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In noncentrosymmetric superconductors (NCSs), the inversion symmetry (IS) is most commonly broken by an
antisymmetric spin–orbit coupling (SOC). Removing the spin degeneracy and splitting the Fermi surface (FS) into two
branches. A two component condensate is then produced mixing an even singlet and an odd triplet. When the triplet and
the singlet strengths are comparable, the pair potential can have rich nodes. The angular line nodes (ALNs) are
associated with the point group symmetries of the anisotropic lattice structure and they are widely studied in the
literature. When the anisotropy is weak, other types of nodes can be present which then affect differently the low
temperature properties. Here, we focus on the weakly anisotropic NCSs and the line nodes which survive in the limit of
full isotropy. We study the topology of these radial line nodes (RLNs) and show that it is characterized by the Z2 index
similar to the quantum-spin-Hall Insulators. From the thermodynamic perspective, the RLNs cause, even in the
topological phases, an exponentially suppressed low temperature behaviour which can be mistaken by nodeless s-wave
pairing, thus, providing an explanation to a number of recent experiments with contraversial pairing symmetries. In the
rare case when the RLN is on the Fermi surface, the exponential suppression is replaced by a linear temperature
dependence. The RLNs are difficult to detect, and for this reason, they may have escaped experimental attention.
We demonstrate that Andreev conductance measurements with clean interfaces can efficiently identify the weakly
anisotropic (WA) conditions where the RLNs are expected to be found.

1. Introduction

Superconducting symmetries beyond the conventional
BCS spin singlet state were known since 1960s. Distinct
examples are 3He,1) heavy fermion,2) high Tc

3) super-
conductors as well as the NCSs.4,5) Strongly momentum
dependent electronic correlations, broken spin-degeneracy,
broken IS and the SOC add to the variety of factors yielding
exotic spin and momentum dependent phenomena leading
to the formation of unconventional Cooper pairs.6–8) The
manifested or broken time reversal symmetry (TRS)9) and
the non trivial topologies in the electronic bands add to the
plethora that make the full understanding an experimental
and theoretical challenge.10)

The NCSs break the IS while a substantial part of all
superconductors has this symmetry. The IS is broken along
an axis, let’s say z, most commonly by the presence of a
SOC and the superconducting electrons are confined in the
homogeneous x–y plane with the wavectors k ¼ ðkx; kyÞ ¼
kðcos�; sin�Þ. We associate a vector G ¼ �ð�ky; kx; 0Þ with
the SOC where α is the SOC constant. The parity and the spin
are not conserved individually, i.e., the OPs accommodate
an even singlet  k and an odd triplet dk ¼ ðdxk; dyk; dzkÞ
simultaneously. The full 2 � 2 pair potential in the spinor
basis is �ðkÞ ¼ ið k þ dk:�Þ�y and the connection with the
spin basis is made by the Eq. (5). We consider the TRS and
the Pauli exchange symmetries to be manifest and therefore
 k and dk are real.

The smoking gun of the unconventional pairing in an
NCS is the nodes of the pair potential4,11–13) and a better
understanding of the nodal structure can provide unique
evidence on the pairing interaction. Our work here is
concentrated on the type of nodes and the degree of
anisotropy. In particular we wish to explore the nodes in

the WA conditions when the lattice point group symmetries
are not the rulers in the symmetries of the OPs. We there-
fore use an anisotropic expansion of the OPs in the an-
gular momentum-Lz basis as Xk ¼Pm X

ðmÞ
k where X ðmÞ

k ¼
Ymðk̂ÞX ðmÞ

k , k̂ ¼ k=k and Ymðk̂Þ / ðcosm�; sinm�Þ are the
basis functions of Lz with eigenvalue m describing the
anisotropy14) with Xk ¼ ð k;dkÞ. Here X ðmÞ

k ¼ ð ðmÞ
k ;dðmÞ

k Þ
are radial functions of k.

Under the strongly anisotropic (SA) conditions, the point
nodes can occur at the TRS points k ¼ 0 and, in tetragonal
symmetry at k ¼ fð��; 0Þ; ð0;��Þg. Angular line nodes
(ALNs) can also be present along kx ¼ �ky or k ¼ ð0; kyÞ
or ðkx; 0Þ. In low temperatures, ALNs are evidenced by
integer exponents in the temperature dependence of the
specific heat, the London penetration depth, the heat
conductivity, the ultrasound attenuation and this has been
observed in a number of cases11,12) among which are the
celebrated TRS preserving CePt3Si and the TRS breaking
Sr2RuO4. Other experiments also exist where ALNs cannot
explain the thermodynamic data.14) Despite a large number
of experimental and theoretical work, a one-to-one under-
standing between the temperature exponents and the nodes is
missing.

In tetragonal symmetry, the leading terms in the angular
momentum expansion are usually considered as the s (m ¼ 0)
and the d-wave (m ¼ 2) components of the singlet  k ’
 ð0Þ
k þ  ð2Þ

k cos 2�, and the p- and the f-wave components
of the triplet dk ’ Dkðd ð0Þ

k þ d ð2Þ
k cos 2�Þ where, for WA

systems, Dk in our work here is a vector in the x–y plane (see
Sect. 2) describing the orientation of the triplet component.
The mixed state pairing potential ��

k ¼  k � ��kFk, where
� ¼ � is the band splitting due to the broken IS, is directly
responsible for opening an energy gap at the Fermi level as
well as giving rise to a topological band structure. Here,
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Fk ¼ jdkj and �k is a function of k which can only take the
values �1 (see Sect. 2). In our case, the ��

k is given by

��
k ¼ A�k þ B�k cos 2�; ð1Þ

where A�k ¼  ð0Þ
k � ��kF

ð0Þ
k , B�k ¼  ð2Þ

k � ��kF
ð2Þ
k are m ¼ 0; 2

components respectively. The ALNs are obtained for
jA�k=B�kj � 1 in the small wavelength limit where the
anisotropy is pronounced. In this regime the effect of the
short range electronic correlations in the form of SDWs,
CDWs or Fermi surface nesting is important. On the other
hand, in the other (WA) case the nodes are dominated by the
first term in Eq. (1) where they are closed lines encircling the
origin.

The strong or weak anisotropy is therefore determined by
the leading term in Eq. (1) being Bk or Ak respectively. Since
the magnitude of the second term is limited by jBkj, we use
a simple model where Bk ¼ � is constant and Ak is given by
the profile in Fig. 1(a). The change from the fully isotropic
RLNs to the SA ALNs can then be studied as ϵ is changed.
This transmutation changes the rotational symmetry of the
energy gap yielding a variety which can yield a number of
other intermediate solutions including nodal arcs and point
nodes [see Fig. 1(b) for an example]. These features can be
revealed in real systems where Ak and Bk are self-consistently
determined. In this context, a superconducting node engi-
neering may be developed in the future which can provide
valuable information about the elusive mechanisms behind
the unconventional pairing and, not the least new and exotic
device applications.

The RLNs in the pair potential occur at sharp radial
positions k ¼ k�. There, the singlet and the triplet acquire
equal strengths, i.e., j k� j ¼ jFk� j, and their positions depend
on the specific non-uniform k-dependence of these OPs
which can extend well beyond the Fermi surface (see above).
A full handling of the momentum dependence is therefore
necessary.15) For Hubbard like short range correlations, the
effective interaction can be unstable near AFM=FM tran-
sitions where the momentum-dependence of the spin–charge
susceptibilities are crucial for the triplet state.4,10) On the
other hand, effective dielectric screening must be added when
long range Coulomb interaction or phonon exchange is
studied.16) The line nodes can exist in grossly different scales
of anisotropy [as shown for instance in Fig. 1(b)] providing
us tools in understanding the general mechanisms behind the
unconventional pairing.

It is commonly stated in the literature that, the WA
conditions is a signature of the lack of strong correlations
leading to the s-wave pairing and trivial topology. On the
other hand, the pairing mechanisms and particularly the role
of the strong correlations are not well understood. It is known
that, strong electronic correlations observed in some NCSs
(such as the magnetic fluctuations in heavy fermions) are not
crucial in many other NCSs. For instance sesquicarbides
R2C3�x where R is a rare-earth element, the ternary Li2(Pdx,
Pt1�x)3B, Mo3Al2C, and BaPtSe3 all lack inversion symme-
try. However, they are not strongly correlated due to the
absence of f or d electronic configurations.4) While the
strongly correlated ones attracted attention due to the distinct
experimental signatures of the ALNs and the topologically
nontrivial triplet states, the others were majoritily reported as
showing BCS-like conventional features. These “other s” can

have pairing potentials extending well beyond the Fermi
surface and it is quite likely that they are also unconventional
(non-BCS) with strongly mixed singlet and triplet states
including RLNs. This important point drives the main
motivation in this work. We believe that the results here
are relevant to some experiments where the effect of the
lattice symmetry is weak (see Sect. 3.2). With the IS broken,
the relevant electronic symmetry under WA conditions is
approximately C1v illustrated by the lowest ring in the
Fig. 1(b). In this case, the m ¼ 0 component dominates with
j kj ’  ð0Þ

k and jdkj ’ Fð0Þ
k and we simply drop the (0) index.

In this section, we developed a motivation for the study of
the WA regime in NCSs. In the rest of the manuscript we will
focus on the topological and the thermodynamic properties in
this regime. In Sect. 2 we outline the C1v symmetric model
in two dimensions. Section 3 is devoted to the properties of
the RLNs. Their topological properties are investigated in
Sect. 3.1 and shown that the relevant class is Z2. Section 3.2
is devoted to the low temperature thermodynamic analysis

(a)

(b)

Fig. 1. (Color online) The transmutation of the nodes of ��
k in Eq. (1) for

a fixed λ and for A�k as shown in (a). Different values of Bk ¼ � from an SA
(upper most for � ¼ 0:2) to the WA case (lower most for � ¼ 10�3) are
indicated on the vertical scale in (a) and the corresponding nodes of ��

k ¼ 0

are shown in (b) with the same color coding.
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using mainly the energy density of states (DOS) and the
specific heat. The motivation here is derived from recent
experiments that in some strongly IS broken NCSs the
thermodynamic data shows full isotropic gap with BCS-like
exponential suppression in low temperatures seemingly
pointing at the s-wave pairing. Arguments are raised in this
section demonstrating that the thermodynamical analysis in
such cases can be highly misguiding. We provide a resolution
for these conflicts. Section 3.3 is devoted to the scattering
at the WA N–NCS junctions. We examine the Andreev
reflection spectroscopy (ARS) and show that ARS provides a
suitable method to capture the distinct signatures of the WA
systems.

2. The Model

We start with a two dimensional, C1v symmetric NCS
respecting TRS. A general pairing interaction generates the
singlet and the triplet components of the pair potential under
a SOC. A crucial aspect is that, it is a continuum model
which is maximally isotropic and no lattice point group
symmetry is assumed. The Hamiltonian in the electronic
Nambu-spinor basis �y

k ¼ ðêyk" êyk# ê�k" ê�k#Þ is given by

H ¼
X
k

�
y
kHk�k ¼ H0 þHsoc þH�; ð2Þ

where

Hk ¼
H0

k �k

�
y
k �ðH0

�kÞT

 !
; ð3Þ

is the 4 � 4 mean field Hamiltonian with

H0
k ¼ 	k�0 �Gk:� ð4Þ

describing the kinetic and the SOC parts respectively and

�ðkÞ ¼
�""ðkÞ �"#ðkÞ
�#"ðkÞ �##ðkÞ

 !
¼ ið k þ dk:�Þ�y ð5Þ

is the pair potential. Here, 	k ¼ �k þ �dðkÞ where �k ¼
ħ2k2=ð2mÞ � 
, m is the band mass, μ is the chemical
potential and �dðkÞ is the diagonal spin component of the
self-energy. Due to the SOC, the off-diagonal contributions
can generally arise in the self energy which can be effec-
tively added in the SOC term as Gk ! Gk þ �odðkÞ. In the
Hartree–Fock mean field approach here, the self energy
contributions are ignored. The elements of the OP matrix in
Eq. (5) are given by

���0 ðkÞ ¼ � 1

A

X
q

VðqÞhêykþq;� êy�k�q;�0 i; ð6Þ

where VðqÞ is the pairing interaction and A is the sample
area. Here, �""ðkÞ ¼ ���

##ð�kÞ by the TRS and �""ðkÞ ¼
Fke

�ið�þ�=2Þ, where Fk is real and even, is locked to the
phase of the SOC by the unitarity of the diagonalization.
These results are exact within the C1v approximation. The
excitation spectrum of the Hamiltonian in Eq. (2) is given by
E�k ¼ ½	2k þ jGkj2 þ  2

k þ F2
k þ d2

z;k

þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	kjGkj �  kFkÞ2 þ d2

z;kðjGkj2 þ  2
k Þ

p
�1=2: ð7Þ

The solution of the general NCS model described by
Eqs. (2)–(6) requires the fully self consistent calculation of
the four order parameters ð k;dkÞ under a general pairing
interaction.

At this point we emphasize that, one of our motivations in
studying the WA conditions has something to do with the
relation between the dk andGk. It was shown a long time ago
in Ref. 7 that dk k Gk yields the thermodynamically most
stable configuration with the highest possible Tc. It is now a
common practice to employ this result in many works. It can
be easily seen that, the result in Ref. 7 becomes exact in the
isotropic limit studied here, and satisfied independently from
the temperature and the coupling strengths. If the pairing
interaction VðqÞ is spin independent, then VðqÞ ¼ VðqÞwhere
q ¼ jqj. The physical observables (and particularly the energy
spectrum) become independent of the SOC phase ϕ which
can be defined as a Uð1Þ gauge invariance in the particle–hole
sector. An immediate consequence of this is that dz;k ¼ 0 and
it takes a few steps to show that dk k Gk.17) Equation (7) can
then be expressed in a generalized BCS form as18)

E�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~	�k Þ2 þ ð ~��

kÞ2
q

; ð8Þ
where � ¼ � is the branch index of the broken IS and

~	
�

k ¼ �k þ ��kjGkj and ~��
k ¼ ð k � ��kFkÞ ð9Þ

are the single particle energy and the momentum dependent
pair potential respectively with

�k ¼ signðjGkj�k � Fk kÞ: ð10Þ
The energy branches with � ¼ � in Eq. (8) can have different
Fermi surfaces with a different gap opening at the FS as
2j ~��

kj. The bands are in mutual thermodynamic equilibrium
by the presence of a single chemical potential, hence the
Fermi level can occur at multiple positions in the k-space.
Together with the nodes of ~��

k, this can give rise to a
topological variety that we discuss in Sect. 3.1.

The mean field Hartree–Fock solutions of the mixed state
OPs in Eq. (6) can be given in the symmetric form as

 k ¼ � 1

A

X
k0;�

Vsðk; k0Þ
~��
k0

4E�k0
f fðE�k0 Þ � fð�E�k0 Þg; ð11Þ

Fk ¼ 1

A

X
k0;�

Vtðk; k0Þ �
~��
k0

4E�k0
f fðE�k0 Þ � fð�E�k0 Þg; ð12Þ

where fðxÞ ¼ 1=½expð�xÞ þ 1� is the Fermi–Dirac factor with
� ¼ ðkBTÞ�1 as the inverse temperature. The singlet and the
ESP-triplet OPs in Eqs. (11) and (12) are determined by the
corresponding interaction channels Vsðk; k0Þ and Vtðk; k0Þ.
Specifically, Vsðk; k0Þ ¼ hVðjk � k0jÞia and Vtðk; k0Þ ¼
hVðjk � k0jÞ cosð� � �0Þia where h� � �ia is the angular
average over the relative phase � � �0. In consequence, a
bare contact interaction, i.e., Vðjk � k0jÞ ¼ U is insufficient
to create pairing in the triplet channel even in the presence of
a strong SOC. The term � ~��

k0=ð4E�k0 Þ in Eq. (12) is propor-
tional to the difference between the two energy branches.
However, a similar term in Eq. (11) represents the sum of the
same contributions in  k. A non-local pairing interaction and
the SOC are therefore essential factors in the k-dependence of
the OPs in the mixed state. This affects most importantly the
RLN positions, the topology of the energy bands and the low
temperature properties as discussed below.

3. The Radial Line Nodes

In general, whether point or line, the nodes can be present
in: (a) the pair potential ~��

k and (b) the energy spectrum E�k.
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In SA NCSs the singlet and the triplet states are permitted
by the crystal point group symmetries. The group theoretical
approaches allowed the general classification of the ALNs
and the energy band topology. A recent review19) can be very
useful for a complete summary. On the other hand, in the WA
NCSs the point groups are ineffective and the ALNs are
absent. Nevertheless, these materials can exhibit puzzling
low temperature behaviour,5,20) i.e., some NCSs with strong
spin–orbit coupling display a fully gapped s-wave behaviour
in thermodynamic response. In this work we show that the
RLNs in the pair potential can resemble an isotropic s-wave
superconductor. A fully gapped spectrum is present when
the RLN positions are away from the Fermi surface, that
is the case (a) above. More precisely, these type of nodes
are topologically classified according to their position with
respect to the Fermi surface. They can be most accurately
identified by the ARPES,21) Andreev reflection spectrosco-
py22) or other ingenious measurements.23)

If an RLN is on the Fermi surface, there is a gappless
spectrum and the case (b) occurs, i.e., the energy nodes in E�k.
Because of this additional Fermi surface matching condition,
these nodes are physically rare, but when they occur, they
dominate the low temperature thermodynamic behaviour.24)

Hence, a concise analysis of RLNs is necessary, which we
do next.

3.1 The topology of the RLNs
In this section we demonstrate that the RLNs’ topology is

encoded in the position of the nodes and their nodal positions
can, in principal, be externally controlled. This result is
important from the future device applications, as experimen-
tal progress in this direction can lead us to the topologically
controllable systems. The angular line nodes are, on the other
hand, much less flexible externally due to the dominant effect
of the crystal symmetries. We now carry on a topological
analysis using two different methods and demonstrate that the
topology is determined by the positions of the RLNs.

a) The block-diagonal Hamiltonian method: In the absence
of the dz;k type pairing, the mixed state Hamiltonian in
Eq. (3) can be block-diagonalized in the SOC eigenbasis
ðâykþ âyk� â�kþ â�k�Þ where âk� ¼ 1ffiffi

2
p ðêk" þ ��ke

i�êk#Þ with
� ¼ �. Each block is described by a 2 � 2 matrix in the form
written by H� ¼ h�k:� with � as the Pauli matrices in the
SOC basis and h�k ¼ ðh�x; h�y; h�zÞ ¼ ð ~��

k cos�;� ~��
k sin�;

~	
�

k Þ.
One way to examine the energy band topology of RLNs is
then to investigate each block-diagonal branch separately
by the two-dimensional mapping ðkx; kyÞ ! n̂�k where n̂�k ¼
h�k=E

�
k is the Hamiltonian unit sphere. This two-dimensional

mapping is described by the Chern number

N�
1 ¼ 1

8�

Z
d2k �ij n̂

�
k:

@n̂�k
@ki

� @n̂�k
@kj

� �
; ð13Þ

where �ij with i; j ¼ x; y is the antisymmetric tensor. The two
branches can have independent indices given by the winding
of h�

k on S2.
The complete topological classification is made once all

distinct configurations of the nodes in ~��
k relative to the

position(s) of the Fermi level are identified. For this, we start
with the kinetic term in the BCS-like form in Eq. (8) given by

~	
�

k ¼ ħ2ð�kk � k�1Þð�kk � k�2Þ=ð2mÞ: ð14Þ

Here k�1 ; k
�
2 are the zeros of ~	

�

k . A positive k�j is a Fermi
momentum on j’th Fermi surface of the corresponding
branch. We assume that k�2 > k�1 . For the moment, we take
�k ¼ 1 and discuss its effect later. The Fermi wavevectors for
the + branch are

kþ2 ¼ m

ħ2
�� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2

ħ2

m



s2
4

3
5 ð
 > 0Þ; ð15Þ

kþ1;2 ¼
m

ħ2
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2

ħ2

m



s2
4

3
5 ð
 < 0Þ: ð16Þ

Here 
 ¼ �ħ2k�1k�2=ð2mÞ and � ¼ ��ħ2ðk�1 þ k�2Þ=ð2mÞ are
the physical parameters which can be used to vary the k�1;2.
All five possibilities are shown in Fig. 2 for the + branch.
The − branch is analyzed similarly.

Concentrating on the + branch, we will assume that the
triplet-to-singlet ratio jFk= kj can have values smaller and
larger than unity in different k regions. The pair potential is
then allowed to have a node, let’s say at kþ� of the + branch,
and �þ

k ¼ 
þðkÞðk � kþ�Þ where 
þðkÞ is a smooth function
representing the other (irrelevant) details. At k ¼ kþ� we have
that j kþ

�
j ¼ jFkþ

�
j. It will also be assumed that there is only a

single position where such a kþ� exists. In general there is
nothing to prevent the number of such points to be larger than
one and a complete map of such details is an additional asset
to the understanding of the pairing mechanism. Particularly, a
mathematical inversion of Eqs. (11) and (12) can be useful to
get information about the pairing interactions by knowing the
nodes of ��

k. We nevertheless avoid this interesting idea to a
later work and confine our attention to maximally one RLN at
k�� for each λ.

In the pure triplet state,25)  k ¼ 0 (in general realized either
the TRS invariant helical p-wave or the TRS breaking chiral
p-wave). In this case, the topology of the superconducting
bands is decided by μ only. The Chern index in Eq. (13) is an
integer yielding

k2>k1>kΔ , kΔ>k2>k1(a)

hz/Ek

hy/Ek

hx/Ek

k2>kΔ>k1(b)

hz/Ek

kx

ky

0

1

k1 k2

kΔ

Nw

k2

k1 <0 μ > μc

μ < μc

kΔ
Trivial−Topology(c)

k1 k2 kΔ

k2k1kΔ

k=0 k= ∞ k2

k1 < 0 μ > μc

μ < μc

kΔ

k1 k2kΔ

k=0 k= ∞

Nontrivial−Topology(d)

Fig. 2. (Color online) Nodal positions of ~	
�

k and ��
k when � ¼ þ depicted

respectively as kþ1 , k
þ
2 , and k

þ
� with different topologies as indicated in (a) as

trivial Nþ
1 ¼ 0, (b) as nontrivial, Nþ

1 ¼ 1. The zeros kþ1;2 are determined by μ
and α. The topology is illustrated on the unit sphere as (a) trivial for case (c),
and (b) nontrivial for case (d).
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Nþ
1 ð
Þ ¼

0 for 
 < 0

1 for 
 > 0

�
: ð17Þ

This picture is quite similar to the Z2 topology of the two
dimensional QSHI, one dimensional polyacetylene26) and the
spinless one dimensional p-wave superconductor.27)

In the mixed state however, singly-parameterized charac-
terization is not sufficient. Moreover, Eq. (13) is not integer-
valued. The first case is remedied by a doubly-parameterized
characterization. Due to the additional spin–orbit degree of
freedom, the Chern index in Eq. (13) depends on μ and α,
i.e., N�

1 ð
; �Þ. The positions of k�1 ; k
�
2 relative to k�� can be

used to classify the topology using Eqs. (15) and (16) and the
like for � ¼ �.

We again concentrate on the + branch. If 
 < 0 the kinetic
term can have two Fermi wavevectors kþ1 ; k

þ
2 > 0 given by

Eq. (16), or none, i.e., kþ1 ; k
þ
2 < 0, whereas for 
 > 0 there is

one Fermi momentum, i.e., kþ2 [as given by Eq. (15)]. To
begin, one can start from a trivial configuration such as
kþ1 < kþ2 < kþ� which is then used as a reference for all other
topological configurations. The mapping k ! n̂�k is described
in Figs. 2(a) and 2(b). Here, k ! 1 corresponds to the north
pole ð0; 0; 1Þ of the Hamiltonian unit sphere. The trivial and
nontrivial topologies for five distinct configurations of k�1 , k

�
2 ,

and k�� are also indicated in Figs. 2(c) and 2(d). These
configurations differ in topology by the number of Fermi
level crossings of the node k�� where the topology is changed
by every single crossing. For kþ1 < kþ� < kþ2 , k

þ
� is mapped to

the south pole ð0; 0;�1Þ, whereas for kþ� < kþ1 < kþ2 , it is
mapped to the north pole ð0; 0; 1Þ.

The non-integer valued index can be remedied by con-
sidering the reduced integral range k�� � k < 1. The results
thus obtained from Eq. (13) are shown in the inset of Fig. 2.

This concludes the investigation of the block diagonal
formalism. We now present another method by bringing the
same Hamiltonian into a block non-diagonal form.

(b) The block-nondiagonal Hamiltonian method: A meth-
od for the topological index was proposed in Refs. 28–30 for
Hamiltonians respecting “chiral symmetry” which is given by
the product of the TRS and the particle hole symmetry. Both
symmetries are preserved in our case here. In systems with
chiral sysmmetry a new way of defining topological index
can be developed by bringing the Hamiltonian in Eq. (2) into
the block off-diagonal form. In our case, this is obtained by
a global unitary transformation V acting on Hk in Eq. (3)
as28–30)

VHkV
y ¼

0 Dk

Dy
k 0

 !
; V ¼ 1ffiffiffi

2
p �0 ��2

i�2 i�0

 !
; ð18Þ

where Dk ¼ Ck½cosð�kÞ�z þ i sinð�kÞ�0� � iBk�2 with Ck ¼
jGkj � iFk and Bk ¼ 	k þ i k. Similarly to Eq. (13), here Dk

is well defined only in those k points where the energy
spectrum Eq. (8) is nonvanishing, i.e., when the gap is full.
In Refs. 28–31 a momentum-dependent (contrary to global)
topological index is defined as

N2ðk?Þ ¼ 1

2�
=m

Z 1

�1
dkk @kk ln detð ~DkÞ

� �
; ð19Þ

where kk and k? are coordinates fully parametrizing the
k-plane. Here we transformed Dk ! ~Dk as detð ~DkÞ ¼
detðDkÞ=jdetðDkÞj.

In the context of this work, N2 is, desirably, a global index,
due to the ϕ-independence of detð ~DkÞ. For the same reason,
kk integral can be split into a pair of equivalent radial
integrals, i.e., kk ¼ k at � ¼ 0 and π. The Eq. (19) can then
be turned into

N2 ¼ 1

�
=m

Z 1

0

dk @k ln detð ~DkÞ
� �

: ð20Þ

The Eq. (20) can now be shown to be connected with N�
1 in

Eq. (13), i.e., N2 ¼ Nþ
1 þ N�

1 .
For this, we use Dk, Ck, and Bk as defined below Eq. (18)

to find that detðDkÞ ¼ ð ~	þk þ i ~�þ
k Þð ~	

�
k þ i ~��

k Þ. Therefore the
Eq. (20) is

N2 ¼ 1

�

X
�

Z 1

0

dk @k½argð ~	�k þ i ~��
kÞ�: ð21Þ

Since argð ~	�k þ i ~��
kÞ is the polar angle �� ¼ tan�1 ~��

k=
~	
�

k

of the Hamiltonian unit vector n�ð�; �Þ ¼ ð ~��
k cos�;

~��
k sin�;

~	
�

k Þ, the Eq. (21) is identical with the winding of
the polar angle on the unit circle at a fixed longitude ��, i.e.,
N2 ¼

P
�

R
d��=�. There is therefore a one-to-one corre-

spondence between Eqs. (13) and (21) [hence Eq. (20)].
In order to obtain an integer index from Eq. (19), the

consideration of the reduced range is the simplest. Another
alternative technique was also suggested. Assume that the
pair potential is sufficiently weak near the Fermi surface.
One can use the positions of the multiple sectors of the
Fermi surface and linearly expand ~	

�

k and ~��
k around the

i’th Fermi surface. The expectation is that a continuous
deformation assumed in the linear expansion does not
change the topology, hence a discrete index is expected. It
was shown in Refs. 28–31 that Eq. (19) can then be written
as

N2 ¼ � 1

2

X
ki

sign½@kð ~	þk ~	
�
k Þjk¼ki�

� sign½ð ~�þ
k
~	
�
k þ ~��

k
~	
þ
k Þjk¼ki�; ð22Þ

where point(s) k�i are the Fermi momenta given by ~	
�

k jk�i ¼ 0.
This can be written as a sum of separate branches as

N2 ¼ � 1

2

X
�

X
~	
�
ki
¼0

sign½@k ~	�k jk¼ki� sign½ ~��
kjk¼ki�: ð23Þ

The N�
2 calculated from Eq. (23) yields the same result as N�

1

using the reduced integration range (see Fig. 2). With the
equivalence of both methods in parts Figs. 2(a) and 2(b), we
revisit Figs. 2(c) and 2(d) for a summary. The topological
indices defined in this section are undefined when the spectral
gap closes. The topology of the RLNs in the full gap
configuration requires that k�� is not on the Fermi surface, i.e.,
k�� ≠ ðk�1 ; k�2Þ. The topology can then be classified by the Z2
index according to the position of the RLN in the pair
potential with respect to the Fermi surface. This requires that
the configurations where k�� ¼ k�1 or k�� ¼ k�2 are topologi-
cally undefined. Since these specific configurations are where
the energy gap closes, we have the important result that, an
RLN in the energy spectrum occurs at the boundary of two
distinct topological regions. This concludes our discussion on
the topology of the RLNs. We now investigate the influence
of the RLNs on the thermodynamic observables where the
results of Sect. 3.1 will also be used.
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3.2 Thermodynamic signatures
In fully gapped NCSs, specific heat, penetration depth and

other thermodynamic observables display exponential sup-
pression in temperature in sufficiently low temperatures. For
this reason, it is difficult in thermodynamic experiments to
separate the unconventional pairing in these systems from the
fully gapped trivial s-wave superconductors.

On the other hand, the gapless superconductors—mostly
studied in the context of ALNs in the anisotropic regime—
can be easily identified in thermodynamic measurements with
their distinct scaling behaviour near vanishing excitation
energies. In this case, the exponential suppression in
temperature is replaced by a clean power law depending on
the nodal dimensions. It is known that in two dimensional
systems, the point nodes can yield in the specific heat a T3,
whereas the ALNs yield a T2 dependence.4)

It is our goal in this section to show that, the WA systems
where ALNs are not present, behave thermodynamically like
the ordinary s-wave superconductors. This is so even in the
presence of strongly mixed singlet–triplet components with
RLNs present in the pair potential. In order to study the
thermodynamics of these systems, we start with the energy
DOS of the branch λ,

��ðEÞ ¼
Z

dk

ð2�Þ2 
ðE � E�kÞ ð24Þ

and examine its behaviour in the context of Sect. 3.1. We
consider E�k in the context of Eqs. (8) and (14) also allowing
the pair potential to have a simple RLN at k��, i.e., �

�
k ’

b�ðk � k��Þ. If we concentrate on the region k ’ k�2 for a fixed
λ and 
 > 0, then ~	

�

k ’ a�ðk � k�2Þ. Here a� and b� are some
coefficients. We find that

��ðEÞ ¼ 1

2�

E

a2�ð1 � k�2=kÞ þ b2�ð1 � k��=kÞ
����
k¼k�ðEÞ

ð25Þ

and k�ðEÞ is where E�k ¼ E. Equation (25) indicates that, for
large energies �ðEÞ 
 E. The small energy limit of DOS
depends on whether a zero energy mode at a finite k is
supported in the spectrum. For the zero energy mode k�2 ¼
k�� must be physically realized, i.e., the node in the pair
potential must occur at the Fermi level. In this case, Eq. (24)
implies that in the vicinity of the zero mode ��ðEÞ ¼
k�E=ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2� þ b2�

p
Þ, i.e., a constant. On the other hand, if

k�2 ≠ k��, there is a gap in the spectrum for E < E�min ¼
a�b�jk�2 � k��j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2� þ b2�

p
with a divergent DOS at the gap

edge. The DOS for this 
 > 0 case is summarized in
Fig. 3(a). Before commenting on this case, we examine the
DOS for 
 < 0. Here, there are two Fermi surface positions
or none. Let us assume that there can be one RLN of the pair
potential at k�� for each branch λ. In this case, there can be
two, one or zero number of energy nodes and the picture
obtained for the 
 > 0 case in the DOS is repeated here
according to the number of energy nodes. Finally, the DOS
for 
 < 0 is shown in Fig. 3(b).

In Figs. 3(a) and 3(b), the behaviour of the DOS in the
fully gapped regimes is unseparable from a conventional s-
wave superconductor. Different behaviour from the conven-
tional superconductor appears when the node is located on
the Fermi surface. This corresponds to an RLN in the energy
spectrum and in contrast to the ALNs where �ðEÞ 
 E� with
ν being an integer exponent depending on dimensionality,4)

here the DOS acquires a constant value. A comparison with
the previous section shows that, the point where the
discontinuous jump occurs in �ð0Þ is a boundary between
topologically two distinct regimes. The experimental obser-
vation of this discontinuity should be considered as a
significant evidence about the presence of RLNs and, any
thermodynamic quantity based on �ðEÞ is expected to have
this signature. For instance the specific heat given by

CVðTÞ ¼
X
�

Z
dE ��ðEÞE fðEÞ

dT
; ð26Þ

where fðEÞ was define before, displays a sharp transition
from the exponential suppression to the linear dependence as
shown in Figs. 3(c) and 3(d). The temperature dependence
of the CV in an NCS with RLNs is therefore very similar to
that of the s-wave BCS superconductor. This is a crucial
information which may be useful in resolving some of the
experimental controversies. Indeed, recently a number of
thermodynamic experiments were reported on NCSs with
strong IS breaking20) and the list is rapidly extending.32) In
these works, the thermodynamic data is similar to Figs. 3(c)
and 3(d) and the opinion of those authors is in favour of the
conventional s-wave BCS superconductivity. On the other
hand, other evidences were also emphasized therein pointing
at the unconventional pairing.

Our results in this section can demonstrate that a fully
gapped superconductor with an RLN located off the Fermi
surface can display thermodynamic data like ordinary s-wave
superconductors at the same time being topologically
unconventional in a strongly mixed state.

An important side remark is that, if �k changes sign
between the two Fermi wavevectors k1 and k2, then both gaps
��
k are allowed to have RLNs. This case is interesting but

certainly a very rare circumstance. Its experimental identi-
fication may be difficult to reveal in thermodynamic measure-
ments, but it may be possible by ARS which we discuss next.

3.3 The Andreev reflection spectroscopy with WA NCSs
The arguments raised above show that the thermodynamic

data can be misleading in understanding the OP symmetry.
We furthermore demonstrated that, the RLNs offer an
explanation to these controversies and they are most likely
present in WA systems.

We can differentiate the SA conditions from the WA ones,
for instance as shown in the top and the bottom slices of
Fig. 1(b), by using probes that can control the energy and the
momentum vector at the single particle level. The Andreev
conductance (AC) measurements have been useful exper-
imental tools for obtaining information about the pairing
symmetry of the s, d and chiral p-wave superconductors.4,33)

In this section, we demonstrate that the AC can be also an
efficient probe for the WA ones.

We consider the junction of a normal metal (N) with a WA
NCS in the x–y plane and calculate the AC at an N–NCS
interface where x < 0 is the N side without SOC and x > 0 is
the NCS with SOC. We assume ideal conditions with no
interface potential which allows us to discard the normal
reflection.34)

Initially, an electron, spin-polarized in the z-direction, is
sent normal to the N–NCS interface from the N side at the
wavevector Ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE þ 
NÞ=ħ2

p
where E is the energy of
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the incident electron and 
N ¼ ħ2k2F=ð2mÞ is the chemical
potential in the N region with kF being the Fermi wavevector
in the N side. We perform our calculations for the zero
voltage bias, i.e., 
N ¼ 
NCS. The corresponding wave-
functions are35)

�NðxÞ ¼ feiKexð1; 0; 0; 0ÞT þ a eiKhxð0; 0; 1; 0ÞT

þ b eiKhxð0; 0; 0; 1ÞT þ c e�iKexð1; 0; 0; 0ÞT

þ d e�iKexð0; 1; 0; 0ÞTg; ð27Þ
�SðxÞ ¼ fc1 eiqþ1 xðu1; � u1; �� v1; v1ÞT

þ c2 e
iqþ

2
xð��� u2; u2; v2;��� v2ÞT

þ c3 e
�iq�

1
xð���v1; v1; u1;��� u1ÞT

þ c4 e
�iq�

2
xðv2; � v2; � u2; u2ÞTg;

where � ¼ ei� evaluated at the corresponding transmitted
wavevector q�ð12Þ

in Eq. (27), and for jEj > j��j

uð12Þ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ��

E

� �2
s0

@
1
A

vuuut ; ð28Þ

vð12Þ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ��

E

� �2
s0

@
1
A

vuuut ;

whereas analogous to the BTK theory,34) the coefficients are
complex for jEj < j��j as,

uð12Þ ¼
1

2

ffiffiffiffiffiffiffiffiffiffi
��
E

����
����

s
ei�� ; �� ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��
E

����
����2 � 1

s
; ð29Þ

and v�ð12Þ
¼ uð12Þ. Here a; b are the complex Andreev reflec-

tion amplitudes for the hole with wavevector Kh ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mð�E þ 
NÞ=ħ2

p
, and the c; d are the normal reflection

amplitudes. On the NCS side, c1; . . . ; c4 are the transmission
amplitudes within the NCS in the � branches. Here c ¼
d ¼ 0 as the result of the absence of normal reflection as
mentioned before. Hence only a; b are present due to the
Andreev mechanism.

The pair potential ��
k is an isotropic function of k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
p

in the NCS. Due to the homogeneous boundary
conditions along the y-direction, the ky is conserved across
the boundary. The ��

k is therefore a function of E of the
incident probe particle and its angle of incidence �i on the N
side. For normal incidence, we take �i ¼ 0. This being the
case for the perfect isotropy, for WA NCSs the pair potential
can be a weak function of the orientaton angle �0 of the
crystal axes relative to the interface plane in the NCS. In this
case, ��

k can be considered as a fuzzy function of E with a
narrow spread given by the degree of anisotropy. In the
isotropic limit, fuzziness disappears and ��

k ¼ ��ðEÞ be-
comes a sharp function of E. Assuming this last case and for
a given initial energy E, there are three different regimes:
a) E < j��j < j�þj where ju21j ¼ jv21j and ju22j ¼ jv22j,
b) j��j < E < j�þj where ju21j ¼ jv21j and ju22j ≠ jv22j, and
c) j��j < j�þj < E where ju21j ≠ jv21j and ju22j ≠ jv22j. We
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Fig. 3. (Color online) The effect of the Fermi level crossing of the node k� in the pairing potential for 
 > 0 in (a) the DOS �ðEÞ and (b) the CV

corresponding to the cases k� < k2, k� ¼ k2, and k� > k2. The effect of the Fermi level crossing of the energy gap node k� for 
 < 0 on the (a) �ðEÞ and (b)
CV corresponding to five different positions of k� color coded in (b), as also indicated in Figs. 2(a) and 2(b). The insets magnify the low E and low T region of
�ðEÞ and CV which are linear for k� ¼ k1 and k� ¼ k2.
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assumed here that j��ðEÞj < j�þðEÞj which may or may not
be true for all energies (details are in the caption of Fig. 4).
The results here are unaffected by such details.

The full solution of the coefficients in Eq. (27), requir-
ing the application of the boundary conditions �NðxÞ ¼
�SðxÞ and �0

NðxÞ ¼ �0
SðxÞ at the x ¼ 0 interface, has been

shown in a large number of works and will not be shown
here. The continuity of the current at the interface requires
that

1 � ðjaj2 þ jbj2Þ ¼ Sa;b;c; ð30Þ
where
Sa ¼ z;

Sb ¼ qþ2
Ke

jc2j2ðju2j2 � jv2j2Þ;

Sc ¼ qþ1
Ke

jc1j2ðju1j2 � jv1j2Þ þ qþ2
Ke

jc2j2ðju2j2 � jv2j2Þ ð31Þ

with Sa;b;c corresponding to the three cases above. The
probabilities A ¼ jaj2 and B ¼ jbj2 are the Andreev reflection
probabilities4,35) for the hole in x < 0, whereas C1 ¼
qþ
1

Ke
jc1j2ðju1j2 � jv1j2Þ, C2 ¼ qþ

2

Ke
jc2j2ðju2j2 � jv2j2Þ are for the

transmission probabilities corresponding to the � branches.
Also, c3 ¼ c4 ¼ 0 due to the absence of reflection in a semi-
infinite geometry in the NCS. Here we will be interested in
the double step-like behaviour of the A ¼ jaj2 and B ¼ jbj2
as a result of the Eq. (31) as shown in Fig. 4.

Respecting these three energetically different regimes,
we examine the AC (�A) in two distinct cases of the pair
potentials: (i) when both ~�� are nonzero and, (ii) when one
of them is zero at a nodal position. The spin dependent
Andreev reflection and the transmission coefficients are
shown in the Figs. 4(a)–4(f ) together with the AC �A
calculations in the insets, where the mutual positions of the
�� are varied in Figs. 4(a), 4(b), 4(d), 4(e) and one of the
pair potentials is assumed to be at the nodal position at
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Fig. 4. (Color online) Spin resolved Andreev reflection and the transmission probabilities in an N–NCS interface are depicted with Andreev conductance �A
(in units of 2e2=h in the inset for each horizontal case) for three different configurations: (a) �� > �þ > 0, (b) same as (a) when �þ is lowered, and (c) same as
(a) when �þ ¼ 0. The right columns (c, e, f ) correspond to the cases �� $ �þ.
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E ¼ 0 in Figs. 4(c) and 4(f ). Let us concentrate on the inset
in Fig. 4(a) where the �A starts with a plateau at unit
conductance corresponding to the configuration E < j��j <
j�þj, i.e., case (a) defined above Eq. (30). If E is between the
gaps, as in case (b), the AC moves down to a second plateau.
For the case (c), the �A gradually disappears as E is
increased. If the interval j�þ � ��j is changed, the curves
change only quantitatively with the double-step behaviour
unchanged [Figs. 4(b) and 4(e)]. We now shift to the second
distinct case (ii) above, when one of the pair potentials is
zero as shown in Figs. 4(c) and 4(f ) corresponding to a RLN
position. The �A in the inset therein, directly starts at 1=2 at
low energies then going through a single plateau before
gradually vanishing at high energies. If this RLN is located
on the Fermi surface, this should experimentally give rise to a
narrow zero bias conductance peak.

The double steps in the AC is a signature of the three
regions with different Andreev reflection properties. We
therefore expect that the two distinct steps should always be
present where the other details such as the step length and the
vertical range of the steps should be material dependent.
From the theoretical point of view, double steps clearly point
at the WA conditions, but in reality there can be a weak
dependence on the orientation angle �0 in ��. This should
affect the steepness of the falls in �A between the plateaus.
However, there can be a serious danger on the visibility of the
double steps: these characteristic features can be completely
erased in the presence of imperfections on the interface as we
discuss now.

We checked the robustness of the double steps against the
imperfections on the interface. In this case, we expect that
an effective transmission barrier is created on the interface
which can easily obscure the ideal AC profile. To understand
this effect, we assumed a spin-neutral barrier potential as
Z
ðxÞ with Z describing the barrier strength and then
calculated the AC. Our results, as shown in Fig. 5, confirm
that, the shape of the AC is extremely fragile against the
surface imperfections and the double step behaviour is
destroyed completely. Highly clean interfaces are therefore
needed to observe the ideal double step behaviour.

4. Conclusions

In this work, we concentrated on the topology and the

thermodynamics of the WA NCSs. The RLNs can emerge in
these systems, in contrast to the ALNs appearing under SA
conditions. In an RLN, the pair potential vanishes in certain
reciprocal space points where the singlet and the triplet
couplings become locally comparable. They are pronounced
in WA systems where their more anisotropic counterparts
(the ALNs) are usually absent. The low temperature
dynamics caused by RLNs is dintinctly different from that
of the ALNs. In particular, when they are not on the Fermi
surface, the RLNs can imitate an isotropic BCS like full gap
behaviour in the low temperature thermodynamic measure-
ments without giving up the unconventional pairing and
the topology. This finding is crucial in that, a number of
experimental results on NCSs in favour of trivial s-wave
coupling may need to be reconsidered and these results may
happily turn out to be nontrivial. Furthermore several
compounds with broken TRS are reported to show a similar
behaviour.36) The picture presented by the RLNs may be also
relevant in the TRS broken NCSs and this deserves a separate
work.

The topology of the energy bands is classified by the
relative position of the RLN in the pair potential with respect
to the Fermi wavevector. The latter can be shifted by the
chemical potential and the SOC, bringing an additional
importance that the topology can be manipulated externally
by electrostatic gates and the SOC strength. This can open
promising research directions based on superconducting node
engineering with implications in exotic device applications in
topological quantum computing. Finally, the Andreev spec-
troscopy in N–NCS junctions is an efficient tool for probing
the double gap structure of the WA NCSs where RLNs are
most likely to be found experimentally.

For the RLNs to exist in a mixed singlet–triplet state,
and besides the SOC, it is sufficient to have an isotopic
component of the pairing interaction sufficiently attractive in
the long ranges. On the other some of the isotropic NCSs in
the scope of this work with large values of the universal BCS
ratio and the anomalous specific heat jumps may be pointing
at strong and=or long range interactions. We have not
referred to a particular pairing mechanism in this manuscript.
Our main results are thus expected to be valid in the strong
coupling extention of our work which can be developed in
the future.
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