the previous condition (i, j). When the flanking shapes were all mirrored,

thresholds increased slightly compared with the seven identical shapes condition (k, l).
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0.05; comparisons a vs. d, a vs. g, and a vs. h were not
significantly different, probably because of the small
sample size).

Discussion

As we showed in the second set of experiments, small
changes in shape orientation can strongly determine
crowding strength (Figure 5). In line with this notion,

uncrowding occurred with seven identical squares
(Figure 6a and b) and vanished with alternating squares
and stars (Figure 6c). How can we explain uncrowding
in Figure 6d? The central row of alternating squares
and stars was identical to the condition in Figure 6c;
however, crowding strength strongly differed.

We propose that a regular pattern of dissimilar
shapes led to the uncrowding of the vernier. As a
control, we checked whether uncrowding is due to the

Figure 6. Patterns of squares and stars. The dashed line shows the vernier-alone condition. When the vernier was embedded in a

square, thresholds increased compared with the vernier-alone condition (a). When the square was flanked by three squares on each

side, thresholds decreased compared with the single-shape condition (a, b). When the central square was embedded in an array of

alternating squares and seven-pointed stars, thresholds were as high as in the single-shape condition (a, c). When an identical array of

alternated shapes was added on the top and bottom, thresholds decreased compared with the previous condition (c, d). In all the

other conditions, thresholds were as high as in the single-shape condition (a and e through h). White bars indicate thresholds

computed by the Fourier model. Thresholds increased when the number of flanking shapes increased.

Figure 7. Patterns of irregular shapes. The dashed line shows the vernier-alone condition. When the vernier was embedded in an

irregular shape, thresholds increased compared with the vernier-alone condition (a). When the square was flanked by three irregular

shapes on each side, thresholds decreased compared with the single-shape condition (a, b). Thresholds remained on the same level

with all the other depicted stimulus configurations (c through j).
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central or flanking shape columns (Figure 6g and h),
but crowding remained strong in both conditions.
Hence, the global shape configuration led to uncrowd-
ing of the vernier.

It should be mentioned that only few, special
patterns lead to uncrowding. For example, when
presenting a checkerboard of squares and stars (Figure
6e) or the same shapes arranged in an irregular fashion
(Figure 6f), crowding remained strong.

Figure 7 further supports this hypothesis. Un-
crowding always occurred with increasing numbers of
flanking shapes despite their overall configuration
(Figure 7a vs. b through h). Our results show that
elements presented well outside Bouma’s window
(Bouma, 1970; Pelli, 2008; Pelli & Tillman, 2008; Rosen
et al., 2014) can modulate crowding strength on a
vernier. We propose that crowding strength on a single
element can be determined only by taking all the other
elements and their overall configuration into account.

General discussion

Crowding characteristics and models

Most theories of crowding propose that (a) crowding
occurs only within a restricted region (namely Bouma’s
window), (b) adding flankers does not improve
performance, and (c) crowding is feature specific (i.e.,
crowding occurs only between similar features such as
color, orientation, and shape). In line with previous
studies (Malania et al., 2007; Manassi et al., 2012, 2013;
Manassi, Hermens, Francis, & Herzog, 2015; Põder,
2007; Saarela et al., 2010), we have shown here that
none of these characteristics are crucial for crowding
(for reviews see Herzog et al., 2015; Herzog & Manassi,
2015). Adding flankers outside Bouma’s window can
improve performance contrary to theories a and b. It is
important to note that adding elements outside
Bouma’s window can also increase crowding (Manassi
et al., 2012; Rosen & Pelli, 2015; Saarela et al., 2010;
Vickery, Shim, Chakravarthi, Jiang, & Luedeman,
2009). Hence, neither Bouma’s window nor the number
or extent of flankers determines crowding. Crowding is
not feature specific because, for example, strong
uncrowding occurred with circles, which share very few
low-level features with the vernier and, in particular, do
not contain straight lines (Figure 4a). Hence, crowding
and uncrowding are not restricted to simple interac-
tions, such as line–line feature detector inhibition. One
might argue that uncrowding occurs only with simple,
familiar shapes. However, uncrowding also occurs with
irregular and unfamiliar shapes (Figure 4f and g).

Our results support our previous conclusions that
simple pooling and substitution models cannot explain

crowding because adding elements should not improve
performance (for in-depth reviews see Herzog et al.,
2015; Herzog &Manassi, 2015). In general, we think that
simple, low-level interactions cannot explain crowding
and uncrowding. It seems that low-level vernier acuity is
determined by the overall high-level spatial configura-
tions of elements across large parts of the visual field.
High-level processing determines low-level processing as
much as the other way around. Hence, one needs to take
into account the entire visual scene to predict fine-
grained vernier acuity. This conclusion is particularly
supported by Experiment 3A (Figure 6), where the
configuration of all stimulus elements, distributed across
large parts of the visual field, is crucial.

On the level of perceptual organization, we proposed
that crowding can be best explained in terms of
perceptual organization and grouping (Manassi et al.,
2012, 2013, 2015). Crowding is strong only when the
target groups with the flankers. When the target
ungroups from the flankers, crowding is weak.

Even though grouping and perceptual organization
seem to be crucial to explain crowding, we suggest that
simple combinations of Gestalt rules are unable to
explain our results (e.g., Kubovy & van den Berg,
2008). For example, uncrowding occurred when the
row of squares and stars in Figure 6c was added on top
of and below the central row (Figure 6d). It is unclear
how simple Gestalt laws can account for these results.
Importantly, the creation of three vertical squares is
not sufficient for uncrowding because these three
squares do not lead to uncrowding when embedded in
different configurations (Figure 6h; see also Figure 1b).
As a further example, the configuration in Figure 6e is
much more symmetric than the one in Figure 6f, but
performance is roughly the same. In general, why
should uncrowding occur at all when more elements are
added from a perspective of basic Gestalt rules?

Crowding and object representations

Our results provoke the question of at which level
neural processing occurs and how objects are represented
in the human brain. As mentioned, crowding and
uncrowding seem to occur with all types of shapes in a
more or less similar way. Experiments 2A and 2B (Figure
5) show that small changes in orientation lead to strong
changes in performance. For example, turning the
flanking hexagons by only 108 strongly increased
crowding (Figure 5b vs. e). Hence, uncrowding depends
not only on the repetition of the same shape but also on
the shapes’ exact orientation. For uncrowding it seems to
be crucial that the human brain represents stimuli with
great detail and on a level where position and orientation
invariance are not yet reached. For models based on
convergent coding (grandmother cell coding), our results
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may imply that at each location of the visual field there
are neurons coding for a hexagon of any given
orientation. The same is true for other shapes, even
irregular ones. Hence, there must be a large number of
shape detectors represented at most locations in the
visual field, as proposed by models of ultrafast object
recognition (Crouzet, Kirchner, & Thorpe, 2010;
Guyonneau, Kirchner, & Thorpe, 2006; Kirchner &
Thorpe, 2006). In addition, not only are a large number
of detectors necessary, but also the appropriate neural
wiring allowing for the interactions leading to crowding
and uncrowding. Whether such a scenario is possible
from a combinatorial point of view remains to be seen.

However, it remains an open question whether all
sorts of shapes are treated the same way by the visual
system. For example, the exact spatial configuration
seems to matter in Figure 6, where only one of the
configurations leads to strong uncrowding (Figure 6d),
while shuffling the elements of this configuration
always leads to strong crowding (Figure 6f). However,
this is not true for irregular shapes. All shuffled
versions lead to uncrowding with little changes in
performance (Figure 7). Hence, it may be that different
shapes and combinations of shapes are treated differ-
ently by the human brain. For some of them, the exact
orientation of the shapes may not matter. Hence, it
may be important to study large sets of data to
determine what level of detail is crucial for spatial
processing for particular classes of shapes.

In general, it is surprising that small changes in
orientation can lead to strong differences in performance,
which implies that the brain represents these details with
high precision. On the other hand, why does crowding
occur at all when fine details are well represented?

Instead, on a level of explicit object and shape
representation, our results may be explained at a
midlevel, texture-related stage that picks up higher
order structures (Balas et al., 2009; Freeman &
Simoncelli, 2011). Texture models can operate on very
different levels of representation, such as based on the
statistics of orientations and other basic features
(Julesz, 1981; Portilla & Simoncelli, 2000; Renninger &
Malik, 2004). These models may be challenged by the
fact that small changes matter, as in Experiments 2A
and 2B (Figure 5). Hence, it may well be that crowding
occurs at higher levels, such as the level of protoshapes.

Clearly, regularity seems to matter for crowding and
uncrowding. However, there are many types of
regularities, and it will not be an easy task to determine
exactly what types of regularity matter. For example,
the configuration in Figure 6d (regular sequence of
triplets) leads to uncrowding, whereas the configuration
in Figure 6e (regular checkerboard sequence) does not.

Fourier models of early vision are highly sensitive to
regularities in the stimulus configuration.We have applied
a very basic model to show that there are no obvious

differences in the spectra between stimuli that lead to either
crowding or uncrowding (Figures 4 and 6). In a previous
publication, we performed an exhaustive search over the
possible space of bandpass Fourier models for the stimuli
shown in Figure 1 and other stimuli. We did not find a
robust match between performance and model behavior
using these stimuli (Clarke, Herzog, & Francis, 2014).

As a final option, it may be that there are special,
emergent configurations (Pomerantz & Portillo, 2011)
that lead to uncrowding and cannot be described by
simple rules. That is why they are emergent (Pomer-
antz, Sager, & Stoever, 1977).

As shown here, crowding can be an effective tool for
probing the nature of object representations, particularly
for showing on which level(s) models need to operate. For
such an enterprise, large sets of data are needed, which
can be obtained only by large-scale studies.We would like
to mention that the research area of regularity, texture,
emergent configurations, and so on is rather under-
investigated at the moment. In addition, most prior
research has used subjective measures, such as pointing to
textures and regularities in the image. Crowding offers the
possibility of obtaining both objective performance
measures (vernier acuity) and subjective measures about
how elements group, whether there are subtextures in an
ensemble of elements, or whether symmetries or regular-
ities are subjectively visible. For example, in Experiment
3A we showed that the configuration in Figure 6d led to
good performance but that the configuration in Figure 6e
did not, indicating that the symmetries in the latter
configuration did not play an important role in crowding.
It would have been interesting to test how visible these
regularities are subjectively and to correlate these ratings
with crowding performance.

Keywords: crowding, grouping, object recognition,
shape perception
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Institute, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland.

Journal of Vision (2016) 16(3):35, 1–13 Manassi, Lonchampt, Clarke, & Herzog 11

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/934914/ on 06/27/2018



References

Andriessen, J. (1976). Eccentric vision: Adverse inter-
actions between line segments. Vision Research, 16,
71–78.

Bach, M. (1996). The Freiburg visual acuity test—
Automatic measurement of visual acuity. Optome-
try and Vision Science, 73, 49–53.

Balas, B., Nakano, L., & Rosenholtz, R. (2009). A
summary-statistic representation in peripheral vision
explains visual crowding. Journal of Vision, 9(12):13,
1–18, doi:10.1167/9.12.13. [PubMed] [Article]

Bouma, H. (1970). Interaction effects in parafoveal
letter recognition. Nature, 226, 177–178.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10, 433–436.

Clarke, A. M., Herzog, M. H., & Francis, G. (2014).
Visual crowding illustrates the inadequacy of local
vs. global and feedforward vs. feedback distinctions
in modeling visual perception. Frontiers in Psy-
chology, 5, 1–12.

Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010).
Fast saccades toward faces: Face detection in just
100 ms. Journal of Vision, 10(4):16, 1–17, doi:10.
1167/10.4.16. [PubMed] [Article]

Dakin, S., Cass, J., Greenwood, J., & Bex, P. (2010).
Probabilistic, positional averaging predicts object-
level crowding effects with letter-like stimuli.
Journal of Vision, 10(10):14, 1–16, doi:10.1167/10.
10.14. [PubMed] [Article]

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012).
How does the brain solve visual object recognition?
Neuron, 73, 415–434.

Flom, M., Heath, G., & Takahashi, E. (1963). Contour
interaction and visual resolution: Contralateral
effects. Science, 142, 979–980.

Freeman, J., Chakravarthi, R., & Pelli, D. G. (2012).
Substitution and pooling in crowding. Attention,
Perception, & Psychophysics, 74, 379–396.

Freeman, J., & Simoncelli, E. P. (2011). Metamers of the
ventral stream. Nature Neuroscience, 14, 1195–1201.

Greenwood, J., Bex, P., & Dakin, S. (2009). Positional
averaging explains crowding with letter-like stimuli.
Proceedings of the National Academy of Sciences,
USA, 106, 13130–13135.

Greenwood, J., Bex, P., & Dakin, S. (2010). Crowding
changes appearance. Current Biology, 20, 496–501.

Guyonneau, R., Kirchner, H., & Thorpe, S. J. (2006).
Animals roll around the clock: The rotation
invariance of ultrarapid visual processing. Journal

of Vision, 6(10):1, 1008–1017, doi:10.1167/6.10.1.
[PubMed] [Article]

Hermens, F., Luksys, G., Gerstner, W., Herzog, M. H.,
& Ernst, U. (2008). Modeling spatial and temporal
aspects of visual backward masking. Psychological
Review, 115, 83–100.

Herzog, M. H., & Manassi, M. (2015). Uncorking the
bottleneck of crowding: A fresh look at object
recognition. Current Opinion in Behavioral Sciences,
1, 86–93.

Herzog, M. H., Sayim, B., Chicherov, V., & Manassi,
M. (2015). Crowding, grouping, and object recog-
nition: A matter of appearance. Journal of Vision,
15(6):5, 1–18, doi:10.1167/15.6.5. [PubMed] [Article]

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields,
binocular interaction and functional architecture in
the cat’s visual cortex. The Journal of Physiology,
160, 106–154.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J.
(2005). Fast readout of object identity from macaque
inferior temporal cortex. Science, 310, 863–866.

Julesz, B. (1981). Textons, the elements of texture
perception, and their interactions. Nature, 290, 91–97.

Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object
detection with saccadic eye movements: Visual
processing speed revisited. Vision Research, 46,
1762–1776.

Kooi, F., Toet, A., Tripathy, S., & Levi, D. (1994). The
effect of similarity and duration on spatial interac-
tion in peripheral vision. Spatial Vision, 8, 255–279.

Kubovy, M., & van den Berg, M. (2008). The whole is
equal to the sum of its parts: A probabilistic model
of grouping by proximity and similarity in regular
patterns. Psychological Review, 115, 131–154.

Levi, D. M. (2008). Crowding—An essential bottleneck
for object recognition: A minireview. Vision Re-
search, 48, 635–654.

Malania, M., Herzog, M., & Westheimer, G. (2007).
Grouping of contextual elements that affect vernier
thresholds. Journal of Vision, 7(2):1, 1–7, doi:10.
1167/7.2.1. [PubMed] [Article]

Manassi, M., Hermens, F., Francis, G., & Herzog, M.
H. (2015). Release of crowding by pattern com-
pletion. Journal of Vision, 15(8):16, 1–15, doi:10.
1167/15.8.16. [PubMed] [Article]

Manassi, M., Sayim, B., & Herzog, M. (2012).
Grouping, pooling, and when bigger is better in
visual crowding. Journal of Vision, 12(10):13, 1–14,
doi:10.1167/12.10.13. [PubMed] [Article]

Manassi, M., Sayim, B., & Herzog, M. (2013). When
crowding of crowding leads to uncrowding. Journal

Journal of Vision (2016) 16(3):35, 1–13 Manassi, Lonchampt, Clarke, & Herzog 12

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/934914/ on 06/27/2018

http://www.ncbi.nlm.nih.gov/pubmed/20053104
http://jov.arvojournals.org/article.aspx?articleid=2122150
http://www.ncbi.nlm.nih.gov/pubmed/20465335
http://jov.arvojournals.org/article.aspx?articleid=2121090
http://www.ncbi.nlm.nih.gov/pubmed/20884479
http://jov.arvojournals.org/article.aspx?articleid=2121066
http://www.ncbi.nlm.nih.gov/pubmed/17132073
http://jov.arvojournals.org/article.aspx?articleid=2121664
http://www.ncbi.nlm.nih.gov/pubmed/26024452
http://jov.arvojournals.org/article.aspx?articleid=2291653
http://www.ncbi.nlm.nih.gov/pubmed/18217816
http://jov.arvojournals.org/article.aspx?articleid=2121904
http://www.ncbi.nlm.nih.gov/pubmed/26114679
http://jov.arvojournals.org/article.aspx?articleid=2346726
http://www.ncbi.nlm.nih.gov/pubmed/23019118
http://jov.arvojournals.org/article.aspx?articleid=2193765


of Vision, 13(13):10, 1–10, doi:10.1167/13.13.10.
[PubMed] [Article]

Nazir, T. (1992). Effects of lateral masking and spatial
precueing on gap-resolution in central and periph-
eral vision. Vision Research, 32, 771–777.

Parkes, L., Lund, J., Angelucci, A., Solomon, J., &
Morgan, M. (2001). Compulsory averaging of
crowded orientation signals in human vision.
Nature Neuroscience, 4, 739–744.

Pelli, D. (2008). Crowding: A cortical constraint on
object recognition. Current Opinion in Neurobiolo-
gy, 18, 445–451.

Pelli, D., Palomares, M., & Majaj, N. (2004). Crowding
is unlike ordinary masking: Distinguishing feature
integration from detection. Journal of Vision, 4(12):
12, 1136–1169, doi:10.1167/4.12.12. [PubMed]
[Article]

Pelli, D., & Tillman, K. (2008). The uncrowded window
of object recognition. Nature Neuroscience, 11,
1129–1135.
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