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Abstract. Airline schedules are generally tight and fragile to disruptions. Disruptions can

have severe effects on existing aircraft routings, crew pairings, and passenger itineraries

that lead to high delay and recovery costs. A recovery approach should integrate the

recovery decisions for all entities (aircraft, crew, passengers) in the system as recovery

decisions about an entity directly affect the others’ schedules. Because of the size of airline

flight networks and the requirement for quick recovery decisions, the integrated airline

recovery problem is highly complex. In the past decade, an increasing effort has been

made to integrate passenger and crew related recovery decisions with aircraft recovery

decisions both in practice and in the literature. In this paper, we develop a new flight net-

work based representation for the integrated airline recovery problem. Our approach is

based on the flow of each aircraft, crewmember, and passenger through the flight network

of the airline. The proposed network structure allows common recovery decisions such as

departure delays, aircraft/crew rerouting, passenger reaccommodation, ticket cancella-

tions, and flight cancellations. Furthermore, we can implement aircraft cruise speed (flight

time) decisions on the flight network. For the integrated airline recovery problem defined

over this network, we propose a conic quadratic mixed integer programming formulation

that can be solved in reasonable CPU times for practical size instances. Moreover, we place

a special emphasis on passenger recovery. In addition to aggregation and approximation

methods, our model allows explicit modeling of passengers and evaluating a more realis-

tic measure of passenger delay costs. Finally, we propose methods based on the proposed

network representation to control the problem size and to deal with large airline networks.

Keywords: airline operations • integrated recovery • disruption management • irregular operations • passenger recovery • cruise speed control •
conic quadratic mixed integer programming • flight network

1. Introduction
Poor weather conditions, congestions at hubs, and air-

craft mechanical problems are just a few of the causes

that prevent airlines from operating their flight sched-

ules as planned. Departure/arrival delays, flight can-

cellations, and even airport closures can occur. These

irregularities in operations are called disruptions. When

a disruption occurs an airline has to repair aircraft

schedules, crew schedules, and passenger itineraries to

minimize disruption related costs and maintain cus-

tomer service quality. In this paper, we propose a

recovery approach that integrates aircraft, crew, and

passenger recovery decisions. The proposed approach

involves a network flow representation of the recov-

ery problem which leads to an efficient mathematical

programming formulation.

When we analyze on-time performance data pro-

vided by the Bureau of Transportation Statistics (BTS),

we observe that disruptions are not rare. About 18.28%

of all flights operated in 2015 have experienced more

than 15 minutes of arrival delay. Another observation

is that about 1.54% of scheduled flights have been

canceled. Airline Operations Control Centers (AOCCs)

take actions against disruptions. An AOCC has to

seek a quick recovery solution. The objective is to

find the optimal set of actions that minimizes the

costs of disruptions provided that the original sched-

ule will be resumed at the end of a specified recovery

period. In practice, retiming/canceling flights, swap-

ping aircraft among flights, rerouting crew members

and passengers, canceling passenger tickets, utilizing

spare aircraft, and standby crewmembers are common

recovery actions. Deadheading crew members and fer-

rying aircraft are not desired actions; however, they

may be required as well. Limited solution time in dis-

ruptionmanagement is challenging. Therefore, airlines

typically start by creating recovery plans for aircraft

and crew members and then perform passenger recov-

ery. However, this sequential approach results in high

itinerary cancellations and passenger delay costs. This

necessitates an integrated approach, which has been

considered in the recent operations research literature

on aviation.
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1.1. Literature Review
For a recent review on airline disruption management,

we refer to Clausen et al. (2010). Most of the stud-

ies in the literature have focused on aircraft recovery;

and integration with passenger and crew recovery has

not been explicitly considered in most of the recov-

ery models. Jarrah et al. (1993) propose two mini-

mum cost network flowmodels to recover from aircraft

shortages. The first model retimes departure times

to minimize delay costs; and the second one deter-

mines canceled flights to minimize cancellation costs.

Rosenberger, Johnson, and Nemhauser (2003) present

a model that reschedules flights and reroutes aircraft

with the objective that minimizes rerouting and can-

cellation costs. The authors also present an extension

of the model that they propose by introducing a cost

for disrupted itineraries to maintain passenger con-

nections. Abdelghany, Abdelghany, and Ekollu (2008)

develop an integrated decision support tool for airlines

schedule recovery during irregular operations. The

tool is designed for the operators in AOCCs. It is capa-

ble of detecting current and future flight delays and

aims to generate proactive integrated recovery plans to

avoid these delays. Proposed framework integrates a

schedule simulation model and a resource assignment

optimization model. The models focus on aircraft and

crew recovery, however, passenger rebooking costs as a

result of flight cancellations are indirectly included in

the approach. In a recent study, Maher (2016) focuses

on aircraft and crew recovery problems. The author

points out the challenge of delivering high quality solu-

tions within short time limits, and proposes a gen-

eral framework for column-and-row generation as an

extension of the existing methods to reduce the prob-

lem size. The approach also aims to reduce passenger

dissatisfaction through increasing the cancellation cost

of a flight.

Passenger recoverydecisionshave received increased

attention in recent studies. Lan, Clarke, and Barnhart

(2006) propose two new approaches to minimize pas-

senger disruptions and achieve robust airline schedule

plans. The first approach involves aircraft routing and

the second one involves retiming the departure times

for flights. Aircraft routing problems are considered as

a feasibility problem with the aim of achieving robust-

ness with minimal cost implications. In the proposed

robust aircraftmaintenance routing (RAMR)model, the

authors try to minimize the expected total propagated

delay. In the second part of their study, the authors

consider passengers who miss their flights because of

insufficient connection time. The aim of this approach

is to minimize the number of passenger misconnec-

tions by retiming the departure times of flights within

a small timewindow. For retiming departure times, the

authors propose the connection-based flight schedule

retiming (CFSR) model. The objective of the model is

to minimize the expected total number of disrupted

passengers.

Bratu and Barnhart (2006) aim to find the optimal

trade-off between airline operating costs and passenger

delay costs, and propose two optimizationmodels. The

first one, named Disrupted Passenger Metric (DPM),

aims to minimize passenger disruption costs without

increasing operating costs. DPMdoes not consider pas-

senger rerouting decisions and uses an approximate

measure for passenger delay costs. The second model,

Passenger Delay Metric (PDM), uses a more accurate

way of calculating passenger delays.

In a recent paper, Jafari and Zegordi (2010) inte-

grate aircraft and passenger recovery decisions. They

present an assignment model for recovering both air-

craft and passengers simultaneously with the objective

of minimizing the sum of aircraft assignment costs,

delay costs, cancellation costs, and disrupted passen-

ger costs.

Marla, Vaaben, and Barnhart (2017) integrate recov-

ery decisions for aircraft and passengers with cruise

speed decisions. They utilize the same traditional time-

space network representation as Bratu and Barnhart

(2006), in which nodes are associated with both time

and location. Flights are represented by arcs between

two nodes belonging to different locations. To satisfy

the ground time between any two consecutive flights,

ground arcs starting and ending at the same loca-

tion are included. Departure time decisions are eval-

uated by creating flight copies at different departure

time alternatives. Marla, Vaaben, and Barnhart (2017)

manage to incorporate cruise speed control, or flight

planning, within the time-space network by generat-

ing a second set of flight copies at each departure

time alternative of each flight where each copy corre-

sponds to a different cruise speed alternative. How-

ever, this requires discretization of cruise speed options

and a large network to be generated. In the proposed

mathematical formulation, the authors manage to inte-

grate passenger rerouting decisions in passenger delay

cost calculation. In addition, the authors propose an

approximation model to deal with large airline net-

works. In this paper, we show that the recovery deci-

sions like flight timing, aircraft rerouting, and cruise

speed control can be formulated over a smaller net-

work without limiting cruise time decisions to the dis-

crete settings.

Petersen et al. (2012) study an integrated airline

recovery problem using a single-day horizon, and pro-

pose a separate mixed-integer mathematical model for

the schedule, aircraft, crew, and passenger recovery

problems. Each of the separate formulations uses dis-

tinct sets of recovery actions. With the notation used in

our paper, the schedule recovery problem deals with

flight related decisions such as departure time and

cancellation decisions; the aircraft recovery problem
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handles aircraft rerouting decisions; the crew recov-

ery problem handles crew rerouting decisions; and the

passenger recovery problem decides on the passenger

reallocations. The authors utilize a Benders decom-

position scheme together with the column generation

approach to achieve the coordination among these four

mathematical models. They place a 30-minute thresh-

old of computation time for the overall problem; they

also propose a sequential recovery algorithm to handle

larger problems. In this study, we integrate flight, air-

craft, crew, and passenger related recovery decisions

using a network flow approach. Different from Pe-

tersen et al. (2012), we consider cruise speed control,

which is another effective recovery approach in air-

line disruption management. Moreover, Petersen et al.

(2012) utilize flight string representation, while we uti-

lize a flight network representation. A flight string is

a sequence of flights with timing decisions to repre-

sent the problem. The same sequence of flights might

be present in multiple strings, each with a differ-

ent set of retiming decisions. Flight strings allow to

handle complicated airline constraints such as crew

rest restrictions depending on the sequence of flights

and flying hours by evaluating the feasibility of flight

strings beforehand. Moreover, complex and sequence

dependent cost functions can be associated by evalu-

ating the costs of flight strings in the preprocessing

step. On the other hand, a disadvantage of this repre-

sentation is that it requires discretization in retiming

decisions. It is possible to associate cruise speed control

action through generation of copies of flight strings,

where each copy corresponds to a different cruise

speed. However, this tends to increase the problem size

and requires discretization of cruise speeds. Petersen

et al. (2012) also discuss the importance of reducing the

problem size when dealingwith large airline networks,

and the authors propose a simple algorithm that limits

the scope of recovery to flights in the routing of the dis-

rupted entities. Based on our network representation,

we propose a systematic approach using the interde-

pendencies among the recovery actions of entities to

accurately control the problem size.

Arıkan, Gürel, and Aktürk (2016) focus on the inte-

grated aircraft and passenger recovery problem. The

authors propose a mathematical formulation that is

able to evaluate several aircraft and passenger recov-

ery actions such as holding departure times, maintain-

ing or canceling passenger itineraries, and cruise speed

control simultaneously. The objective function includes

both passenger related costs and fuel costs. The authors

manage to reformulate the nonlinear programming

model as a conic quadratic mixed integer program-

ming model that can be solved efficiently. The pre-

sented results give insights about the impact of cruise

speed control action in mitigating delays and reducing

passenger delay costs. However, the proposed math-

ematical formulation is not flexible for extending the

model to other entity types and recovery actions. In

this study, we propose a general network structure that

allows the integration of aircraft, crew, and passen-

ger recovery, and utilization of a larger set of recovery

actions.

Aktürk, Atamtürk, and Gürel (2014) propose an air-

craft rescheduling model to deal with aircraft recov-

ery problems. The authors successfully integrate cruise

speed control action in the recovery model using a

realistic fuel cost function to optimally solve the trade-

off between fuel consumption and disturbances of the

disruptions. In addition to the additional fuel cost

of speeding up flights, the authors manage to inte-

grate environmental costs and constraints. The authors

report that cruise speed control can provide significant

cost savings. One of the major contributions of Aktürk,

Atamtürk, and Gürel (2014) is enabling use of a real-

istic fuel cost function based on the fuel flow model

developed by the Base of Aircraft Data (BADA) project

of EUROCONTROL (2009). However, the approach

focuses on aircraft schedules and does not deal with

the integrated recovery problem. We integrate the fuel

cost function and conic quadratic reformulations pro-

posed in Aktürk, Atamtürk, and Gürel (2014) in our

network-based approach that deals with the integrated

recovery problem and allows a wide range of recovery

actions.

We have also benefited from studies that do not

directly focus on solving the airline recovery problem.

First, Ball et al. (2010) present an extensive analysis

on the components of delay costs, such as cost to air-

lines, cost to passengers, cost of lost demand, etc., as

well as flight delays’ indirect impact on the U.S. econ-

omy. The authors present innovative methodologies

to measure the impact of flight delays and estimate

cost components. The proposed approach considers a

broader consideration of relevant costs than conven-

tional methods.

Second, Barnhart, Fearing, and Vaze (2014) point out

the lack of publicly available passenger travel data,

which is very important in testing integrated recovery

approaches. The authors provide an excellent guide

for processing public data to generate possible passen-

ger itineraries. Furthermore, the authors use discrete

choice methodology and propose a logit-based choice

model to assign the aggregate passenger demand to

the possible itineraries.

Finally, Sherali, Bae, and Haouari (2013) focus on

schedule design, fleet assignment, and aircraft routing

problems, and propose a mixed-integer programming

model that integrates certain aspects of these problems.

A reformulation-linearization technique is applied to

reduce the complexity of the problem. To deal with
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the large-scale problem, the authors propose a Ben-

ders’ decomposition-based solution approach and test

their approach using real data from United Airlines.

One of the major contributions of the study is that the

authors represent the problem with a flight network

alternative to the traditional time-space network repre-

sentation for aircraft routing. Flight networks represent

the problem with a much smaller number of nodes

and arcs since each scheduled flight is represented by

a single node. It is an activity-on-node representation,

and hence, both departure and arrival time decisions

can be represented by a single continuous variable.

Moreover, all aircraft routings can be included in the

solution space while avoiding path enumeration. The

authors report that the representation is more compact

than traditional representations and allows a greater

modeling flexibility in routing and timing decisions.

In this paper, we extend the flight network representa-

tion so that all types of entities (aircraft, crewmembers,

and passengers) are transported through the same net-

work. We manage to integrate a wide range of recov-

ery actions with the proposed representation. Since

it is an activity-on-node representation, we manage

to model cruise speed control action with continuous

decision variables. The unified representation allows

to capture the interdependencies in aircraft, crew, and

passenger-related recovery decisions, which is crucial

in integrated recovery problems. Moreover, it allows

to develop fast network-based algorithms to control

the problem size. One limitation of flight networks is

that attributes cannot be assigned to paths. In the air-

line recovery context, this leads to limitations in the

modeling complicated sequence, the time-dependent

crew rest period, and aircraft maintenance restrictions.

These limitations can be overcome to some extent. For

instance, the proposed formulation in this study can

be extended to limit total air time and/or number of

flights assigned to aircraft and crew members.

1.2. Contributions
The first contribution of this paper is that we integrate

recovery decisions for different entities in an airline

system over a simplified network. We propose a flight

network representation unlike the time-space network

and flight string representations that are used in air-

line recovery problems. A major advantage of the pro-

posed network representation is that the problem size

is kept within reasonable limits so that real-time solu-

tions can be provided. Moreover, unlike traditional

representations, it does not require discretization of

departure time and cruise speed decisions. Sherali,

Bae, and Haouari (2013) have used flight network rep-

resentation for integrated schedule design, fleet assign-

ment, and aircraft routing problems in which aircraft

are transported through the flight network. We extend

the flight network representations so that all types of

entities (aircraft, crew members, and passengers) are

transported through the same network. Inclusion of

all entity types in the unified network representation

provides a great opportunity to capture the interde-

pendencies among the recovery actions of different

entities, which is crucial in integrated airline recovery.

Moreover, it allows to develop network-based algo-

rithms using these relationships to maintain tractabil-

ity when dealing with large airline networks.

Second, we develop amathematical formulation that

models the recovery decisions of aircraft, crew, and

passengers simultaneously to ensure optimality. We

have managed to integrate a wide range of recovery

actions. These recovery actions include the following:

• departure holding,

• flight cancellation,

• aircraft rerouting,

• aircraft ferrying,

• crew rerouting,

• crew deadheading,

• passenger ticket cancellation,

• passenger reallocation,

• cruise speed control,

• use of spare aircraft,

• calling up reserve crew.

The model indeed formulates a network flow prob-

lem to minimize the total recovery costs including fuel

costs, that might rise because of speed and swap deci-

sions, and passenger related disruption costs such as

delay and ticket cancellation costs.

Third, this paper places a special emphasis on pas-

senger recovery. In addition to itinerary-based model-

ing (as in most recovery approaches in the literature),

we manage to model each passenger explicitly. This

representation has several advantages such as assign-

ing various levels of importance and defining different

sets of recovery actions for each passenger. Moreover, it

allows accurate evaluation of passenger delay costs by

simultaneously considering flight delay decisions and

passenger rerouting decisions. Despite the increased

problem size, we managed to optimally solve recov-

ery problems by explicitly modeling passengers for

airline networks including around 288 flights within

about 9 minutes. For larger networks including around

473 flights we managed to solve recovery problems by

using approximations for passenger delay cost within

about 8 minutes.

Finally, the integrated recovery problem is highly

complex and a real-time solution requirement is chal-

lenging when dealing with large networks. Contribu-

tions of this study to this problem are twofold. First,

we focus on the compactness of the problem represen-

tation to reduce the problem size without changing the

optimal cost; secondwe propose a network-based algo-

rithm to limit the scope of recovery while providing

near-optimal solutions.
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Although proposed representation keeps the prob-

lem size within reasonable limits, a careful investi-

gation of compactness is crucial to provide real-time

solutions. For this purpose, we propose two prepro-

cessing approaches that reduce the problem size. The

first one, named the partial network approach, aims

to identify and eliminate infeasible recovery actions

from the solution space. This is carried out by isolat-

ing the related portion of the network for each entity.

These isolated portions are entity-specific and called

partial networks. A partial network of an entity is able

to generate all possible recovery actions for the entity,

while the common flight nodes construct the inter-

dependencies among the partial networks of differ-

ent entities. Using partial networks of entities instead

of the entire flight network provides a more compact

representation. The underlying network representation

allows to develop a considerably fast algorithm, named

the Partial Network Generation Algorithm (PNGA), to

generate partial networks prior to solving the optimiza-

tion problem. We have observed in our experiments

that the reduction in problem size with the partial net-

work approach is significant. In the second approach,

we propose a rule to aggregate entities without los-

ing any required information. We provide a procedure

that extends the proposed mathematical formulation

to handle entity aggregation.

An alternative approach to sequential recovery and

approximation models for providing near-optimal so-

lutions is to reduce the problem size. The scope of

recovery must carefully be limited to provide real

time recovery decisions while maintaining the quality

of the solution (Petersen et al. 2012). Literature lacks

methodologies that systematically control the prob-

lem size to allow real time solutions. Using the inter-

dependencies among the partial networks, we define

a measure of likelihood that a rerouting action will

be used in the optimal solution. Using the proposed

measure and partial network representation, we pro-

pose the Problem Size Control Algorithm (PSCA) to

limit the problem size. The algorithm iteratively elim-

inates the rerouting actions that are less likely to be

utilized in the solution from the partial networks. The

underlying network structure and the proposed mea-

sure allow to incorporate fast shortest path algorithms.

The proposed algorithm can provide significant reduc-

tions in problem size and solution time. Using this

approach, we managed to solve integrated recovery

problems for airline networks including 1,254 flights

within 8 minutes.

1.3. Paper Outline
This paper is organized as follows. In Section 2, the net-

work representation is described in detail and a numer-

ical example is given. Mathematical formulations are

constructed in Section 3. In Section 4, a scheme to

reformulate the mixed integer nonlinear programming

problem as conic quadratic mixed integer program-

ming is given. In Section 5, preprocessing methods to

enhance the performance are described. In Section 6 an

algorithm to control the problem size to allow practi-

cal solutions is proposed. Results of the computational

study are discussed in Section 7. Final remarks are

given in Section 8.

2. Problem Representation
In this section, we give the problem definition and

present the proposed network structure. An original

schedule of an airline is given. A set of disruptions

occur on the schedule. We consider a recovery hori-

zon, [t
0
, t

1
]. The aim of the airline recovery problem is

to find the minimum-cost recovery actions by altering

operations of aircraft, crew members, and passengers

within the recovery horizon provided that the original

schedule will be caught up by t
1
at the latest.

An effective representation of the disruption man-

agement problem is crucial because of the size of the

flight networks, complexity of the problem, and lim-

ited solution times. We have mentioned two important

representations used in recovery problems in Sec-

tion 1.1, namely the flight string representation (Peter-

sen et al. 2012) and the time-space network represen-

tation (Bratu and Barnhart 2006, Marla, Vaaben, and

Barnhart 2017). Moreover, we have discussed the flight

network representation proposed by Sherali, Bae, and

Haouari (2013) for integrated schedule design, fleet

assignment, and the aircraft routing problem. In this

section, we propose an extended flight network repre-

sentation for the recovery problem that integrates air-

craft, crew members, and passengers, as well as a wide

variety of recovery actions.

We start our approach by defining state parameters

that capture the true state of any entity. These defini-

tions allow modeling of all entity types (aircraft, crew

member, or a passenger) in a similar manner. Then, we

propose a general flight network representation that

allows to integrate any entity type. Therefore, not only

aircraft, but all entities are transported through a flight

network. By integration on a common flight network,

interdependencies amongdifferent entity types are eas-

ily defined. Moreover, all recovery actions including

cruise speed control are included in themodel to ensure

optimality. Since activity is kept on nodes, departure

time, arrival time, and cruise speed decisions can be

represented by continuous variables instead of a set of

discrete alternatives.

2.1. Network Structure
We start with the notation required to understand a

network structure. For ease of reading, we use over-

scores and underscores to denote parameters as upper

and lower bounds, respectively. All parameters begin
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with an uppercase letter while decision variables start

with a lowercase letter throughout the text. Parameters

of scheduled flights are defined next.

Ori f (Des f ): Origin (destination) airport of flight f ,
SDT f (SAT f ): Scheduled departure (arrival) time of

flight f in the original schedule,

DT f (AT f ): Latest allowable departure (arrival)

time of flight f ,
∆T r

f : Cruise time compression limit of

aircraft r for flight f ,
FT r

f : Flight time of flight f when operated by

aircraft r at max-range cruise speed,

AT f : Earliest possible arrival time of flight f ,
CT fg: Minimum of minimum connection

times among all entities between flights

f and g.

Cruise time compression is the reduction in the

cruise time, and hence in the flight time, by speeding

up the aircraft during the cruise stage. Cruise speed

may be increased only up to a certain extent because of

technical limitations and airline policy.

Therefore, cruise time compression is limited. An

airline may have different types of aircraft in its

fleet. As a recovery action, aircraft swaps may occur

between flights. Therefore, we consider aircraft-and-

flight-specific cruise time compression limits and flight

time parameters, i.e., ∆T r
f and FT r

f . Maximum-range

cruise speed is the speed of an aircraft that results in

minimum fuel consumption which will be discussed

in detail in Section 4. To generate all possible rerout-

ing options, we set the value of CT fg to the mini-

mum of required connection times among all entities.

Practically, a flight can depart whenever the operat-

ing aircraft, crew members, and assigned passengers

are ready. Without loss of generality, we assume that

a flight cannot depart before its scheduled departure

time. However, early departures can be associated with

the proposed approach by substituting SDT f with DT f
throughout this paper, where DT f is defined as the

earliest time that flight f is allowed to depart.

Note that there are two limitations on the earliest

arrival time of a flight. The first one is determined by

time slot availability. On the other hand, a flight cannot

arrive before SDT f +minr{FT r
f −∆T r

f } where the mini-

mum operation is carried out among all aircraft. There-

fore, AT f is set to the maximum of these limitations.

2.1.1. Entities. All entities will be transported through

the proposed network representation, and hence, air-

craft, crew, and passenger related recovery decisions

will be integrated. Throughout this paper, we use the

term entity to refer to an aircraft, a crew member, or

a passenger. Let T be the set of entity types relevant

to our problem, r ∈ Rt
be an entity of type t, and

R �
⋃

t∈T Rt
be the set of all entities. We use abbrevia-

tions ac, cr, and ps for index t to denote aircraft, crew,

and passenger, respectively (T � {ac , cr, ps}).

2.1.2. Nodes. The proposed network contains four

types of nodes: scheduled flight nodes, source nodes,

sink nodes, and must-visit-nodes (or must-nodes). For

each entity there is a source node which represents the

initial state of the entity at t
0
and a sink node which

represents the final status of entity at t
1
. For each entity,

theremight be certainmust-nodes. Amust-nodemight

represent a maintenance activity of an aircraft at a spe-

cific airport at a certain time period, or a scheduled

crew rest period. Each node has a demand for each

entity.

Let ¦ be the set of all scheduled flights of the airline.

Then, the set of flight nodes, F, relevant to the problem

are obtained as follows:

F � { f ∈ ¦ : SDT f ≥ t
0
and AT f ≤ t

1
},

which defines all flights scheduled to depart after t
0

and with the earliest arrival time less than or equal to

t
1
as illustrated in Figure 1.

The dynamic state of an entity is obtained and

defined by the parameters next. Earliest departure time

and latest arrival time parameters that guarantee that

operations outside the recovery horizon will be oper-

ated as scheduled are illustrated in Figure 1.

¦ r
: Ordered set of scheduled flights originally

assigned to entity r where flights with

nonpositive subscripts are scheduled to be

operated prior to t
0
; flights with subscripts

nr + 1, nr + 2, . . . are scheduled to be operated

after t
1
; and the flights with subscripts 1, . . . , nr

are included in the recovery horizon

¦ r � {, . . . , f r
−1
, f r

0
, f r

1
, . . . , f r

nr , f r
nr+1

, . . .},
Fr
: Ordered set of flights originally assigned to

entity r within the recovery horizon Fr � { f ∈
¦ r

:SDT f ≥ t
0
,AT f ≤ t

1
} � { f r

1
, f r

2
, . . . , f r

nr },
CT r

fg: Minimum connection time required for entity r
between flights f and g,

Orir : Location of entity r at the beginning of the

recovery horizon (e.g., Orir �Orirf
1

),

DT r
: Earliest time that the first flight of entity r can

depart (ready time) DT r �

max{t
0
,SAT f r

0

+CT r
f r
0

f r
1

},
Desr

: Planned destination of entity r at the end of the

recovery horizon (e.g., Desr
�Des f r

nr
),

AT r
: Latest time that entity r needs to arrive at Desr

to catch up with its schedule AT r �

min{t
1
,SDT f r

nr+1

−CT r
f r
nr f r

nr+1

}.

Recovery actions such as reserve aircraft and standby

crew can be included in the solution space by insert-

ing these entities in set R with corresponding entity

parameters. These entities can be generalized as oper-

ating resources that can be used within the recovery

horizon and have Fr ��.
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Figure 1. Earliest Departure Time and Latest Arrival Time of an Entity

(earliest departure time)

SATf0
r + CTr

f0
r , f1

r

(latest arrival time)

t1t0

f r
–1 f0

r f1
r ·  ·  ·

Ground timeFlight timeRecovery horizon

rf r
n + 1

SATf r
n + 1

 + CTr
f r

n , f
r
n + 1r rr

rf r
n

The source node for entity r is designated by s r
and

has the following parameters to represent the initial

state of the entity:

Dessr �Orir , AT sr � DT r , CT r
sr , g � 0,

∀ g ∈ F, Dr
sr �−1.

Flow of entity r through an arc between its source

node and a flight node f means that the first flight

assigned to r is f in the recovery. Since such arcs do

not correspond to flight connections, connection times

of these arcs are set to zero.

The sink node for entity r is designated by t r
and has

the following parameters to represent the final status

of the entity:

Oritr �Desr , DT tr � AT r , CT r
f , tr � 0,

∀ f ∈ F, Dr
tr �+1.

Flow of entity r through an arc between a flight

node f and its sink node corresponds to the decision

that f is the last flight assigned to r in the recovery.

Similar to arcs between source and flight nodes, con-

nection times of arcs between flight and sink nodes are

set to zero.

Finally, we insertmust-nodes to model the restrictions

of operating entities within the recovery horizon such

as scheduled aircraft maintenance, or away-from-home

limitations or scheduled rest periods of crew mem-

bers. On the other hand, we do not use must-nodes

for passengers. In the proposed solution approach, we

will force entities with such restrictions to visit these

nodes. Let Mr
be the set of must-nodes of entity r, and

M �
⋃

r∈R Mr
. For each must-node m ∈ Mr of entity r,

we have

Orim �Desm : location of the activity,

DTm(ATm): earliest start (latest completion) time of

the activity,

CT r
f m � CT r

m g � 0, f , g ∈ F, Dr
m � 0.

Then, the set of nodes of the network is ® � F ∪
(⋃r∈R{s r , t r}) ∪M. Demand of node f for entity r is

denoted by Dr
f where

Dr
f �


−1 if f � s r , source node of r
0 if f is a flight or must-visit node

+1 if f � t r , sink node of r.

2.1.3. Arcs. An arc ( f , g) may correspond to a flight

connection (if f , g ∈ F), the beginning of the operations

of an entity (if f � s r
), the end of the operations of an

entity (if g � t r
), or connections with must-nodes (if

f or g ∈ Mr
). The set of arcs is obtained using node

parameters as follows:

A � {( f , g): f , g ∈® ,Des f �Orig

and DT g ≥AT f +CT fg}. (1)

This rule allows to include all possible connections con-

sidering the allowed flexibility in departure and arrival

times by time slots and by cruise speed options. There-

fore, all possible paths can be generated through the

proposed network.

To incorporate recovery actions such as ferrying air-

craft or deadheading crew members, we insert external
arcs, i.e., ( f , g)<A, whose arc costs are equal to the costs

of the corresponding actions. An external arc from s r

to t r
may represent ferrying the aircraft (deadheading

the crew member) from its origin to its destination. An

aircraft can also be ferried to its destination after oper-

ating some flights, or to the origin of another flight

which can be modeled by external arcs from a flight

node to the sink, and between two flight nodes, respec-

tively. External arcs between two flight nodes, and

between the source and a flight node, may correspond

to crew deadheading action which are commonly used

in practice. In terms of passengers, ticket cancellations

or reallocation to other means of transportation may

be modeled by external arcs from source to sink. For

one-stop and two-stop passengers, other external arcs

may be used. For instance, some of the passengers in a

two-flight itinerary may be reallocated to other means

of transportation at the connecting airport because of a

shortage in seat capacity of the operating aircraft which
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Figure 2. (Color online) Network Structure of the Proposed Representation

Flight nodes

Must-nodes

S
ou

rc
e 

no
de

s

S
in

k 
no

de
s

Arcs between flight and sink nodes

Arcs between source and flight nodes
Arcs between flight nodes

Arcs between must-visit and flight nodes
External arcs

sr

f g

tr

mr

·   ·   ·

·   ·   ·

·
·
·

·
·
·

may be swapped with the originally assigned aircraft

by the airline. Let Er
be the set of external arcs avail-

able for entity r and E �
⋃

r Er
. Note that the sets Er

are

mutually exclusive, i.e., each external arc corresponds

to the recovery action of a particular entity. Then, the

set of arcs of the proposed network is ¡� A∪E.
External arcs add great flexibility to the flight net-

work representation and increase network connectivity,

by relaxing the destination-origin match requirements

of the arcs. In theory, any external arc ( f , g) is feasi-

ble provided that the sum of SAT f and the flight dura-

tion between Des f and Orig is not greater than AT f .

Therefore, careful selection of the external arcs to be

added to the network is important to not increase the

problem size by unrealistic recovery options. An air-

line’s experience is valuable for identifying commonly

used external arcs. Moreover, we suggest to add exter-

nal arcs close to the disrupted nodes (close in terms of

location and time). Note that during the time that air-

craft or crew members travel through an external arc,

they cannot operate flights. For instance, consider an

aircraft reaching a flight node at 8:00, and is assigned

to an external arc after 30 minutes’ connection time to

reach another flight node with a scheduled departure

time of 20:30. The duration of this external arc is actu-

ally 12 hours even if the flight time is less. Considering

the tight schedules of airlines, such external arcs would

be very costly. Therefore, we suggest to limit the dura-

tions of the generated external arcs for disruptions that

are unlikely to cause many cancellations. On the other

hand, longer external arcs would bemore beneficial for

more severe disruptions such as hub closures.

The proposed network structure G � (® ,¡) is illus-
trated in Figure 2. Source and sink nodes are displayed

on the left and right sides of the network, respectively.

The arcs emanating from source nodes (incoming to

sink nodes) represent the connection to the first (from

the last) flight for the particular entity. For entities with

restrictions, we have a set of must-nodes displayed at

the top of the network. The nodes within the box in the

middle of the network correspond to scheduled flights

with incoming and emanating flight connection arcs.

All connections are created with respect to the arc gen-

eration rule (1). Finally, four external arcs are displayed

at the bottom of the network (dashed lines) which may

correspond to different recovery actions. We have −1

(+1) demand in the source (sink) nodes for the corre-

sponding entities, while all flight and must-visit nodes

have zero demand.

2.2. Disruption Types
All disruptions are modeled by updating parameters

of entities and specific parts of the network, i.e., no

constraints need to be added in the formulation. We

have selected and experimented four disruption types

which are of major importance with respect to their

frequency or severity. After describing how these dis-

ruptions are represented,we redefine the problemwith

the proposed network structure.

2.2.1. Flight Departure Delay. Departure time of a

flight may be delayed as a result of various external

reasons such as airport congestion or irregularities in

ground operations. In cases of disruptions, departure
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times of flights may be postponed by the airline as

well. The latter type of departure delays are considered

recovery actions and they are included in the solu-

tion space of the proposed optimization model. There-

fore, we use flight departure delay disruption to refer

to delays because of external sources. These disrup-

tions are representedbyupdatingSDT f asSDT f +DD f ,

if flight f experiences a departure delay of DD f in

minutes.

2.2.2. Flight Cancellation. If a flight experiences a se-

vere departure delay, the airline may have no other

option but to cancel the flight. Flights may be canceled

because of various external sources or by the airline

to recover from disruptions. Since flight cancellation

is included in the solution space of the optimization

model as a recovery action, we use flight cancella-

tion disruption to refer to the cancellations by external

sources. Let Dc
be the set of canceled flights. Then, all

nodes inDc
areremovedfromthenetworktogetherwith

all arcs incoming to and emanating from these nodes.

2.2.3. Delayed Ready Time. Aircraft experiencing an

unscheduled maintenance or late arrivals of crew

members are examples of this type of disruption. Note

that considering these as flight departure delays would

eliminate many feasible recovery options and lead to

suboptimal solutions. In particular, even if the ready

time of an aircraft is delayed, its first flight could still be

operated on time by another available aircraft. These

disruptions are modeled by updating DT r
as DT r +

RDr
if entity r experiences a ready time delay of RDr

in minutes.

2.2.4. Airport Closure. Poor weather conditions are

one of the major reasons for an airport to cancel all

departures and arrivals for a certain time frame. Let

D[ac]
be the set of closed airports and a ∈ D[ac]

be an air-

port experiencing a closure during [STa ,ETa]. The con-
sequences of this closure are handled in twoparts. First,

as a result of the closure of airports, someflights need to

be canceled.Theseflights are inserted into the set of can-

celed flights. On the other hand, some flights affected

from this closure may still be operated by rescheduling

the departure times or increasing their cruise speeds.

Time windows of such flights are updated. The pro-

cedure to identify whether a flight node f is directly

affected from airport closures or not, and to update its

parameters accordingly, is presented next

• For each a ∈ D[ac]

—If Ori f � a, SDT f > STa and DT f < ETa , then

D[c] � D[c] ∪ f ;
—IfDes f � a, AT f > STa and AT f <ETa , then D[c]�

D[c] ∪ f ;
—If Ori f � a ,SDT f < STa and DT f > STa , then

DT f � STa ;

—If Ori f � a ,SDT f < ETa and DT f > ETa , then

SDT f � ETa ;

—If Des f � a ,AT f < STa and AT f > STa , then

AT f � STa ;

—If Des f � a ,AT f < ETa and AT f > ETa , then

AT f � ETa .

In the first two conditions, the flights that need to

be canceled are identified. The third condition identi-

fies flights which are scheduled to depart prior to the

closure of their origins. The update DT f � STa ensures

that if departure times of these flights are postponed,

they do not depart during closure. In the last condition,

we identify the flights for which ending time of closure

of the destination airport falls within the arrival time

slots. By updating AT f �ETa , it is guaranteed that they

do not arrive during closure. Note that flights between

two closed airports may be marked to experience both

a cancellation and a time window change, in which

case the flight is canceled.

Given the network representation, the aim of the dis-
ruption management problem is to find theminimum-cost

flow of entities from their source nodes to their sink

nodes provided that must-visit nodes will be visited

by corresponding entities. Optimal flows of the pro-

posed network correspond to optimal recovery deci-

sions over a solution space including the following

recovery actions: departure delaying, flight cancella-

tion, aircraft and crew swapping, aircraft and crew

rerouting, aircraft ferrying, crew deadheading, passen-

ger reaccommodation, ticket cancellation, and cruise

speed control.

2.3. Numerical Example
We illustrate the problem representation on a small-

sized numerical example. The flight schedule of an

airline within the recovery horizon is tabulated in

Table 1. The abbreviations Nb, SDT, SAT, Dist, and Nb

Pass are used to refer to number, scheduled departure

time, scheduled arrival time, distance, and number

of passengers, respectively. The abbreviations ORD,

DCA, DFW, LAX, and MSP correspond to Chicago

O’Hare International Airport, Ronald Reagan Wash-

ington National Airport, Dallas/Fort Worth Interna-

tional Airport, Los Angeles International Airport, and

Minneapolis–Saint Paul International Airport, respec-

tively. All departure and arrival times presented in the

table are converted to the local time at airport ORD.

Three aircraft and four crew teams are involved in the

problem. In this example, we assume that each flight

is operated by a crew team; however, the proposed

approach can handle different requirements. All these

entities are assumed to be located at the origin of their

first scheduled flights at 5:30. Minimum required con-

nection time is set to 30 minutes for all types of enti-

ties. Latest departure (arrival) times of flights are set

to two hours after their scheduled departure (arrival)

times. These limitations may depend on the available
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Table 1. Original Flight Schedule of the Example

Tail Nb Flight Nb Crew Id From To SDT SAT Cruise time Dist Nb pass

N322AA 1 C1 ORD DCA 5:30 7:10 70 610 126

2 C1 DCA ORD 7:50 9:30 70 610 149

3 C1 ORD DFW 10:00 12:20 110 800 111

4 C1 DFW ORD 13:00 15:20 110 800 166

5 C2 ORD DCA 16:30 18:10 70 610 153

N345AA 6 C3 LAX ORD 6:00 9:40 190 1,745 170

7 C3 ORD MSP 12:00 13:10 40 335 172

8 C3 MSP ORD 14:00 15:10 40 335 135

9 C1 ORD LAX 16:00 19:40 190 1,745 139

N5FCAA 10 C4 DCA ORD 9:00 10:40 70 610 170

11 C4 ORD MSP 11:10 12:20 40 335 196

12 C4 MSP ORD 13:00 14:10 40 335 200

13 C3 ORD DCA 16:00 17:40 70 610 154

time slots and/or the airline policy. Scheduled flights

of crew teams C1–C4 are 1-2-3-4-9, 5, 6-7-8-13, and

10-11-12, respectively. The aircraft with tail numbers

N322AA and N345AA have a seat capacity of 180,

while the seat capacity of N5FCAA is set to 210.

The original routing of N322AA is 1-2-3-4-5. How-

ever, itmaybe rerouted throughmany alternative paths

to reachDCA fromORD. For instance, itmay only oper-

ate flight 1 in cases of severe disruptions, or follow the

path 1-2-5 if flight 3 or 4 is canceled. Moreover, the air-

craft may operate the flights scheduled for any other

aircraft, i.e., it can follow the path 1-10-11-12-5. On the

other hand, only a subset of flight nodes and connec-

tions can be used by this entity to construct a feasi-

ble path from its origin to its destination. For instance,

flight 6 cannot be operated by N322AA since the air-

craft is located at ORD at 5:30 and even if it is ferried, it

cannot arrive at LAX before the latest departure time of

this flight which is 8:00. The part of the proposed net-

work related to N322AA is given in Figure 3. This par-

tial network is able to generate all possible flight paths

for the particular entity with an additional external

arc (dashed) corresponding to ferrying action. In Sec-

tion5.1,wehighlight the importanceofpartial networks

Figure 3. (Color online) Partial Network of Aircraft N322AA

1

2

7

3 4 5

8

10 11 12 13

sN322AA tN322AA

for tractability of the optimizationmodel. To reduce the

problemsizewithout sacrificingoptimality,wepropose

to generate partial networks of all entities.

In Figure 4, an example of a partial crew network

associated with C3 is illustrated. The original schedule

of C3, which is transported from LAX to DCA, is 6-7-

8-13. All possible paths such as 6-7-12-13 or 6-13 can

be generated through this network with an additional

external arc for deadheading. Consider the flight con-

nection arc between flights 7 and 12, which is infeasible

in the original schedule. The scheduled arrival time of

flight 7 is 13:10 while the scheduled departure time

of flight 12 is 13:00. However, there exists a possibil-

ity to provide the required connection time between

these flights by holding the departure time of flight 12

and speeding up flight 7. Therefore, we include this

connection in our solution space as well. Although we

have illustrated a single external arc for ferrying and

deadheading in Figures 3 and 4, respectively, we note

that partial networks include external arcs from source

to flight nodes, from flight nodes to flight nodes, and

from flight nodes to sink node.

In this example, there exist 13 single-flight itin-

eraries corresponding to each scheduled flight, and
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Figure 4. (Color online) Partial Network of Crew Team C3

6

7

11

8

12

5

13

sc3 t c3

6 two-flight itineraries. All itineraries and number

of assigned passengers are tabulated in Table 2. The

abbreviation Itin. corresponds to itinerary, and each

itinerary is designated by the sequence of flight num-

bers. An example of a partial passenger network for

itinerary 2-7 is illustrated in Figure 5. The external arc

from source to sink corresponds to ticket cancellation,

while the other one from 2 to the sink corresponds

to reallocating this passenger to other means of trans-

portation at ORD.

In the disruption scenario, flight 1 experiences a de-

parture delay of 90minutes, i.e., it cannot depart before

7:00. This disruption is handled by updating the sched-

uled departure time of flight 1.

Note that without rerouting options, 90 minutes’

delay in flight 1 would propagate through the down-

stream flights of aircraft N322AA and through those

of crew team C1. In the optimal solution of this exam-

ple, aircraft N322AA follows the path s-1-10-11-12-13-t
while the path of aircraft N5FCAA is s-2-3-4-5-t. Since
N5FCAA is available at DCA at 7:50, flight 2 does not

wait for the arrival of the delayed flight. This swap

action mitigates the downstream effect of the delay of

flight 1. Since destinations of both flights 13 and 5 are

DCA, each aircraft is positioned at their expected loca-

tions by the end of the recovery horizon.

Crew rerouting actions are more complicated in this

example. Note that the crew team that is originally

assigned to flight 2 (C1) also operates flight 1. Since

flight 2 does not wait for the arrival of flight 1, flight 2

is assigned to another crew team. In this example,

we assume that each crew team can operate each of

the flights; however, such technical limitations can be

inserted in the proposed approach. In the optimal solu-

tion, crew team C1, which is originally located at ORD

Table 2. Numbers of Passengers in Passenger Itineraries

Itin. Nb pass Itin. Nb pass Itin. Nb pass Itin. Nb pass

1 126 4 166 7 67 10-11 91

2 51 5 88 8 70 11 105

2-3 53 6 55 8-5 65 12 200

2-7 45 6-7 60 9 139 13 99

3 58 6-13 55 10 79

Figure 5. (Color online) Partial Network of Passengers in

Itinerary 2-7

2

10

7

11

s2-7 t 2-7

and needs to arrive at LAX, operates only flight 9. Crew

team C2 operates flights 1-10-7-8-13 and reaches its

destination (DCA). Flights 6-11-12-5 are operated by

C3 with an origin-destination pair LAX-DCA. Finally,

flights 2-3-4 are operated by C4. Note that C4 is avail-

able in DCA at 7:50, and therefore, flight 2 is not

delayed. Also note that a delay can still propagate

through the arc 1-10 that is used by crew team C2.

Without speeding up, flight 1 would arrive at 8:40.

Therefore, C2 would be ready for flight 10 at 9:10

because of minimum connection time requirements,

while the scheduled departure time of flight 10 is 9:00.

Allowing interfleet reassignments has two conse-

quences. First, the speed capabilities of different air-

craft may vary and this affects the maximum amount

of compression of flights; consequently, additional fuel

costs are incurred because of the speed increases.

In this example, we have assumed that each aircraft

has similar speed capabilities. In the optimal solu-

tion, flight 1 is compressed by seven minutes for both

decreasing the arrival delay of this flight and prevent-

ing propagation through the connection 1-10. With the

given departure delay and seven minutes of compres-

sion, flight 1 departs at 7:00 and arrives at 8:33. Then,

as a result of the connection 1-10 used by C2, flight 10

with a scheduled departure time of 9:00 departs at 9:03.

In the optimal solution, the speed of this flight is also

increased so that it arrives on time at 10:40.

Second, the seat capacities of aircraft may be differ-

ent and interfleet swaps may result in shortages. In

this example, shortages may occur in flights 10, 11,

12, and 13 since the seat capacities of these flights

are reduced by 30 seats after the swap action. When

we analyze passenger assignments, we observe that

flights 11 and 12 will have shortages of 16 and 20 seats,

respectively. In Figure 5, it can be seen that 10-7 is

an alternative path for passengers in itinerary 10-11.

However, there are only eight empty seats available

in flight 7. Therefore, eight passengers of itinerary

10-11 are rerouted through path 10-7 and arrive at

MSP. However, since flight 7 arrives at 13:10, these pas-

sengers experience 50 minutes of arrival delay. The
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remaining eight passengers are transported through an

external arc. Finally, 20 passengers of itinerary 12 are

assigned to flight 8 with a 60-minute delay.

This example illustrates the complexity of the prob-

lem due to the interrelation among entity types and the

necessity of an integrated approach. Moreover, we try

to illustrate how passengers in an itinerary may be sep-

arated to different paths, and how cruise speed control

can be integrated with other recovery actions.

3. Mathematical Formulation
The constraints will be constructed in five groups and

calculation of cost terms will be explained after the

constraints.

3.1. Flow Balance Constraints
The decision variable xr

fg equals one if entity r flows

through arc ( f , g), and zero otherwise. Flow balance is

satisfied by Equation (2)∑
f : ( f , g)∈¡

xr
fg −

∑
h: (g , h)∈¡

xr
gh � Dr

g r ∈ R, g ∈® . (2)

3.2. Node Closure Constraints
To operate a flight, operating entities should be as-

signed. For instance, a flight may require an aircraft

and a crew team to be operated. We define subset

TOP ⊆ T as the set of operating entity types and the

parameter Reqt
f as the number of entities of type t

needed to operate flight f . The decision variable z f
equals one if flight f is canceled (or node f is closed),

and zero otherwise. Recall that F ⊂® is the set of flight

nodes. Constraint (3) provides that a flight will be can-

celed if the required number of operating entities does

not flow through the corresponding flight node. Con-

straint (4) guarantees that other entities cannot flow

through a closed flight node as well∑
r∈Rt

( ∑
g: ( f , g)∈¡

xr
fg

)
� (1− z f )Req t

f t ∈ TOP , f ∈ F, (3)∑
g: ( f , g)∈¡

xr
fg ≤ (1− z f ) t ∈ T\TOP , r ∈ Rt , f ∈ F. (4)

3.3. Flight Time Constraints
The flight time of a flight node depends on the type of

assigned aircraft. Moreover, flight time can be reduced

to some extent by increasing the speed of the assigned

aircraft. Let nonnegative continuous decision variables

dt f and at f represent the actual departure and arrival

time of flight f , respectively, where dt f ∈ [SDT f ,DT f ]
and at f ∈ [AT f ,AT f ]. Note that the value of AT f when

cruise speed is utilized is less than or equal to that

when cruise speed control is not used (recall the dis-

cussion on AT f at the end of Section 2.1), resulting in

a larger solution space. Finally, let nonnegative contin-

uous variable δt f be the amount of cruise time com-

pression of flight f , and Rac
be the set of aircraft. Then,

the relation between actual departure and arrival time,

and compression is constructed with Equation (5)

at f � dt f +
∑
r∈Rac

( ∑
g: ( f , g)∈¡

xr
fg

)
FT r

f − δt f f ∈ F. (5)

Note that δt f ≥ 0 means that the proposed model

allows speed increases but not speed decreases. Al-

though it is not very likely, we would like to note that

reducing the cruise speed may be advantageous in cer-

tain cases of multiple airport closures.

3.4. Arc Feasibility Constraints
We have four constraints to construct arc feasibility

such that each corresponds to a different operational

rule.

3.4.1. Arcs Emanating from Source Nodes. These arcs

end in flight nodes that may be assigned to an entity as

its first flight in the recovered schedule. An entity will

use one of these arcs and reach its first flight node, say

f
first

. In this case, f
first

needs to wait for the ready time

of this entity to depart. Therefore, we need a constraint

to ensure that the entity is available at the departure

time of its first flight. However, only a subset of these

arcs are critical for feasibility. They are defined as the

set of departure-critical arcs, DCr � {(s r , g) ∈A: SDTg <
DT r}, and the constraint for each entity r is defined

over DCr
in (6)

dtg ≥ DT r xr
sr g r ∈ R, (s r , g) ∈ DCr . (6)

3.4.2. Arcs Incoming to Sink Nodes. Similarly, the last

flight assigned to entity r cannot arrive later than

the latest arrival time of the entity, AT r
, to catch up

with the original schedule. Constraint (7) is limited

to the arrival-critical arcs for entity r, ACr � {( f , t r) ∈
A: AT f > AT r}

at f ≤ AT f + [AT r −AT f ]xr
f tr r ∈ R, ( f , t r) ∈ ACr . (7)

3.4.3. Intermediate Arcs. Intermediate arcs consist of

arcs between two flight nodes, and arcs between a

flight node and a must-node. If there is a positive flow

of entity r between nodes f and g, minimum con-

nection time, CT r
fg, should be provided between these

flights. A set of connection-critical arcs for entity r is

defined as CCr � {( f , g) ∈¡: f , g ∈ F∪M,AT f +CT r
fg >

SDTg}, and the connection time rule is modeled with

Constraint (8)

dtg ≥ at f +CT r
fgxr

fg −AT f (1− xr
fg) r ∈ R, ( f , g) ∈ CCr .

(8)

Note that when entity r does not use the connection-

critical arc ( f , g), this constraint is relaxed, since it

reduces to inequality dtg ≥ at f − AT f , the right-hand

side of which is always nonpositive (at f ∈ [AT f ,AT f ]).
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3.4.4. Arcs Emanating from or Incoming to Must-
Nodes. Recall that must-nodes represent restrictions

of entities. Therefore, entities with such restrictions

should visit these nodes as formulated in Constraint (9)∑
g: (m , g)∈¡

xr
m g � 1 r ∈ R,m ∈Mr . (9)

Constraint (9) is associatedwith scheduled restrictions,

and hence, assumes that must-nodes have rigid loca-

tions and periods. However, in cases of disruptions,

there may be multiple maintenance stations available.

In these situations, this assumption can be relaxed. For

instance, consider aircraft r that is required to visit one

of the available stations during the recovery horizon. In

this case, a must-node can be included in the network

corresponding to eachmaintenance station. Letting
¯Mr

be the set of these must-nodes, this requirement for air-

craft r can be modeled by changing constraint (9) by∑
g: (m , g)∈¡ xr

m g � 1,m ∈ ¯Mr
.

3.5. Aircraft Properties
Some properties of flights depend on the type of

assigned aircraft if interfleet aircraft-flight assignments

are allowed. Otherwise, these properties would be con-

stant. The first such property is the seat capacity. Let

SCAPr
be the seat capacity of aircraft r ∈ Rac

. The left-

hand side of constraint (10) is the number of passengers

assigned to flight f . This number is limited by the seat

capacity of the assigned aircraft (right-hand side)∑
r∈Rps

∑
g: ( f , g)∈¡

xr
fg ≤

∑
r∈Rac

∑
g: ( f , g)∈¡

xr
fgSCAPr f ∈ F. (10)

The second property is the limitation on cruise

speed. Each aircraft type may speed up to differ-

ent extents for a particular flight. Maximum cruise

speed can be determined by technological constraints

or airline policy. This limit can be expressed with an

upper bound on cruise speed or equivalently on cruise

time compression. We define ∆T r
f to be the maximum

amount of decrease in cruise time of f if it is operated

by aircraft r. The cruise time compression variable is

bounded by constraint (11)

δt f ≤
∑
r∈Rac

∑
g: ( f , g)∈¡

xr
fg∆T r

f f ∈ F. (11)

3.6. Aircraft and Crew Compatibility
Crew members cannot operate all types of aircraft in

the fleet. We define Rac(r) ⊆ Rac
as the set of aircraft

that crew member r ∈ Rcr
is eligible to operate. Con-

straint (12) guarantees that the aircraft and crew mem-

bers assigned to all flights are compatible

xr
fg ≤

∑
s∈Rac (r)

xs
fg ( f , g) ∈¡, r ∈ Rcr . (12)

3.7. External Arc Costs
We define tc[e] to be the total cost of flow on exter-

nal arcs. Recall that tc[e] represents the sum of costs

of actions such as ferrying aircraft, deadheading crew

members, ticket cancellations and allocating passen-

gers to other means of transportation, and ticket can-

cellation. Let C[e]e be the cost of unit flow on arc e. Then,
this cost term is evaluated in (13)

tc[e] �
∑
r∈R

∑
e∈Er

C[e]e xr
e . (13)

3.8. Flight Cancellation Costs
Let C[c]f be the flight cancellation cost of flight f . The
total flight cancellation cost of the solution, tc[c] is eval-
uated by (14)

tc[c] �
∑
f ∈F

C[c]f z f . (14)

Flight cancellation results in ticket cancellations or

rebooking of passengers.Moreover, it makes the sched-

uled routings of at least one aircraft and one crew

member infeasible. Therefore, the airline may need to

cancel other downstream flights or relocate entities.

These consequences are already modeled in the pro-

posed formulation as recovery actions. However, the

cost of canceling a flight is beyond these direct costs.

For instance, it results in passenger inconvenience and

a great disturbance in service quality. Moreover, it

increases the airline’s cancellation rate, which affects

passengers’ choices. Therefore, C[c]f should correspond

to these indirect costs.

3.9. Additional Fuel Costs
An aircraft is most fuel efficient at its maximum range

cruise (MRC) speeds. Fuel consumption is convex and

strictly increasing at cruise speeds greater than the

MRC speed. However, airlines may still operate their

flightswith higher speeds because of time and schedul-

ing considerations. We refer the users to the techni-

cal reports (Airbus 2004 and Boeing 2007) for detailed

analysis on the trade-off between the variable fuel

and time related costs depending on cruise speed and

time. Considering downstream effects of disruptions

and recovery actions on all types of entities, we have

already modeled time related costs without isolating

the decision to a single flight. Therefore, we require

an expression for calculating the fuel consumption of

flights to model the trade-off between disruption and

recovery costs with the increased fuel cost in the air-

line recovery context. We integrate the approach pro-

posed by Aktürk, Atamtürk, and Gürel (2014) in our

proposed network representation. Based on the fuel

flow model developed by the BADA project of EURO-

CONTROL, the air traffic management organization

of Europe (EUROCONTROL 2009), Aktürk, Atamtürk,

and Gürel (2014) formulate the total fuel consumption
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as a function of speed. Let fc f r(v f r) equal the fuel con-

sumption (kg) of flight f if it is operated by aircraft r
at cruise speed v f r (km/min) in the recovered sched-

ule, and equal zero otherwise. Nonnegative continu-

ous decision variable v f r equals zero if flight f is not

assigned to aircraft r, or takes a value between V f r and

¯V f r , which corresponds to the cruise speed of aircraft r
for flight f and the maximum cruise speed of aircraft r
for flight f , respectively. Finally, let y f r be equal to one

if flight f is assigned by aircraft r, and zero otherwise.

Then, fc f r can be calculated as follows:

fc f r(v f r)�


d f

(
cr1

v2

f r + cr2
v f r +

cr3

v2

f r

+
cr4

v3

f r

)
if y f r �1

0 otherwise,
(15)

where d f is the distance flown at the cruise stage

of flight f , and parameters cri , i � 1, . . . , 4 depend on

several factors such as aircraft specific drag and fuel

consumption coefficients, air density at a given alti-

tude, and gravitational acceleration. These parameters

can be obtained from the BADA user manual (EURO-

CONTROL 2012). Then, scheduled fuel consumption

of flight f is expressed as FC f � fc f r f
(V f r f
), where r f

is the aircraft that is originally scheduled to operate

flight f .
The integration of the proposed network represen-

tation and the fuel consumption function proposed

by Aktürk, Atamtürk, and Gürel (2014) is through the

variable δt f and constraint (5). Assuming that the dis-

tance flown at cruise stage, d f , is fixed, the cruise time

of flight f if assigned to aircraft r can be expressed as

crt f r � d f /v f r . Using this relation, the scheduled cruise

time of flight f can be expressed as CRT f � d f /V f r f
.

Note that δt f equals the difference between CRT f and

crt f r′ where r′ is the aircraft operating flight f in the

recovered schedules. These relations and the addi-

tional fuel cost of the recovery actions can be formu-

lated with the following constraints:

y f r �
∑

g: ( f , g)∈¡
xr
fg f ∈ F, r ∈ Rac , (16)

y f rV f r ≤ v f r ≤ y f r
¯V f r f ∈ F, r ∈ Rac , (17)

crt f r ≥ 0 f ∈ F, r ∈ Rac , (18)

crt f r v f r � d f y f r f ∈ F, r ∈ Rac , (19)

δt f �CRT f −
∑
r∈Rac

crt f r f ∈ F, (20)

fc f r � y f r d f

(
cr1

v2

f r + cr2
v f r +

cr3

v2

f r

+
cr4

v3

f r

)
f ∈ F, r ∈ Rac ,

(21)

tc[ f ] � C[ f ]
∑

f

(∑
r∈Rac

fc f r −FC f

)
f ∈ F, r ∈ Rac , (22)

where C[ f ] is the jet fuel price per kg. The conic

quadratic reformulation scheme to handle nonlinear-

ity in constraints (19) and (21) will be discussed in

Section 4.

3.10. Passenger Delay Costs
Passenger delay cost includes cost of goodwill loss, and

hence, is difficult to calculate in practice. A straight-

forward calculation method used in many studies is to

use a continuous linear delay cost function by utiliz-

ing delay cost per passenger per minute. On the other

hand, there is also a belief that the relation between

goodwill loss and the amount of delay is nonlinear;

and hence, a piecewise linear cost function would be

more appropriate. As a result of the complexity of

the problem, approximate delay costs are utilized in

the literature. In this study, we model and experiment

approximate and exact delay cost calculation methods

for both linear and piecewise linear functions.

3.10.1. Linear Function with Flight Delay Approxima-
tion. Passengers may arrive to their destinations

through a set of possible alternative flights as a result

of rerouting decisions. Therefore, each possible final

flight for a passenger should be investigated to cal-

culate the actual delay, which increases complexity.

A common approximationmethod is to use flight delay

instead of using actual delay of individuals. Number

of passengers that arrive at their destinations through

flight f in the original schedule is designated by Narr

f .

Letting Nbr
be the number of passengers in itinerary r,

Narr

f is calculated as follows:

Narr

f �
∑

r∈Rps
:Desr

�Des f

Nbr .

Total passenger delay cost, tc[pd]
, is approximated

with constraints (23) and (24), where the decision vari-

able delay f is the arrival delay of flight f and C[pd]
f is

the per minute delay cost of a passenger whose last

scheduled flight is f

delay f ≥ at f −SAT f f ∈ F, (23)

tc[pd]
�

∑
f ∈F

Narr

f C[pd]
f delay f . (24)

3.10.2. Piecewise Linear Function with Flight Delay
Approximation. In this method, a convex piecewise

linear delay cost function is used instead of a linear

function. An example of a function is presented in Fig-

ure 6. For flight f , the function is defined by delay

points D f , i (D f , 0 � 0) and corresponding delay costs

C[pd]
f , i (C

[pd]
f , 0 � 0), where I f is the number of points that

the function changes its slope. Let continuous decision

variable delayi
f be defined over [0,1] for each interval i
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Figure 6. A Convex Piecewise Linear Passenger Delay Cost

Function

Delay

Delay cost per passenger

Cf,1
[pd ]

Cf,2
[pd ]

Cf,3
[pd ]

Df,1 Df,2 Df,3

of flight f . Total passenger delay cost is approximated

with constraints (25)–(27)

I f∑
i�1

(D f , i −D f , i−1
)delayi

f ≥ at f −SAT f f ∈ F, (25)

delayi
f ≥ delay

i+1

f f ∈ F, i � 1, . . . , I f − 1, (26)

tc[pd]
�

∑
f ∈F

Narr
f

I f∑
i�1

(C[pd]
f , i −C[pd]

f , i−1
)delayi

f . (27)

3.10.3. Linear Function with Actual Passenger Delay.
In the last two methods, we propose actual passenger

delay cost formulations. These formulations consider

both rerouting decisions of passengers and realized

arrival times of flights to evaluate exact passenger

delays. Let C[pd]
r be the per minute delay cost of pas-

senger r and the decision variable delayr be the real-

ized delay of this passenger. Then, the total linear delay

cost of passengers with actual delays is calculated with

constraints (28) and (29), where SATr
is the scheduled

arrival time of passenger r

delayr ≥ at f −SATr − (AT f −SATr)(1− xr
f tr )

r ∈ Rps , f ∈ F 3 ( f , t r) ∈¡, (28)

tc[pd]
�

∑
r∈Rps

C[pd]
r delayr . (29)

3.10.4. Piecewise Linear Function with Actual Passen-
ger Delay. A piecewise convex linear delay cost func-

tion can be defined for each passenger in a similar

manner. Let Dr, i be the delay points that the func-

tion changes its slope (Dr, 0 � 0) and C[pd]
r, i be the cor-

responding delay costs (C[pd]
r, 0 � 0) where there are Ir

such points for passenger r. The continuous decision

variable delayi
r ∈ [0, 1] is defined for each interval i and

the total passenger delay cost is calculated with con-

straints (30)–(32)

Ir∑
i�1

(Dr, i −Dr, i−1
)delayi

r

≥ at f −SATr − (AT f −SATr)(1− xr
f tr )

r ∈ Rps , f ∈ F 3 ( f , t r) ∈¡, (30)

delayi+1

r ≥ delay
i
r r ∈ Rps , i � 1, . . . , I f − 1, (31)

tc[pd]
�

∑
r∈Rps

Ir∑
i�1

(C[pd]
r, i −C[pd]

r, i−1
)delayi

r . (32)

3.11. Original Flight Paths
The preceding constraints do not have information

about the scheduled flight paths of entities. Since there

exists a large number of flight paths that an entity

can follow through the flight network, entities may be

rerouted without causing flight cancellations or arrival

delays even if these rerouting decisions are not related

to the disruption. However, it is desirable for enti-

ties to use their scheduled routings unless rerouting

helps mitigate the disturbances of the disruptions. This

desired behavior can be guaranteed by adding a small

negative cost to the objective function for each entity

flowing through each of its scheduled arcs. Let SAr ⊆A
be the set of scheduled arcs for entity r, and εr < 0 be

the coefficient corresponding to negative of the ben-

efit of following the original schedule. The absolute

value of this coefficient needs to be sufficiently small to

not affect the optimal recovery decisions. On the other

hand, any strictly negative cost coefficient will guaran-

tee that all entities will follow their original schedules if

there is no disruption, since with the described arc cost

assignment, this problem has a unique optimal solu-

tion. Therefore, εr can comfortably be assigned to $1 for

aircraft and crewmembers and to $0.01 for passengers.

The total benefit of following the original schedules,

tc[op]
, is calculated as follows:

tc[op]
�

∑
t∈T

∑
r∈Rt

∑
( f , g)∈SAr

εr xr
fg. (33)

3.12. Mathematical Model
The complete mathematical formulation is given next

Minimize tc[e] + tc[c] + tc[ f ] + tc[pd]
+ tc[op]

subject to (2)–(14), (16)–(22),
(23)–(24), or (25)–(27), or (28)–(29),

or (30)–(32).

The proposed formulation is a mixed integer non-

linear programming model where the nonlinearity is a

result of constraints (19) and (21) that are used tomodel

the trade-off between reduced disruption and recovery

costs by reducing cruise times, and additional fuel cost.

In Section 4, wewill reformulate the problem as a conic

quadratic mixed integer programming problem.

4. Conic Quadratic Reformulation
In the conic quadratic reformulation of the proposed

mixed integer nonlinear programming model, we fol-

low the propositions of Aktürk, Atamtürk, and Gürel

(2014). For the sake of simplicity, we drop aircraft

and flight indices from nonlinear constraints (19)
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and (21). Constraint (19) evaluates fuel consumption

with respect to cruise speed and flight-aircraft assign-

ment variables. This equality is equivalent to the fuel

consumption function given in (15) since y f r can only

take values zero or one. In Proposition 1 in Aktürk,

Atamtürk, and Gürel (2014), the authors show that

the convex hull of the epigraph of this function EF �

{(v , t) ∈ R2

: fc(v) ≤ t} can be expressed as

t ≥ d(c
1
τ

1
+ c

2
v + c

3
τ

3
+ c

4
τ

4
),

v2 ≤ τ
1
y ,

y4 ≤ τ
3
v2 y ,

y4 ≤ τ
4
v3 ,

in the constraint set, and the last three inequalities can

be represented by conic inequalities. With the findings

of this proposition, constraint (19) can be substituted

by the following constraints:

fc ≥ d(c
1
τ

1
+ c

2
v + c

3
τ

3
+ c

4
τ

4
), (34)

v2 ≤ τ
1
y , (35)

y2 ≤ wv , (36)

w2 ≤ τ
3
y , (37)

w2 ≤ τ
4
v , (38)

where τ
1
, τ

3
, τ

4
, and v are nonnegative continuous

variables. Note that when y � 1, these constraints are

reduced to τ
1
≥ v2

, τ
3
≥ w2 ≥ v−2

, and τ
4
≥ w2v−1 ≥ v−3

.

Since fc is increasing in each τ
1
, τ

2
, and τ

3
, and the

objective function is increasing in fc, the following will

hold for every optimal solution to the proposed model:

τ
1
� v2

, τ
3
� v−2

, τ
4
� v−4

, and fc � d(c
1
τ

1
+ c

2
v + c

3
τ

3
+

c
4
τ

4
). Therefore, fc corresponds to the fuel consump-

tion defined in (15) for y � 1. On the other hand, when

y � 0, the value of v will be forced to be zero by con-

straint (17), while the variables τ
1
, τ

3
, and τ

4
will be

free to take any nonnegative value. As a result of con-

straint (34) and the objective function, the values of

these variables will be set to zero as well at optimal-

ity. Therefore, the fuel consumption function (15) holds

again for y � 0.

Constraint (21) constructs the relation between the

cruise time and the cruise speed of a flight. The follow-

ing inequality presented in Proposition 2 in Aktürk,

Atamtürk, and Gürel (2014):

dy ≤ v · crt,

holds for every optimal solution to the proposedmixed

integer nonlinear programming model. When y � 1,

since fuel consumption is increasing in v for v ≥V , v �

d/crt holds. On the other hand, when y � 0, the value

of v will be forced to be zero by constraint (17), and

the equality holds again. Moreover, exploiting the fact

that y can only take values zero or one, this inequality

can be represented by the following conic quadratic

inequality:

dy2 ≤ v · crt. (39)

Therefore, the mixed integer nonlinear program-

ming model presented in Section 3 can be reformu-

lated as a conic quadratic mixed integer programming

(CQMIP) problem. The modified model with a linear

objective function, and linear and conic quadratic con-

straints can be handled by fast algorithms of commer-

cial CQMIP solvers.

5. Preprocessing
As mentioned previously, flight networks are large,

and quick solutions are required in disruptionmanage-

ment. Therefore, it is important to eliminate unneces-

sary variables and constraints without sacrificing opti-

mality. In this section, we describe two preprocessing

methods. In the partial network approach, we propose

an algorithm to obtain the partial networks of entities.

The partial network of an entity is a subset of the com-

plete network that excludes nodes and arcs that will

not be visited by the entity. Therefore, we can reduce

the number of variables and constraints significantly.

In the second method, we propose an entity aggrega-

tion rule without losing any information and sacrific-

ing optimality.

5.1. Partial Networks
The partial network approach aims to identify and

eliminate infeasible recovery actions from the solution

space. In particular, we aim to isolate the related por-

tion of the network, named as the partial network, for

each entity. The partial network of an entity is able

to generate all possible recovery actions, while it does

not include any flight node or connection arc that will

not be used by the entity. Therefore, partial networks

provide a compact representation of the problem. The

interdependencies among the recovery actions of dif-

ferent entity types are maintained through the com-

mon flight nodes.

A partial network of entity r, Gr � (® r ,¡r), is de-

fined as the subset of the complete network, G� (® ,¡),
which includes the source and sink nodes (s r

, t r
), and

must-visit nodes (Mr
) of the entity together with the

flight nodes that it can visit in a feasible solution. The

idea is to reduce the number of flow variables using

the fact that not all arcs can be used to transport a

particular entity from its origin to its destination. For

instance, consider an entity whose destination is LAX

and its latest arrival time is 17:00 (GMT). Then, a flight

fromORD to DFWwith an earliest arrival time of 17:00

(GMT) is irrelevant to this entity, as well as all arcs

incoming to and outgoing from this node. We propose

the PNGA for efficiently generating the partial network

of an entity which is capable of generating all feasible
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paths that can be used by the entity to reach its destina-

tion, and does not include any flight nodes that would

not be visited.

The steps of the algorithm for entity r are given in

Algorithm 1. The algorithm starts with an empty net-

work. The partial network for r is obtained in line 3 by

calling GeneratePath subprocedure with N temp � {s r},
where s r

defines the initial state of the entity. We use

a temporary path, termed as N temp

, that is updated

throughout the algorithm. Finally, external arcs related

to entity r are included in line 4 and the partial network

is returned.

Algorithm 1 (Partial network generation algorithm)

1: Procedure PNGA(r)
2: Initialization: ® r ��,Ar ��,N temp � {s r}
3: Gr � (® r ,Ar)← GeneratePath(N temp

)

4: Ar←Ar ∪Er

5: return Gr � (® r ,Ar)
6: end procedure
7: Procedure GeneratePath(N temp

)

8: f ← last element of N temp

9: if Des f �Desr
and return to destination is

not allowed then
10: exit procedure
11: else
12: Nnext←{g ∈ F: Orig �Des f and

SDTg ≥ AT f +CT r
fg}

13: for each g ∈ Nnext do
14: N temp←N temp ∪ {g}
15: if g ∈® r then
16: Insert(N temp

)

17: else
18: if Des f �Desr then
19: Insert(N temp ∪ {t r})
20: end if
21: GeneratePath(N temp

)

22: end if
23: end for
24: end if
25: end procedure
26: Procedure Insert(N temp

)

27: ® r←® r ∪N temp

28: Let fi be the ith element of N temp

29: for i � 1 to |N temp | − 1 do
30: Ar←Ar ∪ { fi , fi+1

}
31: end for
32: end procedure

GeneratePath subprocedure starts with a temporary

path, N temp

, and tries to connect a flight to the final

flight of this path. Subprocedure stops at line 10 if the

desired destination is reached and return to destination

is not allowed. Returning to destination is not allowed

for passengers, while it is allowed for aircraft and crew

members. For instance, the pathORD-DCA-DFW-DCA

would not be realistic if the entity in consideration is a

passenger that will be transported from ORD to DCA.

If the destination has not been reached yet (or the entity

may leave and return to its destination), Nnext

is created

in line 12, which is the set of candidate flights that

can be connected to the last flight of the temporary

path. The stopping condition in line 15 is crucial for the

efficiency of the algorithm. If a flight is already inserted

in the partial network of the entity (g ∈® r
), we are sure

that all subpaths emanating from this node to the sink

have already been discovered. Therefore, N temp

can be

inserted without any further search.

Insert subprocedure inserts the nodes and arcs in

the temporary set N temp

into the partial network of the

entity. Note that this subprocedure is called either in

line 16 or in line 19. In the latter one, the temporary

path is a complete path from the origin to the des-

tination of the entity. All nodes and arcs in the tem-

porary path are inserted into the partial network. On

the other hand, in the prior one, the temporary path is

connected to an already inserted node. Since we know

that there is a subpath from the already inserted node

(g) to the destination, the flights and connections in

the temporary path may exist in a feasible path. There-

fore, we insert the nodes and arcs of this subpath to

the network, as well. Since we do not insert the nodes

and arcs of any other path, the generated partial net-

work excludes all nodes and arcs that cannot be visited

by the entity through a feasible path. Figures 3–5 are

examples of partial networks of a complete network

that involves 13 flight nodes.

Let PA � {( f , g): Orig � Des f and SDTg ≥ AT f +

CT r
fg ,∀ f , g ∈ F} be the set of all potential flight con-

nection arcs. Note that the flight connections in the

ordered set N temp

are always included in PA because

of the definition of Nnext

(line 12). In other words, the

algorithm traverses the potential arcs in PA. The con-

dition in line 15 ensures that potential arcs are not

visited more than once. Therefore, the worst-case run-

ning time of the algorithm is polynomial in the number

of potential arcs, i.e., O(|PA|). Note that |PA| is signifi-
cantly smaller than |F |2 in airline networks as a result

of time and location constraints on the existence of the

arcs. For instance, a real airline network having 1,254

flight nodes has 273,372 potential arcs, which is signif-

icantly less than 1,254
2

.

The proposed optimization model is extended to the

partial network approach by defining xr
fg for ( f , g) ∈

Ar , r ∈ R, and substituting ® and A by ® r
and Ar

,

respectively, in all constraints. Using partial networks

of entities instead of the entire flight network provides

a more compact representation, while still being able

to generate all feasible solutions (since partial networks

are still integrated through the common flight node

set). Therefore, the partial network approach helps in
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keeping the problem size in reasonable limits. To illus-

trate the impact of the proposed approach, we use a

real airline network mentioned previously. The net-

work contains 1,254 flights operated by 402 aircraft.

There exists 55,482 arcs in the entire flight network,

while the average number of arcs in the partial air-

craft networks is 3,625.58. This means that the num-

ber of aircraft flow variables are reduced by a factor

of around 15. We observe a similar reduction factor

(around 16) for crew flow variables. Partial networks of

passengers are much smaller than those of aircraft and

crew members. Moreover, the number of passenger

itineraries is significantly greater than the number of

aircraft and crew members. Therefore, the impact of

the partial network approach is much greater. The

reduction factor is in tens of thousands for this net-

work. From this analysis, we conclude that the partial

network approach significantly reduces the problem

size for aircraft-and-crew recovery problems. Further-

more, integration of passenger recovery in real-sized

airline networks with the entire flight network repre-

sentation without using partial networks increases the

problem size significantly.

5.2. Entity Aggregation
Each individual (aircraft, crew member, and passen-

ger) is defined as an entity so far. By careful aggrega-

tion, the number of entities can be reduced. It is easy to

note that individuals of an aggregated entity need to

have exactly the same partial network to prevent any loss

of information. By this observation, we can extend the

rule for aggregation of entities as follows:

Aggregation Rule: Individuals with common ready

time, latest arrival time, origin, destination, connection

time between flights, must-visit nodes, technical prop-

erties (such as aircraft speed and seat capacity) and

delay cost parameters can be aggregated without sac-

rificing optimality.

The proposedmathematical formulation is extended

to handle entity aggregation by simple modifications.

Let r′ be defined as the aggregation of Nbr′
individ-

ual aircraft, crew members, or passengers. In original

formulation Nbr
, binary flow variables would be used,

while by entity aggregation they may be replaced by

a single integer flow variable, i.e., xr′
fg ∈ {0, 1, . . . ,Nbr′}.

Let R′ be the set of all entity aggregations. Then, the

mixed integer nonlinear programming can bemodified

by the following steps:

• Remove aggregated entities from the model: R �

R\{r ∈ R: r ∈ r′,∀ r′ ⊆ R′}, and setNbr
� 1 for all entities

that are not aggregated.

• Add entity aggregations to the model: R � R∪R′.
• Update parameter Dr

g as −Nbr
if g � s r

, Nbr
if g �

t r
, or 0 otherwise, in constraint (2).

• Update constraint (4) by multiplying the right-

hand side by Nbr
as follows:

∑
g: ( f , g)∈¡ xr

fg ≤ (1 − z f ) ·
Nbr , t ∈ T\TOP , r ∈ Rt , f ∈ F.

• Substitute one in the right-hand side of con-

straint (9) by Nbr
.

• For each entity aggregation r′ ∈ R′, define binary

variables ff r′

g (g ∈ DCr′), lf r′

f ( f ∈ ACr′), and conr′
fg

(( f , g) ∈ CCr′) to equal one if any one of the entities

within the aggregated set uses flight g as the first flight,

uses flight f as the last flight, and uses flight connec-

tion ( f , g), respectively; and equal zero otherwise. Add

the following constraints:

Nbr′ ff r′

f ≥ xr′
sr g , r′ ∈ R′, g ∈ DCr′ ,

Nbr′ lf r′

f ≥ xr′
f tr , r′ ∈ R′, g ∈ ACr′ ,

Nbr′conr′
f ≥ xr′

fg , r′ ∈ R′, ( f , g) ∈ CCr′ .

Then, substitute flow variable xr′
sr g , x

r′
f tr , and xr′

fg in

constraints (6)–(8) by ff r′

f , lf
r′

f , and conr′
f , respectively.

Note that Reqt
f equals one if t corresponds to aircraft

and equals the number of required crew members if it

corresponds to crewmembers. Therefore, constraint (3)

will still be valid. In other words, if two or more air-

craft are aggregated, they will flow through different

flight paths since constraint (3) ensures that at most

one aircraft can flow through a flight node. This con-

straint also maintains the validity of constraints (5),

(10), and (11). No further changes are required for the

conic quadratic reformulation.

It can be noted that passengers in an itinerary with

common delay cost parameters (in the same fare class)

can be aggregatedwithout violating the proposed rule.

However, for linear and piecewise cost functions with

actual passenger delay (Sections 3.10.3 and 3.10.4),

passengers should not be aggregated since the flow

variables are used as binary assignment variables in

constraints (28) and (30), respectively. Finally, we need

to note that individuals, which are aggregated, can still

be transported through different paths.

6. Controlling Problem Size
Solving the integrated recovery problem in real time is

challenging because of the complexity of the problem

and the size of the airline networks. We approach this

problem in two ways. First, we propose flight delay

approximations in Section 3.10 to reduce the prob-

lem complexity. Second, we propose to limit the scope

of recovery. Note that there exists a huge number of

rerouting alternatives of entities in the solution space

when dealing with large airline networks. Interdepen-

dencies among recovery actions of different entities

allow us to define a measure for the likelihood of the

connection arcs to be used in the optimal solution. The

proposed partial network representation allows for an

efficient method to obtain these measures, and hence,

to identify the connection arcs that are not likely to be

utilized. We propose the PSCA to control the problem
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size. The algorithm iteratively reduces the size of par-

tial networks by eliminating connection arcs that are

not likely to be used in the optimal solution. Since the

number of flow variables in the proposed optimization

model is equal to the number of arcs in the partial net-

works of entities, the algorithm is able to control the

problem size accurately.

Recall that G� (® ,A) corresponds to the entire flight
network, while Gr � (® r ,Ar) represents the partial net-
work of entity r. We use the following additional nota-

tion in PSCA:

¤: Set of disrupted flights.

SFr
: Set of flights that are originally

assigned to entity r.
SAr

: Set of arcs that are used in the

original flight path of entity r,
SAr ⊆ Ar

.

SAt : Set of all arcs that are used in the

original flight path of an entity of

type t, i.e., SAt �
⋃

r∈Rt
SAr

.

¯A � {( f , g): ( f , g) ∈ A or (g , f ) ∈ A}.
SAt � {( f , g): ( f , g) ∈ SAt or (g , f ) ∈ SAt}.

Gr∗ � (® r∗ ,Ar∗): Limited partial network of entity r
where ® r∗ ⊆® r

and Ar∗ ⊆ Ar
.

B: Maximum number of arcs to be

included in the limited partial

networks.

wat : Arc length of arc a ∈ ¯A for entity type

t; wat equals 0 if a ∈ SAt ; and 1

otherwise.

u f t(d): Shortest path distance from flight

node f to disrupted node d ∈¤
through network

¯G � (® , ¯A)with

respect to arc lengths wat .

u∗f t : Shortest path distance from flight

node f to the nearest disrupted node

in ¤ through network
¯G � (® , ¯A)

with respect to arc lengths wat .

vr
fg: A score for ( f , g) ∈ Ar

related with

the likelihood of being used in the

optimal recovery. Arcs with smaller

scores correspond to more preferred

arcs. Scores are calculated as follows:

vr
fg �

{
(u∗f t + u∗gt)/2, if either f or g ∈ F\SFr

0 otherwise

( f , g) ∈ Ar , r ∈ Rt , t ∈ T. (40)

PSCA follows an arc elimination procedure using arc

scores to assign a priority to arcs for elimination (arcs

with high scores are likely to be eliminated early). Note

that by the definition of vr
fg, the scores of arcs ema-

nating from the source node, entering the sink node,

or visiting a must-node, as well as those of the sched-

uled arcs and unscheduled arcs between two sched-

uled flight nodes are all zero. The output of PSCA

is the set of limited partial networks Gr∗
for all enti-

ties. Since partial passenger networks are smaller when

compared with those of aircraft and crew members,

and since we place a special emphasis on passenger

recovery, we do not limit the scope of passenger recov-

ery. In other words, we apply the algorithm to aircraft

and crew networks. Steps of the algorithm are pre-

sented in Algorithm 2.

Algorithm 2 (Problem size control algorithm)

1: Procedure PSCA

2: for each t ∈ {ac , cr} do
3: for each d ∈¤ do
4: Use a shortest path algorithm to calculate

u f t(d) for each flight node f
5: through network

¯G � (® , ¯A)with respect

to arc lengths wat .

6: end for
7: u∗f t←mind∈¤{u f t(d)} for each flight node f .
8: for each r ∈ Rt do
9: Update arc scores vr

fg using expression (40).

10: Gr∗ � (® r∗ ,Ar∗)←Gr � (® r ,Ar)
11: while |Ar∗ | > B do
12: a′← arg maxa∈Ar∗{vr

fg}
13: ArcElimination(Gr∗ , a′)
14: end while
15: end for
16: end for
17: end procedure
18: Procedure ArcElimination(Gr∗ , a′)
19: Ar∗←Ar∗\{a′}.
20: Let a′ � ( f ′, g′).
21: if � g ∈® r∗

such that ( f ′, g) ∈ Ar∗ then
22: NodeElimination(Gr∗ , f ′)
23: end if
24: if � f ∈® r∗

such that ( f , g′) ∈ Ar∗ then
25: NodeElimination(Gr∗ , g′)
26: end if
27: end procedure
28: Procedure NodeElimination(Gr∗ , f )
29: ® r∗←® r∗\{ f }.
30: for each arc a′ ∈ Ar∗

emanating from

or incoming to f do
31: ArcElimination(Gr∗ , a′)
32: end for
33: end procedure

Once the shortest path distances are calculated and

the arc scores are updated, the algorithm starts remov-

ing arcs from the partial networks until the number

of arcs is reduced to the desired value. The arcs to be

eliminated are selected with decreasing order of their

scores. Arc elimination is carried out by Arc Elimina-

tion subprocedure. Once an arc is removed from the

network, the subprocedure checks the start and end

nodes. Removal of the arcmay leave the start nodewith
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no emanating arcs. This means that the sink node of

the entity can no longer be reached from this node.

Similarly, if the end node is left with no incoming

arcs, this node can no longer be reached from the

source node of the entity. In either case, the discon-

nected node is removed from the network. NodeElim-

ination subprocedure removes the disconnected node

and recalls ArcElimination subprocedure to remove all

arcs incoming or outgoing from this node. There may

be several loops between the two subprocedures before

going back to themain procedure. This ensures that the

stopping condition in line 11 is never checked before

the connectivity of the network is maintained. There-

fore, all nodes and arcs in the resulting limited partial

network of an entity can be used through a flight path

(rerouting alternative) from its source to its sink node.

Nonzero scores of arcs are the average of the short-

est distances of its end nodes to the nearest disruption

nodes, u∗f t . Therefore, the value of u∗f t is critical in gen-

erating limited partial networks that are likely to con-

tain optimal recovery decisions. We have the following

property for u∗f t :

Property 1. u∗f t is the minimum number of entities of
type t, routings of which need to be altered to assign the
entity originally assigned to operate flight f to any of the
disrupted flights.

By the definition of the arc lengths wat , u∗f t is also

equal to the number of unscheduled arcs used in the

shortest path from f to the nearest disrupted node.

Note that the start and end nodes of an unsched-

uled arc are assigned to different entities. Therefore,

Property 1 states the equivalence between the mini-

mum number of original routings that will be altered

by assigning the entity that is originally assigned to

flight f to a disrupted flight, and the shortest path dis-

tance from f to the nearest disrupted flight using the

proposed arc lengths.

In other words, u∗f t is a measure of disturbance of

rerouting the scheduled entity of flight f to recover

from disruptions on the original schedules. This infor-

mation is very insightful in identifying good rerouting

Figure 7. (Color online) Entire Flight Network
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options. For instance, let flight f and a disrupted flight

d be scheduled for aircraft r. Then, for t � ac, the value
of u∗f t would be zero. This means that a disrupted flight

can be operated by aircraft r without disturbing the

scheduled routings of any other aircraft. An aircraft

or crew swap may be defined by two nonscheduled

connection arcs between the scheduled routings of two

entities. If one of the scheduled routings of these two

entities includes a disrupted flight, u∗f t will be one for

all f in the scheduled routing of the other entity. On the

other hand, to assign the aircraft originally assigned to

flight f to a disrupted flight when u∗f t � 5, at least five

other entities of type t which are not directly disrupted

need to be rerouted. Therefore, this aircraft is unlikely

to help reduce recovery costs.

For illustration, we use a small network as rep-

resented in Figure 7(a). Origins and destinations of

flights are attached to flight nodes. The flights in this

network are operated by three aircraft with sched-

uled flight paths of 1-2-3-4, 5-6-7-8, and 9-10-11-12.

With a disruption at flight node 1, the values of u∗f t
are represented in square brackets above the nodes in

Figure 7(b). Two iterations of the main procedure of

PSCA for the first aircraft is illustrated in Figure 8,

where the arc scores are given in curved braces. Fig-

ure 8(a) represents the partial network of this entity.

In the first iteration an arc with score 2 is removed from

the network, which also results in removal of flight

nodes 10, 11, and 12 (Figure 8(b)). Assuming the prob-

lem size is still large, we iterate once more. Recall that

the number of flow variables is equal to the number

of arcs in partial networks. Therefore, the total num-

ber of arcs at the end of each iteration provides useful

information for deciding if the problem can be solved

within the required solution time. The network after

elimination of the arcs with score 1.5 is presented in

Figure 8(c). Note that eliminated recovery actions alter

the original schedules of two aircraft, while the remain-

ing ones alter the schedule of at most one other air-

craft. From Figures 8(b) and 8(c), it can be observed

that the networks at the end of each iteration are

connected.
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Figure 8. (Color online) PSCA Iterations for the Aircraft with Original Schedule 1-2-3-4
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Single iteration of the algorithm for the second air-

craft, which is not directly affected from the disruption,

is illustrated in Figure 9. Note that this aircraft cannot

be assigned to the disrupted flight 1 because of its loca-

tion. However, it can still be assigned to flights 2, 3, and

4 of the disrupted routing, without altering the rout-

ing of any other aircraft. Even though the disrupted

flight is not included in the partial network of the air-

craft (Figure 9(a)), the algorithmmanages to keep these

flights while reducing the problem size by eliminating

the scheduled flights of the third aircraft (Figure 9(b)).

Note that there is no value in swapping the second and

third aircraft in this example.

Dĳkstra’s algorithm is appropriate for the step de-

scribed in lines 4 and 5 to obtain the shortest dis-

tances from a disruption node to all other nodes. Faster

variants are available but with a simple implementa-

tion Dĳkstra’s algorithm runs in O(|® | log |® |). In the

remaining steps of the algorithm, it is certain that each

arc is visited at most once in the worst case. Letting

ā �
∑

r∈Rac∪Rcr |Ar |, overall complexity of the algorithm

is O(|¤ | |® | log |® | + ā).

7. Computational Results
We test the practicality of the proposed network rep-

resentation, preprocessing methods, and PSCA on a

real network of a major U.S. airline in the year 2013.

We have also created two subsets of the entire network

to test the scalability of the approach. In Section 7.1, we

explain parameter settings andmethods used to gener-

ate problem instances. In the remainder of this section,

we discuss the results of our experiments.

7.1. Scenario Generation
We have used several publicly available databases

provided by the Bureau of Transportation Statistics

(http://www.transtats.bts.gov/DataIndex.asp) to gen-

erate realistic disruption scenarios. These databases are

joined together into a large Oracle database. The first

database that we rely on is the Airline On-Time Perfor-

mance (AOTP) database. AOTP provides dates, sched-

uled and realized departure, arrival time, flight time,

origin, destination, and tail number of flights. In addi-

tion, we are able to generate routings of aircraft using

tail number information. However, crew routings and

passenger itineraries are not publicly available; only
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aggregate number of passengers is available. For gen-

erating itineraries and estimating the number of pas-

sengers using each itinerary, we follow the method

proposed by Barnhart, Fearing, and Vaze (2014); while

we use an algorithm to randomly generate crew rout-

ings from the extracted flight schedules. The second

database we use is Schedule B-43 Aircraft Inventory

(SB-43). SB-43 provides aircraft inventory information

of most airlines. Using tail numbers to join AOTP

and SB-43, we can obtain aircraft models and their

seat capacities. The airline used in our experimen-

tations uses seven different models in the generated

networks. Scheduled maintenances of aircraft is not

publicly available as well. However, we have assigned

must-nodes for randomly selected aircraft considering

their actual flight schedules.

Barnhart, Fearing, and Vaze (2014) provide an excel-

lent guide for estimating itinerary-related data. The

approach involves data processing steps for generating

itineraries and obtaining aggregate passenger counts.

The T-100 Domestic Segment (T-100) database is used

to obtain monthly aggregated passenger counts for

each carrier segment. A carrier segment (CS) is defined

by three fields: carrier, origin, and destination. Sincewe

focus on a single airline, we extract passenger counts

of CS’s for this carrier. Dropping the carrier field, an

example CS can be defined as (ORD-LAX). A carrier

route (CR), on the other hand, is defined as a sequence

of CS’s. A CR is a possible flight path that a passenger

can travel from the origin of its first CS to the desti-

nation of its last CS. Since a CR does not have infor-

mation about departure and arrival times, while an

itinerary does, a CR may also be considered as sets of

itineraries. Note that each itinerary belongs to a single

CR. The airline origin and destination survey (DB1B)

provides a 10% sample of the number of passengers

using each CR. This data is aggregated quarterly. Barn-

hart, Fearing, and Vaze (2014) propose two data pro-

cessing steps. In the first step, potential itineraries

are generated using the flight route information pro-

vided in DB1B. In the second step, the number of

passengers belonging to each CR is estimated by com-

bining the information provided by T-100 and DB1B.

The approach involves scaling steps because of the dif-

ference in aggregation periods of these two databases.

Following these steps, we have generated potential

itineraries and an aggregate number of passengers for

each CR. However, a passenger belonging to a particu-

lar CRmay have used any of the large number of poten-

tial itineraries belonging to that CR. Discrete choice

methodology is appropriate for estimating the choice

behavior of passengers. Barnhart, Fearing, and Vaze

(2014) propose a discrete choice model with a detailed

utility function depending on several important factors

such as day of week, connection time, seat capacity, etc.

The authors use a multinomial logit (MNL) model and

estimate the parameters of the factors used in the util-

ity function. Using this discrete choice model (MNL)

and a utility function, we estimate the number of pas-

sengers using each itinerary.

A flight delay cost has a complex structure involving

a variety of cost components including cost to passen-

gers, cost to airlines, cost of lost demand, etc. Ball et al.

(2010) present an analysis on these components, as well

as flight delays’ indirect impact on the U.S. economy.

The authors consider a broader consideration of rele-

vant costs than conventional methods, and use innova-

tivemethodologies to assess these costs, one ofwhich is

passenger delay cost. It is reported that in 2007, around

487million passengers experienced an average delay of

31 minutes. The methodology proposed by the authors

calculates the total passenger delay cost as $15,369 mil-

lion. By disaggregating these values, we obtain a delay

cost of $1.0242 per passenger perminute.We have used

this estimate in our linear passenger cost functions. For

the piecewise linear passenger delay cost function, we

have used four steps: D f , i � 30, 60, 120, and 240. The

corresponding delay costs per passenger are set to $25,

$73, $192, and $457.8, respectively. This piecewise lin-

ear function coincides with the linear delay cost func-

tion at around 40.2, which is the average delay per

passenger of the network we have used; and equals

passenger ticket cancellation cost at 240.

The problem type, scope of recovery, and cost terms

to be minimized, considered by the integrated recov-

ery approach proposed by Marla, Vaaben, and Barn-

hart (2017), are similar to those in our approach. There-

fore, we rely on several parameter estimates of Marla,

Vaaben, and Barnhart (2017) which are mostly real

estimates of an airline. These estimates are as fol-

lows: ticket cancellation cost is $457.8 per passenger,

flight cancellation cost is $20,000, and jet fuel price is

$0.478/lb. Finally, we used a crew deadheading cost

$1,000 obtained from Petersen et al. (2012), which also

deals with the integrated recovery problem.

We adapted parameters related to cruise speed deci-

sions from Aktürk, Atamtürk, and Gürel (2014). It is

assumed that in the original schedule each aircraft

cruises at 1.02 times its MRC speed. The authors report

MRC speeds, fuel consumption function coefficients,

and number of seats for six models of aircraft. We

assign these coefficients to the models used in our

experimentation with respect to similarities in their

seat capacities. Cruise speeds can be increased by

about 10% of the MRC speed as stated in Delgado and

Prats (2009). For the cost of ferrying an aircraft between

two airports, we have used the sum of fuel cost at

scheduled speeds and crew deadheading cost.

The airline that we use in our experimentations oper-

ated an average of 1,442 daily flights in 2013.We extract

schedules of a major U.S. airline in July 2013. After

elimination of flights with missing data, the network
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we use includes 1,254 flights with 402 aircraft. The

entire network is denoted N1. To test the scalability of

the approach, we generated two subnetworks of N1.

For the first subnetwork, N2, we identify aircraft rout-

ings that visit ORD or LAX. Then, crew routings and

passenger itineraries using these flights are included

in the subnetwork. We repeat this procedure for ORD

only, to create the third and smallest network, N3.

Four of the disruption types are tested. The AOTP

database provides the scheduled and actual departure

and arrival times of flights, and hence, we can obtain

actual departure delays. We extract the list of flights

that experience a departure delay of 30 minutes or

more from the AOTP database. These delays may be a

result of external reasons or airline’s decisions because

of the downstream effect of the delays in the preceding.

We assume the latter is the likely reason when multi-

ple sequential flights in an aircraft’s routing experience

delays. We mark the first delayed flight in such aircraft

routings as disrupted. Flight cancellation scenarios are

generated with the same procedure. In addition to sce-

narios including all disruptions, we create scenarios

including a quarter and half of the disrupted flights to

account for the dynamic nature of decision making in

disruption management. Doing this, we also hope to

observe the effect of the number of disrupted flights on

the performance of our solution approach. For delayed

ready time instances, we have randomly selected an

aircraft and delayed its ready time by 60, 120, 180, 240,

and 300 minutes. Finally, a hub is closed for 60, 120,

180, 240, and 300 minutes in hub closure scenarios.

The solution time is set to 30 minutes for hub closure

instances and 15 minutes for the remaining instances.

To observe the effect of cruise speed control action on

both solution quality and solution times, we solve all

instances with and without this action. We define CS+

as the proposed approach and CS− as the proposed

approach without using cruise speed control action.

Note that CS− is a mixed integer programming model.

We apply the partial network approach in all in-

stances. Note that the partial networks generated for

CS− are subsets of the corresponding partial networks

generated for CS+
. This is because speeding up flights

enables using additional flight connections. This cor-

responds to adding new rerouting alternatives to the

solution space. Throughout this section, we present the

characteristics of partial networks for CS+
, which have

approximately 4.1% more connection arcs than those

generated for CS−.
We experiment with four proposed delay cost cal-

culation methods: linear function with flight delay

approximation (L−), piecewise linear function with

flight delay approximation (PW−
), linear function with

actual delay (L+
), and piecewise linear function

with actual delay (PW+
). For experiments with actual

delay costs (L+
and PW+

), passengers are modeled

explicitly while for approximations we have used an

aggregation approach for passengers in each itinerary.

Finally, we carry out experiments to understand the

effect of limiting the problem size with PSCA on solu-

tion time and solution quality. Recall that we do not

reduce the partial networks of passengers, but apply

PSCA on aircraft and crew networks. The algorithm

has a single parameter for each entity used to control

the problem size. To observe its effect on the problem

size and solution quality, we generate limited partial

networks with different upper bounds on the number

of arcs and use the optimization approach over the

limited solution spaces. We test four different upper

bounds: 25, 50, 75, and 100, and denote the correspond-

ing instances with B25

, B50

, B75

, and B100

, respectively.

We also solve the instances without using PSCA, which

are designated by L∞. To summarize, for each disrup-

tion scenariowe analyze 40 different recovery solutions

corresponding to the combinations of: CS+
, CS−; L−,

PW−
, L+

, PW+
; B∞, B25

, B50

, B75

, B100

. In the following

sections, we investigate the effects of the Partial Net-

work Approach, cruise speed control action, passenger

delay cost evaluation method, PSCA, severity of dis-

ruptions, and the length of the recovery horizon on

solution times and solution quality.

7.2. Effect of Partial Networks on Scalability
As the size of an airline network increases, the set of

possible recovery actions rapidly expands because of

the increased number of rerouting options. To observe

this behavior, we investigate three networks of differ-

ent sizes. Characteristics of the extracted networks are

presented in Table 3, where DF and CF are the sets

of delayed and canceled flights, respectively. We also

define it ∈T to designate the itinerary that corresponds

to passenger aggregation.

Table 4 presents the average number of arcs per

entity in the partial networks of aircraft, crew mem-

bers, and itineraries (avg is used to designate average).

Recall that the problem size, and hence, the solution

times are directly related to the sizes of the partial

networks. To understand the effect of the Partial Net-

work Approach, we enumerate all flight paths that

can be generated by the partial networks. Partial net-

works are able to represent 184,535 flight paths in N3,

while this number reaches 12,395,883 for N1. Note

that path-based representations also require copies of

these flight paths with respect to different departure

Table 3. Characteristics of the Networks

Network Hubs |F | |Rac | |Rcr | |Rit | |Rps | |DF | |CF |

N1 All 1,254 402 634 8,859 150,118 63 11

N2 ORD, LAX 473 146 249 1,551 54,381 21 6

N3 ORD 288 76 143 988 29,918 13 4
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Table 4. Effect of the Airline Network on the Size of the

Partial Networks

Network |F | avg|Aac | avg|Acr | avg|Ait |

N1 1,254 3,625.58 3,454.53 6.27

N2 473 818.84 711.78 5.14

N3 288 523.12 459.15 4.49

time and cruise speed decisions. Therefore, we can

state the proposed representation with a Partial Net-

work Approach provides a more compact representa-

tion. Average running time of the PNGA is around 34.4

seconds for the largest network, while the minimum,

median, and maximum of the running times are 24.6,

33.3, and 47.8 seconds, respectively.

7.3. Effect of Cruise Speed Control Action
Recall that the proposed optimization model is a conic

quadratic mixed integer programming model, while

its variant which does not utilize cruise speed control

action is a mixed integer programming model. There-

fore, it is expected that enabling cruise speed control

increases the complexity of the problem. In this sec-

tion, we analyze its effect on solution times, as well as

on the solution quality.

7.3.1. N3 (ORD). In our experimentations, around

95.8% of all N3 instances are solved to optimality with-

out using PSCA. An average optimality gap of 0.11%

and a maximum optimality gap of 4.03% were ob-

served. The instances with 0% optimality gaps are

included in average optimality gap statistics. All in-

stances except for hub closure scenarios are solved to

optimality. These results suggest that the complexity

of the problem increases as the severity of disrup-

tions increases. The effect of disruption severity will

be discussed in Section 7.6. Average solution times are

displayed in Table 5. The increase in solution times

because of cruise speed control in delay scenarios is

greater than flight cancellation scenarios. Cruise speed

control helps mitigate delays. Therefore, in scenarios

with many delayed flights, optimal cruise speeds of

Table 5. Solution Times with B∞ for N3 (in CPU Seconds)

Flight Aircraft Hub

delay Cancellation delay closure Average

CS−

L− 28.5 53.2 20.0 102.7 51.1
PW−

29.8 57.3 31.0 117.2 58.8
L+

124.6 132.8 88.1 444.3 197.4
PW+

135.2 167.6 234.8 803.0 335.2

CS+

L− 195.6 54.5 77.6 224.7 138.1
PW−

235.5 76.0 139.2 316.8 191.9
L+

492.9 398.5 535.6 1,248.1 668.8
PW+

729.4 516.5 725.7 1,475.6 861.8

Table 6. Average Disruption and Recovery Costs for N3

CS− ($) CS+
($) Improvement (%)

Flight delay 37,434 33,130 11.50

Cancellation 133,440 127,594 4.38

Aircraft delay 344,505 317,825 7.74

Hub closure 1,478,459 1,368,874 7.41

downstream flights of affected aircraft, crew members,

and passengers need to be decided. The size of the tree

emanating from the disrupted nodes may be very large

since the routings of different entities do not overlap.

Table 6 presents the average objective function val-

ues of the models using and not using cruise speed

control action. Percent improvement values are cal-

culated by dividing the difference in objective func-

tion values of CS− and CS+
solutions by the objective

function value of CS− solutions. Despite the increase

in solution times with the integration of cruise speed

control, an average improvement of 7.76% suggests

that cruise speed control action is beneficial in disrup-

tion management. In Figure 10, we illustrate percent

improvements in cost terms by cruise speed control

option. We observe improvement in passenger delay

costs for all disruption scenarios as cruise speed con-

trol helps mitigate delays. Moreover, it helps maintain

passenger connections so there is an improvement in

external arc costs. In hub closure and aircraft delay sce-

narios, we also observe that there is a reduction in the

number of ferried aircraft and deadheaded crewmem-

bers. Infeasibility by flight cancellations may spread

through the schedules of aircraft and crew members,

and result in severe disruptions. Hub closure scenarios

are the most complex scenarios resulting in many can-

celed flights as well as departure delays. We observe

that network connectivity becomes more valuable than

delay mitigation in cancellation and hub closure sce-

narios. A reduction in the number of canceled flights

by cruise speed control option is 0.4 and 1.9 on average

for cancellation and hub closure scenarios, respectively.

7.3.2. N2 (ORD, LAX). In N2, since the number of

passengers increase significantly, we used passenger

aggregation to provide real-time solutions. We have

been able to solve 93.75% of all N2 instances to opti-

mality, while the average (maximum) optimality gap is

0.15% (2.01%). Average solution times are displayed in

Table 7.

On the other hand, we have been able to solve N2

instances using explicit passenger modeling (L+ ,PW+
)

with PSCA.

7.3.3. N1 (Entire Network). N1 is too large to be han-

dled by using the entire solution space. We have been

able to solve all instances with PSCA (B100

) and pas-

senger aggregation. The effect of cruise speed control
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Figure 10. Percent Improvement in Cost Terms with Cruise Speed Control

%
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action on solution times and solution quality are pre-

sented in Tables 8 and 9, respectively. The reason for

the increase in costs in flight delay and cancellation

scenarios is the increase in the number of disrupted

flights. Especially, in flight delay scenarios, we observe

that cruise speed control action becomesmore valuable

as the number of disrupted flights increases.

Table 7. Solution Times with B∞ for N2 (in CPU Seconds)

Flight Aircraft Hub

delay Cancellation delay closure Average

CS−

L− 135.4 67.8 80.7 583.8 216.9
PW−

142.6 84.1 116.8 656.3 250.0

CS+

L− 398.9 114.9 250.9 964.4 432.3
PW−

423.4 160.3 398.4 656.3 1,069.9

Table 8. Solution Times with B100
for N1 (in CPU Seconds)

Flight Aircraft Hub

delay Cancellation delay closure Average

CS−

L− 407.7 104.5 64.3 493.9 267.6

PW−
447.3 152.9 87.3 598.8 321.6

CS+

L− 811.8 209.7 240.8 1,019.4 570.4

PW−
966.1 325.2 354.6 1,212.4 714.6

Table 9. Average Disruption and Recovery Costs for N1

CS− ($) CS+
($) Improvement (%)

Flight delay 557,532 470,017 15.70

Cancellation 506,027 480,223 5.10

Aircraft delay 306,790 282,822 7.81

Hub closure 1,771,056 1,635,625 7.65

7.4. Effect of Passenger Delay Cost Function
Recall that L− and PW−

are approximationmodels, and

in these models passengers are aggregated. In L+
and

PW+
models, on the other hand, passengers are explic-

itly modeled, and passenger delay cost is evaluated by

considering realized delays and realized reallocations

simultaneously. It can be observed from Table 5 that

solution times are greater with L+
and PW+

. As a result

of the increase in the number of passengers in N1 and

N2, we use approximation models. To understand the

effect of the approximation method, we compare the

solutions in N3 instances. The approximation method

underestimates total costs by $12,225 on average. This

difference may be negligible for severe disruptions,

while it probably affects the recovery actions for minor

disruptions.

7.5. Effect of PSCA
In large airline networks, there exists a huge number of

rerouting opportunities. However, the disturbances of

some rescheduling decisionsmay result in even greater

costs than disruption costs. PSCA tries to reduce the

problem size by eliminating such rerouting alterna-

tives. In this section, we investigate the effect of the

approach on solution time and quality.

We start our analysis with the smallest network, N3,

for which optimal solutions to all instances are avail-

able. We have tried four different limits on the number

of arcs in partial networks: 25, 50, 75, and 100. Solution

times and optimality gaps are illustrated in Figure 11.

Limiting the number of arcs to 50 or less results in a

significant increase in disruption and recovery costs.

However, the optimality gaps become negligible at B �

75 while the average solution time reduces to 43 sec-

onds (the average solution time for N3 instances is

312.9 seconds over the entire solution space). The rapid

decrease in solution gaps as B increases is promis-

ing to provide near-optimal solutions in large airline

networks.
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Figure 11. The Effect of PSCA on Solution Time and Quality (N3)
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We observe similar results for N2 instances such

that B100

instances are solved with a maximum opti-

mality gap of 1.5%. Recall that N1 instances become

intractable over the entire solution space. In Figure 12,

we compare average solution times and objective func-

tion values with different partial network sizes. Objec-

tive value gaps are calculated by considering the B100

solution as the reference solution. Note that objective

value gaps follow a convergent behavior as B increases.

The average running time of PSCA in N1 instances is

around 21.4 seconds, while theminimum,median, and

maximum of the running times are 12.3, 19.8, and 36.0

seconds, respectively.

7.6. Effect of Severity of Disruptions
The severity of the disruption significantly affects dis-

ruption and recovery costs. In our experiments, we also

observe that its effect on solution times is significant.

Figure 13 illustrates the behavior of the objective func-

tion value and the solution time as the severity of dis-

ruptions increases for N1 instances. First, we observe

that cancellations up to 11 or ready time delay of an air-

craft does not increase the solution time significantly.

However, we observe that departure delay scenarios

become as complex as hub closure scenarios when the

number of disrupted flights reaches 63. Disruption and

recovery costs are not as high as hub closure scenar-

ios. To understand the reasons for this, we investi-

gate the network representation. Extracted departure

delays occur at different times of the day at various

locations, and hence, the disrupted flight nodes are

spread through the network. On the other hand, all

canceled and delayed flight nodes in hub closure sce-

narios are close to each other. This eliminates many

rerouting opportunities and results in high recovery

costs.

7.7. Effect of the Length of the Recovery Horizon
Recall that original schedules are caught at the end

of the recovery horizon, t
1
. In our experimentations,

we have used a recovery horizon of 2,000 minutes. It

is expected that as t
1
− t

0
decreases, the complexity

of the problem decreases; however, total recovery and

disruption costs may increase. Furthermore, a shorter

recovery horizon would be desirable for airlines to not

disturb the schedules of many operations. In this sec-

tion, we investigate this trade-offwithN3 instances.We

do not change the start time of the recovery horizon,

but solve the disruption scenarios for t
1
� t

0
+ 500, t

0
+

1,000, t
0
+ 1,500, and t

0
+ 2,000. To make a meaningful

comparison, we have delayed and canceled flights that

are operated during [t
0
, t

0
+ 500] (early in the morn-

ing). In other words, all disruptions take place within

[t
0
, t

0
+ 500]. During this period, the average number

of departure delays and cancellations in N3 are three

and one, respectively. In addition to actually disrupted

flights, we generated nine more scenarios with three

random departure delays and one random flight can-

cellation. The instances are solved with CS+
, PW+

, and

B∞ (most complex formulation).

Average solution times and average optimality gaps

are presented in Table 10. The box plots of the solution

times and optimality gaps are illustrated in Figure 14.

Table 10. Solution Times and Optimality Gaps with Respect

to Different Recovery Horizon Lengths for N3

Recovery horizon Number of Solution time Optimality

length (minutes) flights (CPU seconds) gap (%)

500 46 83.2 34.24

1,000 174 518.9 11.43

1,500 255 705.3 1.03

2,000 288 739.1 0.00
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Figure 12. The Effect of PSCA on Solution Time and Quality (N1)
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Figure 13. Effect of Severity of Disruptions for N1 Instances
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The bottom and top of the boxes are the first and third

quartiles, while the bands inside the boxes represent

the medians. The ends of the vertical error bars corre-

spond to theminimumandmaximumvalues. The opti-

mality gaps are calculated by considering the solutions

to instances with t
1
� t

0
+ 2,000 as optimal. First, we

observe that the flights are not uniformly distributed

throughout the day. The effect of the recovery horizon

length on the problem size, and hence, on the solution

times is significant. However, it is certain that 500 min-

utes is not sufficient to recover from these disruptions

effectively. The maximum optimality gap reaches 53%

in these instances. The optimality gap reduces greatly

when the length of the recovery horizon is extended to

1,000 minutes; however, it is still significant. When the

recovery length is 1,500 minutes, we observe a subop-

timal solution in only 1 instance, however the gap is

significant (10.31%). We further investigate suboptimal

solutions to understand the reasons of the optimality

gaps. In most cases, the increase in costs is a result of

cancellation, ferrying, and deadheading decisions that

are made to catch up with the original schedules at t
1
.
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Figure 14. Box Plots of Solution Times and Optimality Gaps with Respect to Different Recovery Horizon Lengths
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8. Conclusion
Recently, there is an increasing effort in integrated

recovery approaches for the airline disruption man-

agement problem due to high passenger inconvenience

and crew recovery costs with sequential approaches.

The main challenge in integration is the increased

problem size while airlines require real-time solutions.

In this study, we propose a general network representa-

tion that captures the state of the problem, allows inte-

gration of any entity in the samemanner, and keeps the

problem size within reasonable limits. Another advan-

tage of the proposed representation is that a wide

range of recovery actions including all rerouting possi-

bilities for each entity can be integrated.

Service quality is becoming more important because

of the high competition in the industry. Therefore,

in cases of disruptions, evaluating possible passenger

recovery actions is crucial. In this study, we manage

to explicitly model each passenger instead of itinerary

levelmodeling. This approach enables to assignpassen-

ger-specific cost parameters and generate passenger-

specific recovery actions. Moreover, it allows accurate

evaluation of passenger delay costs by simultaneously

considering passenger rerouting and flight arrival time

decisions. We propose a linear and a piecewise linear

passenger delay cost function. For larger problems, we

also propose approximation approaches similar to the

ones proposed in the literature.

In addition to common recovery actions, we also

integrate cruise speed control action in our solution

space. Our experiments have shown that speeding

up flights may be beneficial to help mitigate delays

and preserve passenger connections in cases of dis-

ruptions. Moreover, we observe an improvement in

the connectivity of the network as new swap and

rerouting options are created. However, speeding up

a flight increases fuel consumption, and hence, an

additional fuel cost is incurred. There is a nonlin-

ear trade-off between fuel consumption and aircraft

speed. However, the resulting formulation is second-

order cone programming representable. Therefore, we

can create conic quadratic constraints for the non-

linear constraints and solve the problem with com-

mercial mixed integer programming solvers such as

IBM ILOG CPLEX. With the proposed reformulation,

solution times have increased compared to the case

ignoring the cruise speed control option, but stayed

within reasonable limits. On the other hand, signifi-

cant improvements in disruption and recovery costs

are observed.

We propose two important preprocessing ap-

proaches for enhancing the performance of the pro-

posed approach without sacrificing optimality. In the

first method, an efficient algorithm to generate partial

networks of entities is proposed to eliminate unneces-

sary variables and constraints. In the second one, we

propose a rule to aggregate entities that needs to be sat-

isfied to preserve optimality. In our experimentations,

we managed to optimize scenarios with 288 flights

by modeling passengers explicitly without aggrega-

tion, and scenarios with 473 flights using passenger

aggregation.

In addition to the preprocessing methods, we pro-

pose an efficient algorithm to control the problem size

to allow real-time solutions for larger airline networks.

The algorithm uses the proposed network represen-

tation to capture relations between entities and iden-

tify recovery actions that are likely to be used in the
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optimal recovery. Using this approach, we managed to

achieve solutions with a maximum optimality gap of

1.5% for networks having 288 and 473 flights, while

average solution times are reduced from 6.7 to 1.7 min-

utes. Moreover, the approach allowed to solve the pro-

posed formulation for airline networks including 1,254

flights within 8 minutes.

Acknowledgments
The authors thank the area editor and two anonymous ref-

erees for their constructive comments and suggestions that

significantly improved this paper.

References
Abdelghany KF, AbdelghanyAF, Ekollu G (2008) An integrated deci-

sion support tool for airlines schedule recovery during irregular

operations. Eur. J. Oper. Res. 185(2):825–848.
Airbus (2004) Airbus flight operations support and line assistance,

getting to grips with fuel economy. Airbus Customer Services,

Blagnac, France.

Aktürk MS, Atamtürk A, Gürel S (2014) Aircraft rescheduling with

cruise speed control. Oper. Res. 62(4):829–845.
Arıkan U, Gürel S, Aktürk MS (2016) Integrated aircraft and pas-

senger recovery with cruise time controllability. Ann. Oper. Res.
236(2):295–317.

Ball M, Barnhart C, Dresner M, Hansen M, Neels K, Odoni A,

Peterson E, Sherry L, Trani A, Zou B (2010) Total delay impact

study: A comprehensive assessment of the costs and impacts

of flight delay in the United States. NEXTOR Report, Federal

Aviation Administration, Washington, DC.

Barnhart C, Fearing D, Vaze V (2014) Modeling passenger travel

and delays in the national air transportation system. Oper. Res.
62(3):580–601.

Boeing (2007) Fuel conservation strategies: Cost index explained.

AERO Quarterly.

Bratu S, Barnhart C (2006) Flight operations recovery: New

approaches considering passenger recovery. J. Scheduling 9(3):

279–298.

Clausen J, Larsen A, Larsen J, Rezanova NJ (2010) Disruption man-

agement in the airline industry—Concepts, models and meth-

ods. Comput. Oper. Res. 37(5):809–821.
Delgado L, Prats X (2009) Fuel consumption assessment for speed

variation concepts during the cruise phase. Proc. Conf. Air Traffic
Management (ATM) Econom., Belgrade, Serbia. (German Aviation

Research Society and University of Belgrade, Belgrade, Serbia),

1–12.

EUROCONTROL (2009) Base of Aircraft Data (BADA) aircraft per-

formance modelling report. EEC Technical/Scientific Report

2009-009, Eurocontrol Experimental Centre, Bretigny-sur-Orge,

France.

EUROCONTROL (2012) User manual for the Base of Aircraft

Data (BADA) Revision 3.10. EEC Technical/Scientific Report

12/04/10-45, Eurocontrol Experimental Centre, Bretigny-sur-

Orge, France.

Jafari N, Zegordi SH (2010) The airline perturbation problem:

Considering disrupted passengers. Transportation Planning Tech.
33(2):203–220.

Jarrah AIZ, Yu G, Krishnamurthy N, Rakshit A (1993) A decision

support framework for airline flight cancellations and delays.

Transportation Sci. 27(3):266–280.
Lan S, Clarke JP, Barnhart C (2006) Planning for robust airline oper-

ations: Optimizing aircraft routings and flight departure times

to minimize passenger disruptions. Transportation Sci. 40(1):

15–28.

Maher SJ (2016) Solving the integrated airline recovery problem

using column-and-row generation. Transportation Sci. 50(1):

216–239.

Marla L, Vaaben B, Barnhart C (2017) Integrated disruption man-

agement and flight planning to trade off delays and fuel burn.

Transportation Sci. 51(1):88–111.
Petersen JD, Sölveling G, Clarke JP, Johnson EL, Shebalov S (2012)

An optimization approach to airline integrated recovery. Trans-
portation Sci. 46(4):482–500.

Rosenberger JM, Johnson EL, Nemhauser GL (2003) Rerouting air-

craft for airline recovery. Transportation Sci. 37(4):408–421.
Sherali HD, Bae KH, Haouari M (2013) An integrated approach for

airline flight selection and timing, fleet assignment, and aircraft

routing. Transportation Sci. 47(4):455–476.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
9.

17
9.

72
.7

5]
 o

n 
29

 J
un

e 
20

18
, a

t 1
0:

46
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 


	Introduction
	Literature Review
	Contributions
	Paper Outline

	Problem Representation
	Network Structure
	Entities.
	Nodes.
	Arcs.

	Disruption Types
	Flight Departure Delay.
	Flight Cancellation.
	Delayed Ready Time.
	Airport Closure.

	Numerical Example

	Mathematical Formulation
	Flow Balance Constraints
	Node Closure Constraints
	Flight Time Constraints 
	Arc Feasibility Constraints
	Arcs Emanating from Source Nodes.
	Arcs Incoming to Sink Nodes.
	Intermediate Arcs.
	Arcs Emanating from or Incoming to Must-Nodes.

	Aircraft Properties
	Aircraft and Crew Compatibility
	External Arc Costs
	Flight Cancellation Costs
	Additional Fuel Costs
	Passenger Delay Costs
	Linear Function with Flight Delay Approximation.
	Piecewise Linear Function with Flight Delay Approximation.
	Linear Function with Actual Passenger Delay.
	Piecewise Linear Function with Actual Passenger Delay.

	Original Flight Paths
	Mathematical Model

	Conic Quadratic Reformulation 
	Preprocessing 
	Partial Networks 
	Entity Aggregation

	Controlling Problem Size
	Computational Results
	Scenario Generation
	Effect of Partial Networks on Scalability
	Effect of Cruise Speed Control Action
	N3 (ORD).
	N2 (ORD, LAX).
	N1 (Entire Network).

	Effect of Passenger Delay Cost Function
	Effect of PSCA
	Effect of Severity of Disruptions
	Effect of the Length of the Recovery Horizon

	Conclusion

