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We investigate the nonlinear scattering dynamics in interacting atomic Bose-Einstein condensates under
non-Hermitian dissipative conditions. We show that, by carefully engineering a momentum-dependent atomic
loss profile, one can achieve matter-wave amplification through four-wave mixing in a quasi-one-dimensional
nearly-free-space setup—a process that is forbidden in the counterpart Hermitian systems due to energy mismatch.
Additionally, we show that similar effects lead to rich nonlinear dynamics in higher dimensions. Finally,
we propose a physical realization for selectively tailoring the momentum-dependent atomic dissipation. Our
strategy is based on a two-step process: (i) exciting atoms to narrow Rydberg or metastable excited states, and
(ii) introducing loss through recoil; all while leaving the bulk condensate intact due to protection by quantum
interference.
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I. INTRODUCTION

Wave mixing is a fundamental process associated with
nonlinear interactions that involve several wave components.
The most common wave mixing processes involve three and
four interacting waves. In optics, both of these processes
occur [1] and are utilized in many applications ranging from
second-harmonic generation and parametric amplification to
the generation of entangled photons and squeezed light. In
atomic Bose-Einstein condensates (BECs), nonlinear inter-
actions naturally lead to four-wave mixing (4WM) [2–5]—a
feature that is employed to generate entangled atomic beams
[6–8]. An efficient wave mixing- or scattering process must
satisfy energy and momentum conservation. This poses severe
limitations for one-dimensional systems, which necessitate
dispersion engineering in optics and prohibit wave mixing in
homogeneous quasi-one-dimensional (quasi-1D) BEC setups
[9], as illustrated in Fig. 1(a).

Inspired by recent activities on nonlinear PT -symmetric
photonic structures [10–22] particularly on non-Hermitian
optical parametric amplification [20], we show here that non-
Hermitian engineering in BECs can alleviate some of these
limitations and enable a host of intriguing effects. In particular,
we show that, in a 4WM scattering process with degenerate
input states and two distinct output modes, the introduction
of a selective atomic loss in just one of the output modes
can lead to the amplification of the second output state. The
physical mechanism underlying this counterintuitive effect can
be understood by recalling the damped harmonic oscillator:
loss or damping leads to a finite frequency width around
the resonance and thus allows for additional flexibility in the
fulfillment of energy and momentum conservation (see Fig. 1).
Interestingly, this strategy opens up 4WM channels in quasi-
1D BEC setups, which otherwise exist only through dispersion
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engineering via optical lattices [9,23,24] or by invoking
internal degrees of freedom to fulfill energy conservation [25].

As we will show later, the required momentum-dependent
atom loss can be engineered by coupling the condensate atoms
to rapidly decaying electronic states, allowing these atoms
to be ejected from the trap via photon recoil. Momentum
selectivity enters via the Doppler effect in a similar fashion
as in laser cooling. To implement these features, we adapt a
cooling scheme [26–28] based on electromagnetically induced
transparency (EIT) [29] by exchanging low-lying excited
states with energetically narrow highly excited Rydberg states
[30,31] or metastable states [32,33]. Their small natural
linewidths are required to resolve the small atomic momenta
and hence Doppler shifts in the BEC, while EIT quantum inter-
ference protects the bulk condensate at zero velocity from loss.

As our main result, we demonstrate that certain loss
profiles γ (k) can lead to the amplification of a phonon wave
packet in homogeneous quasi-1D condensates through wave
mixing. Afterwards, we investigate the collisions of three
separate condensates [4] under non-Hermitian conditions and
demonstrate features associated with loss-induced scattering
channels. Our results open up a host of scenarios for atomic
wave mixing experiments and boost BECs as a platform for
the study of non-Hermitian physics [34,35] with a diverse pool
of loss processes to generate non-Hermiticity. Additionally,
they may enhance the utility of BECs for atom interferometry
[36], atom lasers [37,38], or entanglement generation [39–42].
Finally, we provide a specific mechanism of how the required
loss profiles can be experimentally implemented.

The article is organized as follows: In Sec. II we present
the essential mechanism of four-wave mixing in the presence
of loss, with full details of the calculation in Appendixes A
and B. Analytical formulas are numerically validated in
Appendix C. In Sec. III we demonstrate wave mixing processes
amplified through atomic loss in a one-dimensional scenario,
moving to two dimensions in Sec. IV. All effects are shown
to be robust against quantum and thermal fluctuations by
using the truncated Wigner approximation described briefly
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FIG. 1. (a) The nonlinear dispersion relation E(k) = h̄2k2/(2m)
of matter waves usually prohibits one-dimensional scattering pro-
cesses of the kind 2k0 → ks + ki , as shown. This can be remedied
by engineering a loss-induced width γi of the final scattering state
(green). (b) Internal �-type level scheme of the atoms used for
engineering the loss, which we discuss in Sec. V. |g,h〉 are long-lived
ground states, |r〉 may be a Rydberg state with decay rate γ . Green
and yellow lines and symbols represent two laser beams, the detuning
of which depends on atomic velocity v through the Doppler shift.
(c) Matter-wave packet (signal) of center wave number ks within
a quasi-1D BEC (pump) at rest (k0 = 0). Laser-induced loss only
for wave numbers (∼momenta) near ki = −ks (idler) cause the
amplification of the signal through slight depletion of the pump.
θp and θc are the angles of laser beams in panel (b) with the long axis
of the condensate.

in Appendix E. Since the results of the earlier sections do not
rely on how exactly momentum-dependent loss is realized,
we defer our proposal for a practical implementation of it to
Sec. V, with some more details in Appendix D.

II. NON-HERMITIAN FOUR-WAVE MIXING

We start by assuming a quasi-1D BEC (see, e.g., [43–45])
made of atoms with mass m. Within the mean-field Gross-
Pitaevskii equation (GPE), the system can be described in the
momentum representation:

ih̄
∂φ(k)

∂t
= h̄2k2

2m
φ(k) + U

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

∫ ∞

−∞
dk3

× δ(k2 + k3 − k1 − k)φ∗(k1)φ(k2)φ(k3)

− ih̄γ (k)φ(k), (1)

where δ(k) is a Dirac δ function expressing the conservation of
momentum during atomic (s-wave) scattering processes with
interaction constant U . We also include momentum-dependent
loss, with a rate 2γ (k) per atom. The components of the
condensate momentum space wave function φ(k) at different
momenta kn can couple through atomic scattering processes,
possibly giving rise to wave mixing.

To first gain insight into the effect of loss on wave mixing
processes, we consider a simplification of the nonlinear many-
mode problem (1), where only three discrete momenta k0, ks , ki

are involved in a scattering process, as shown in Fig. 1. These
are referred to as pump, signal, and idler modes, respectively,
in analogy to the optical scenario [20]. Furthermore, we
assume that only atoms in mode ki experience losses with rate
γ = γ (ki). Next, we express the momentum amplitudes in
an interaction picture, �n = φ(kn)

√
	k exp[i(En + εn)t/h̄],

with En = h̄2k2
n/(2m) and εn = {0,h̄κ/2, − h̄κ/2} for n ∈

{0,s,i}. Here 	k is a wave-number scaling factor, chosen as
the width of the discrete momentum mode at kn, and κ =
(	E − Uρ)/h̄, with energy mismatch 	E = Es + Ei − 2E0,
for a homogeneous condensate with density ρ. Considering an
isolated wave mixing process involving only k0,s,i rather than
more general complex many-mode interactions as in Eq. (1) is
justified under the condition 	E 	 Uρ. In the complementary
case of 	E ∼ Uρ, the interaction energy itself can usually
enable a much larger set of scattering channels, leading to a
many-mode problem.

It is now straightforward to show, as we do in Appendix B,
that as long as the bulk BEC at k0 remains largely unaffected
(undepleted pump approximation), we have

ih̄
∂�s

∂t
=

(
2Uρ + h̄κ

2

)
�s + Uρ �∗

i ,

ih̄
∂�i

∂t
= −

(
2Uρ + h̄κ

2

)
�i − Uρ �∗

s − ih̄γ�i. (2)

Equation (B5) admits solutions of the form �(t) = �(+)

exp[−iλ(+)t] + �(−) exp[−iλ(−)t], where �(t) = [�s, �i]T

and the eigenvalues

λ(±) = − i
γ

2
± 1

2
[−γ 2 + 4(2Uρ/h̄ + κ/2)2

− 4(Uρ/h̄)2 + 4iγ (2Uρ/h̄ + κ/2)]1/2. (3)

In order for amplification to take place, at least one of the above
eigenvalues must satisfy Im[λ(±)] > 0. Under the condition
	E 	 Uρ, we find the imaginary part of the amplifying
eigenvalue:

Im[λ(+)] = (Uρ/h̄)2γ

γ 2 + (	E/h̄)2
. (4)

From Eq. (4), one can make the following important obser-
vations: (i) Im[λ(+)] is maximal when γ ≈ 	E/h̄. Intuitively,
the loss then broadens the energetic width of the idler state
just enough to satisfy energy conservation, as shown in Fig. 1.
(ii) The condition 	E 	 Uρ implies Im[λ(+)] � Uρ/h̄.
Since Uρ/h̄ sets the timescale for nonlinear BEC mean-field
dynamics, the amplification will take place at a slower pace
than the interaction dynamics. We refer to Appendix C for a
numerical validation of the discussion so far.

III. MATTER-WAVE SIGNAL AMPLIFICATION

We proceed to demonstrate the nonlinear amplification of a
matter wave, enabled by dissipation, in a finite-size multimode
system. We consider an approximately homogeneous, quasi-
one-dimensional, 87Rb BEC in a box trap, such as, e.g., in the
experiment described in Ref. [46], with length L = 640 μm
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FIG. 2. 1D matter-wave parametric amplification. (a) Initially a
small wave packet on a large top-hat-shaped condensate wave packet
is traveling near wave number ks to the right. (b) Momentum spectra
of condensate at t = 0 (black) and t = 0.04 s (blue) as well as
loss spectrum γ (k) in arbitrary units (red dashed). See Sec. V for
a derivation of the lineshape. We also plot the momentum spectrum
at t = 0.04 s in the presence of quantum noise (magenta dotted).
(c) After 0.04 s action of loss on the wave number ki = −ks , the
signal has been significantly amplified, with intensity drawn from the
background (pump) condensate near k0 ≈ 0. (d) The signal strength
ps = ∫ ks+K

ks−K
|φ(k)|2dk from the GPE (solid black) increases in exact

correspondence to the number of lost atoms Nloss = N (0) − N (t)
(dashed black). We also show the corresponding TWA signal ps =∫ ks+K

ks−K
ntot(k)dk (magenta dotted). Suitably chosen [49] simulations

for a homogeneous condensate give similar results: Eq. (6) of the
Supplemental Material (solid blue) and Eq. (1) (solid red). Finally
we also show the analytical solution of Eq. (B5) using Eq. (3) (×
green). See also the movie in the Supplemental Material. Beyond
the parameters stated in the text or clear from the figure, we have
used a phonon wave packet with As = 600m−1/2, σ = 9.6 μm.
The loss spectrum γ (k), see Sec. V, is based on � = (2π )/τ with
τ = 3.6 μs (corresponding to |r〉 = |15,p1/2〉 [50]), �p = (2π )12
kHz, �c = (2π )395 kHz, 	0 = (2π )3 MHz at the laser wavelength
λ = 308 nm and ap = 1, ac = −1.

and transverse trapping frequency ω⊥ = (2π )100 Hz. The
system is sketched in Fig. 1(a). A one-dimensional choice
simplifies the numerical solution of Eq. (1), for which we
use XMDS [47,48], but more importantly represents a regime
where, in the absence of loss, matter-wave mixing processes
are suppressed in one dimension. Starting from the ground
state of the condensate in the box trap, we imprint a small
“signal” matter wave packet, φ(x) → φ(x) + As exp[−(x −
x0)2/(2σ ) + iksx], with amplitude As and width σ centered
around ks = 2.7 μm−1 onto the BEC, as shown in Fig. 2(a).
The thick part of the line are unresolved fast oscillations with
wavelength λs = 2π/ks .

Figure 2(b) depicts the initial wave packet of Fig. 2(a)
in Fourier space, where we distinguish the sinc-shaped bulk
condensate peak (“pump,” k0) and the small signal near ks .
We now assume that the loss is switched on at time t = 0,
with profile γ (k) shown as red dashed curve in Fig. 2(b). Note
that the spectral distribution of the loss is centered around
ki = −ks . We discuss later how to obtain such a profile. Action
of this loss results in a significant amplification of the matter-
wave signal, as shown in Fig. 2(c), together with visible bulk

condensate depletion behind the passing signal wave packet. In
momentum space this manifests as rapid growth of population
in momentum modes around ks as shown in Fig. 2(d). At
later times, the amplification triggers complicated nonlinear
multimode dynamics, as we can see also the movie in the
Supplemental Material [51]. We note that, in the absence of
dissipation, none of these effects would take place and instead
the initial wave packet of Fig. 2(a) would bounce off the box
edges without any change in its amplitude.

For comparison, we added to Fig. 2(d) the signal mode
growth rate predicted by Eq. (3) for a homogeneous condensate
closely matching the present scenario in the three-mode ap-
proximation (× green), which agrees well with full numerical
solutions. Equations (3) and (4) can thus provide useful guid-
ance towards the parameters supporting non-Hermitian signal
amplification. We have repeated our simulations including
quantum corrections beyond the GPE by using the truncated
Wigner method [52–59]; see Appendix E. As demonstrated
in Fig. 2 the effect is robust, the increased seed amplitude
through quantum noise even leads to a larger signal (but same
amplification factor).

We emphasize that, while no significant dynamics takes
place without the loss, the small fraction of lost atoms (∼1%)
enables a dramatic change in matter-wave dynamics.

IV. NONDEGENERATE QUASI-TWO-DIMENSIONAL
CASE

The scenario discussed above represents degenerate four-
wave mixing, where two of the initial momenta of a scattering
process coincide (k0). A more general four-wave mixing
process involves four different momentum components and
has been exploited for condensate collisions [60,61], which lay
the basis for studying Einstein-Podolsky-Rosen (EPR) correla-
tions with massive particles [39,62,63]. In all these processes,
conservation of energy and momentum plays a crucial role. A
striking demonstration of this is the Bose stimulated creation
of a new momentum component after the collision of three
different condensates having distinct initial momenta [4].

To illustrate how engineering the matter dissipation can
seemingly relax energy-momentum constraints, we consider a
two-dimensional (2D) scattering process. Figure 3(a) depicts
three superimposed condensate clouds, with N0 = 60 000
atoms each, in a pancake trap with ω⊥ = (2π )200 Hz. Their
initial velocities are |v0,2| = 0.4 mm/s, and |v1| = 0.66 mm/s,
as indicated. Trapping in the x, y directions is neglected.
Since, e.g., the momentum-allowed scattering process p0 +
p2 → p1 + p3 with p3 = −p1 violates energy conservation,
the clouds pass each other in the absence of loss, with
just diffusive- and interaction-induced broadening. However,
adding momentum-dependent loss with a peak within the
white stripes of Fig. 3(c) (i.e., around p3) introduces an
energy width alleviating these constraints, as discussed earlier.
Consequently, our simulations show a 15% increase of the
signal around p1 during the condensate interaction, originating
from these stimulated scattering events. Even if quantum
fluctuation at the level of 0.4% of the atomic peak density
are added within the truncated Wigner approximation (TWA)
[1,51], the amplification qualitatively persists with quantitative
deviations. All results should be experimentally accessible.
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FIG. 3. Non–Hermitian effects in 2D wave mixing. (a) Ini-
tial condensate density ρ = |φ(x,y)|2, showing interference due
to multiple superimposed velocity components (white arrows).
(b) Momentum space density ρk = |φ(kx,ky)|2 after 0.1 s of wave
mixing in the presence of loss. (c) Difference 	ρk = ρk − ρk0, where
ρk0 corresponds to the case without loss. The white horizontal lines
indicate the FWHM of a loss peak shaped as that in Fig. 2(c) in the y

direction and independent of x. White dashed lines separate our signal
bins, as discussed in the text. (d) Signal- and pump population ratios
(see text) from GPE (solid and dashed black, respectively) and TWA
(matching magenta dashed). See also the movie in the Supplementary
Material. For this simulation, the loss spectrum γ (k) was adjusted to
�p = (2π )3 kHz, �c = (2π )205 kHz, 	0 = (2π )4 MHz compared
with Fig. 2.

V. ENGINEERING MOMENTUM SELECTIVE LOSS
IN A BOSE-EINSTEIN CONDENSATE

It was crucial for the development so far that the loss term
γ (k) affects only atoms in the idler mode ki and not k0/s . Here
we discuss one possible method to reach that goal, exploiting
Doppler-shift techniques borrowed from laser cooling, which
also hinges on velocity-selective manipulations of atoms.

There are two additional challenges here: the comparatively
small velocities involved in BEC dynamics and avoiding
excess loss of the majority of condensate atoms. Both can
be met by employing a laser-cooling technique that involves
quantum interference through EIT, as has been proposed
[26,27] and demonstrated [28] for the cooling of ions.

In this scheme, condensate atoms in their ground state
|g〉 are coupled to two laser beams, in the off-resonant �

configuration shown in Fig. 1(b) of the main article. The
corresponding Hamiltonian for one atom in the rotating-wave
approximation reads

ĤEIT =
[
−�p

2
σ̂rg − �c

2
σ̂rh + H.c.

+	p(v)σ̂rr + [	p(v) − 	c(v)]σ̂hh

]
, (5)

with σ̂kk′ = [|k〉〈 k′ |]. The detunings 	p and 	c are implicitly
dependent on the velocity of the atom v through the Doppler
shift 	p = 	0 − v · qp and 	c = 	0 − v · qc, where 	0 is a

common base detuning and qp and qc are the respective laser
wave vectors. For our one-dimensional simulation of Fig. 2, we
in practice write this as v · qp = v|q|ap and v · qc = v|q|ac,
where v is the one-dimensional velocity, |q| ≈ |qp| ≈ |qc|
is the laser wave number and ap = cos θp and ac = cos θc

account for the angle between the probe and coupling beams
and our one-dimensional condensate. The latter are sketched
in Fig. 1(c) and afford additional flexibility in the design.

The system evolves according to the Lindblad master
equation for the density matrix ρ̂ (h = 1):

˙̂ρ = −i[Ĥ ,ρ̂] +
∑

α

LL̂α
[ρ̂], (6)

where the superoperators LL̂α
[ρ̂], with LÔ[ρ̂] = Ôρ̂Ô† −

(Ô†Ôρ̂ + ρ̂Ô†Ô)/2 describe spontaneous decay of the ex-
cited state |r〉 to either of the ground states via L̂α=1 =√

�/2σ̂gr and L̂α=2 = √
�/2σ̂hr .

As usual, the timescale of atom-light coupling is much
faster than BEC dynamics so that we can assume the atoms
to settle into a steady state ρ̂(∞) with ˙̂ρ = 0, dependent on the
atomic velocity through the Doppler shift.

In contrast to laser-cooling, we now crucially assume that
the photon recoil energy Er of decayed atoms is larger than the
trap depth—a condition that can be fulfilled experimentally.
Consequently, an atom emitting a photon will be ejected
out of the trap and is considered lost. Loss is thus linked
to spontaneous decay, and we obtain the velocity-dependent
(wave-number-dependent) loss as γ (k) = �〈 r |ρ̂(∞)|r〉/2.

Let us consider the situation without the atomic state |h〉
first: Setting �c = 0 and 	c = 0, Fig. 1(b) reduces to a
two-level system and ρrr = 〈 r |ρ̂(∞)|r〉 takes the well-known
Lorentzian spectral lineshape. For our scheme to function as
intended, the width 	k of ρrr must be tailored such that the
atomic loss is significant only for the idler matter waves ki ,
but negligible on the bulk background condensate k0. This is
challenging since the Doppler shifts caused by velocities such
as used in Fig. 2 are as small as δω = vsqp ≈ 40 kHz. We
are thus led to the use of “long-lived” excited states for |r〉,
such as Rydberg states [30,31] or metastable spin triplets in
two-electron atoms [32,33] which have linewidths of this mag-
nitude. The ensuing combination of Rydberg and BEC physics
hold promise as an exciting emerging discipline [64–70].

However, even for these states, the strong tails of the
Lorentzian line can cause a significant loss of bulk condensate
atoms near k0 ≈ 0. It is in order to overcome this obstacle
that the excitation scheme includes coupling |r〉 to another
hyperfine ground state |h〉. The resulting �-type level scheme
enables a complete suppression of non-Doppler-shifted exci-
tation (loss) at k ≈ 0 via quantum interference effects (EIT).
While matter loss at the signal momenta ks cannot be fully
suppressed in this scheme, it can be made sufficiently small.

If we evaluate the modified loss γ (k) = �〈 r |ρ̂(∞)|r〉/2 in
the presence of the state |h〉, we obtain

γ (k) = 4	2
eff�

2
p�2

c

/{[
16

(
	2

c + �2
c

)
	2

eff + 3�4
c

]
�2

p

+ (
3�2

c − 8	c	eff
)
�4

p + �6
p + 4�2	2

eff

(
�2

p + �2
c

)
+ (

4	eff	p�c + �3
c

)2}
, (7)

with 	eff = 	p − 	c.
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(a)

(b)

FIG. 4. (a) Loss spectrum engineered through � scheme as a
function of atomic velocity, for parameters as in Fig. 2 of the main
article. (b) The same, but zoomed onto the narrow resonance feature
near v = vs = 0.002 m/s.

We show the atomic excitation spectrum, or loss spec-
trum (7), as a function of velocity in Fig. 4. On the wider
velocity range in Fig. 4(a) we see a broad and a narrow
resonance feature, corresponding to the two eigenstates of the
strongly coupled |r〉, |h〉 subspace. Our interest is in the narrow
spectral feature, zoomed upon in Fig. 4(b), which realizes the
velocity width required for the proposal. The state is narrow
due to the small probability to be in the decaying |r〉 level.
This spectral feature gives rise to the loss spectrum also shown
in Fig. 2.

Note that, in our argument we essentially rely on a hierarchy
of three timescales: τ � Trec � TBEC, where the excited state
lifetime τ = γ −1 sets the scale for radiative decay establishing
an atomic steady state, the recoil time Trec determines how fast
a decaying atom is lost from the trap, and TBEC denotes the
timescale of condensate dynamics of interest. We estimate
Trec = a⊥/vrec, where a⊥ = √

h̄/m/ω⊥ is the radial trapping
width and vrec = 2h̄|qp|/m is the recoil velocity.

For the parameters of Fig. 2 in the main article we have
τ = 3.6 × 10−6 μs, Trec = 36 μs, and TBEC ∼ 1 ms, fulfilling
the hierarchy.

In addition to the mechanism of atom loss described above,
the laser beams will also cause a dispersive energy shift δE(k),
as discussed in Appendix D. Although this contribution can
be made small enough to have a minor effect on condensate
dynamics, it is not entirely negligible. We thus included it in
the simulations above as a modification of atomic dispersion

∼δE(k)φ(k) on the right-hand side of Eq. (1). While it does
slightly affect BEC dynamics, the amplification phenomena
discussed are entirely due to the dissipative contribution.

VI. CONCLUSION AND OUTLOOK

We have proposed a mechanism based on spectrally
engineered matter dissipation to control the nonlinear scat-
tering dynamics in BEC systems. More specifically, we have
demonstrated that, by introducing a momentum-dependent
loss profile, scattering processes in certain directions can
be enhanced. When applied to quasi-1D BECs, our strategy
enables efficient wave mixing in regimes that would have
been inaccessible under Hermitian conditions. Similarly, we
have demonstrated that spectrally engineered dissipation can
be used to open new scattering channels in quasi-2D setups.

We emphasize that our primary results; namely, efficient
four-wave mixing via matter loss, are valid in general and
not pertinent to the examples studied here. Also alternative
practical realizations of loss profiles γ (k) would yield the
same results.

The fundamental effects presented in our work further
suggest BEC as an accessible laboratory platform for the study
of non-Hermitian quantum mechanics, where interesting new
features might arise from inelastic nonlinear loss processes in
condensates, such as two- and three-body losses [55,71–73].
The new wave-mixing channels may also benefit engineering
quantum-atom-optical devices, such as interferometers or
entangled-atom sources.
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APPENDIX A: NON-HERMITIAN FOUR-WAVE MIXING

This section presents a detailed derivation of the analytical
treatment of wave mixing in the presence of losses, leading to
Eq. (4) in Sec. II.

For completeness, we begin with the position-space GPE
of a 1D BEC in a transversely tight trap by considering N =∫

dx|�(x)|2 atoms of mass m in one spatial dimension and
within an external trapping potential V (x):

ih̄
∂�(t,x)

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V (x) + U |�(t,x)|2

]
�(t,x).

(A1)

Here U is an effective 1D nonlinear coefficient, containing,
e.g., properties of tight transverse trapping. It can be calculated
from the three-dimensional (3D) interaction constant U3D =
4πh̄2as/m, where as is the s-wave scattering length, via U =
U3D/(2πσ 2

⊥), where σ⊥ is the width of the harmonic-oscillator
ground state in the tightly trapped transverse direction σ⊥ =√

h̄/(mω⊥), and ω⊥ is the trapping frequency of the transverse
trap.

To facilitate our analysis, it is more instructive
to write Eq. (A1) in the momentum representation
after neglecting the potential term V (x). We use
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�(t,x) = ∫
dk exp[ikx]φ̄(t,k)/

√
2π to obtain

ih̄
∂φ̄(t,k)

∂t
= h̄2k2

2m
φ̄(t,k) + U

2π

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

∫ ∞

−∞
dk3

× δ(k2 + k3 − k1 − k)φ̄∗(t,k1)φ̄(t,k2)φ̄(t,k3),
(A2)

where δ(k) is a Dirac δ function expressing the conservation
of momentum during atomic-scattering processes.

In principle, Eq. (A2) contains complete information about
the system. However, to gain more insight into a specific wave-
mixing process such as those represented in Fig. 1(a), we
proceed by isolating a few specific momentum modes. We do
this by adopting a discrete representation of Eq. (A2). This
is done by using

∫
dk → ∑

	k and φ̄(t,kn) = φ̄n/
√

	k (we
drop the explicit reference to the time variable t), to obtain

ih̄
∂φ̄p

∂t
= h̄2k2

p

2m
φ̄p + Ud

∑
n,m,l

δkp+kn−km−kl
φ̄∗

nφ̄mφ̄l, (A3)

where Ud = U	k/(2π ) and δkn
= δ(kn)	k. In our simulations

	k represents the momentum grid spacing. Finally, we write
Eq. (A3) in an interaction picture via the gauge transformation
φ̄n = φn exp(−iEnt/h̄), with En = h̄2k2

n/(2m), to get

ih̄
∂φp

∂t
= Ud

∑
n,m,l

δkp+kn−km−kl
φ∗

nφmφle
i(Ep+En−Em−El )t/h̄.

(A4)

This equation neatly encapsulates momentum and energy
conservation inherent in any atomic-scattering event.

APPENDIX B: LOSS-INDUCED PHASE MATCHING

Let us now assume a momentum-dependent single-body
atom loss for the BEC by adding a term

ih̄
∂φ(k)

∂t
= · · · − ih̄γ (k)φ(k). (B1)

to the right-hand side of Eq. (1). After discretization this
amounts to a term ih̄

∂φp

∂t
= · · · − ih̄γpφp in Eq. (A4).

We now further restrict Eq. (A4) to just three relevant
modes, k0, ks , ki , for loss acting on atoms with the idler wave
number ki only and obtain

ih̄
∂φ0

∂t
= Ud{2φ∗

0φsφie
−i(Ei+Es−2E0)t/h̄

+ [|φ0|2 + 2(|φs |2 + |φi |2)]φ0},

ih̄
∂φs

∂t
= Ud

{
φ∗

i φ
2
0e

i(Ei+Es−2E0)t/h̄

+ [|φs |2 + 2(|φ0|2 + |φi |2)]φs

}
,

ih̄
∂φi

∂t
= Ud

{
φ∗

s φ
2
0e

i(Ei+Es−2E0)t/h̄

+ [|φi |2 + 2(|φ0|2 + |φs |2)]φi

} − ih̄γ φi. (B2)

Analytical solution

If the majority of condensate atoms occupy the pump
mode k0, i.e., |φ0| 	 |φs |,|φi | (a condition equivalent to the

undepleted-pump approximation in the context of nonlinear
optics), the evolution equation for φ0 becomes

ih̄
∂φ0

∂t
= Ud |φ0|2φ0, (B3)

with the solution φ0(t) = √
n0e

−iUdn0t/h̄, where n0 = |φ0|2.
Here n0 is the number of atoms in the pump mode, and φ0

is the pump-mode amplitude. Substitution into the remaining
two equations yields

ih̄
∂φs

∂t
= Udn0{φ∗

i e
i(Ei+Es−2E0−2Udn0)t/h̄ + 2φs},

ih̄
∂φi

∂t
= Udn0{φ∗

s e
i(Ei+Es−2E0−2Udn0)t/h̄ + 2φi} − ih̄γ φi.

(B4)

By introducing the quantity κ = (Ei + Es − 2E0 − 2Udn0)/h̄
and moving to the rotating frame φs = �s exp(iκt/2), φi =
�∗

i exp(−iκt/2), we obtain

ih̄
∂�s

∂t
=

(
2Udn0 + h̄κ

2

)
�s + Un0�i,

ih̄
∂�i

∂t
= −

(
2Udn0 + h̄κ

2

)
�i − Un0�s − ih̄γ�i. (B5)

The solution of (B5) reads

�(t) = �(+) exp[−iλ(+)t] + �(−) exp[−iλ(−)t], (B6)

with

λ(±) = − i
γ

2
± 1

2
[−γ 2 + 4(2Udn0/h̄ + κ/2)2

− 4(Udn0/h̄)2 + 4iγ (2Udn0/h̄ + κ/2)]1/2, (B7)

and �(±) are the eigenvectors associated with the eigenvalues
λ(±). We have used a vector notation �(t) = [�s, �i]T .
Evidently, nonlinear amplification of atomic momentum
modes in Eq. (B6) takes place if either one of the eigenvalues
satisfies the condition Im[λ(±)] > 0. For our present reduction
of the problem to just three interacting momentum modes
to be valid, we require 	E ≡ Ei + Es − 2E0 	 (Udn0).
Otherwise, If 	E ∼ (Udn0), the interaction energy itself can
usually enable a much larger set of scattering channels, leading
to a many-mode problem. The expression for the amplification
factor then takes the form

Im[λ(+)] = (Udn0/h̄)2γ

γ 2 + (
	Ē/h̄

)2 . (B8)

It is useful to reexpress Un0 in terms of the homogeneous
position-space density ρ within a domain of size L. We then
can write Udn0 = U	kN0/(2π ) = U (2π/L)N0/(2π ) = Uρ,
which is used in Eqs. (B5) and (4).

From expression (B8), we can read off the following
important results: (i) Im[λ(+)] is maximal when γ ≈ 	E/h̄.
In that case loss just broadens the target momentum state
enough to satisfy the energy conservation relation, as shown
in Fig. 1. For the parameters of Fig. 5 this predicts an optimum
at γ = 1.2 for which the effect is indeed much faster than the
other cases shown. (ii) Since we need 	E 	 Udn0, we always
have Im[λ(+)] � γ . This forces us to interpret the condition
for wave mixing 	E 	 Udn0 as generous as possible, with
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FIG. 5. Simulations of four-wave mixing in a homogenous BEC,
using Eq. (1) with Eq. (B1) (solid), compared with a few-mode
approximation (B2) (dashed), and the analytical solution based on
Eq. (3) (×). All curves show momentum-space densities |φ(ki)|2 =
|φn|2/	k at various wave numbers: (right panels, upper curves) signal
ks , (right panels, lower curves) idler ki , (left panel, lower curves) pump
k0, (left panel, upper curves) sum of all three. From top to bottom we
increase the idler damping rate γ , (a), (b) γ = 0, (c), (d) γ = 1.2,
(e), (f) γ = 10, (g), (h) γ = 100.

	E being just a few multiples of Udn0, to have the fastest
possible effect. (iii) Using all these arguments together we
also have Im[λ(+)] � Un0. Since Udn0 sets the timescale for
the nonlinear BEC dynamics, this will make the amplification
effect slower than the latter.

For a case such as in Fig. 2, the last conclusion is no
limitation since the bulk nonlinearity in the homogeneous case
does not lead to any nontrivial evolution of the wave function.
In contrast, for Fig. 3 it limits the achievable signal since, for
faster amplification, nonlinearities become too large for the
matter waves to pass through each other.

APPENDIX C: VERIFICATION OF RESULTS

Here we present a numerical verification of the predictions
made in the previous section. To do so, we consider the case of
a homogeneous BEC of N atoms in periodic domain of length
L; thus with density ρ = N/L. The BEC is initially given a
momentum k0 with a small fraction As of the BEC seeded into
the signal mode (momentum ks):

�(x,0) =
√

N

L
(
√

1 − As exp[ik0x] +
√

As exp [iksx]).

(C1)

The initial condition (C1) is then propagated numerically un-
der the loss spectrum γ (k) = γA exp[−(k − kloss)2/(2σloss)],

centered around ki = 2k0 − ks . Other simulation parameters
were chosen similar to those used in Fig. 2.

Figure 5 depicts the condensate momentum components
at the idler and signal wave number for various loss rates,
comparing three different models: the many-mode GPE for
the homogeneous case (1) with Eq. (B1), the corresponding
three-mode model (B2), its full analytical solution (B6). The
agreement is good for this homogeneous case, as expected.
We find that Eq. (B8) can also provide useful guidance in the
inhomogeneous multimode cases discussed in the main text.

APPENDIX D: DISPERSIVE EFFECTS

The scheme to engineer momentum-selective loss intro-
duced in Sec. V also gives rise to an unavoidable (but small)
dispersive contribution to the atomic energy, which we discuss
in this Appendix.

The optical � scheme causes the ground state |g〉 to be
weakly dressed with the other two electronic states. Besides
the desired dissipative effects discussed above, this will cause
an energy shift (light shift) for the atoms, given by δE(k) =
Tr[ρ̂(∞)ĤEIT] that also will depend on the atomic velocity.

We find

δE(k) = − δ�2
p

[
3

2
γ 3δ2 + 1

2
��2

c

(
4	pδ + �2

c + �2
c

)

+ �

2

{
4δ

[
δ

(
4	2

c + �2

2

)
+ �2

c(3	c − 2	p)

]

+ �2
p

(
�2

c − 8	cδ
) + �4

p

}]

×
{

��2
c

2

[
4
(
�2 + 4	2

p

)
δ2 + 8	pδ�2

c + �4
c

]

+ �2
p

[
2�

(
�2 + 4	2

c

)
δ2 + 8�δ2�2

c + 3

2
��4

c

]

+ �4
p

[
3

2
��2

c − 4�	cδ

]
+ 1

2
��6

p

}−1

, (D1)

with δ = (	c − 	p).
In comparison with the free-atom dispersion relation E =

h̄2k2/(2m) this effect remains small but not entirely negligible,
as seen in Fig. 6.

APPENDIX E: MODELLING QUANTUM NOISE USING
TRUNCATED WIGNER APPROXIMATION

Following initial discussions [52–54] the TWA in a BEC
context is described in many articles, including Refs. [55–57].
Very briefly, the method amounts to carefully adding random
noise to the initial state of the GPE, Eq. (1), in order to provide
an estimate for the effects of quantum depletion or thermal
fluctuations beyond the mean-field analysis [74].

Under the assumption of only atomic contact scattering,
the TWA equation of motion remains identical to the GPE.
However, when dissipation is taken into account, these
equations are modified [58] and a dynamical noise terms in
the equation of motion appears [59]. Following Ref. [59], we
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FIG. 6. (black) Light shift from laser coupling δE(k), Eq. (D1),
compared with kinetic energy Ekin = 1

2 mv2 (red). Since the former
is much smaller than the latter, it does not significantly affect the
condensate dynamics.

obtain the stochastic differential equation (SDE):

ih̄ dα(k) =
[
h̄2k2

2m
α(k) + U

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

∫ ∞

−∞
dk3

× δ(k2 + k3 − k1 − k)α∗(k1)α(k2)α(k3)

− ih̄
γ (k)

2
α(k)

]
dt + ih̄

√
γ (k)

2
dξ (k,t), (E1)

where α(k) is the TWA stochastic field in momentum
space, and dξ (k,t) are complex Gaussian noises that fulfill
dξ (k,t)dξ (k′,t) = 0 and dξ (k,t)∗dξ (k′,t) = δ(k − k′)dt .
The initial condition is α(k,t = 0) = φ(k,t = 0) + η(k)/

√
2,

where φ(k,t = 0) is the mean-field initial condition and η(k)
are again unit variance complex Gaussian noises similar to
dξ (k,t).

A different symbol α(k) has been chosen for the stochastic
field compared with the mean field φ(k), to emphasize the
difference in physical interpretation due to the presence of
noise. The total atomic density, for instance, is now given
by ntot(k) = |α(k)|2 − 1/(2	k), where · · · denotes stochastic
averaging, and 	k is the numerical momentum grid spacing.

The noise term ∼dξ (k,t) ensures that momentum modes
retain their initial noise population despite the presence of
loss ∼γ (k). In practice, we restrict all noises to the center part
of the numerical momentum-space domain as in Ref. [57], to
reduce aliasing.

In our numerical studies, we have averaged over 6400 and
64 trajectories for Figs. 2 and 3, respectively. Moreover, in
Fig. 3 we have adjusted the noise level by scaling both dξ

and η such that the total noise density amounts to a depletion
d = 8(ρ0as)1/3/(3

√
π ) [75], where ρ0 is the 3D peak density.

This reflects our aim to model a quasi-2D, instead of a
genuinely 2D BEC.
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