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Synthetic aperture radar (SAR) has significant role in remote
sensing. Phase errors due to uncompensated platform motion,
measurement model mismatch, and measurement noise can cause
degradations in SAR image reconstruction. For efficient processing
of the measurements, image plane is discretized and autofocusing
algorithms on this discrete grid are employed. However, in addition
to the platform motion errors, the reflectors, which are not exactly on
the reconstruction grid, also degrade the image quality. This is called
the off-grid target problem. In this paper, a sparsity-based technique
is developed for autofocused spotlight SAR image reconstruction that
can correct phase errors due to uncompensated platform motion and
provide robust images in the presence of off-grid targets. The pro-
posed orthogonal matching pursuit-based reconstruction technique
uses gradient descent parameter updates with built in autofocus. The
technique can reconstruct high-quality images by using sub Nyquist
rate of sampling on the reflected signals at the receiver. The results
obtained using both simulated and real SAR system data show that the
proposed technique provides higher quality reconstructions over al-
ternative techniques in terms of commonly used performance metrics.
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I. INTRODUCTION

Synthetic aperture radar (SAR) [1] provides high-
resolution images of ground reflectivity by processing mul-
tiple returns acquired on a flightpath of its platform effec-
tively synthesizing a very large aperture antenna. Because
of this high resolution capability in both range and cross-
range directions and robustness to adverse weather con-
ditions, SAR has great importance and wide usage areas
ranging from civilian applications, such as environmen-
tal monitoring, terrain mapping, to military areas, such as
surveillance and intelligence missions. In SAR systems,
range resolution is determined by the bandwidth of the
system and high resolution requirements mean directly an
increase in bandwidth and correspondingly increases in
analog to digital converter (ADC) rates, total number of
measurements, required memory, and processing power. In
classical SAR systems, the SAR signal uses a contiguous
bandwidth and the cross range is uniformly sampled. How-
ever, in the case of increase in the bandwidth, it is possible
that some frequency subbands may be used by other sys-
tems such as communication or it might be the case where
no transmission is allowed. In some cases, the data ob-
tained at random cross range points may be corrupted or
may not be obtained if the same antenna is used for another
task for a multifunction radar system. These types of ac-
quisition modalities may necessitate nonuniform sampling
in cross range as well. All of these different reasons and
developments require SAR systems to be able to generate
high-quality and high-resolution images from possibly low
number of measurements that may be subsampled both in
range and cross-range direction.

Compressive sensing (CS) [2], [3] techniques provide
valuable solution alternatives to the problems of SAR sys-
tems. Unlike classical SAR imaging techniques, CS meth-
ods can operate on sub Nyquist rate data to reconstruct
SAR images if imaging scene is sparse in a certain known
transform domain. Due to very appealing properties of CS
and its possibly important advantages for radar, CS-based
techniques have received considerable attention both in the
radar and SAR research communities for the last few years.
Extensive literature and further details on CS-based radar
and SAR applications can be found in the excellent review
papers on the topic [4], [5].

CS theory provides strong results, which guarantee sta-
ble solution of the reconstructed sparse target scenes under a
perfectly known sparsity basis satisfying certain additional
constraints [6]. In order to form the synthetic aperture, pre-
cise relative position (such as distance, bearing, etc.) infor-
mation between the SAR sensor platform, and the area of
the interest are necessary. On the other hand, because of
the inaccuracy in the navigation systems, uncompensated
motion errors always exist, resulting in phase errors in the
received SAR signal. In addition to the platform motion
errors, system modeling errors such as discretization of
the SAR imaging problem and assuming reflectors on the
centers of the discrete image patches while they can be any-
where also create mainly phase mismatches. Total residual
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phase errors are the main cause of the degradations in high-
resolution SAR images, limiting achievable performance
especially in the cross-range direction.

Methods for correcting phase-dependent errors due to
uncompensated platform motion errors in SAR imaging
are called autofocus techniques. There are various types of
approaches to autofocus problem [7]–[11]. Classical auto-
focus approaches such as phase gradient autofocus (PGA)
[7] use the data acquired at Nyquist-rate or above and phase
error estimation is generally done as a post processing step
on the reconstructed defocused images reconstructed by
conventional techniques, such as polar-format algorithm
(PFA) [1], [12]. It is observed that the performance of
these techniques degrades under sub Nyquist rate data. On
the other hand, CS-based formulation of the SAR imaging
problem allows more generalized subsampling data acqui-
sition schemes while providing prior information such as
sparsity through regularization and a general joint imaging
and autofocus framework. CS-based SAR imaging with aut-
ofocus has been studied in the literature by several papers
[9]–[11], [13]–[16].

Sparsity-based SAR imaging and autofocus techniques
generally incorporate the system model and the data into
different types of optimization problems. Hence in these
techniques, autofocus is handled during the process of im-
age formation rather than in post processing as done in
classical techniques, such as PGA. A sparsity driven auto-
focus (SDA) technique is used in [9], where an optimization
problem in which the cost function is composed of a data fi-
delity term and a regularization term which is the �1 norm of
the discretized imaging field. The optimization problem is
solved with respect to the image and the phase error through
iterative separate minimizations over each parameter. Sim-
ilarly in [10], an optimization problem with some practical
benefits compared to [9] is proposed, where the data fidelity
term is minimized with an additional constraint on the �1

norm of the discretized imaging field is less than a given
threshold. An expectation maximization matching pursuit
(EMMP)-based iterative SAR imaging and autofocus tech-
nique is proposed in [11], where again the data fidelity term
is minimized with the constraint of the sparsity level or the
�0 norm of the image being less than a predefined thresh-
old, while in [9] and [10], the phase estimate is obtained
following the reconstruction of the entire image in each
iteration, in EMMP the image and the phase estimates are
obtained iteratively through a matching pursuit procedure.
Other techniques on the issue [13]–[16] follow the same
concept with minor variations.

All of the discussed techniques actually require scenes
that admit exact sparse representation in some known dic-
tionaries and they deal with only the platform motion-based
phase errors. However, another source of error that inval-
idates the exact sparsity assumptions and affect the re-
construction performance of sparsity-based techniques is
the basis mismatch. These techniques discretize the image
space and assume that the scene is sparse on the discretized
grid. However, the scattering centers can reside anywhere
in the continuous image domain rather than the assumed

discrete grid locations causing basis mismatch and degra-
dation in SAR images: a problem which is not considered
by the alternative techniques mentioned above. This issue is
known as the off-grid target problem in sparse representa-
tion and CS literature and is faced not only in SAR imaging
but also in frequency estimation [17], angle of arrival esti-
mation [17], and delay-doppler imaging [18]. There are var-
ious types of solutions to off-grid target problem in CS [18]–
[22]. Among these techniques, the parameter perturbation-
based orthogonal matching pursuit (PPOMP) proposed in
[18], reconstructs signals where the sparsity of the signal
is in a continuous parameter space and the sparsity basis is
constructed through discretization of this parameter space.
PPOMP technique jointly solves for the parameter perturba-
tions from the grid centers and the amplitudes for the atoms
iteratively using a gradient descent type parameter search.

The proposed algorithm named as perturbed autofocus
SAR (PA-SAR), is developed for the spotlight SAR imaging
mode and generates sparse SAR images by jointly solving
for autofocus and off-grid target errors. The current autofo-
cus techniques do not take care of off-grid target errors, and
the proposed PA-SAR technique, as to best of our knowl-
edge, is the first technique that does SAR imaging under
both autofocus and off-grid target errors jointly. PA-SAR
uses an Orthogonal matching pursuit (OMP) framework in
image generation steps, and applies parameter perturbation
as PPOMP to have better estimates of off-grid scatterer loca-
tions and jointly estimates the phase errors due to platform
motions with the perturbed target locations. Preliminary re-
sults are given in [23]. The technique allows reduced num-
ber of measurements and results in sparse SAR images.
The results obtained using both simulated and real SAR
system data show that the proposed technique provides bet-
ter SAR image reconstructions in terms of commonly used
performance metrics.

The organization of this paper is as follows. The spot-
light SAR signal and phase error models are introduced
in Section II. The detailed derivation of the proposed tech-
nique is given in Section III. Results are provided in Section
IV and conclusions are drawn in Section V.

II. SPOTLIGHT MODE SAR SIGNAL MODEL

In spotlight mode SAR, typically a linear frequency
modulated (FM) chirp signal s(t) is transmitted with a cer-
tain pulse repetition interval (TPRI)

s(t) = ej (ω0t+at2), |t | ≤ 0.5T (1)

where ω0 is the RF carrier frequency in radians, 2a is the
FM rate, and T is the pulse duration, which is a small
fraction of TPRI. For each pulse i, the received signal from
the terrain of interest yi(t) is given by [24]

yi(t)

=
∫∫

√
z2

1+z2
2≤ZL

x(z1, z2)e−j�(t)(z1cos(ϕi )+z2sin(ϕi ))dz1dz2

(2)
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where x(z1, z2), �(t), ϕi , and ZL are the ground reflectiv-
ity, the radial spatial frequency, corresponding look angle of
the ith pulse, and length of the ground patch, respectively.

High resolution SAR image reconstruction for arbi-
trary terrain reflectivity distributions requires Nyquist rate
or above sampling of the return signals and coherent pro-
cessing of all the available samples. However, especially in
applications where the goal is to image a few man-made
targets of interest with strong reflectivity with respect to
the reflectivity of the ground patch, CS techniques offer
an alternative image reconstruction approach where below
Nyquist rate sampling suffices for high-resolution image
reconstructions. To develop the underlying idea, we use the
following reflectivity model for the terrain patch of interest:

x (z1, z2) =
K∑
k=1

αkψ (z1 − z1k, z2 − z2k) (3)

where K is the number of dominant scattering centers, αk’s
are their complex valued reflectivities, (z1k, z2k)’s their re-
spective positions in the scene, and ψ (z1, z2) is a highly
localized two-dimensional (2-D) function that is chosen to
represent complex man-made targets by superposition of
localized scattering centers. As long as the spatial-support
of theψ(z1, z2) is limited to a resolution-cell dimension, the
SAR reconstructions are known to be insensitive to the ac-
tual shape of the ψ(z1, z2) [24]. Under this model, received
signal can be rewritten as

yi (t) =
∫∫ (

K∑
k=1

αkψ (z1 − z1k, z2 − z2k)

)

× e−j�(t)(z1cos(ϕi )+z2sin(ϕi ))dz1dz2 (4)

or much simply as

yi (t) =
K∑
k=1

αkgi(t ; z1k, z2k) (5)

where gi(t ; z1k, z2k) is the equivalent SAR operator func-
tion. In this form of the received signal, total of 3K un-
known parameters of scene reflectivity are in multiplicative
form: αkψ(z1 − z1k, z2 − z2k) preventing us to have a lin-
ear relationship between measurements and the unknown
parameters. One commonly used technique employs a uni-
form grid on the terrain patch and restricts the scattering
centers to reside on the grid positions: (z̄1n, z̄2m), where
z̄1n = (n− N

2 )�z1, and z̄2m = (m− M
2 )�z2, for 1 � n �

N and 1 � m � M , respectively. Then the received signal
can be modeled as

yi (t) =
∫∫ N∑

n=1

M∑
m=1

x̄ (n,m)ψ (z1 − z̄1n, z2 − z̄2m)

× e−j�(t)(z1cos(ϕi )+z2sin(ϕi ))dz1dz2 (6)

where x̄ (n,m) is 2-D ground reflectivity matrix of size
N ×M and assumes nonzero values only on those un-
known grid positions, where the K scattering centers re-
side. Therefore, in this form the K-sparse unknowns are
embedded in an N ×M dimensional space. This lifting to

higher dimensional space enables us to represent the rela-
tionship between measurements and unknowns in a linear
form. The assumptions of scattering centers residing on the
grid locations can cause significant degradation in actual
scene reconstructions. This phenomenon is known as the
“off-grid problem” which is not an exception but the rule
in SAR reconstruction.

One brute force approach to gain resiliency against
the off-grid problem is to use finer grid sizes which im-
plies larger grid dimensions and embedding into very high-
dimensional spaces that require close to Nyquist rate sam-
pling for reliable reconstructions. That limit is the classical
SAR reconstruction which is well known and well doc-
umented. Therefore, it is important to tackle the off-grid
problem over reasonable sized grids.

Let C′
i be a matrix with entries; C′

i(n
′, m′) =

exp
(−j�[n′�t] (z1m′ cos(θi) + z2m′ sin(θi))

)
, where

�[n′�t] is the time sampled radial spatial fre-
quency,

√
z1m′ + z2m′ < ZL, 0 ≤ n′ ≤ T · fs − 1 and

1 ≤ m′ ≤ NM , fs is the sampling rate in Hz. Then, the
discretized version of the observation kernel in (6), Ci is
formed by taking column-wise inverse discrete Fourier
transform (DFT) of C′

i [1], [14], [25]. The complex valued
discrete SAR projection operator Gi at cross range i

is given by Gi = F−1Ci , where F is a convenient DFT
matrix.

Using Gi and rewriting the expressions in vector form
yields a linear formulation of received signal as

yi = Gix (7)

where x is the column stacked version of the x̄ in (6) and
referred as the discrete ground reflectivity vector of size
NM × 1, yi is the sampled return signal at cross range i
by sampling fast time t to produce L measurements. At
this point, it should be noted that the received signal can be
sampled by a classical ADC or a compressive receiver as
in [26]. Nevertheless, this is modeled in Gi , which is the
complex valued discrete SAR projection operator for the
cross range position i relating the received measurements
yi to the unknown ground reflectivity vector.

SAR data processing need to know the distance and
the angle between the SAR platforms and the scene cen-
ter. However, due to reasons such as limited accuracy of
navigational sensors, there is always a certain level of un-
compensated platform motion error, which cause phase un-
certainties in the received signal. If the uncertain position
of the platform is assumed constant over a single pulse
duration at an aperture position but vary in cross-range di-
rection, then a phase error which is constant for fast time
but vary only in cross-range can be assumed. Under such
an assumption and in the presence of measurement noise,
yi can be written as

yi = diag
[
ejφi , ejφi , . . . , ejφi

]
Gix + wi

= �iGix + wi , (8)
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where �i is an unknown L× L diagonal matrix with only
diagonal entries being the phase error ejφi and wi is the ad-
ditive complex white Gaussian measurement noise vector.

If we have D cross-range samples, the combined mea-
surements can be written as⎡
⎢⎢⎢⎣

y1

y2
...

yD

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�1

�2

. . .
�D

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

G1

G2
...

GD

⎤
⎥⎥⎥⎦ x +

⎡
⎢⎢⎢⎣

w1

w2
...

wD

⎤
⎥⎥⎥⎦ (9)

or simply as y = �Gx + w, where y is anLD × 1 vector of
combined measurements, � is LD × LD diagonal matrix
having the unknown phase error terms, G is the equivalent
LD ×NM discrete SAR operator, and w is the combined
noise vector which is white Gaussian noise (WGN) assum-
ing independent measurement noise for different aperture
locations.

III. PROPOSED METHOD

For a K sparse scene of reflectivity modeled as in (3),
the sampled combined measurements can be expressed as

y = �

K∑
k=1

αkg
(
f o1,k, f

o
2,k

)+ w (10)

where αk is the complex reflectivity of the kth target, and
g(f o1,k, f

o
2,k) is the combined SAR operator for all cross

range positions for a target at position θok = (f o1,k, f
o
2,k). If

the target were exactly on the grid, then g(.) would be the
column of G matrix corresponding to that grid location.
However, a target with parameters θok may not be located
exactly at a grid but is positioned close to a grid node with
an unknown perturbation as f o1,k = f1,k + δf1,k and f o2,k =
f2,k + δf2,k , where θ k = (f1,k, f2,k) are the nearest grid
position, with perturbations

∣∣δf1,k

∣∣ < 0.5�1 and
∣∣δf2,k

∣∣ <
0.5�2 with �1 and �2 represents the grid dimensions in
range and cross-range, respectively.

High-quality image reconstruction requires estimation
of both the unknown phase errors in � and image param-
eters αk and (f o1,k, f

o
2,k) including the grid perturbations.

Hence, the goal is to apply autofocus and handle the offgrid
problem simultaneously. To achieve this goal, the following
optimization problem is formulated

min
αk,δf1,k ,δf2,k ,φi

∥∥∥∥∥y −�

K∑
k=1

αkg(f1,k + δf1,k, f2,k + δf2,k)

∥∥∥∥∥
2

s.t. φi = ∠
(

K∑
k=1

αi,kgi(f1,k + δf1,k, f2,k + δf2,k)

)H
yi

i = 1, 2, ...D and |δf1,k| < �1/2, |δf2,k| < �2/2 (11)

where i denotes the pulse number. The goal in (11) is to
minimize the �2 norm of the residual error of the mea-
surements with constraints being the phase error equal to
the minimizer of the per pulse cost as defined in [14] and
the perturbations being within a grid cell. The optimiza-
tion problem in (11) is nonconvex and poses a significant

TABLE I
Proposed Algorithm

Initialization: r0 = y, T0 = {} ,
e = ‖r0‖2 , k = 1

Keep iterating until e < ε

j∗ = arg maxj∈1:NM

∣∣∣g (θ j )H rk−1

∣∣∣
Tk = Tk−1 ∪ {θ j∗

}
(α,�, [δθ1, ..., δθk]) = S (y,Tk)
r = �H y −∑k

p=1 αpg
(
θp + δθp

)
e = ‖r‖2
k = k + 1

Output: (α, [δθ1, ..., δθk] ,Tk)

challenge to solve directly. Instead, a suboptimal iterative
method which alternatively solves for the phase errors and
the target perturbations within a greedy technique is devel-
oped. The outer shell of the proposed method is based on
OMP [27] and given in Table-I.

At the kth iteration of the proposed algorithm, the se-
lected k grid locations Tk and the measurements are input
to an inner algorithm abstractly shown as(

α , [δθ1 . . . δθ k],�
)

= S

(
y , [θ1 . . . θ k]

)
(12)

which produces a solution to (11) for the selected grid pa-
rameters and outputs corresponding complex reflectivities,
perturbations and the phase errors for each cross-range po-
sition. The residual error is then calculated using the phase
corrected measurements and perturbed basis vectors. It is
important to note that the solver S(·) is not dependent specif-
ically on OMP and can be integrated into any algorithm that
provides a suitable estimation of the correct grids.

Even after an estimate for the k-grid positions are pro-
vided by the OMP, the optimization problem in (11) is still
nonconvex and care is needed to obtain estimates for the
complex reflectivities αk , perturbations from the given grid
centers δθ k and phase errors φi . For this purpose, an itera-
tive optimization approach where each of these parameters
is optimized separately while keeping others fixed and this
is done iteratively until a convergence criteria is met.

First; the reflectivity vector α is estimated by using

αl = arg min
α

∥∥∥∥y −
k∑

p=1

αp g(θp,l)

∥∥∥∥
2

(13)

where l is the index of the iterations of the solver S(·) and
θp,l is the vector of θp at iteration l. Using the current grid
parameters and reflectivity values, the corresponding phase
errors for each pulse are estimated as

φ̂i = ∠αHi,lG
H
i yi (14)

where i represents the ith pulse. Phase error correction
on the measurements is performed using the phase esti-
mates in (14) as ŷi = e−j φ̂iyi , where ŷi is the phase error
corrected measurement vector. Next, the grid perturbation
parameters are updated and parameter perturbation is done
as θp,l+1 = θp,l + δθp,l , where [δθ1,l . . . δθ k,l] is obtained
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as the solution to

min
δf1,p :|δf1,p |≤�1/2
δf2,p :|δf2,p |≤�2/2

∥∥∥∥ŷ −
k∑

p=1

αp,l g(f1,p,l

+ δf1,p, f2,p,l + δf2,p)

∥∥∥∥
2

. (15)

The solution of (13) can be found by using the well
known least squares techniques. Equation (15) is a con-
strained nonlinear optimization problem which can be
solved with a gradient descent approach. For this purpose,
the cost function in (15) can be linearized around θp,l =
(f1,p,l, f2,p,l). Since, the required search is over a small
sized spatial area, this linearization approach works well in
practice and helps reduce the complexity of the required op-
timization. Specifically, g(f1,p,l + δf1,p, f2,p,l + δf2,p) is
approximated by using the first-order Taylor series as

g(f1,p,l + δf1,p, f2,p,l + δf2,p) ≈ g(f1,p,l, f2,p,l)

+ ∂g
∂f1,p,l

δf1,p + ∂g
∂f2,p,l

δf2,p. (16)

By using (16) and dropping constraints (15) can be written
as [

δθ1,l . . . δθ k,l
] = arg min

u
JR (u)

= arg min
u

∥∥∥∥r l − Blu

∥∥∥∥
2

2

(17)

where r l = ŷ −∑k
p=1αp,l g(θp,l) is the orthogonal resid-

ual, and Bl ∈ CN×2k is the matrix holding the weighted
partial derivatives at the point of linearization

Bl =
[
�1α1,l

∂g
∂f1,1,l

, ..., �1αk,l
∂g
∂f1,k,l

,

�2α1,l
∂g
∂f2,1,l

, ..., �2αk,l
∂g
∂f2,k,l

]
(18)

and u = [δf1,1, ..., δf1,k, δf2,1, ..., δf2,k]T ∈ �2k×1 holds
updates of the lth iteration. Because of the use of nor-
malization by the gridsize, entries of u are unitless. Along
with the updates in θp,l , Bl is also updated at each iteration.

To improve the accuracy of the search, at each step, the
parameters are updated in the direction of descent dictated
by the negative of the gradient as long as the updates remain
in the same grid cell.

For the cost function in (17), the negative gradient of
J at u = 0 is −∇uJ (u)|u=0 = Re

{
2BHl r l

}
. Then, the main

objective stated in (15) has the alternating gradient descend
solution and it is given by

αl = [
g
(
θ1,l

)
g
(
θ2,l

)
... g

(
θ k,l

)]†
y

θp,l+1 = θp,l + μp,lRe
{
BHl r l

}
(19)

where μp,l is the properly chosen step size parameter. At
this point, updates are checked to ensure the grid constraints
are satisfied. Cost function is differentiable and search do-
main is bounded to a single grid cell. Therefore, gradient

TABLE II
Proposed Solver Ŝ(·)

Inputs: (Tk = [θ1, ..., θk] , y,μ)
Initialize: l = 0, θp,0 = θp, p = 1 : k

Until stopping condition met,
Gl = [

g
(
θ1,l

)
g
(
θ2,l

)
... g

(
θk,l

)]
,

αl = G†
l y,

For i = 1 : D
φi = ∠αHi GH

i yi ,
ŷi = e−jφi yi

r = ŷ − Glαl
Construct Bl
al = Re

{
BHl r l

}
For p = 1 : k
f1,p,l+1 = f1,p,l +�1μp,lap,l
f2,p,l+1 = f2,p,l +�2μp+k,lai+k,l
Check if θp,l+1 = (

f1,p,l+1, f2,p,l+1
)

is within the grid
δθp = θp,l+1 − θp,0

Output: (α, φi , [δθ1, ..., δθk] ,Tk)

descent always converges to a local minima of the cost
function in the search domain [28]. If the search domain
were covering multiple grid cells, higher order approxima-
tions would be necessary. In Table II, algorithmic structure
of this iterative optimization approach is given, that will
be referred to as Ŝ(·). In Table I, Ŝ(·) is used as a part of
the OMP-based method, which is capable of handling the
off-grid problem and autofocus simultaneously.

Robust criteria for the termination of the iterations for
Ŝ(·) in Table II can be determined as a function of r l , θp,l and∥∥BHl r l

∥∥
2 or a combination of these variables. In this study,

the iterations are terminated when the norm of the residual
‖r l‖ is less than a threshold. Although variable step sizes
for μ can be chosen, the uniform grid size of the spotlight
mode SAR application allows use of a constant step size
for simple updates. The actual value of the step size can
easily be determined, based on investigations conducted on
specific SAR systems.

IV. SIMULATIONS

In this section, the performance of the proposed PA-
SAR algorithm is investigated and compared under various
scenarios. Comparisons are performed both against classi-
cal techniques such as PFA [24], the PGA [7], and more
recent sparsity-based techniques such as SDA [9], EMMP
[11], and sparsity-based autofocus (SBA) [10]. Qualitative
results for both simulated and real SAR system data are pro-
vided. Also quantitative comparisons on different metrics
are given for various conditions.

It is important to note that the true sparse scenes contains
reflectors that can be anywhere on a continuous parameter
space rather than a discretized image pixels. While com-
pared techniques generate a reflectivity image on a discrete
grid, the output of PA-SAR algorithm is autofocused re-
flectivity and position estimates of off-grid reflectors rather
than a discretized image. Hence classical mean-square-
error (MSE) metric is not a proper way of evaluating the
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Fig. 1. Reconstructed images of SAR autofocus techniques on (16 m) × (16 m) synthetic image with on-grid reflectors. The circles indicate the true
locations of K = 10 reflectors while crosses indicate PA-SAR results. Images are shown in dB scale normalized to its own maximum. (a) PFA,

(b) PGA, (c) SBA, (d) SDA, (e) EMMP and (f) PA-SAR.

performance of any algorithm under off-grid target scenar-
ios. Instead, Earth mover distance (EMD)[29], [30] metric,
which is also used to measure sparse off-grid reconstruc-
tions in various applications [31], is proposed to be used
in quantitative analysis of SAR image reconstructions. In
addition to EMD, suitable metrics that have been used in
SAR imaging such as target-to-Background Ratio (TBR)
[9] and Entropy (H(α)) [32] are also calculated. The used
metrics are defined as follows:

1) Earth movers distance (EMD): P = (pi, ui)mi=1 and
Q = (

qj , vj
)n
j=1 are the reconstructed and the original

scenes, respectively. pi and qj denote amplitudes, ui
and vj denote locations of the ith and j th reflectors, re-
spectively. The EMD value is the minimum work (dust
to be moved as the name implies) needed for the recon-
structed scene to match the original scene. The EMD is
defined as [29], [30]

EMD(P,Q) = min
F={f̂i,j}

∑
i,j f̂i,j di,j∑
i,j f̂i,j

(20)

with constraints
∑

j f̂i,j ≤ pi ,
∑

i f̂i,j ≤ qi ,
∑

i,j f̂i,j =
min(

∑
i pi,

∑
j qj ) and f̂i,j ≥ 0. di,j is the ground Eu-

clidean distance between reflectors i and j . F = {
f̂i,j

}
denotes set of flows. The flow f̂i,j denotes the amount
transported from the ith reflector to j th reflector. EMD
is calculated as defined in [30].

2) Entropy: The entropy (Hα) [32] is related to the sharp-
ness of the image and defined as

Hα = −
∑
i

pi log2 pi (21)

where p contains the histogram counts of the scene α.
For sharper images, entropy value is smaller.

3) TBR is defined in [9] as

TBR = 20 log10

(
maxi∈T |α̂i |
1
IB

∑
j∈B

∣∣α̂j ∣∣
)

(22)

where T and B denote the pixels for the target and
the background, respectively. IB is the number of the
background pixels.

For the compared techniques, it is preferable to result in
lower values of EMD andHα and higher values of TBR for
better reconstructions. The observed results are presented in
the following three sections being, qualitative simulations,
quantitative comparisons, and real data results.

A. Qualitative Simulations

To demonstrate and compare the improvements in vi-
sual image quality, qualitative results for the proposed PA-
SAR technique and the compared techniques have been
presented on various synthetic scenes. Synthetic SAR data
for a (16 m) × (16 m) scene, with K = 10 reflectors is
generated with the SAR simulation parameters selected as;
carrier frequency fc = 10 GHz, FM chirp rate 6 · 1012Hz2,
pulse duration Tp = 2.5 × 10−5s. Target reflectivities are
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Fig. 2. Reconstructed images of SAR autofocus techniques on (16 m) × (16 m) synthetic image with off-grid reflectors. The circles indicate the true
locations of K = 10 reflectors while crosses indicate PA-SAR results. Images are shown in dB scale normalized to its own maximum. (a) PFA, (b)

PGA, (c) SBA, (d) SDA, (e) EMMP, and (f) PA-SAR.

Fig. 3. Reconstructed images of SAR autofocus techniques on the synthetic scene with two closely placed off grid point reflectors. The circles
indicate the true locations of the reflectors while crosses indicate PA-SAR results. Images are shown in dB scale normalized to its own maximum. (a)

PFA, (b) PGA, (c) SBA, (d) SDA, (e) EMMP (f) PA-SAR.

generated randomly where amplitudes are drawn from
N(10, 1) and phases are uniform in [0, 2π]. Both azimuth
and the range resolutions are set to be 1 m. 1-D phase error
is injected to the data due to uncompansated platform mo-
tion and complex WGN is added to the data as observation
noise such that SNR is 10 dB.

For the first scenario, all targets are placed exactly on
the grid. The obtained results for all the tested techniques
compared to the uncompansated case of PFA are shown in
Fig. 1. True target locations are shown with circles while
crosses indicate PA-SAR results. Since PA-SAR generates
target position and reflectivity estimates, to have an image
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Fig. 4. Comparisons with OMP for both on-grid and off-grid scenes (a) EMD for varying SNR levels when 50% of the measurements are used, (b)
EMD at SNR = 20 dB for varying levels of measurement percentages.

Fig. 5. (a) EMD, (b) TBR, (c) Hα , and (d) MSE on phase error estimation for different SNR levels.

illustration, targets positions are mapped to the nearest pix-
els with respective target reflectivity values. For this case
where all the targets are exactly on the grid, it is seen that
all SBA techniques reconstruct the sparse scene with sim-
ilar performance, which looks much better than classical
PGA.

For a similar setting as in the first scenario if the reflec-
tors are only placed randomly off-grid, the performance of
the compared techniques now become as shown in Fig. 2.
Although still sparsity-based techniques perform much
better results compared to PGA, for the techniques that
does not consider off-grid targets, the images are disturbed
compared to the on-grid results shown in Fig. 1. On the

other hand, proposed PA-SAR algorithm can autofocus and
image the sparse scene under off-grid case as well.

It can be seen from Fig. 2 that off-grid targets mainly ef-
fect the neighboring pixels due to sinc-like response of each
scatterer. This is observed in SAR imaging when high re-
flectivity man-made objects create high sidelobes extending
several pixels and possibly shadowing smaller reflectivity
targets in their vicinity. To demonstrate the effectiveness of
PA-SAR for closely placed reflectors that have a relatively
high ratio of target reflectivities another simulation is per-
formed. Two targets with absolute target reflectivity ratio of
20 to 1 are both placed off the grid and close to each other.
The obtained results for compared techniques are shown in
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Fig. 6. (a) EMD for varying SNR levels when 50% of the measurements are used, and (b) EMD at SNR = 20 dB for varying levels of measurement
percentages.

Fig. 7. Resolution performance analysis.

Fig. 3. It can be seen that while other sparsity-based tech-
niques mainly image the dominant scatterer and its side-
lobes and miss the weak target, PA-SAR can image the two
targets resolving them separately, since it jointly solves for
both phase and off-grid errors. This advantage is one of the
major novelties of the proposed PA-SAR technique.

B. Quantitative Analysis

In this part, the proposed PA-SAR technique is com-
pared with the existing autofocus techniques in terms of
EMD, TBR, and Entropy metrics for varying levels of SNR
and measurement levels. To achieve a quantitative compar-
ison 50 independent realizations of (16 m) × (16 m) syn-
thetic scenes with randomly located K = 10 off grid re-
flectors are generated. For each realization, a different 1-D
cross-range-varying phase error is added to the synthetic
data. First different SNR levels in the range of −10 to 20
dB are tested using the full SAR data. For each tested SNR
level, independent realizations of complex WGN noise is
added to each scene realization and the tested metrics are
computed and average results are given.

To demonstrate the performance of the perturbation pro-
cedure, results of the PA-SAR and the OMP with phase
error correction are compared on both on-grid and off-grid
scenarios. OMP reconstructions are generated with a range
of prior parameters and the one with the minimum EMD
result is selected. Therefore, OMP has the minimum EMD
results with any prior parameter selection. Results are given

in the Fig. 4. For scenes with on-grid targets OMP yields
slightly better results due to its choice of vectors that per-
fectly match the target grid locations. For off-grid case, PA-
SAR performance remains unperturbed, meanwhile OMP
results degrade considerably compared to the on-grid case.
This demonstrates the effectiveness of the proposed PA-
SAR algorithm.

The results of the tested metrics as a function of SNR
are shown in Fig. 5. Comparisons in terms of EMD metric
is shown in Fig. 5(a), where proposed PA-SAR algorithm
has superior performance for SNR levels higher than −5
dB. This is because EMD metric takes into account both
the target reflectivities and off-grid target positions, and
only PA-SAR algorithm does joint phase and off-grid error
minimization. Also, sparsity-based techniques show lower
EMD results compared to PFA and PGA algorithms for all
SNR values. It is important to note that compared tech-
niques of SDA, SBA, and EMMP require different prior
parameters to work with and their performances change
with the selection of these parameters. In the results shown
in Fig. 5, the compared techniques has been tested with a
range of their prior parameters and the one that gives the
minimum EMD result is selected. Hence the EMD results
for the compared techniques are the lowest values these
techniques can achieve with any prior parameter selection.
For the TBR and entropy results shown in Fig. 5(b) and (c),
respectively, all sparsity-based techniques perform signifi-
cantly better than PFA and PGA techniques, where within
the sparsity-based techniques, PA-SAR and EMMP show
slightly better performances. The MSE on the phase error
estimation all autofocus techniques behave similarly where
PA-SAR algorithm has slightly lower MSE values for SNR
levels higher than −5 dB.

To observe the performances of the compared tech-
niques under lower number of measurements another sim-
ulation is performed. The EMD results for varying levels
of SNR when only 50% of the measurements are randomly
taken is shown in Fig. 6(a). It can be seen that proposed
PA-SAR algorithm still achieves lower EMD values under
reduced number of measurements. Fig. 6(b) shows EMD
results at a fixed SNR of 20 dB and a fixed sparsity level
of K = 10 for varying measurement levels. Although de-
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Fig. 8. Joint autofocus and SAR imaging results of compared techniques on 128 × 128 pixels real data obtained by SARPER-ASELSAN system
with 33% subsampled measurements. (a) PFA, (b) PGA, (b) PGA, (d) EMMP, (e) SDA, and (f) PA-SAR.

Fig. 9. Phase error estimates of real data for the compared techniques
with 33% subsampled measurements.

creasing number of measurements increases EMD values,
it is observed that proposed PA-SAR technique results in
lower EMD values with measurement numbers more than
40% of the full SAR data. Since EMD metric is affected by
off-grid estimation performance further decrease of mea-
surement numbers increases EMD of PA-SAR bringing its
performance similar to compared techniques. This shows
that PA-SAR can provide both good reflectivity and off-grid
location estimates with measurement levels of 40% or more
at the tested SNR and sparsity levels.

Another simulation scenario is performed for the reso-
lution performance analysis of the compared techniques. In
this set of simulations, 16 m × 16 m synthetic off-grid target
scenes are generated for two equal strength reflectors with
random locations. The performances of the compared tech-
niques are observed for different ground distances between
the two reflectors. For each separation between the targets,
50 independent target scenes are generated and their corre-

sponding reconstructions are obtained. For each realization,
a different 1-D cross-range-varying phase error is added
to the synthetic data. To observe the effect of the target
separation on the performance of the compared techniques,
reconstructions are obtained at a relatively high SNR of
20 dB. In Fig. 7, averaged performance results are given as
a function of separation distance. Although, performance
of PA-SAR increases after the resolution level (1 m), it can
be seen that PA-SAR gives better results than the compared
methods at all the separation distances.

C. Real Data Results

The compared algorithms are also evaluated on ac-
tual SAR system complex data obtained from SARPER -
airborne SAR system developed by ASELSAN- [33]. Com-
plex data are obtained over a test region where a number of
experimental corner reflectors are placed. The autofocused
images for the compared techniques are given in Fig. 8 and
phase error estimates are shown in Fig. 9. Only 33% of the
full data are used for all sparsity-based techniques and the
subsampling is performed pseudo-randomly as described
in [14]. All sparsity-based techniques are terminated with
the same criteria.

It can be seen that all sparsity-based techniques provide
autofocused and sparse images compared to PFA and PGA.
Since targets are not only point targets, the obtained images
are mostly similar for compared sparsity-based techniques;
but PA-SAR provides better separation between close tar-
gets where compared techniques seem to overlap these. For
the phase error estimate, all sparsity-based techniques agree
with each other where only PGA differs.

Two more actual SAR system complex dataset are also
used to demonstrate the PA-SAR performance. The com-
plex dataset were obtained from SARPER -airborne SAR
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Fig. 10. Joint autofocus and SAR imaging results of PA-SAR on two different 128 × 128 pixels real data sets obtained by SARPERTM- ASELSAN
system with 33% subsampled measurements. (a), (b), (c) Imaging results of man-made object 1, (d), (e), (f) Imaging results of man-made object 2. (a)

PFA, (b) PGA, (c) PA-SAR, (d) PFA, (e) PGA, and (f) PA-SAR.

system developed by ASELSAN-[33]. Only 33% of the
full data are used for PA-SAR and the results are given
in Fig. 10. PFA reconstructs defocused images while PGA
successfully performs autofocus. It can be seen that the
PA-SAR reconstructs autofocused sparse images while pre-
serving relevant shape details.

V. CONCLUSION

A PA-SAR imaging technique is developed which joinly
solves for both platform motion-based phase errors and off
the grid target errors. The proposed technique is an orthogo-
nal matching pursuit-based greedy technique, where target
reflectivities, platform induced phase errors, and the off-
grid target location perturbations are solved iteratively. For
solving off-grid target perturbations, PA-SAR technique
uses a gradient descent type parameter update together with
phase error correction to do the joint autofocused imaging.
The technique allows reduced number of measurements and
results in sparse SAR images. The results obtained by using
both simulated and real SAR system data show that the pro-
posed technique provides better SAR image reconstructions
in terms of compared metrics.
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