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In this paper, we study the two-dimensional (2D) ultracold Fermi gas with weak im-

purity in the framework of mean-field theory where the impurity is introduced through
Gaussian fluctuations. We have investigated the role of the impurity by studying the

experimentally accessible quantities such as condensate fraction and equation of state of
the ultracold systems. Our analysis reveals that at the crossover, the disorder enhances

superfluidity, which we attribute to the unique nature of the unitary region and to the

dimensional effect.
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1. Introduction

The advances in experimental techniques in ultracold atom research have widened

the scope of our understanding of interacting quantum systems. The early exper-

iments and theoretical efforts on atomic gases made of bosonic particles1 paved

the way for intense research on fermionic systems.2 The observation of super-

fluidity in the Bardeen–Cooper–Schrieffer–Bose–Einstein Condensate (BCS–BEC)
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crossover regime has given impetus to the study of ultracold trapped Fermi gases

at unitarity.3,4

Although the initial endeavor to understand the unitary Fermi gas was in the 3D

systems, the interest lately is shifting toward lower dimensions. It is well accepted

that the ultracold atomic systems are good testing grounds for condensed matter

physics and that provides an important motivation for exploring them in lower

dimensions specially in 2D. At this juncture, it must be noted that disorder in

superconductor is an archetypal problem in condensed matter physics for over half

a century. The seminal works of Anderson in the middle of the last century states

that the weak disorder does not alter the superconducting critical temperature5

thereby paving the way for an intense study of superconductor–insulator transition.

In two dimensions, the subject of superconductivity becomes highly intriguing as the

existence of true long-range order is not possible. Hence, the BCS–BEC crossover

in 2D receives great deal of interest for being the marginal dimension both for the

classical fluctuation of the superfluid order parameter and formation of quantum

bound states.6

Although the theoretical exploration of the BCS–BEC crossover in lower dimen-

sional Fermi systems dates back a couple of decades,7–10 in the last few years we

have observed a new surge in research on 2D systems within the context of ultra-

cold gases.11 Note that the superfluid behavior of a 2D Bose gas is demonstrated

for 87Rb12,13 and the pseudo-gap phenomena is observed in a 2D Fermi gas.14,15

The study of superfluidity and sound velocity within the mean field formalism

has also been discussed.16 Recently, a number of works discussed the connection

between binding energy in two dimension (usual controlling parameter) and 2D

scattering length and extended their studies in the light of BCS–BEC crossover

phenomenon.17–21 One can also find further extension to spin–orbit coupling and

spin-mass imbalance.22,23 A number of papers addressed the interplay of interaction

and disorder effects in ultracold atomic systems.24–32

In this work, we study the 2D Fermi gas with weak disorder, where disorder is in-

cluded through Gaussian fluctuations. Inclusion of fluctuations in lower dimensional

ultracold Fermi gas is of current interest33 as this perturbative method opens the

possibility of understanding the finite temperature properties.34,35 The basic model

was proposed by Orso36 for the 3D Fermi gas and later used to study different as-

pects of unitary Fermi gas.37–39 The 2D Fermi systems are usually characterized in

terms of binding energy, although recently the 2D scattering length in analogy with

its 3D counterpart has also started to be used. Thus, in the preceding section we

describe the connection between binding energy and 2D scattering length and the

Gaussian fluctuation model which we use to incorporate the disorder. Afterwards,

we present our results for the pairing gap and chemical potential as well as the ex-

perimentally accessible quantities such as condensate fraction40 and ground-state

energy or equation of state41 across the crossover. Finally, we draw our conclusion

based on these results along with a short discussion on the possible experimental

set-up of the disorder.
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2. The Model

Since in 2D there exists a bound state (εb) at any value of the attraction (g) unlike

the 3D case, εb is regarded as the traditional controlling parameter. It is also possible

to use the 2D scattering length for this purpose in direct analogy with the 3D

systems.18 For the case of an attractive square-well, the 2D scattering length can

be written as a = ρ0 exp [J0(κ0)/κ0J1(κ0)], where ρ0 is the width of the well and

J0,1 are the Bessel function. κ0 =
√
V0mρ2

0 and V0 defines the depth of the well. One

can now connect the binding energy with the bare attractive potential via the 2D

scattering length through εb/EF = −8/(akF e
γ)2 (Ref. 7) in terms of the Fermi wave

vector kF and Fermi energy EF , and γ ' 0.577 is the Euler–Mascheroni’s constant.

For the attractive potential in 2D the scattering length is always non-negative and

diverges at V0 = 0 and at the zeros of J1 corresponding to the appearance of new

two-body bound states in the well. Therefore, a bound state is always present,

however small the attraction is. Analogous to the situation in 3D the parameter

ξ = ln kFa > 0 (or kFa � 1) is considered as weak coupling regime (BCS) and

ξ < 0 (or kFa � 1) is the strong coupling regime (BEC). Unitarity is defined at

ξ ∼ 0 (or kFa ∼ 1). Equivalently, in terms of the binding energy εb from the 2D

scattering length, we can consider εb/EF � 2 as BCS, εb/EF � 2 as BEC and the

intermediate region as the crossover region.

We are now in a position to discuss the case of weak disorder in the context of

the mean-field model, where we consider the inter-atomic interaction as short range

(contact potential). Thus, the bound state (gap) equation (after regularization) and

density equation can be written as7

∑
k

[
1

2εk + εb
− 1

2Ek

]
= 0, n =

∑
k

[
1− ξk

Ek

]
, (1)

where we use the usual BCS notation for single-particle energy ξk = k2/2m − µ,

quasi-particle energy Ek =
√
ξ2
k + ∆2, and coherence factors u2

k = 1/2(1 + ξk/Ek)

and v2
k = 1/2(1− ξk/Ek). The integrals can be evaluated analytically as shown by

Randeria et al..7

The insertion of weak disorder has been carried out through Gaussian fluctua-

tions. For this purpose, we assume that the range of the impurities should be much

smaller than the average separation between them. To model it mathematically,

we use the pseudo-potential as Vd(x) =
∑
i gdδ(x − xi), where gd is the fermionic

impurity coupling constant (which is a function of impurity scattering length), and

xi are the static positions of the quenched disorder. Thus, the correlation function

is 〈Vd(−q)Vd(q)〉 = βδiων ,0γ, where q = (q, iων). β = 1/kBT is the inverse temper-

ature, ων = 2πν/β are the bosonic Matsubara frequencies with ν an integer. The

disorder strength can be written as γ = nig
2
d, where ni denotes the concentration

of the impurities. Simple algebraic manipulations further reveal that γ is a function

of the relative size of the impurity.
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The white noise is now inserted in the system by means of small fluctuations

around the pairing gap as δ∆(x, τ) = ∆(x, τ)−∆, where ∆ is the homogeneous BCS

pairing field. The Green’s function (G−1) can be written as a sum of Green’s function

in absence of disorder (G−1
0 = −∂τ I + (∇2/2m + µ)σz + ∆σx) and a self-energy

contribution (Σ = −Vdσz + δ∆σ+ + ¯δ∆σ−) which contains the disorder as well as

the small fluctuations of the BCS pairing fields, where σ± are the ladder matrices.

With the expansion of the inverse Nambu propagator (G−1) up to the second-order,

it is possible to write the effective action (Seff) as a sum of bosonic action (SB)

and fermionic action (SF ). There is an additional term which emerges from the

linear order of self-energy expansion (G0Σ). It is possible to set the linear-order

term to zero, if we consider SF is an extremum of Seff , after having performed all

the fermionic Matsubara frequency sums. The modified thermodynamic potential

(Ω) can be written as a sum over fermionic (ΩF ) and bosonic (ΩB) potentials,

n = nF + nB = − ∂
∂µ (ΩF + ΩB) = − 1

β
∂
∂µ (SF + SB). It must be noted here that in

the original mean-field description ΩB = 0, however, here it contains the disorder

contribution (as well as finite temperature contribution, which we neglect here as

we are interested in impurity effect at zero temperature). Through ΩF we yield the

clean Fermi gas density equation (the first term in the right-hand side of Eq. (2)).

Hence, the manifestation of disorder in the density equation (gap equation remains

unaltered) appears as36

n =
∑
k

[
1− ξk

Ek

]
+
∂Ωd
∂µ

, (2)

where Ωd is the disorder contribution in the bosonic thermodynamic potential which

can be written as36

Ωd =
γ

2

∑
q

N †M−1N . (3)

The inverse fluctuation propagator, M, is a 2 × 2 symmetric matrix and at zero

temperature it reads

M11 =
1

g
+
∑
k

[
v2
kv

2
k+q

iωm − Ek − Ek+q
− u2

kuk+q

iωm + Ek + Ek+q

]
,

M12 =
∑
k

ukvkuk+qvk+q

[
1

iωm + Ek + Ek+q
− 1

iωm − Ek − Ek+q

]
, (4)

with M22(q) =M11(−q) and M21(q) =M12(q). In Eq. (3), N is a doublet which

couples the disorder with the fluctuations. At T = 0, after performing the fermionic

Matsubara frequency summation, one finds

N1 = N2 =
∑
k

∆(ξk + ξk+q)

2EkEk+q(Ek + Ek+q)
. (5)
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Finally, the disorder induced bosonic thermodynamic potential at zero temper-

ature can be written as42

Ωd =
γ

2

∑
q

2N 2
1

M11 +M12
. (6)

3. Results and Discussion

3.1. Pairing gap and chemical potential

The self-consistent numerical calculation of Eq. (2) along with the first equation

of Eq. (1) yields the result for pairing gap which is depicted in Fig. 1. Here the

disorder strength is represented by η which is a dimensionless quantity related to

γ, i.e., η = γm2/kF = (3π2/4)γn/ε2F . This implies that the impurity density and

strength remains much less than the particle density n and Fermi energy εF .

As expected, we observe a distinct depletion of paring gap (order parameter)

in the BEC region (ξ < 0) and in the BCS region (ξ > 0) very little effect of

disorder is observed (in the inset of Fig. 1, we extend our calculation to further

weak interaction regime to validate the conclusion). Similar features were obtained

in the 3D case37 as well. However, here the behavior of ∆ is different from its 3D

counterpart in the crossover region (ξ ∈ [0, 1]) where the pairing gap is enhanced

due to disorder (as a function of η). In this regime, the attractive interaction is weak

and as a consequence the particles are either moderately weakly bound or unbound,

however, the weak repulsive disorder potential pushes the unbound particles toward

the attractive well and supports the pairing. Hence, we observe an increase in the

Fig. 1. Behavior of the order parameter as a function of interaction parameter ξ and disorder

parameter η. The solid line represents the clean Fermi gas (η = 0) whereas the dashed line is for
η = 3 and dashed-dotted line is for η = 7. In the inset, we zoom at the deep BCS regime where

the bound-state energy is very low.
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paring gap. In the strong coupling regime, the pairs are strongly bound and disorder

can only play a destructive role when it wins the competition with the inter-atomic

attractive interaction which results in depletion of pairing gap. Due to this interplay

of disorder and interaction there exists a situation when interaction can completely

mask the disorder effect and that happens just around ξ ∼ 0. Hence the impurity

influenced ∆ is unaffected in the deep BCS regime but it increases when we tune

the binding energy from weak to strong. In the strong coupling BEC limit, it again

experiences depletion. A precise calculation reveals that the pairing gap under the

influence of impurity matches with the clean limit around ξ ∼ −0.015, exactly

in the crossover region. This observation substantiates our surmise that unitary

Fermi gas is less affected by disorder but rather supports superfluidity. The distinct

enhancement of ∆ around the crossover was not observed in the 3D system.

If we shift our attention to the chemical potential µ, we observe a small change

due to disorder and it is slightly higher in the crossover region and subsequently

drops below the clean limit value (minutely) while reaching the strong coupling

limit (described in Fig. 2). Since bound pairs in the BEC limit are more prone

to disorder, we therefore observe lowering of chemical potential marginally in the

strong coupling region where in the BCS limit the contribution through fluctuation

is limited and the impurity effect is nominal.

To probe the behavior of ∆ and µ together as a function of disorder, we calculate

the quasi-particle dispersion which is depicted in Fig. 3. It is worth noting that

the dispersion at the crossover and BEC regime follows the Goldstone mode-like

behavior whereas the BCS regime is more like roton dispersion. Figure 3 also reveals

that the disorder effect is considerably low in the upper and lower branches and

almost absent in the middle branch. The gray dashed-dotted line illustrates the

Fig. 2. Behavior of the chemical potential as a function of interaction parameter ξ and disorder
parameter η. The solid line represents the clean Fermi gas (η = 0) whereas the dashed line is for

η = 3 and dashed-dotted line is for η = 7.
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Fig. 3. Quasi-particle dispersion as function of binding energy and disorder is depicted here.
The solid line represents the clean Fermi gas (η = 0) whereas the dashed line is for η = 7. The

lowest branch belongs to the BCS regime (ξ ∼ 1.6), whereas the next higher branch represents the

crossover region (ξ ∼ 0) and further higher branch depicts the BEC mode (ξ ∼ −0.2). The gray
dashed-dotted line is related to the extremely weak coupling limit as εb → 0 for clean Fermi gas.

clean limit dispersion for εb → 0. In this limit, the dispersion minimum occurs

at
√

1− εb/2 since we can replace ∆ by
√

2εb and µ by 1 − εb/2. Hence, we can

clearly see that for εb → 0, µ is pinned to 1 and Ek/EF vanishes. In the presence

of disorder, we cannot use the above-mentioned analytic expressions for ∆ and µ.

Therefore, the excitation minimum never vanishes, but rather remains positive and

finite (Ek/EF = ∆) albeit the minima occurs at k/kF ∼ 1. Figure 3 also suggests

that the influence of disorder is more visible in the low-momenta region.

To examine the unique behavior of negligible effect of disorder around the

crossover (even enhancing the effect of superconducting pairing gap) more closely,

we consider the long wavelength approximation. This approximation usually yields

good results in the strong coupling (BEC) limit but it also provides a qualitative

idea in the whole interaction range. Under this approximation, the fluctuation prop-

agation matrix and the doublet carrying the disorder effect can be expressed as44

M =

(
A+ Bq2 A
A A+ Bq2

)
, N =

(
N1

N2

)
, (7)

where A and B can be defined as43,44

A =
∑
k

∆2

4E3
k

,

B =
∑
k

1

32m

[
ξk(2ξ2

k −∆2)

E5
k

+
k2

∈m
∆2(8ξ2

k + 3∆2)

E7
k

]
.

(8)

1750066-7

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
7.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

IL
K

E
N

T
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/3
0/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 6, 2017 16:5 IJMPB S0217979217500667 page 8

A. Khan & B. Tanatar

Also we consider at zero temperature, the elements of the doublet N are equal, i.e.,

N1 = N2. Further, in the long wavelength strong coupling limit q2/2m � µ thus

N1 can be written as36

N1(q = 0) =
∑
k

∆ξk
2E3

k

. (9)

To evaluate the integrals in Eqs. (8) and (9), we introduce the transformations

µ/∆ = x0 and k2/(2m∆) = x. Thus, one can write ξk = ξx/∆, Ek = Ex/∆ and

ξx = x− x0, Ex =
√
ξ2
x + 1. Now we can calculate the integrals in Eqs. (8) and (9)

in a straightforward manner to obtain

N1 =
m

4π
√

1 + x2
0

, A =

m

(
1 + x0√

1+x2
0

)
8π

,

(10)

B = −1 + x0[4
√

1 + x2
0 + x0{3 + 4x0(x0 +

√
1 + x2

0)}]
48π(1 + x2

0)3/2∆
.

Now with the help of the above transformations and using some algebra, we can

rewrite Eq. (2) as

n =
m∆

2π
[x0 +

√
1 + x2

0] + 3η
k2
F

2π
I(x0, εb)

and

∆

EF
=

2[1 + 3ηI(x0, εb/EF )]

[x0 +
√

1 + x2
0]

, (11)

where I is a logarithmic integral which is given as

I(x0, εb/EF ) =
(f2f3 − f1f4) εb

EF

f3f4(f3
εb
EF
− 6f4)

+
f1 ln

∣∣∣1− f3(εb/EF )
6f4

∣∣∣
f2

3

, (12)

where

fa =
√

1 + x2
0, fb = x0 + fa,

f1 = (1 + 3x2
0)[4fa + x0(5 + 4x0fb)], f2 = f2

a (1 + 2x0fb),

f3 = 1 + x0[4fa + x0(3 + 4x0fb)], f4 = f2
afb.

To estimate ∆ and µ, one requires numerics to solve Eq. (11) and bound-state

energy equation simultaneously. The bound-state equation after a change of variable

can be written as7,43

εb
EF

=
∆

EF

[√
1 + x2

0 − x0

]
. (13)

From Eq. (12), we observe that the integral poses a branch cut and if we evaluate

the branch point we obtain εb ∼ 1.9 or ξ ∼ 0.141, which is very close to the value

where we observe an intersection between the clean and dirty values of the physical
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quantities. Thus, almost zero effect of disorder in the vicinity of unitarity may not

only be due to the unique inter-atomic correlation in the crossover region, but also

as a consequence of the dimensionality.

3.2. Condensate fraction and ground-state energy

We now extend our analysis toward physically relevant quantities (experimentally

observable) such as condensate fraction (n0) and ground-state energy (E0/(nεF /2)).

For clean Fermi gas in 2D both of these quantities have been observed very re-

cently40,41 in a clean system, which makes our study relevant in the current context.

The condensate fraction is calculated using the following formula45:

n0 =
∑
k

[
∆

2Ek

]2

. (14)

We observe in Fig. 4 that condensate fraction is higher near the crossover region,

whereas in the BCS side there is no notable difference with the clean limit value.

In the BEC side expectedly condensate fraction gets depleted. The behavior of

condensate fraction is similar to the situation in 3D apart from the fact that the

nonmonotonic peak of the condensate fraction is higher than the clean limit result.

In 3D, though we observed a nonmonotonic behavior, the peak was always below

the condensate fraction for a clean system.

The ground-state energy can be written as3

E0 =
∑
k

[
εk

(
1− ξk

Ek

)
− ∆2

2Ek

]
. (15)

Fig. 4. Behavior of condensate fraction as a function of interaction parameter ξ and disorder

parameter η. The solid line depicts η = 0 whereas η = 3 and 7 are represented by dashed
and dashed-dotted lines, respectively. The figure illustrates a systematic depletion in the strong

coupling regime and relative enhancement in the intermediate region.
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Fig. 5. The ground-state energy as a function of interaction parameter ξ and disorder parameter

η. The solid line represents the clean Fermi gas (η = 0) whereas the dashed line is for η = 3 and
dashed-dotted line is for η = 7.

A suitable substitution of k2/(2m∆) = x and µ/∆ = x0 leads to

E0 =
m∆2

2π

∫ ∞
0

dx

[
x

(
1− ξx

Ex

)
− 1

2Ex

]
=
m∆2

8π

[
2x0

(
x0 +

√
x2

0 + 1

)
− 1

]
E0

n(εF /2)
=

∆2

ε2F

[
2x0

(
x0 +

√
x2

0 + 1

)
− 1

]
, (16)

where in the last line we divided the ground-state energy by number density n to

make the right-hand side dimensionless. Figure 5 illustrates the behavior of the

ground-state energy (E0) with weak disorder. We observe that E0 is moderately

higher in disordered environment in both weak and strong coupling limits. But in

the intermediate region it converges to the clean limit value. This clearly implies

that in the presence of quenched disorder crossover region is energetically most

favorable. Expectedly, Figs. 2 and 5 are very similar apart from their difference in

normalization (as in 3D case). It is worth noting that the impurity induced ground-

state energy is always higher than the clean limit value in both weak and strong

coupling limits whereas µ drops below (the clean limit) in the BEC region.

In this part, we intend to discuss (i) how to realize the proposed disorder model

experimentally and (ii) what we mean by weak disorder and consequently what

range of values we can use. In a recent experimental investigation, it was shown

that it is possible to tune the optical lattice depth in such a way that effectively

one can observe the fermionic pairing mechanism from 3D to 2D.46,47 We borrow

this idea and consider in analogy with the 3D system that randomly distributed

1750066-10

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
7.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

IL
K

E
N

T
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/3
0/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 6, 2017 16:5 IJMPB S0217979217500667 page 11

Effect of weak disorder on the BCS–BEC crossover in a 2D Fermi gas

light fermions are in an optical lattice whose depth is suitably modified to shape

as a 2D lattice and another optical trap (pancake in shape, whose longitudinal

axis is heavily suppressed) in the same spatial dimension contains relatively heavy

fermions. Because of the disk-like shape of the potential, the degrees of freedom

for the heavy fermions are only in the transverse direction. Moreover, the optical

trap frequencies are controlled in such a way that the lighter particles cannot see

the disk and the heavy fermions cannot see the 2D lattice. Hence they randomly

collide with each other in the x–y plane and the few heavy particles in this situation

behave like quenched disorder.

Now let us put forward the rationale behind the disorder parameter values used

in the calculations and spare some thoughts on the acceptable values of disorder

strength which can be considered as “weak”. Previously in 3D, the weak value of η

ranges in the region 0 . η . 0.7, however, here it is possible to further raise it up to

η ' 7 (the normalization of η in both cases is nF /E
2
F ). The crucial point here is the

dimensional difference which actually allows us the freedom to use higher η values. If

we consider the bare disorder strength is equal in both dimensions, i.e., γ2D = γ3D

and we take the same density (nF2D
= nF3D

) then η3D/η2D = E2
F(2D)

/E2
F(3D)

'
π2/(3π2)4/3 ' 0.1. This signifies that in 3D the admissible disorder strength will

always be one order of magnitude less than the 2D counterpart. Considering the

elastic mean-free path for unbound fermions defined as lF = π/γm2 in 3D, we

then have (kF lF )3D = 4/(3πη3D). If we define the elastic mean-free path in 2D as

lF = πkF /γm
2, then (kF lF )2D = 2/η2D. Now if we consider that the mean-free

path remains the same in 2D and 3D, then η3D ' 0.2η2D. Therefore, the weak

disorder limit in 2D is approximately one order of magnitude higher (in absolute

numbers) than the 3D case.

4. Conclusion

In conclusion, we have explored the consequences of weak disorder in a 2D Fermi

gas across the BCS–BEC crossover. We used the Gaussian fluctuation method

to incorporate the impurity scattering and then solve the coupled equations self-

consistently. As a concise summary, we conclude that (i) there is negligible effect of

disorder on BCS side where the interaction is weak, (ii) the weak disorder seems to

be supporting the superfluid nature in the crossover region as all physical quantities

show enhancement, (iii) expectedly, the disorder starts destroying the superfluidity

as we move to strong coupling region (BEC side) thereby pointing depletion in pair-

ing gap and condensate fraction, (iv) since we observed a specific branch point in

the disorder induced density contribution (nd = ∂Ωd/∂µ) which has a logarithmic

nature, the effect of dimensionality might be attributed to the intersection of clean

and dirty lines.

Keeping in mind the rapid progress in the experimental front, we have also

proposed a possible setup to experimentally realize the weak disorder effect in

2D ultracold Fermi systems. Finally, we have included a short discussion on the
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acceptable values of disorder strength as “weak”. We hope our analysis will motivate

further work on this system especially studies based on quantum Monte Carlo

simulations and Bogoliubov de-Gennes equation.
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