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Abstract—In this paper, the problem of optimal power allocation
over flat fading additive white Gaussian noise channels is consid-
ered for maximizing the average detection probability of a signal
emitted from a power constrained transmitter in the Neyman–
Pearson framework. It is assumed that the transmitter can per-
form power adaptation under peak and average power constraints
based on the channel state information fed back by the receiver.
Using results from measure theory and convex analysis, it is shown
that this optimization problem, which is in general nonconvex, has
an equivalent Lagrangian dual that admits no duality gap and
can be solved using dual decomposition. Efficient numerical al-
gorithms are proposed to determine the optimal power allocation
scheme under peak and average power constraints. Furthermore,
the continuity and monotonicity properties of the corresponding
optimal power allocation scheme are characterized with respect
to the signal-to-noise ratio for any given value of the false alarm
probability. Simulation examples are presented to corroborate the
theoretical results and illustrate the performance improvements
due to the proposed optimal power allocation strategy.

Index Terms—Detection probability, power allocation, fading,
Neyman-Pearson, power constraint.

I. INTRODUCTION

DUE to time-varying nature of wireless channels, dynamic
allocation of communication resources has a significant

impact on the performance of communication systems. In par-
ticular, the use of dynamic power allocation instead of a fixed
strategy can lead to significant performance improvements in
the presence of fading. In the literature, dynamic power allo-
cation has mostly been employed for enhancing the channel
capacity of communication systems (e.g., [1]–[3]). For a fading
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S. Yüksel is with the Department of Mathematics and Statistics, Queen’s
University, Kingston, ON K7L 3N6, Canada (e-mail: yuksel@mast.queensu.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2016.2634552

additive white Gaussian noise (AWGN) channel with perfect
channel state information (CSI) available at both the transmitter
and the receiver, the optimal power allocation problem is studied
in order to maximize the ergodic capacity subject to an average
power constraint in [1]. It is shown that the optimal power allo-
cation policy corresponds to the water-filling solution, in which
no power is transmitted until the received signal-to-noise ratio
(SNR) exceeds a certain threshold, and higher power levels are
allocated as the channel condition improves. In [2], the optimal
power allocation strategies are obtained to maximize the ergodic
capacity and the outage capacity of secondary users in cognitive
radio networks. In the presence of average/peak transmit and
interference power constraints, it is demonstrated that the av-
erage power constraints are more flexible than the peak power
constraints in terms of the capacity improvements for the sec-
ondary users. In a similar context, the optimal power allocation
is investigated in [3] for energy-efficient capacity maximization
over fading cognitive radio channels and similar results to those
in [2] are obtained.

Although less numerous in the literature, dynamic power allo-
cation is also considered for performance metrics other than the
channel capacity in order to utilize the communication channel
effectively. In [4], optimal power allocation strategies are de-
rived in order to minimize the average bit error rate (BER) for
secondary users in a cognitive radio network. In [5], the optimal
power allocation over space and time is considered for BER min-
imization of multiple-input single-output (MISO) communica-
tions over Rayleigh fading channels subject to an average power
constraint and a peak-to-average power ratio constraint. In [6],
the optimal power allocation strategy is presented for the mini-
mization of outage probability in fading channels and it is shown
that the optimal power allocation policy is to employ the “save-
then-transmit” protocol, that is, no power transmission occurs
until the accumulated power becomes sufficiently high and then
transmission is performed continuously with non-decreasing
power. In [7], the optimal power adaptation is considered for
a frequency-selective fading channel in the context of energy
efficiency. Similarly, energy-efficient optimal power allocation
is also studied in [8] for an orthogonal frequency division multi-
ple access (OFDMA) system in which flat fading channels exist.
In [9], the optimal power allocation is considered for multiple-
input multiple-output (MIMO) flat fading channels in order to
maximize the effective SNR under sum energy and total block
length constraints. In [10], an energy-efficient power allocation
method is proposed for Nakagami-m flat-fading channels in the
presence of delay-outage probability constraint. For cooperative
wireless sensor networks, an optimized dynamic power control
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approach is proposed in [11] with the consideration of quality
of service (QoS) requirements. In [12], the optimal power and
rate adaptation scheme is investigated in order to maximize the
spectral efficiency of a communication system where multilevel
quadrature amplitude modulation (MQAM) is considered over
Rayleigh flat-fading channels. The common thread in this line of
research is to devise power allocation algorithms that can adapt
to varying channel conditions in an efficient, preferably optimal,
manner and hence improve the system performance beyond that
of the conventional uniform power allocation approach.

Although the problem of optimal power allocation over fad-
ing channels has been considered under various criteria such
as channel capacity (e.g., [1]–[3]), BER (e.g., [4], [5], [13]–
[15]), outage probability (e.g., [6], [16], [17]), and energy ef-
ficiency (e.g., [3], [7], [8]), no studies in the literature have
investigated the optimal power allocation problem over fading
channels within the context of the Neyman-Pearson framework.
This can, in part, be attributed to the lack of closed form solu-
tions and the nonconvex nature of the optimization problem for
practical values of the false alarm rate. In particular, results for
the convexity properties of the detection probability are estab-
lished in [18] for the problem of determining the presence of a
transmitted signal immersed in additive Gaussian noise in the
absence of fading. In addition to the convexity analysis, the op-
timal power allocation strategy is derived for an average power
constrained jammer trying to reduce the detection probability
at the receiver. In a related study [19], the detection probabil-
ity is analyzed for cooperative spectrum sensing over Rayleigh
fading channels in cognitive radio systems, and it is concluded
that cooperation among secondary users improves the detection
performance.

In this paper, the optimal power allocation problem is con-
sidered for maximizing the average detection probability over
a flat fading AWGN channel subject to average and peak power
constraints. In order to obtain the optimal power allocation
policy, the convexity properties of the detection probability are
analyzed with respect to the received SNR, which is subject to
flat fading. Then, it is shown that a dual problem that admits
dual decomposition with no duality gap can be constructed.
Based on the primal and dual formulations, various algorithms
are proposed for the optimal power allocation. Furthermore, the
optimal power allocation strategies are characterized according
to the desired false alarm probability and it is obtained that
the optimal power allocation scheme for the maximization of
average detection probability is completely different from the
uniform power allocation strategy. Numerical examples are
presented to investigate the validity of the theoretical results.
The main contributions of this study can be summarized as
follows:

� For the first time in the literature, solutions to the optimal
power allocation problem are proposed for average detec-
tion probability maximization in the presence of flat fading
AWGN channels.

� The formulated optimization problem is generic in the
sense that it takes into account both average and peak
power constraints and it applies to any continuous fading
distribution (Sec. II).

� Using results from measure theory and convex analysis,
it is shown that the Lagrangian dual problem admits no
duality gap. This, in turn, provides an efficient framework

for the solution of the original optimization problem, which
is nonconvex in general (Secs. III-A–III-C).

� The computational complexity of the problem is reduced
significantly by applying dual decomposition. The re-
sulting subproblems are coupled only through a single
parameter (Sec. III-D).

� The proposed algorithms are guaranteed to converge to the
global optimum with desired accuracy (Secs. III-E–III-F).

� For various probabilities of false alarm, the continuity and
monotonicity properties of the optimal power allocation
scheme are investigated and the conditions, which must
be satisfied by any optimal power allocation policy, are
derived (Theorem 1 and Theorem 2 in Sec. III-H).

The rest of the paper is organized as follows: Sec. II presents
the problem formulation for the optimal power allocation sub-
ject to the average and peak power constraints. In Sec. III, the
solution of the optimization problem and the optimal power
allocation algorithms are provided together with the theorems
characterizing optimal power allocation. In Sec. IV, numerical
examples are presented to corroborate the theoretical results.
Finally, Sec. V concludes the paper with remarks.

II. PROBLEM FORMULATION

Consider a transmitter and a receiver that communicate over a
flat fading AWGN channel. The task of the receiver is to decide
between two hypotheses, H0 and H1 , which correspond to the
absence and presence of a signal, respectively. The observation
model under each hypothesis is expressed as follows:

H0 : Y = σN, H1 : Y =
√

Pt s h + σN (1)

where Y denotes a real-valued scalar observation,1 N is a stan-
dard Gaussian random variable with zero mean and unit vari-
ance; i.e., N ∼ N (0, 1), σ > 0 is the standard deviation of the
noise at the receiver,

√
Pt s denotes the transmitted signal, and h

denotes the scalar channel gain after carrier phase synchroniza-
tion at the receiver, which is assumed to be nonzero. Without
loss of generality, it is assumed that s = 1 in (1); hence, Pt

represents the power allocated by the transmitter. It is noted that
the scalar observation model in (1) provides an abstraction for a
continuous-time system which processes the received signal by
down-conversion, matched filtering and sampling at the symbol
rate with precise symbol timing; hence, the effects of modulator,
additive noise channel, fading, and receiver front-end process-
ing are taken into account in the discrete-time baseband model
[18], [20]. In addition, it is assumed that the receiver has the
knowledge of the channel coefficient h (i.e., perfect CSI) and
the standard deviation of the noise, σ.

In this work, the Neyman-Pearson (NP) criterion is consid-
ered; i.e., the receiver implements the optimal NP decision rule
which maximizes the probability of detection subject to a con-
straint on the probability of false alarm, denoted by α [21].2 In
accordance with the NP criterion, the likelihood ratio test (LRT)

1The results can also be extended to vector observations (see Sec. V).
2The NP framework is well-suited for applications in which the detection and

false alarm events have different importance levels. As an example, consider a
scenario in which the transmitter, equipped with some sensors, sends a signal
to the receiver whenever it detects the presence of a person in a restricted area
(or, fire in a forest).
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corresponding to (1) is obtained as follows:

L (Y ) =
1√
2πσ

e
−(Y −

√
P t h )2

2 σ 2

1√
2πσ

e
−Y 2

2 σ 2

= e

√
P t h Y

σ 2 − P t h 2

2 σ 2

H1

�
H0

η , (2)

which can be simplified into

sgn(h)Y
H1

�
H0

σ2 ln η

|h|√Pt

+
√

Pt |h|
2

� η̃ . (3)

The optimum NP decision rule satisfies the constraint on the
probability of false alarm with equality [21]. From (1) and
(3), the probability of false alarm can be obtained as PF =
Pr[L(Y ) � η |H0 ] = Pr[sgn(h)Y � η̃ |H0 ] = Q(η̃/σ), whe-
re Q(·) denotes the Q-function; i.e., Q(x) = (

√
2π)−1

∫∞
x e−t2 /2dt. Setting the probability of false alarm equal to

α, the threshold is calculated as η̃ = σQ−1(α), where Q−1(·) is
the inverse Q-function. Hence, the NP decision rule is given by

sgn(h)Y
H1

�
H0

σQ−1(α) . (4)

The detection probability corresponding to the decision rule in
(4) can be obtained from (1) as

PD = Pr[sgn(h)Y � σQ−1(α) |H1 ] (5)

= Q
(
Q−1(α) −

√
Pt |h|
σ

)
� Q

(
Q−1(α) −

√
Ptγ

)

where γ � h2/σ2 . In the presence of a signal, γ determines the
signal-to-noise ratio (SNR) at the receiver since |h| represents
the channel gain and σ2 denotes the average noise power (see
(1)). In the sequel, it is assumed that γ takes values in an interval
Γ ⊂ R+ and that the transmitter has the knowledge of γ, which
is commonly provided via feedback from the receiver in practice
[22, Ch. 4]. Equipped with the knowledge of γ, it is assumed that
the transmitter can perform power adaptation; i.e., the transmit
power can be adjusted based on the current value of γ according
to the power adaptation strategy given by Pt(γ) : Γ → [0,∞).
Consequently, the detection probability in (5) can be written as

PD(Pt(γ), γ) = Q
(
Q−1(α) −

√
Pt(γ)γ

)

=
1√
2π

∫ ∞

Q−1 (α)−
√

Pt (γ )γ
e−

x 2
2 dx. (6)

Although the optimal power allocation problem in the pres-
ence of CSI at the transmitter has been investigated for various
metrics such as Shannon capacity, outage capacity, and average
probability of error (e.g., [1]–[17]), the optimal power allocation
problem for the maximization of average detection probability
over flat fading AWGN channels has not been considered to the
best of authors’ knowledge. The aim in this work is to obtain the
optimal power allocation strategy that maximizes the average
detection probability under an average power constraint, i.e., to
solve the following optimization problem:

sup
Pt (γ )

Eγ [PD(Pt(γ), γ)] s.t. Eγ [Pt(γ)] ≤ P , (7)

where Eγ [·] denotes the expectation over the continuous random
variable γ, P denotes the average transmit power limit, and
Pt(γ) is a Lebesgue-measurable function with 0 ≤ Pt(γ) ≤
Ppeak ∀γ ∈ Γ, and Ppeak denotes the peak power constraint
satisfying Ppeak > P . More explicitly,

sup
0≤Pt (γ )≤Pp e a k

∫

γ∈Γ
Q

(
Q−1(α) −

√
Pt(γ)γ

)
p(γ) dγ

s.t.
∫

γ∈Γ
Pt(γ)p(γ) dγ ≤ P , (8)

where p(γ) is the probability density function (PDF) of γ and
satisfies the conditions for a valid PDF, i.e., p(γ) ≥ 0 ∀γ ∈ Γ,
and

∫
γ∈Γ p(γ) dγ = 1.

Remark 1: It is noted from (8) that the transmitter calcu-
lates the average detection probability and the average power
by using the PDF of γ, which must be estimated in practice.
Such an estimation process can be performed when the channel
characteristics are constant for a sufficiently long time interval
(e.g., when the transmitter and the receiver stay in the same en-
vironment for some time and do not move very rapidly). In the
presence of imperfect estimation, the results in this study can be
regarded as theoretical upper bounds on the average detection
probability.

III. OPTIMAL POWER ALLOCATION

In this section, first, the convexity properties of the detection
probability are analyzed with respect to the transmitted signal
power. Then, the dual of the optimal power allocation problem
is formulated and it is shown that the duality gap between the
original problem and the dual problem is zero. In order to solve
the dual problem, the dual decomposition method is presented,
and the related algorithms are provided in order to obtain the
optimal power allocation strategy numerically. Finally, the prop-
erties of the optimal power allocation strategy are investigated
for various probabilities of false alarm.

A. Convexity/Concavity Properties

To obtain the optimal power allocation policy based on the
optimization problem in (7) (equivalently, (8)), the convexity
properties of the detection probability are discussed with respect
to the transmitted signal power based on the results obtained
in [18].

Lemma 1: For α ∈ [Q(2), 1), PD(Pt(γ), γ) is a monotoni-
cally increasing and strictly concave function of Pt(γ) ∈ (0,∞)
for any given value of γ ∈ Γ. For α ∈ (0,Q(2)), PD(Pt(γ), γ)
is a monotonically increasing function with two inflection points
I1(γ) < I2(γ) such that PD(Pt(γ), γ) is strictly concave for
Pt(γ) ∈ (0, I1(γ)), strictly convex for Pt(γ) ∈ (I1(γ), I2(γ)),
and strictly concave for Pt(γ) ∈ (I2(γ),∞) for any given value
of γ ∈ Γ.

Proof: The proof is similar to that of Proposition 1
in [18], which was derived in the absence of fading
(hence, no power allocation with respect to fading). First,
the limits of the detection probability are noted. For any
fixed value of γ ∈ Γ, limPt (γ )→0 PD(Pt(γ), γ) = α and
limPt (γ )→∞ PD(Pt(γ), γ) = 1. Furthermore, the first-order
derivative of the detection probability with respect to Pt(γ)
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is given by

∂PD(Pt(γ), γ)
∂Pt(γ)

=
√

γ

2
√

2π
√

Pt(γ)

× exp
{
−1

2

(
Q−1(α) −

√
Pt(γ)γ

)2
}

, (9)

which is positive for all values of Pt(γ) > 0 and γ ∈ Γ. Hence
the detection probability is a strictly increasing function of
the transmit power Pt(γ). Similarly, the limits of the first-
order derivative are given as limPt (γ )→0

∂PD (Pt (γ ),γ )
∂Pt (γ ) = ∞ and

limPt (γ )→∞
∂PD (Pt (γ ),γ )

∂Pt (γ ) = 0. Differentiating once more with
respect to Pt(γ) yields

∂2PD(Pt(γ), γ)
∂ (Pt(γ))2 =

(
γPt(γ) −Q−1(α)

√
Pt(γ)γ + 1

)
(10)

× −√
γ

4
√

2π(Pt(γ))3/2
exp

{
−1

2

(
Q−1(α) −

√
Pt(γ)γ

)2
}

︸ ︷︷ ︸
�A(Pt (γ ),γ )

.

Since A(Pt(γ), γ) is negative for all Pt(γ) > 0 and γ ∈ Γ, the
sign of the second-order derivative is determined by the first
term, (γPt(γ) −Q−1(α)

√
Pt(γ)γ + 1). Let x �

√
Pt(γ)γ.

Then, in order to identify the sign of the second-order deriva-
tive, we need to check the sign of f(x) � x2 −Q−1(α)x + 1
for x > 0, which can be determined from its discriminant,
Δ = (Q−1(α))2 − 4. For α ∈ (Q(2),Q(−2)), the discrimi-
nant is negative, which indicates that f(x) > 0 ∀x > 0. For
Δ = (Q−1(α))2 − 4 > 0, the real roots of f(x) occur at
x1,2 = (Q−1(α) ±√

(Q−1(α))2 − 4 )/2. If Q−1(α) ≥ 2, we
have α ≤ Q(2) and both roots are positive. Thus, f(x) > 0 for
0 ≤ x < x1 and x > x2 , whereas f(x) < 0 for x1 < x < x2 .
On the other hand, if Q−1(α) ≤ −2, that is, if α ≥ Q(−2),
then both roots are negative, which implies that f(x) > 0 for all
x ≥ 0.

From the analysis above, it follows that PD(Pt(γ), γ)
is a monotonically increasing and strictly concave func-
tion of Pt(γ) ∈ (0,∞) for α ∈ (Q(2), 1). For α ∈ (0,Q(2)),
PD(Pt(γ), γ) is a monotonically increasing function with two
inflection points I1(γ) < I2(γ), where

I1(γ) =
1
4γ

(
Q−1(α) −

√
(Q−1(α))2 − 4

)2

I2(γ) =
1
4γ

(
Q−1(α) +

√
(Q−1(α))2 − 4

)2

(11)

such that PD(Pt(γ), γ) is strictly concave for Pt(γ) ∈
(0, I1(γ)), strictly convex for Pt(γ) ∈ (I1(γ), I2(γ)), and
strictly concave for Pt(γ) ∈ (I2(γ),∞) for any given value
of γ ∈ Γ. �

Based on Lemma 1, when α ∈ [Q(2), 1), the optimization
problem in (8) becomes a convex optimization problem since
PD(Pt(γ), γ) is a concave function of Pt(γ) for all values of
Pt(γ) > 0. However, in many practical applications, the re-
quired values for the probability of false alarm are smaller than
Q(2) ≈ 0.02275. In such cases, i.e., for α < Q(2), the optimiza-
tion problem in (8) is in general nonconvex since PD(Pt(γ), γ)

is no longer a concave function of Pt(γ) for all values of
Pt(γ) > 0. Nonetheless, based on the results established in [23],
it can be shown that the duality gap of the optimization problem
is zero (Sec. III-C). This, in turn, leads to efficient numerical
algorithms for the solution of the nonconvex optimization prob-
lem in the dual domain, as discussed in the sequel.

B. Dual Problem

For the optimization problem in (8), the corresponding La-
grangian function is expressed as

L (Pt(γ), λ) =
∫

γ∈Γ
Q

(
Q−1(α) −

√
Pt(γ)γ

)
p(γ) dγ (12)

+ λ

(
P −

∫

γ∈Γ
Pt(γ)p(γ) dγ

)

=
∫

γ∈Γ

(
Q

(
Q−1(α) −

√
Pt(γ)γ

)
− λPt(γ)

)
p(γ) dγ + λP ,

and the dual function is given by

g(λ) � sup
Pt (γ )

L (Pt(γ), λ)

s.t. 0 ≤ Pt(γ) ≤ Ppeak , ∀γ ∈ Γ

Pt(·) is Lebesgue measurable (13)

Then, the Lagrangian dual problem of (8) is defined as

min
λ

g (λ) s.t. λ ≥ 0 . (14)

Let P ∗ and D∗ denote the optimal values obtained as the solu-
tions of the original problem in (8) and its dual in (14). It should
be noted that the latter optimization problem is convex whereas
the former is not necessarily so. From weak duality, it follows
that P ∗ ≤ D∗ [24]. In general, the primal in (8) is not equivalent
to the dual in (14). In the following, it is shown that the duality
gap is zero when γ takes values in an interval Γ. Hence, strong
duality holds and the solution of (8) can be obtained from the
solution of its dual in (14).

C. Strong Duality

In order to show that the duality gap between (8) and (14)
is zero, we follow a similar approach to that employed in [23]
and [25], which relies on a variant of Lyapunov theorem due to
Blackwell [26], [27].

Lemma 2: [23, Lemma 1], [25, Theorem 1] Let ν be a
nonatomic3 measure on a Borel field B generated from sub-
sets of a space Γ. Let gi(x(·), ·) be a B-measurable function
whenever x(·) is B-measurable for i = 1, 2, . . . ,m. Then,
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

∫
Γg1(x(·), ·)dν∫
Γg2(x(·), ·)dν

...∫
Γgm (x(·), ·)dν

⎞

⎟⎟
⎠

∣∣
∣∣∣
x is B-measurable & x ∈ [0, xmax]

⎫
⎪⎪⎬

⎪⎪⎭

is a convex set.

3A measure is nonatomic if every set of nonzero measure has a subset with
strictly less nonzero measure. The standard Lebesgue measure is nonatomic.
The uniform measure on a finite set is atomic [23].
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It should be emphasized that no assumption is imposed in
Lemma 2 on the convexity of functions gi or the set Γ. The
convexity of the image of the mapping stems from the nonatomic
property of measure ν. This condition is satisfied if an absolutely
continuous probability measure with PDF p(γ) is assumed in
the problem formulation. Then, the following result is obtained.

Proposition 1: Let v(P ) denote the solution of (8) for an ab-
solutely continuous probability measure with PDF p(γ). Then,
v(P ) is a concave function of P .

Proof: The statement in the proposition can be proved based
on similar arguments to those in Theorem 7 of [23]. Let P

1
and

P
2

represent two average power limits, and let P 1
t (γ) and P 2

t (γ)
denote ε−optimal solutions of the optimization problem in (8)
under average power limits P

1
and P

2
, respectively, so that

v(P
i
) ≤ PD

i
=

∫
γ∈Γ Q(Q−1(α) −

√
P i

t (γ)γ)p(γ) dγ + ε.
Then, Lemma 2 implies that for each 0 ≤ θ ≤ 1, there
exists a nonnegative Lebesgue measurable function P̂t(γ)

such that
∫

γ∈Γ Q(Q−1(α) −
√

P̂t(γ)γ)p(γ) dγ = θPD
1

+

(1 − θ)PD
2 − ε and

∫
γ∈Γ P̂t(γ)p(γ) dγ = θ

∫
γ∈Γ P 1

t (γ)p(γ)

dγ + (1 − θ)
∫

γ∈Γ P 2
t (γ)p(γ) dγ ≤ θP

1
+ (1 − θ)P

2
. This

holds for every ε > 0; therefore, the supremum of (8) under an
average power limit θP

1
+ (1 − θ)P

2
satisfies v(θP

1
+ (1 −

θ)P
2
) ≥ θPD

1
+ (1 − θ)PD

2
= θv(P

1
) + (1 − θ)v(P

2
), fr-

om which the concavity of v(P ) with respect to P follows. �
In Proposition 1, it is stated that the optimal value v(P ) of

the objective function in (8) is a concave function of the average
power limit P for absolutely continuous p(γ). Then, it follows
that the Lagrangian dual problem admits no duality gap with the
original problem [28, Theorem 2], [29]. Hence, the following
corollary is obtained.

Corollary 1: The duality gap between the solutions of (8)
and (14) is zero.

D. Dual Decomposition

Since the equivalence of the primal and dual formulations
is now established, the solution of the optimization problem
can be investigated based on the dual problem. The dual func-
tion in (13) involves the maximization of Lagrangian function
L(Pt(γ), λ) for a given value of λ. It is observed from (12) that
the Lagrangian function L(Pt(γ), λ) can be decomposed into

L (Pt(γ), λ) =
∫

γ∈Γ
Lγ (Pt(γ), λ) p(γ) dγ + λP , (15)

where Lγ (Pt(γ), λ) � Q(Q−1(α) −√
Pt(γ)γ) − λPt(γ).

Evidently, the optimal power allocation that maximizes
L(Pt(γ), λ) obtained from (13) should also maximize
Lγ (Pt(γ), λ) for each given value of γ. This is known as dual
decomposition and it facilitates the decomposition of the dual
problem into suboptimization problems which are coupled only
through λ [24]. More explicitly, we need to compute

sup
0≤Pt (γ )≤Pp e a k

Lγ (Pt(γ), λ)

= sup
0≤Pt (γ )≤Pp e a k

Q
(
Q−1(α) −

√
Pt(γ)γ

)
− λPt(γ) (16)

Algorithm 1: Optimal Power Allocation Algorithm-
Subgradient Method.
Initialize λ1 , k = 1
do
solve Pt

∗(γ) = argsup
x∈[0,Pp e a k ]

Q(Q−1(α)−√
xγ)−λk∀γ ∈ Γ

λk+1 = [λk + αk (
∫

γ∈Γ Pt
∗(γ)p(γ) dγ − P )]+

k = k + 1
while |λk+1 − λk | > ε

Algorithm 2: Optimal Power Allocation Algorithm-
Bisection Method.
Initialize λmin = 0, λmax (described in Algorithm 3)
do
λ = λm i n +λm a x

2
solve Pt

∗(γ) = argsup
x∈[0,Pp e a k ]

Q(Q−1(α) −√
xγ) − λx ∀γ ∈

Γ
if

∫
γ∈Γ Pt

∗(γ)p(γ)dγ ≤ P , then λmax =λ, elseλmin =λ

while |λmax − λmin | > ε

for each value of γ ∈ Γ. It is also required to search through val-
ues of λ which place sufficient emphasis on the power constraint
term in Lγ (Pt(γ), λ) so that the average power constraint in (8)
is satisfied.

E. Algorithms

In this part, two algorithms are presented for the proposed
optimum power allocation problem over flat fading AWGN
channels. Both algorithms contain a loop that searches over λ.
The first algorithm employs a subgradient method to iteratively
update λ, whereas the second algorithm employs a bisection
method [4], [30], [31]. In both methods, the search direction
for λ suggests that λ should increase if the constraint is ex-
ceeded; i.e.,

∫
γ∈Γ Pt(γ)p(γ) dγ > P , and decrease otherwise.

This is because a larger value of λ places more emphasis on
the power constraint in the Lagrangian and results in a lower
average power.

In Algorithm 1, k is the iteration number, αk > 0 is the
step size for the kth iteration (a decreasing sequence of k),
[ · ]+ � max{·, 0}, and ε > 0 is a small number used to signal
convergence. The subgradient update is guaranteed to converge
to the optimal value of λ as long as αk is chosen to be suffi-
ciently small [32]. As mentioned in [31, Sec. IV-A], when the
norm of the subgradient is bounded, the choice of αk = β/k is
guaranteed to converge to the optimal for some constant β.

The second algorithm, which relies on a bisection search to
update λ and converges in general faster than the subgradient
method [30], [31], is described next (see Algorithm 2).

In the initialization stage of the bisection based algorithm,
it is necessary to find a value of λmax that guarantees that the
average power constraint is satisfied. Algorithm 3 tackles this
problem.

Although we have decoupled the original optimization prob-
lem across different values of γ (for fixed λ) via dual
decomposition, we still need to solve a nonconvex optimization
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Algorithm 3: How to Compute λmax .
λm ax = 1
while

∫
γ∈Γ Pt

∗(γ)p(γ) dγ > P

λm ax = 2λm ax

solve Pt
∗(γ) = argsup

x∈[0 ,P p e a k ]
Q(Q−1 (α) −√

xγ) − λm ax x ∀γ ∈ Γ

end

Algorithm 4: Solution for Concave PD(x).
xmin = 0
xmax = Ppeak

do
x = xm i n +xm a x

2
if PD

′(x) > λ, then xmin = x, else xmax = x
while |xmax − xmin | > ε

problem (for α < Q(2)) at each iteration to compute Pt
∗(γ) =

argsupx∈[0,Pp e a k ] Q(Q−1(α) −√
xγ) − λx for all γ ∈ Γ. For-

tunately, the optimal solution for Pt
∗(γ) can be obtained with

desired accuracy using tools from convex optimization. This is
explained in the next part.

F. Subroutines

In Sec. III-A, it is shown that PD(x) � Q(Q−1(α) −√
xγ) is

a monotonically increasing and strictly concave function of x ∈
(0,∞) for all α ≥ Q(2) and γ > 0. Therefore, the following
optimization problem

Pt
∗(γ) = argsup

x∈[0,Pp e a k ]
PD(x) − λx

= argsup
x∈[0,Pp e a k ]

Q (Q−1(α) −√
xγ

)− λx (17)

is convex for the specified range of parameter val-
ues. If PD

′(Ppeak ) =
√

γ

2
√

2π
√

Pp e a k

exp{− 1
2 (Q−1(α) −

√
Ppeakγ)2} ≥ λ, then Pt

∗(γ) = Ppeak . If PD
′(Ppeak ) < λ,

we need to numerically evaluate PD
′(x) = λ or more explicitly√

γ

2
√

2π
√

x
exp{− 1

2 (Q−1(α) −√
xγ)2} = λ. Since PD

′(x) is a
monotonically decreasing function (from infinity to 0) of x and
λ is a constant, there is a unique Pt

∗(γ) which can be calculated
based on a simple bisection search, which is described in
Algorithm 4.

On the other hand, for α ∈ (0,Q(2)), it is shown in
Sec. III-A that PD(x) = Q(Q−1(α) −√

xγ) is a monotoni-
cally increasing function with two inflection points I1(γ) and
I2(γ) (as specified in (11)) such that PD(x) is strictly con-
cave for x ∈ (0, I1(γ)), strictly convex for x ∈ (I1(γ), I2(γ)),
and strictly concave for x ∈ (I2(γ),∞) for any given value of
γ. Fig. 1 presents a generic graphical description of PD(x)
as a function of x for an arbitrary value of γ > 0 when
α ∈ (0,Q(2)). Consequently, the optimization problem in (17)
is not convex for α ∈ (0,Q(2)).

Based on a careful analysis of the behavior of PD(x) in Fig. 1,
efficient numerical methods are proposed for the solution of the
optimization problem in (17) under different cases. Prior to the

Fig. 1. An illustrative description of PD (x) for an arbitrary value of γ > 0
when α ∈ (0,Q(2)). The tangent points {T1 (γ), T2 (γ)} and the inflection
points {I1 (γ), I2 (γ)} are shown on the graph.

description of the proposed methods, the following lemmas are
presented.

Lemma 3: Let α ∈ (0,Q(2)), and I1(γ) and I2(γ) be the
inflection points of PD(x) as given in (11). There exist unique
points T1(γ) ∈ [0, I1(γ)] and T2(γ) ≥ I2(γ) such that the tan-
gent to PD(x) at T1(γ) is also tangent at T2(γ) and this tangent
lies above PD(x) for all γ > 0.

Proof: Similar to [18, Appendix A]. �
Lemma 4: Let λ > 0 and P̃D (x) denote the upper boundary

of the convex hull of PD(x) (as depicted in Fig. 1). Then,
argsupx>0 PD(x) − λx = argsupx>0 P̃D (x) − λx.

Proof: Since PD(x) ≤ P̃D (x) for all x > 0, we get
supx>0 PD(x) − λx ≤ supx>0 P̃D (x) − λx for all x > 0. Fur-
thermore, P̃D (x) is concave and the maximum occurs at
(P̃D )′(x∗) = λ, where x∗ ∈ (0, T1(γ)] ∪ [T2(γ),∞) for all val-
ues of λ > 0. But noting that PD(x) = P̃D (x) over x ∈
(0, T1(γ)] ∪ [T2(γ),∞), the result follows. �

Lemma 4 is the key observation in the development of our
methods for the solution of (17). It indicates that the maximum
of the nonconvex optimization problem argsupx>0 PD(x) − λx
coincides with the maximum of the convex optimization prob-
lem argsupx>0 P̃D (x) − λx, which can be computed easily by
obtaining the solutions x1 = argsupx∈(0,T1 (γ )] PD(x) − λx and
x2 = argsupx∈[T2 (γ ),∞) PD(x) − λx, and selecting the solution
with the highest score x∗ = argsup{x1 , x2 } PD(x) − λx.4 To this
end, the tangent points T1(γ) and T2(γ) should be computed
first. This can be achieved with desired accuracy using the nu-
merical method described in Algorithm 5. (For a detailed expla-
nation, see [18, Algorithm 1].)

At convergence, the tangent points and the slope of the
tangent line that constitutes the upper boundary of the con-
vex hull of PD(x) corresponding to γ can be obtained as
T1(γ) ≈ x1 , T2(γ) ≈ x2 , and PD

′(T1(γ)) ≈ PD
′(T2(γ)) ≈ β.

Although I1(γ), I2(γ), T1(γ), and T2(γ) should be computed

4As will be seen in Algorithm 6, it is possible to improve on this result as
well by noting that the optimal point x∗ satisfies PD

′(x∗) = λ and PD
′(x)

monotonically decreases over the intervals (0, T1 (γ)] and [T2 (γ),∞) with
PD

′(T1 (γ)) = PD
′(T2 (γ)).
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Algorithm 5: Computation of Tangent Points T1(γ) and
T2(γ) When α ∈ (0,Q(2)).

βmin = PD
′(I1(γ)) , βmax = PD

′(I2(γ))
xmin,1 = 0 , xmax,1 = I1(γ)
xmin,2 = I2(γ) , xmax,2 = ∞
do

β = βm i n +βm a x

2
x1 = argsup

x∈(xm i n , 1 ,xm a x , 1 )
PD(x) − βx

x2 = argsup
x∈(xm i n , 2 ,xm a x , 2 )

PD(x) − βx

if PD(x1) − βx1 > PD(x2) − βx2
then βmax = β , xmin,1 = x1 , xmin,2 = x2
else βmin = β , xmax,1 = x1 , xmax,2 = x2

while |βmax − βmin | > ε

Algorithm 6: Numerical Method to Compute Pt
∗(γ) in (17)

Without Peak Power Constraint When α ∈ (0,Q(2)).

if PD
′(T1(γ)) ≤ λ

Pt
∗(γ) = argsup

x∈(0,T1 (γ )]
PD(x) − λx

else
Pt

∗(γ) = argsup
x∈[T2 (γ ),∞)

PD(x) − λx

for all γ ∈ Γ separately, they do not depend on the value of λ
employed in (17). Consequently, they can be computed offline
before either Algorithm 1 or Algorithm 2 is employed to find
the optimal power allocation.

It should be noted that the peak power constraint is not em-
ployed in Lemma 4. In the sequel, we first present the proposed
numerical method, Algorithm 6, for the solution of (17) in the
absence of a peak power constraint, i.e.,

Pt
∗(γ) = argsup

x≥0
PD(x)−λx = argsup

x≥0
Q(Q−1(α)−√

xγ
)−λx

When a peak power constraint is imposed on the transmitter
power as in (17), we can obtain the solution to (17) with some
modifications depending on the relationship between I1(γ),
T2(γ), and Ppeak .

Case 1: Ppeak ≤ I1(γ) : Since PD(x) is concave for
x ≤ I1(γ), the optimization problem in (17) is convex and
Algorithm 7 computes the solution with desired accuracy.

Case 2: Ppeak ≥ T2(γ) : In this case, the solution can be
obtained with a slight modification to the one obtained assuming
that no peak power constraint is imposed (see Algorithm 8). This
is because the convex hull of the upper boundary of PD(x) is
unchanged with respect to that scenario.

Case 3: I1(γ) < Ppeak < T2(γ) : Since the transmitter power
x cannot take values greater than Ppeak , the upper boundary of
the convex hull of PD(x) over the interval [0, Ppeak ] is different
from the previous cases. In order to present the solution of the
optimization problem in (17) under this scenario, we need the
following lemma.

Lemma 5: Let α ∈ (0, Q(2)), and I1(γ) and I2(γ) be the in-
flection points of PD(x). Suppose also that T1(γ) and T2(γ) be
the contact points of the tangent line as described in Lemma 3.

Algorithm 7: Numerical Method to Compute Pt
∗(γ) in (17)

for Ppeak ≤ I1(γ) When α ∈ (0,Q(2)).

if PD
′(Ppeak ) ≥ λ

Pt
∗(γ) = Ppeak

else
Pt

∗(γ) = argsup
x∈[0,Pp e a k ]

PD(x) − λx

Algorithm 8: Numerical Method to Compute Pt
∗(γ) in (17)

for Ppeak ≥ T2(γ) When α ∈ (0,Q(2)).

if PD
′(Ppeak ) ≥ λ

Pt
∗(γ) = Ppeak

else if PD
′(Ppeak ) < λ < PD

′(T2(γ))
Pt

∗(γ) = argsup
x∈[T2 (γ ),Pp e a k ]

PD(x) − λx

else λ ≥ PD
′(T2(γ))

Pt
∗(γ) = argsup

x∈[0,T1 (γ )]
PD(x) − λx

Fig. 2. PD (x) and the upper boundary of the convex hull of PD (x) for x ∈
(0, Ppeak ) for an arbitrary value of γ > 0 when α ∈ (0,Q(2)) and Ppeak ∈
(I1 (γ), T2 (γ)). The corresponding tangent point C(γ) is also shown on the
graph.

Given a point Ppeak ∈ [I1(γ), T2(γ)], there exists a unique
point C(γ) ∈ [T1(γ), I1(γ)] such that the tangent at C(γ)
passes through the point (Ppeak , PD(Ppeak )) and lies above
PD(x) for all x ∈ (0, Ppeak ).

A graphical description of the tangent point C(γ) is presented
in Fig. 2.

Based on a similar argument to that presented in
Lemma 4, it can be shown that argsupx∈[0, Pp e a k ] PD(x) − λx =

argsupx∈[0, Pp e a k ] P̂D (x) − λx, where P̂D (x) denotes the upper
boundary of the convex hull of PD(x) for x ∈ [0, Ppeak ], which
is obtained such that the values of PD(x) for x > Ppeak are
not taken into account. This observation in conjunction with
Fig. 2 suggest that when Ppeak ∈ (I1(γ), T2(γ)), the solution
of the nonconvex optimization problem can be obtained via
Algorithm 9.
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Algorithm 9: Numerical Method to Compute Pt
∗(γ) in (17)

for Ppeak ∈ (I1(γ), T2(γ)) When α ∈ (0,Q(2)).

if PD
′(C(γ)) > λ

Pt
∗(γ) = Ppeak

else
Pt

∗(γ) = argsup
x∈[0,(C (γ )]

PD(x) − λx

Algorithm 10: Computation of Tangent Point C(γ) for
I1(γ) < Ppeak < T2(γ) When α ∈ (0,Q(2)).

βmin = PD
′(I1(γ)) , βmax = PD

′(T1(γ))
xmin = T1(γ) , xmax = I1(γ)
do

β = βm i n +βm a x

2
x = argsup

x∈(xm i n ,xm a x )
PD(x) − βx

if PD(x) + PD
′(x)(Ppeak − x) > PD(Ppeak )

then βmax = β , xmin = x
else βmin = β , xmax = x

while |βmax − βmin | > ε

Obviously, the value of C(γ) is required to implement Al-
gorithm 9. To that aim, Algorithm 10 provides an effective
bisection search method.

At convergence, the tangent point and the slope of the tangent
line that constitutes the upper boundary of the convex hull of
PD(x) for x ∈ [0, Ppeak ] can be obtained as C(γ) ≈ x and
PD

′(C(γ)) ≈ β. Although C(γ) must be computed for all γ ∈
Γ separately, it does not depend on the value of λ employed
in (17). Consequently, it can be computed offline together with
I1(γ), I2(γ), T1(γ), and T2(γ) prior to the start of the power
adaptation algorithm.

At this point, it should be emphasized that all the sub-
routines that are proposed to obtain the solution of the opti-
mization problem in (17) under different cases involve con-
vex problems. Furthermore, the bisection search described
in Algorithm 4 at the beginning of Sec. III-F can be em-
ployed to solve all the problems that are of the general form
Pt

∗(γ) = argsupx∈[xm i n , xm a x ] PD(x) − λx (as seen in Algo-
rithms 5-10) due to the fact that the interval [xmin , xmax ] is so
arranged that PD(x) is concave over the specified interval.

G. Implementation and Complexity

In this section, the implementation of the proposed power al-
location approach is discussed. Based on the dual decomposition
method, the optimal power allocation strategy can be obtained
by solving the optimization problem in (16) for each given value
of γ. Since the optimal value of λ is not known at the beginning
of the iterations, λ is initialized to a certain value and updated at
each iteration based on Algorithm 1 and Algorithm 2. In order
to calculate the optimal power level for a given γ value and a
fixed λ value, the subroutines are provided in Section III-F. For
different values of the false alarm probability (α), the following
statements specify the algorithms that can be used to calculate
the solution of (16):

1) If α ≥ Q(2), the optimization problem in (16) becomes
convex and Algorithm 4 addresses the problem.

2) If α ∈ (0,Q(2)) and there is no peak power constraint,
then Algorithm 6 can be used.

3) When there is a peak power constraint for α ∈ (0,Q(2)),
the optimization problem in (16) can be solved by using
one of the algorithms described in Algorithm 7, Algo-
rithm 8, and Algorithm 9.

For complexity comparisons, suppose that there exist finitely
many possible values of γ, and let Nγ denote the number of dif-
ferent γ values. Also, consider the subroutines (i.e., Algorithms
6, 7, 8, and 9), each of which solves a 1-dimensional convex
optimization problem, and assume that each of those algorithms
has a computational complexity of O(C1D ), where O(C1D )
denotes the computational complexity of a 1-dimensional con-
vex optimization problem with bound constraints. The main
algorithm, Algorithm 1 or Algorithm 2, in Section III-E checks
the convergence of the λ value and decides whether the opti-
mal power allocation strategy obtained by the subroutines for
a fixed λ value satisfy the average power constraint. In those
algorithms, the corresponding optimal power levels for all γ
values are calculated in each iteration. For that reason, in each
iteration, the main algorithm calls a total of Nγ subroutines in
order to calculate the optimal power levels for all γ values. In the
context of the convergence of λ, the subgradient method in Al-
gorithm 1 requiresO(1/ε2) iterations in order to achieve a given
tolerance level of ε, whereas the bisection method employed in
Algorithm 2 requires O(log((λmax − λmin )/ε2)) iterations,
where λmin = 0 and λmax is a parameter used in Algorithm
2 that can be obtained by employing Algorithm 3. As a result, if
Algorithm 1 is employed to obtain the optimal power allocation
strategy, the overall complexity of the proposed solution is in the
order of O(Nγ × 1/ε2) ×O(C1D ). Otherwise, if Algorithm 2
is used to find the optimal strategy, the overall complexity is
O(Nγ × log((λmax − λmin )/ε2)) ×O(C1D ).

H. Characterization of Optimal Power Allocation

In this section, the properties of the optimal power allocation
strategy are analyzed. To that aim, first, it can be shown that the
average power constraint must hold with equality for the solution
of (8) since any power allocation policy with

∫
Γ Pt(γ)p(γ)dγ <

P cannot be optimal as it can be improved by allocating higher
power levels for some values of γ such that

∫
Γ Pt(γ)p(γ)dγ =

P (due to the monotone increasing nature of the probability of
detection). Then, the Karush-Kuhn-Tucker (KKT) conditions
[24] can be stated for the optimization problem in (8) as follows:

∂
(Q(Q−1(α) −√

Pt(γ)γ
))

∂ (Pt(γ))
p(γ)−λp(γ) + μ(γ) − ν(γ) = 0

(18)
∫

γ∈Γ
Pt(γ)p(γ) dγ = P , Pt(γ) ≥ 0, γ ∈ Γ (19)

μ(γ) ≥ 0, ν(γ) ≥ 0, γ ∈ Γ (20)

μ(γ)Pt(γ) = 0, γ ∈ Γ (21)

ν(γ) (Ppeak − Pt(γ)) = 0, γ ∈ Γ (22)
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where λ, μ(γ), and ν(γ) are the KKT multipliers. The station-
arity condition in (18) can also be written as

√
γ

2
√

2π
√

Pt(γ)
e−

(Q−1 (α )−
√

P t (γ )γ )2

2 = λ+
ν(γ)−μ(γ)

p(γ)
· (23)

From (19)–(22), one of the following cases must be satisfied
for each γ: (i) Pt(γ) = 0, μ(γ) ≥ 0, and ν(γ) = 0, or (ii)
0 < Pt(γ) < Ppeak , μ(γ) = 0, and ν(γ) = 0, or (iii) Pt(γ) =
Ppeak , μ(γ) = 0, and ν(γ) ≥ 0. In Case (i), the left-hand-side
(LHS) of (23) becomes infinity for any γ > 0; hence, λ must be
infinity in that case since μ(γ) ≥ 0 and p(γ) > 0 ∀γ ∈ Γ and
μ(γ) = 0 for all γ such that Pt(γ) = 0. On the other hand, in
Case (ii), the LHS of (23) is finite for any γ and it must be equal
to λ since μ(γ) = 0 and ν(γ) = 0. Therefore, if Case (i) holds
for any γ > 0 (meaning that λ becomes infinity), then Case (ii)
cannot hold for any value of γ > 0, leading to the violation of
the average power constraint in (19). Hence, Case (i) cannot
hold for any γ > 0; that is, Pt(γ) > 0 must be satisfied for
γ > 0. (Since p(γ) is a continuous random variable, this implies
that for an optimal power allocation policy, Pt(γ) > 0 almost
surely.) For the case with Pt(γ) = Ppeak for some γ ∈ Γ (i.e.,
Case (iii)), the statement PD

′(Ppeak , γ) ≥ λ is satisfied since
μ(γ) = 0 and ν(γ) ≥ 0 for that γ ∈ Γ. Based on these cases,
the solution of (8) must satisfy

PD
′(Pt(γ), γ) = (24)

⎧
⎪⎪⎨

⎪⎪⎩

√
γ

2
√

2π
√

Pt (γ )
e−

(Q−1 (α )−
√

P t (γ )γ )2

2 =λ∗, if 0<Pt(γ)<Ppeak

√
γ

2
√

2π
√

Pp e a k

e−
(Q−1 (α )−

√
P p e a k γ )2

2 ≥ λ∗, if Pt(γ) = Ppeak

and
∫

Γ Pt(γ)p(γ) dγ = P (cf. (6) and (9)).5

The following lemma specifies γ values for which the optimal
power level is equal to Ppeak ; that is, P ∗

t (γ) = Ppeak .
Lemma 6: For Q(2) < α < 1, if PD

′(Ppeak , γ) ≥ λ∗ for
some γ ∈ Γ, then P ∗

t (γ) = Ppeak for those values of γ.
Proof: Consider that Q(2) < α < 1 and PD

′(Ppeak , γ) ≥
λ∗ for some γ ∈ Γ. Then, suppose that P ∗

t (γ) �= Ppeak for
those values of γ ∈ Γ; that is, 0 < P ∗

t (γ) < Ppeak . Since
PD

′(Pt(γ), γ) is monotone decreasing for Pt(γ) ∈ (0, Ppeak )
in the case of α ∈ (Q(2), 1), PD

′(Pt(γ), γ) satisfies for
all Pt(γ) ∈ (0, Ppeak ) that PD

′(Pt(γ), γ) > PD
′(Ppeak , γ) ≥

λ∗. However, PD
′(P ∗

t (γ), γ) = λ∗ for 0 < P ∗
t (γ) < Ppeak

based on (24), which contradicts with the inequality that
PD

′(P ∗
t (γ), γ) > λ∗. Therefore, P ∗

t (γ) = Ppeak if there exist
γ ∈ Γ which satisfy PD

′(Ppeak , γ) ≥ λ∗. �
Based on Lemma 6 and the expression in (24), it can

be stated for Q(2) < α < 1 that the optimal power level
is P ∗

t (γ) = Ppeak if and only if there exists a γ such that
PD

′(Ppeak , γ) ≥ λ∗.
To provide a further analysis, the expression in (24) can also

be motivated based on dual decomposition. As discussed in
Sec. III-D, the optimal power allocation policy can be deter-
mined by choosing the optimum power Pt(γ) for each value of

5From (19)–(23), it can be shown that Pt (γ) = 0 for γ = 0 in the optimal
solution. In addition, via (19) and (24), Pt (γ) → 0 as γ → 0, implying that the
optimal power allocation policy is continuous at γ = 0.

γ ∈ Γ based on the dual decomposition approach. Let the mini-
mizer λ of the dual problem in (14) be denoted by λ∗. Then, from
the dual decomposition approach, the optimal power allocation
is specified as

P ∗
t (γ) = argsup

0≤Pt (γ )≤Pp e a k

PD(Pt(γ), γ) − λ∗Pt(γ) (25)

for any given value of γ ∈ Γ (cf. (5) and (16)). This im-
plies that the optimum power P ∗

t (γ) must satisfy (24),
that is, PD

′(P ∗
t (γ), γ) = λ∗ if 0 < P ∗

t (γ) < Ppeak and
PD

′(P ∗
t (γ), γ) ≥ λ∗ if P ∗

t (γ) = Ppeak . Recall that, by
Lemma 1, for α ∈ (0,Q(2)), PD

′(Pt(γ), γ) is monotone
decreasing for Pt(γ) ∈ (0, I1(γ)), monotone increasing
for Pt(γ) ∈ (I1(γ), I2(γ)), and monotone decreasing for
Pt(γ) ∈ (I2(γ),∞) for any given value of γ ∈ Γ, where
I1(γ) and I2(γ) are the two inflection points of PD(Pt(γ), γ)
with I1(γ) < I2(γ) (see (11)). Thus, if λ∗ > PD

′(I2(γ), γ) or
λ∗ < PD

′(I1(γ), γ), then PD
′(P ∗

t (γ), γ) = λ∗ has a unique
solution P�

t (γ); otherwise, there exist three (or, two) candi-
dates for the optimal power level. From (6), (9), and (11),
it can be shown that the inflection points I1(γ) and I2(γ)
decrease as γ increases; however, the value of PD

′ at the
inflection points increases with γ. Let γl and γu be defined
such that λ∗ = PD

′(I2(γl), γl) and λ∗ = PD
′(I1(γu ), γu ),

respectively. From (9) and (11), λ∗ = PD
′(I2(γl), γl) =

γl√
2π (Q−1 (α)+

√
(Q−1 (α))2 −4)

exp{− 1
2 (Q

−1 (α)
2 −

√
(Q−1 (α))2 −4

2 )2}
is obtained, which results in γl = λ∗√2π(Q−1(α) +
√

(Q−1(α))2 − 4) exp{ 1
2 (Q

−1 (α)
2 −

√
(Q−1 (α))2 −4

2 )2}. Simil-
arly, λ∗ = PD

′(I1(γu ), γu ) = γu√
2π (Q−1 (α)−

√
(Q−1 (α))2 −4)

exp

{−1
2 (Q

−1 (α)
2 +

√
(Q−1 (α))2 −4

2 )2} implies that γu = λ∗√2π(Q−1

(α) −√
(Q−1(α))2 − 4) exp{ 1

2 (Q
−1 (α)

2 +
√

(Q−1 (α))2 −4
2 )2}.

Hence, λ∗ > PD
′(I2(γ), γ) for every γ < γl and

λ∗ < PD
′(I1(γ), γ) for every γ > γu , which imply that

PD
′(Pt(γ), γ) = λ∗ has a unique solution P�

t (γ), and con-
sequently, P ∗

t (γ) = min{P�
t (γ), Ppeak}. Therefore, it is

concluded that the optimal power allocation policy is a
continuous function of γ for γ < γl and for γ > γu . However,
the behavior of the the optimal power allocation for values of
γ between γl and γu depends on the false alarm level, α, as
specified in the following theorems.

Theorem 1: Let Q(2) < α < 1. Then, the optimal power
level according to (8) is a continuous function of γ, which
satisfies one of the following conditions:

i) It increases with γ up to some unique value and then
decreases as γ increases.

ii) It increases up to Ppeak as γ goes to γ̄l > 0, stays at Ppeak

for a certain interval of γ ∈ [γ̄l , γ̄u ], and then decreases
as γ > γ̄u increases.

Proof: Please see Appendix A. �
From Theorem 1 and Footnote 3, it is concluded for α > Q(2)

that only two possible scenarios exist for the optimal power al-
location policy. In the first scenario, the optimal power level
starts from zero at γ = 0 and increases monotonically with γ
up to a unique value, after which it decreases monotonically.
In the second one, the optimal power level starts from zero at
γ = 0 and increases monotonically with γ up to Ppeak , and then
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remains at Ppeak for a certain interval after which it decreases
monotonically for higher values of γ. Based on these scenar-
ios, the characterization of the optimal power allocation policy
in Theorem 1 can be interpreted as follows: For low values
of γ (i.e., for unfavorable channel conditions), the transmitter
employs low power levels for the transmitted signal, and it in-
creases the power level as γ increases. However, after a certain
value of γ, it becomes more preferable to transmit with lower
power levels since high detection probabilities can already be
achieved with lower power levels (as the channel condition is
very favorable), which leads to savings in the average transmit
power.

Theorem 2: Let 0 < α < Q(2). Then, the optimal power al-
location policy is continuous everywhere except at one point,
and there exists a positive jump at the discontinuity point. Fur-
ther, in the absence of the peak power constraint, the optimal
power level can never take values between I1(γ) and I2(γ); i.e.,
either P ∗

t (γ) < I1(γ) or P ∗
t (γ) > I2(γ).

Proof: Please see Appendix B. �
Theorem 2 specifies the discontinuous nature of the optimal

power allocation strategy for low false alarm levels, i.e., for
α < Q(2). The statements in Theorems 1 and 2 are investigated
via numerical examples in Sec. IV.

IV. NUMERICAL EXAMPLES

In this section, the proposed optimal power allocation strat-
egy for the maximization of the average detection probability is
investigated via numerical examples. In the examples, both ex-
ponential distribution (corresponding to Rayleigh fading chan-
nels) and uniform distribution are considered for parameter γ in
(8), which is defined as γ = h2/σ2 . For comparison purposes,
the results for the uniform power allocation strategy are also
presented. In the simulations, the average power limit is taken
as one; i.e., P = 1 in (8), and the peak power limit in (8) is set
to Ppeak = 20. For the maximization of the average detection
probability according to the proposed approach, the solution
of (16) is obtained for a given λ for every α and γ; then, the
bisection-based update method is used to obtain the optimal λ
and the corresponding power allocation strategy.

In Fig. 3, the average detection probabilities of the proposed
optimal power allocation strategy and the uniform power allo-
cation strategy are plotted versus the probability of false alarm,
α, for exponentially distributed γ, where the average values of γ
are specified by γ̄ = 1 and γ̄ = 2. In addition, Fig. 4 illustrates
the region of low false alarm rates in more detail by zooming
into Fig. 3 for α ∈ [0, 0.1]. From the figures, it is observed that
the proposed power allocation strategy achieves higher detec-
tion probabilities than the uniform power allocation strategy for
all values of the probability of false alarm, which indicates that
employing a constant power level is not an optimal strategy
for the considered problem. In particular, significant gains are
achieved in the average detection probability for small values of
α in this example (see Fig. 4). In addition, as expected, improved
detection performance is achieved as the mean of γ increases as
it leads to a more favorable distribution for the SNR.

Next, uniform distribution is employed for γ, and the average
detection probabilities of the proposed optimal power allocation
strategy and the uniform power allocation strategy are plotted

Fig. 3. Average detection probability versus the probability of false alarm for
the proposed optimal power allocation strategy and the uniform power allocation
strategy, where γ is exponentially distributed with mean 1 or 2.

Fig. 4. The zoomed version of Fig. 3 for α ∈ [0, 0.1].

versus the probability of false alarm in Fig. 5, where the intervals
[0, 2] and [0, 4] are considered for the uniform distribution. Also,
Fig. 6 zooms into Fig. 5 for α ∈ [0, 0.1]. As in the exponentially
distributed case, the proposed power allocation strategy leads to
higher detection probabilities than the uniform power allocation
strategy, as expected. In addition, higher detection probabilities
are observed when γ is distributed between 0 and 4.

To illustrate the results in Section III-H, the transmitted power
levels are plotted versus γ for the proposed optimal power al-
location strategy in Fig. 7, where γ is exponentially distributed
with a mean of 1, α is set to 0.001, 0.01, 0.03, and 0.1, and
the peak power limit is given by Ppeak = 3. Also, the transmit-
ted power according to the uniform power allocation strategy
is shown in the figure for comparison purposes. (In addition,
Fig. 8 zooms into Fig. 7 for γ ∈ [0, 20].) In accordance with
Theorem 1, the optimal transmitted power is a continuous func-
tion of γ for α = 0.1 and α = 0.03 in Fig. 7, where α > Q(2).
In addition, the optimal power allocation policy for α = 0.1
satisfies condition (i) in Theorem 1, which first increases up
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Fig. 5. Average detection probability versus the probability of false alarm for
the proposed optimal power allocation strategy and the uniform power allocation
strategy, where γ is uniformly distributed over [0, 2] or [0, 4].

Fig. 6. The zoomed version of Fig. 5 for α ∈ [0, 0.1].

Fig. 7. The transmitted power level versus γ for the proposed optimal power
allocation strategy and the uniform power allocation strategy, where γ is expo-
nentially distributed with mean 1.

Fig. 8. The zoomed version of Fig. 7 for γ ∈ [0, 20].

to a unique value of γ (namely, γ = 1.636) and then decreases
monotonically. For α = 0.03, condition (ii) in Theorem 1 holds,
which states that the optimal power level increases as γ in-
creases to γ̄l = 1.61, stays at Ppeak = 3 for γ̄l ≤ γ ≤ γ̄u where
γ̄u = 1.97, and then decreases for γ > γ̄u . On the other hand,
for α = 0.01 and α = 0.001, the condition in Theorem 2 is sat-
isfied; i.e., α < Q(2), and discontinuities are observed in the
optimal transmitted power curves. In particular, the transmitted
power level is continuous before and after a certain value of γ,
and there exists one positive jump in the optimal power level,
which are in compliance with Theorem 2. To specify the ap-
plication of Theorem 2 in more detail, α = 0.001 is considered
as an example, for which parameters γl and γu are obtained as
γl = 0.488 and γu = 2.508. As stated in the theorem, the op-
timal power allocation policy for α = 0.001 is continuous for
γ ≤ γl = 0.488 and γ ≥ γu = 2.508, and there exists a positive
jump for γl < γ < γu , which is at γ = 1.11. Another observa-
tion from Fig. 7 is that as α decreases, the optimal transmission
strategy becomes more peaky in order to satisfy the false alarm
constraint while maximizing the average probability of detec-
tion. Regarding the uniform power allocation policy, it is noted
that the employed power allocation strategy is significantly dif-
ferent from the optimal one.

In Fig. 9, the transmitted power levels are plotted versus γ
for the proposed optimal power allocation strategy and the uni-
form power allocation strategy, where γ is uniformly distributed
between 0 and 2 and the peak power limit is set to Ppeak = 5.
Similar to the previous scenario, the statements in Theorem 1
and Theorem 2 can be verified based on the transmitted power
levels of the optimal power allocation strategy for various val-
ues of α. For example, for α = 0.1, the optimal power level
increases until γ = 1.917 and decreases after that value in ac-
cordance with Theorem 1. In addition, as the false alarm limit
decreases, the transmitter employs higher power levels for some
values of γ while sending very low powers at other values, lead-
ing to a more peaky transmission strategy as in the previous
scenario.

Finally, the concavity property of the optimal average detec-
tion probability with respect to the average power limit, P , is
illustrated in Fig. 10, where both uniform distribution (between
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Fig. 9. The transmitted power level versus γ for the proposed optimal power
allocation strategy and the uniform power allocation strategy, where γ is uni-
formly distributed between 0 and 2.

Fig. 10. The optimal average detection probability versus the average power
limit, P .

0 and 2) and exponential distribution (with a mean of 1) are
considered. As stated in Proposition 1, the average probability
of detection corresponding to the solution of (8) is a concave
function of the average power limit for any value of α.

V. CONCLUSIONS AND EXTENSIONS

In this study, the optimal power allocation problem has been
proposed to maximize the average detection probability for de-
tecting the presence of a signal in an AWGN channel with flat
fading. An optimization problem has been formulated under
average and peak power constraints when perfect CSI is avail-
able at the transmitter and the receiver. Utilizing the analytical
properties of the detection probability, a dual problem with no
duality gap with the original problem has been obtained. The
dual decomposition approach has been employed and various

algorithms and subroutines have been proposed to specify the
optimal power allocation scheme under average and peak power
constraints. In addition, for all values of the false alarm proba-
bility, the continuity and monotonicity properties of the optimal
power allocation scheme have been characterized with respect
to γ, the ratio between the channel power gain and the noise
power. Numerical examples have provided some examples of
the theoretical results and illustrated the improvements achieved
via the optimal power allocation approach.

Although scalar observations are considered in (1), the results
can also be extended to vector observations in the presence of
AWGN since the detection probability can be expressed simi-
larly to (6) by updating the definition of γ.

APPENDIX

A. Proof of Theorem 1

The proof consists of two parts. In the first part of the proof,
the aim is to prove that if PD

′(Ppeak , γ) < λ∗ for all γ ∈ Γ, then
the optimal power allocation policy is a continuous function of γ,
which increases with γ up to some unique value and then de-
creases as γ increases. Since PD

′(Ppeak , γ) < λ∗ for all γ ∈ Γ,
P ∗

t (γ) �= Ppeak for all γ ∈ Γ based on (24); that is, P ∗
t (γ) satis-

fies 0 < P ∗
t (γ) < Ppeak for all γ ∈ Γ. First, the limiting cases

of the equation in (24) are investigated for 0 < P ∗
t (γ) < Ppeak .

Namely, it is observed that as γPt(γ) goes to zero, Pt(γ)/γ
converges to a constant. Similarly, as γPt(γ) goes to infin-
ity, Pt(γ)/γ converges to zero. Let x � √

γ, y �
√

Pt(γ), and
G(x, y) � x

2
√

2πλ
∗ exp{− 1

2 (Q−1(α) − xy)2}. Then, from (24),

the following relation is obtained:

y = G(x, y) =
x

2
√

2πλ∗ exp
{
−1

2
(Q−1(α) − xy

)2
}

. (26)

Now suppose that dy
dx exists. Then, dy

dx = ∂G
∂y

dy
dx + ∂G

∂x , which

leads to dy
dx = ∂G/∂x

1−∂G/∂y � F(x, y). These derivative expressions
are calculated, from (26), as follows:

∂G(x, y)
∂x

=
1

2
√

2πλ∗ exp
{
−1

2
(Q−1(α) − xy

)2
}

×
(
1 + xy

(Q−1(α) − xy
))

=
y

x

(
1 + xy

(Q−1(α) − xy
))

∂G(x, y)
∂y

=
x2

2
√

2πλ∗ exp
{
−1

2
(Q−1(α) − xy

)2
}

×
(
Q−1(α) − xy

)
= xy

(Q−1(α) − xy
)

F(x, y) =
y
x

(
1 + xy

(Q−1(α) − xy
))

1 − xy (Q−1(α) − xy)

= −y

x

(
1 +

2
xy (Q−1(α) − xy) − 1

)

∂F(x, y)
∂y

= − 1
x

(
1 +

2
xy (Q−1(α) − xy) − 1

)

+
2y

(Q−1(α)x − 2x2y
)

x (xy (Q−1(α) − xy) − 1)2 ·
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Note that F(x, y) and ∂F(x, y)/∂y are continuous func-
tions for x > 0 and y > 0 except at the points that satisfy
xy(Q−1(α) − xy) − 1 = 0. Let t � xy. Then, the solutions of
h(t) � t2 −Q−1(α)t + 1 = 0 are sought. In Lemma 1, it is
shown that if α > Q(2), h(t) > 0 for t > 0, and if α < Q(2),

there are two roots t1 < t2 where t1 = Q−1 (α)−
√

(Q−1 (α))2 −4
2

and t2 = Q−1 (α)+
√

(Q−1 (α))2 −4
2 with h(t) > 0 for t < t1 and

t > t2 , and h(t) < 0 for t1 < t < t2 . Thus, if α > Q(2),
F(x, y) and ∂F(x, y)/∂y are continuous functions for x > 0
and y > 0, which implies that dy

dx = F(x, y) has a unique so-
lution by the existence and uniqueness theorems for first-order
ordinary differential equations (ODEs) [33]. Hence, y is differ-
entiable in x, which implies that y is a continuous function
of x, or, equivalently, Pt(γ) is a continuous function of γ.
This proves the continuity of the power allocation policy for
α > Q(2).

Since x =
√

γ and y =
√

Pt(γ), dx = dγ/(2
√

γ) and dy =
dPt(γ)/(2

√
Pt(γ)) are obtained. Then, from dy

dx = − y
x (1 +

2
xy (Q−1 (α)−xy )−1 ) in the previous paragraph, the following rela-
tion is achieved:

dPt(γ)
dγ

=

√
Pt(γ)√

γ

dy

dx

= −Pt(γ)
γ

⎛

⎝1 +
2

√
Pt(γ)γ

(
Q−1(α) −√

Pt(γ)γ
)
− 1

⎞

⎠ .

Based on the observations at the beginning of the
proof, limγPt (γ )→0 Pt(γ)/γ = c1 , where c1 is some
positive constant and limγPt (γ )→∞ Pt(γ)/γ = 0. Thus,

limγPt (γ )→0
dPt (γ )

dγ = c2 , where c2 is some positive constant

and limγPt (γ )→∞
dPt (γ )

dγ = 0−. From the analysis of the limit
cases above, the optimal power linearly increases with respect
to γ for small values of γ and decreases with respect to γ for
large values of γ.

Up to this point, it is shown that the optimal power increases
linearly for small γ, and decreases for large γ. Hence, there
must be a maximum power value, which can be found by setting
∂Pt (γ )

∂γ to zero.

∂Pt(γ)
∂γ

= 0 ⇒ 1 +
2

(
Q−1(α) −√

γPt(γ)
)√

γPt(γ) − 1
= 0

⇒ γPt(γ) −Q−1(α)
√

γPt(γ) − 1 = 0

⇒
√

γPt(γ) =
Q−1(α) +

√
(Q−1(α))2 + 4

2
· (27)

From (24) and (27), the (γ, Pt(γ)) pair that specifies the power
level and γ for which the maximum power is employed can be

obtained uniquely as follows:

γ = λ∗√2π

(
Q−1(α) +

√
(Q−1(α))2 + 4

)
(28)

× exp

{
1
8

(
Q−1(α) −

√
(Q−1(α))2 + 4

)2
}

Pt(γ) =
1

4λ∗√2π

(
Q−1(α) +

√
(Q−1(α))2 + 4

)

× exp

{

−1
8

(
Q−1(α) −

√
(Q−1(α))2 + 4

)2
}

.

In the second part, the aim is to prove that if PD
′(Ppeak , γ) ≥

λ∗ for some γ ∈ Γ, the optimal power allocation policy is
a continuous function of γ, which increases up to Ppeak as
γ increases to γ̄l , stays at Ppeak for a certain interval (i.e.,
γ̄l ≤ γ ≤ γ̄u ), and then decreases as γ > γ̄u increases. To
that aim, consider PD

′(Ppeak , γ) for all γ ∈ Γ and note that
PD

′(Ppeak , γ) is a continuous function of γ, which increases
up to a certain value and decreases for higher values of γ.
Then, it is stated that if PD

′(Ppeak , γ) ≥ λ∗ for some γ ∈ Γ,
then there exists only a unique interval, γ ∈ [γ̄l , γ̄u ], such
that PD

′(Ppeak , γ) ≥ λ∗ for all γ ∈ Γ̄ where Γ̄ = [γ̄l , γ̄u ] and
Γ̄ ⊆ Γ. Based on the statement in Lemma 6, it is obtained
that P ∗

t (γ) = Ppeak for all γ ∈ Γ̄. Next, consider γ ∈ Γ \ Γ̄
and note that PD

′(Ppeak , γ) = λ∗ for γ = γ̄l and γ = γ̄u ,
and consequently, P ∗

t (γ̄l) = Ppeak and P ∗
t (γ̄u ) = Ppeak . Then,

from (24) and Lemma 6, PD
′(P ∗

t (γ), γ) = λ∗ for γ ∈ (0, γ̄l ]
or γ ∈ [γ̄u ,∞) where P ∗

t (γ) ∈ (0, Ppeak ]. Based on a simi-
lar approach to that in the first part of the proof, P ∗

t (γ) is
a continuous function of γ for γ ∈ (0, γ̄l ], which increases
with γ up to P ∗

t (γ) = Ppeak for γ = γ̄l . Similarly, P ∗
t (γ) is

a continuous function of γ for γ ∈ [γ̄u ,∞), which reduces
as γ increases. Overall, P ∗

t (γ) is a continuous function of γ
where γ ∈ Γ and satisfies the second condition in Theorem 1 if
PD

′(Ppeak , γ) ≥ λ∗ for some γ ∈ Γ. �

B. Proof of Theorem 2

Consider the relation in (24), which must be satisfied for the
optimum power levels. Since the inflection points I1(γ) and
I2(γ) decrease as γ increases, and the value of PD

′(Pt(γ), γ)
at the inflection points increases as γ increases, there exist 5
different cases with respect to λ∗ and the value of PD

′(Pt(γ), γ)
at the inflection points for a given γ. These cases occur in the
order of 1-2-3-4-5 as γ increases.

1) λ∗ > PD
′(I2(γ), γ) : This case is valid for γ ∈ (0, γl). In

this case, all Pt(γ) values that satisfy PD
′(Pt(γ), γ) ≥ λ∗

cannot exceed I1(γ); that is, Pt(γ) < I1(γ). Therefore,
P ∗

t (γ) < I1(γ) for all γ ∈ (0, γl). Also, PD
′(Pt(γ), γ) is

monotone decreasing for Pt(γ) ∈ (0, I1(γ)). Then, based
on the equation in (24), one of the following conditions
holds:
� If PD

′(Ppeak , γ) < λ∗ for all γ ∈ (0, γl),
PD

′(P ∗
t (γ), γ) = λ∗ for all γ ∈ (0, γl). Also,

PD
′(Pt(γ), γ) = λ∗ has only one solution (optimal

power level) P ∗
t (γ), where P ∗

t (γ) < I1(γ). Based
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on the definitions in the proof of Theorem 1, if
Pt(γ)<I1(γ), then t = xy =

√
γPt(γ)<

√
γI1(γ) =√

γ
(Q−1(α)−

√
(Q−1(α))2 −4)2

4γ =Q−1(α)−
√

(Q−1(α))2 −4
2 =t1 .

We also have h(t) > 0 for t < t1 . Thus, due to a
similar reasoning to that in the proof of Theorem 1,
P ∗

t (γ) constitutes a continuous function of γ for
γ ∈ (0, γl).

� If PD
′(Ppeak , γ) ≥ λ∗ for some γ ∈ (0, γl),

PD
′(Ppeak , γ) ≥ λ∗ for γ ∈ [γ̄l , γ̄u ] due to the

function properties of PD
′(Ppeak , γ) where γ̄l and

γ̄u are positive finite values. If γ̄l < γ̄u < γl holds,
P ∗

t (γ) = Ppeak for γ ∈ [γ̄l , γ̄u ] and P ∗
t (γ) is continu-

ous function of γ for γ ∈ (0, γl), which increases for
γ ∈ (0, γ̄l) and decreases for γ ∈ (γ̄u , γl) based on a
similar approach to that in the first condition. Other-
wise, if γ̄l = γl ≤ γ̄u , P ∗

t (γ) is a continuous function
of γ for γ ∈ (0, γl), which increases for γ ∈ (0, γ̄l)
and becomes equal to Ppeak for γ ∈ [γ̄l , γl ].

2) λ∗ = PD
′(I2(γ), γ) : This case is valid for γ = γl .

In this case, PD
′(Pt(γ), γ) = λ∗ has two solutions;

i.e., there are two candidates for the optimal power
level. Let these candidates be P ∗,1

t (γ) and P ∗,2
t (γ)

with P ∗,1
t (γ) < I1(γ) < I2(γ) = P ∗,2

t (γ). Also, there
is another candidate, P ∗,3

t (γ) = Ppeak . If P ∗,3
t (γ) =

Ppeak ≤ P ∗,1
t (γ) < P ∗,2

t (γ); then, the optimal power
level is P ∗

t (γ) = P ∗,3
t (γ) = Ppeak due to the peak

power constraint. Also, P ∗,3
t (γ) = Ppeak must satisfy

PD
′(P ∗,3

t (γ), γ) ≥ λ∗ based on (24) if the optimal power
level is P ∗,3

t . Since PD
′(Pt(γ), γ) < λ∗ for Pt(γ) ∈

(P ∗,1
t (γ), P ∗,2

t (γ)), P ∗,3
t (γ) = Ppeak cannot be optimal

if P ∗,1
t (γ) < Ppeak < P ∗,2

t (γ) and the optimal power
level is P ∗

t (γ) = P ∗,1
t (γ). If P ∗,1

t (γ) < P ∗,2
t (γ) < Ppeak ,

P ∗,3
t (γ) = Ppeak cannot be optimal due to the similar rea-

son. Then, the maximizer of PD(P ∗
t (γ), γ) − λ∗P ∗

t (γ) is
either P ∗,1

t (γ) and P ∗,2
t (γ), which can be found by the

comparison below:

PD(P ∗,1
t (γ), γ) − λ∗P ∗,1

t (γ)
P ∗, 1

t

�
P ∗, 2

t

PD(P ∗,2
t (γ), γ)

− λ∗P ∗,2
t (γ) (29)

PD(P ∗,1
t (γ), γ) − PD(P ∗,2

t (γ), γ)
P ∗,1

t (γ) − P ∗,2
t (γ)

P ∗, 1
t

�
P ∗, 2

t

λ∗ (30)

Since PD
′(Pt(γ), γ) < λ∗ for Pt(γ) ∈ (P ∗,1

t (γ), P ∗,2
t

(γ)), PD (P ∗, 1
t (γ ),γ )−PD (P ∗, 2

t (γ ),γ )
P ∗, 1

t (γ )−P ∗, 2
t (γ )

< λ∗. Then, P ∗,2
t (γ)

cannot be optimal. Lastly, if P ∗,1
t (γ) < P ∗,2

t (γ) = Ppeak ,
P ∗,2

t (γ) = Ppeak cannot be optimal due to the com-
parison of the candidates as in (30). Thus, the opti-
mal power level for γ = γl can be selected as P ∗

t (γ) =
min{P ∗,1

t (γ), Ppeak}.
3) PD

′(I2(γ), γ) > λ∗ > PD
′(I1(γ), γ) : This case is valid

for γ ∈ (γl , γu ). In this case, PD
′(P ∗

t (γ), γ) = λ∗ has

three solutions; i.e., there are three candidates for
the optimal power level. Let these candidates be
P ∗,1

t (γ), P ∗,2
t (γ) and P ∗,3

t (γ) with P ∗,1
t (γ) < P ∗,2

t (γ) <

P ∗,3
t (γ). Note that P ∗,1

t (γ) ∈ [0, I1(γ)), P ∗,2
t (γ) ∈

(I1(γ), I2(γ)) and P ∗,3
t (γ) ∈ (I2(γ),∞). Also notice

that PD(Pt(γ), γ) − λ∗Pt(γ) is an increasing func-
tion of Pt(γ) for Pt(γ) ∈ (0, P ∗,1

t (γ)), a decreasing
function for Pt(γ) ∈ (P ∗,1

t (γ), P ∗,2
t (γ)), increasing for

Pt(γ) ∈ (P ∗,2
t (γ), P ∗,3

t (γ)), and decreasing for Pt(γ) ∈
(P ∗,3

t (γ),∞). Thus, from the candidates P ∗,1
t (γ), P ∗,2

t (γ)
and P ∗,3

t (γ), either P ∗,1
t (γ) or P ∗,3

t (γ) is a maximizer
for PD(Pt(γ), γ) − λ∗Pt(γ). Since P ∗,1

t (γ) < I1(γ) <

I2(γ) < P ∗,3
t (γ), the optimal power level cannot take

any values between I1(γ) and I2(γ) for the case that
no peak power constraint is considered. On the other
hand, the optimal power level may not be P ∗,1

t (γ) or
P ∗,3

t (γ) due to the peak power constraint. If Ppeak ≤
P ∗,1

t (γ) < P ∗,3
t (γ); then, the optimal power level is

P ∗
t (γ) = Ppeak since PD

′(Pt(γ), γ) is monotone de-
creasing for Pt(γ) ∈ (0, I1(γ)) and Ppeak ≤ P ∗,1

t (γ) <

I1(γ). Otherwise, if P ∗,1
t (γ) < Ppeak , the optimal power

level is either P ∗,1
t (γ) or min{P ∗,3

t (γ), Ppeak}. Note
that P ∗,1

t (γ) and P ∗,3
t (γ) are differentiable functions

of γ for γ ∈ [γl , γu ] as shown in Case-1 and Case-
5, respectively, since P ∗,1

t (γ) < I1(γ) and P ∗,3
t (γ) >

I2(γ). Then, min{P ∗,3
t (γ), Ppeak} is a continuous func-

tion of γ for γ ∈ [γl , γu ] and may not be differen-
tiable at a γ value where P ∗,3

t (γ) = Ppeak . Let P̃ ∗,3
t �

min{P ∗,3
t (γ), Ppeak} and S(γ) � (PD(P ∗,1

t (γ), γ) −
λ∗P ∗,1

t (γ)) − (PD(P̃ ∗,3
t (γ), γ) − λ∗P̃ ∗,3

t (γ)), which are
continuous in γ for γ ∈ [γl , γu ]. Then, via (29), the opti-
mal power level can be chosen by comparing S(γ) against
zero; that is,

S(γ)
P ∗, 1

t

�
P̃ ∗, 3

t

0.

In addition, Case-2 (the equivalence case can be obtained
by comparing P ∗,1

t (γl) and P ∗,2
t (γl) = P̃ ∗,3

t (γl)) and
Case-4 (the equivalence case can be obtained by compar-
ing P̃ ∗,3

t (γu ) and P ∗,2
t (γu ) = P ∗,1

t (γu )) imply S(γl) >
0 and S(γu ) < 0, respectively. Note the following
identity:

∂PD(Pt(γ), γ)
∂ (Pt(γ))

= λ∗

=
√

γ

2
√

2π
√

Pt(γ)
exp

{
−1

2

(
Q−1(α) −

√
Pt(γ)γ

)2
}

=
γ

Pt(γ)

√
Pt(γ)

2
√

2π
√

γ
exp

{
−1

2

(
Q−1(α) −

√
Pt(γ)γ

)2
}

=
γ

Pt(γ)
∂PD(Pt(γ), γ)

∂γ

⇒ ∂PD(Pt(γ), γ)
∂γ

= λ∗Pt(γ)
γ

. (31)
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Then, from (31),

dS(γ)
dγ

=

⎛

⎝∂PD(P ∗,1
t (γ), γ)

∂
(
P ∗,1

t (γ)
)

dP ∗,1
t (γ)
dγ

+
∂PD(P ∗,1

t (γ), γ)
∂γ

− λ∗ dP ∗,1
t (γ)
dγ

)

−
⎛

⎝∂PD(P̃ ∗,3
t (γ), γ)

∂
(
P̃ ∗,3

t (γ)
)

dP̃ ∗,3
t (γ)
dγ

+
∂PD(P̃ ∗,3

t (γ), γ)
∂γ

− λ∗ dP̃ ∗,3
t (γ)
dγ

)

=

(

λ∗ dP ∗,1
t (γ)
dγ

+ λ∗P ∗,1
t (γ)
γ

− λ∗ dP ∗,1
t (γ)
dγ

)

−
(

λ∗ dP̃ ∗,3
t (γ)
dγ

+ λ∗ P̃ ∗,3
t (γ)
γ

− λ∗ dP̃ ∗,3
t (γ)
dγ

)

= λ∗P ∗,1
t (γ) − P̃ ∗,3

t (γ)
γ

< 0 (32)

is obtained for γ such that S(γ) is differentiable. The
expression in (32) implies that S(γ) is a monotone de-
creasing continuous function of γ for γ ∈ [γl , γu ], and
since S(γl) > 0 and S(γu ) < 0, there must exist a unique
value γ̃ ∈ (γl , γu ) such thatS(γ̃) = 0. The optimal power
allocation strategy is indifferent between the power levels
P ∗,1

t (γ̃) and P̃ ∗,3
t (γ̃) for γ = γ̃, and the optimal power

level is P ∗,1
t (γ) for γl < γ < γ̃, whereas the optimal

power level is P̃ ∗,3
t (γ) for γ̃ < γ < γu . Hence, there exists

a positive jump from P ∗,1
t (γ̃) to P̃ ∗,3

t (γ̃) at γ = γ̃.
4) λ∗ = PD

′(I1(γ), γ) : This case is valid for γ = γu . In this
case, PD

′(Pt(γ), γ) = λ∗ has two solutions; i.e., there are
two candidates for the optimal power level. Let these can-
didates be P ∗,1

t (γ), and P ∗,2
t (γ) with P ∗,1

t (γ) = I1(γ) <

I2(γ) < P ∗,2
t (γ). If Ppeak ≤ P ∗,2

t (γ), P ∗
t (γ) = Ppeak

since PD
′(Pt(γ), γ) ≥ λ∗ for all Pt(γ) ∈ (0, Ppeak ].

Otherwise, if P ∗,2
t (γ) < Ppeak ; then, the optimal

power level is either P ∗,1
t (γ) or P ∗,2

t (γ). Since
PD

′(Pt(γ), γ) > λ∗ for Pt(γ) ∈ (P ∗,1
t (γ), P ∗,2

t (γ)),
PD (P ∗, 1

t (γ ),γ )−PD (P ∗, 2
t (γ ),γ )

P ∗, 1
t (γ )−P ∗, 2

t (γ )
> λ∗. Then, P ∗,1

t (γ) cannot

be optimal based on (30). Thus, the optimal power level
can be selected as P ∗

t (γ) = min{P ∗,2
t (γ), Ppeak}.

5) λ∗ < PD
′(I1(γ), γ) : This case is valid for γ ∈ (γu ,∞).

In this case, PD
′(Pt(γ), γ) > λ∗ for Pt(γ) ≤ I2(γ) and

PD
′(Pt(γ), γ) is a monotone decreasing function of Pt(γ)

for Pt(γ) ∈ (γu ,∞). Based on (24), one of the following
conditions holds:
� If PD

′(Ppeak , γ) < λ∗ for all γ ∈ (γu ,∞),
PD

′(P ∗
t (γ), γ) = λ∗ for all γ ∈ (γu ,∞). Also,

PD
′(Pt(γ), γ) = λ∗ has only one solution (optimal

power level) P ∗
t (γ), where P ∗

t (γ) > I2(γ). By
using the definitions in the proof of Theorem 1, if
Pt(γ)>I2(γ), then t = xy =

√
γPt(γ)>

√
γI2(γ) =√

γ
(Q−1(α)+

√
(Q−1(α))2 −4)2

4γ =Q−1(α)+
√

(Q−1(α))2 −4
2 =t2 .

We also have h(t) > 0 for t > t2 . Thus, due to a
similar reasoning to that in the proof of Theorem 1,
P ∗

t (γ) constitutes a continuous function in γ for
γ ∈ (γu ,∞).

� If PD
′(Ppeak , γ) ≥ λ∗ for some γ ∈ (γu ,∞),

PD
′(Ppeak , γ) ≥ λ∗ for γ ∈ [γ̄l , γ̄u ] due to the func-

tion properties of PD
′(Ppeak , γ) where γ̄l and γ̄u are

positive finite values. If γu < γ̄l < γ̄u holds, P ∗
t (γ) =

Ppeak for γ ∈ [γ̄l , γ̄u ] and P ∗
t (γ) is continuous function

of γ for γ ∈ (γu ,∞), which increases for γ ∈ (γu , γ̄l)
and decreases for γ ∈ (γ̄u ,∞) based on a similar ap-
proach to that in the first condition. Otherwise, if
γ̄l = γu ≤ γ̄u , P ∗

t (γ) is a continuous function of γ
for γ ∈ (γu ,∞), which becomes equal to Ppeak for
γ ∈ [γu , γ̄u ] and decreases for γ ∈ (γ̄u ,∞).

Considering the analyses of the different cases above, the
following summary can be stated:

1) For γ < γ̃, the optimal power allocation policy is continu-
ous in γ and the optimal power level is always lower than
I1(γ), where γ̃ ∈ (γl , γu ).

2) At γ = γ̃, the optimal power allocation policy has a posi-
tive jump.

3) For γ > γ̃, the optimal power allocation policy is contin-
uous in γ. �
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Serkan Sarıtaş (S’16) received the B.Sc. degree in
electrical and electronics engineering and the M.S.
degree in computer engineering from Bilkent Uni-
versity, Ankara, Turkey, in 2010 and 2013, respec-
tively. He is currently working toward the Ph.D. de-
gree in the Department of Electrical and Electronics
Engineering, Bilkent University. His research inter-
ests include communication systems, game theory,
and information theory.

Berkan Dulek (M’16) received the B.S., M.S., and
Ph.D. degrees in electrical and electronics engineer-
ing from Bilkent University, Ankara, Turkey, in 2003,
2006, and 2012, respectively. From 2007 to 2010, he
worked at industry. From 2012 to 2013, he was a Post-
doctoral Research Associate in the Department of
Electrical Engineering and Computer Science, Syra-
cuse University, Syracuse, NY, USA. Since 2014, he
has been with the Department of Electrical and Elec-
tronics Engineering, Hacettepe University, Ankara,
Turkey, where he is currently an Associate Professor.

His research interests include statistical signal processing, detection and esti-
mation theory, and communication theory.

Ahmet Dundar Sezer (S’16) was born in 1989 in Ku-
tahya, Turkey. He received the B.S. and M.S. degrees
in electrical and electronics engineering from Bilkent
University, Ankara, Turkey, in 2011 and 2013, re-
spectively. He is currently working toward the Ph.D.
degree at Bilkent University. His current research in-
terests include signal processing, wireless communi-
cations, and optimization.

Sinan Gezici (S’03–M’06–SM’11) received the B.S.
degree from Bilkent University, Ankara, Turkey in
2001 and the Ph.D. degree in electrical engineering
from Princeton University, Princeton, NJ, USA, in
2006. From 2006 to 2007, he was at Mitsubishi Elec-
tric Research Laboratories, Cambridge, MA, USA.
Since 2007, he has been with the Department of Elec-
trical and Electronics Engineering, Bilkent Univer-
sity, Ankara, Turkey, where he is currently an Asso-
ciate Professor. His research interests include the ar-
eas of detection and estimation theory, wireless com-

munications, and localization systems. Among his publications in these areas is
the book Ultrawideband Positioning Systems: Theoretical Limits, Ranging Al-
gorithms, and Protocols (Cambridge, U.K.:Cambridge University Press, 2008).
He is an associate editor for IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
WIRELESS COMMUNICATIONS LETTERS, and Journal of Communications and
Networks.
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