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Abstract We study two continuous knapsack sets Y≥ and Y≤ with n integer, one
unbounded continuous and m bounded continuous variables in either ≥ or ≤ form.
When the coefficients of the integer variables are integer and divisible, we show
in both cases that the convex hull is the intersection of the bound constraints and
2m polyhedra arising as the convex hulls of continuous knapsack sets with a single
unbounded continuous variable. The latter convex hulls are completely described by an
exponential family of partition inequalities and a polynomial size extended formulation
is known in the ≥ case. We also provide an extended formulation for the ≤ case. It
follows that, given a specific objective function, optimization over bothY≥ andY≤ can
be carried out by solving m polynomial size linear programs. A further consequence
of these results is that the coefficients of the continuous variables all take the values
0 or 1 (after scaling) in any non-trivial facet-defining inequality of the convex hull of
such sets.
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2 L. A. Wolsey, H. Yaman

1 Introduction

Letm and n be positive integers,M = {1, . . . ,m},M0 = M∪{0} and N = {1, . . . , n}.
The parameters ai for i ∈ M , c1 ≤ . . . ≤ cn and b are positive integers. The {c j } are
distinct. The multi-item continuous ≥-knapsack set is

Y≥ =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
m+1+ :

∑

j∈N
c j y j +

∑

i∈M0

xi ≥ b, xi ≤ ai , i ∈ M

⎫
⎬

⎭
,

the multi-item continuous ≤-knapsack set is

Y≤ =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
m+1+ :

∑

j∈N
c j y j ≤ b +

∑

i∈M0

xi , xi ≤ ai , i ∈ M

⎫
⎬

⎭

and the unbounded single item continuous knapsack sets are

Q≥ =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
1+ :

∑

j∈N
c j y j + x ≥ b

⎫
⎬

⎭

and

Q≤ =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
1+ :

∑

j∈N
c j y j ≤ b + x

⎫
⎬

⎭
.

These sets arise as relaxations of many mixed-integer programming problems and
consequently strong valid inequalities for these sets can be used in solving more
complicated problems. Indeed, many strong inequalities used in the literature can
be obtained using such knapsack relaxations. For books and inequalities on general
knapsack sets, see among others [2,6,12,14,17].

Here we consider a case in which there is special structure, specifically the coeffi-
cients of the integer variables are divisible 1|c1| · · · |cn . Generalizing results of Pochet
andWolsey [16] for the≥-knapsack set, we show thatQ≥ andQ≤ can be described by
two closely related families of “partition” inequalities. This in turn leads to complete
polyhedral descriptions of Y≥ and Y≤. Specifically we show that

conv(Y≥) = ∩S⊆M conv(QS≥) ∩ {(y, x) : xi ≤ ai , i ∈ M}

where

QS≥ =
⎧
⎨

⎩
(y, x)∈Z

n+ × R
m+1 :

∑

j∈N
c j y j +x(S ∪ {0}) ≥ b−a(M\S), x(S ∪ {0}) ≥ 0

⎫
⎬

⎭

with a similar result for Y≤ (where v(A) = ∑
a∈A va for a vector v and a set A).
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Continuous knapsack sets with divisible capacities 3

For Y≥, this generalizes a result of Magnanti et al. [10] concerning the “single arc
flow set” in which they show (modulo complementation of the continuous variables)
that when n = 1, the convex hull of Y≥ ∩ {(y, x) : x0 = 0} is completely described
by adding the “residual capacity” or mixed integer rounding (MIR) inequalities one
for each of the relaxations

c1y1 + x(S) ≥ b − a(M\S), x(S) ≥ 0, y ∈ Z
1+,

where S ⊆ M . Atamtürk andRajan [3] give a polynomial time separation algorithm for
the residual capacity inequalities. Magnanti et al. [11] generalize the residual capacity
inequalities for the two facility splittable flow arc set when n = 2, c1 = 1 and state
without proof that addition of the two MIR inequalities arising for each choice of
S ⊆ M suffices to give the convex hull.

Other work on divisible knapsack sets includes a convex hull description of the

integer≤-knapsack set
{
y ∈ Z

n+ : ∑ j∈N c j y j ≤ b
}
consisting of n Chvatal–Gomory

rounding inequalities by Marcotte [13] and a study of Pochet and Weismantel [15]
of the case with bounded variables. Other (continuous) knapsack sets with special
structure whose polyhedral structure has been studied include the set Q≤ with n = 2
and c1, c2 arbitrary positive integers (Agra and Constantino [1] and Dash et al. [4]),
as well as 0-1 knapsack sets with super-increasing coefficients (Laurent and Sassano
[8]) and more recently a generalization with bounded integer variables (Gupte [5]).

The rest of the paper is organized as follows. In Sect. 2, we review some results
on knapsack sets with divisible capacities. In Sect. 3 we study the convex hull of the
multi-item continuous ≥-knapsack set and prove that the original constraints and the
so-called “partition inequalities” are sufficient to describe the convex hull when the
capacities are divisible. A result on the convex hull of the two-sided integer knapsack{
y ∈ Z

n+ : b′ ≤ ∑
j∈N c j y j ≤ b

}
is an immediate corollary. In Sect. 4 we show that a

new, but related, family of partition inequalities is valid for the continuous≤-knapsack
set with one unbounded continuous variable Q≤. We also give a polynomial size
extended formulation for Q≤. In Sect. 5 we provide a convex hull description for the
case of m bounded continuous variables and one unbounded continuous variable Y≤.
We conclude in Sect. 6.

2 The ≥-knapsack set and partition inequalities

Throughout the paper, we assume that the capacities are divisible. We use the notation
cy = ∑

j∈N c j y j . Below we present results from Pochet and Wolsey [16] that will be
used in Sect. 3.

Consider the integer ≥-knapsack set

C = {
y ∈ Z

n+ : cy ≥ b
}

with c1 = 1. Let v(b) be the index with cv(b) ≤ b < cv(b)+1 if such an index exists
and be n otherwise.
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4 L. A. Wolsey, H. Yaman

For some integer p ≥ 1, let {i1 = 1, i1 + 1, . . . , j1} , {i2 = j1 + 1, i2 + 1, . . . , j2}
, . . . ,

{
i p = jp−1 + 1, i p + 1, . . . , jp = n

}
be a partition of {1, . . . , n} such that i p ≤

v(b) and it = jt−1 + 1 for t = 2, . . . , p. Compute

βp = b, κt =
⌈

βt

cit

⌉

, μt = (κt − 1)cit and βt−1 = βt − μt for t = p, . . . , 1.

Note that the βt are positive and nondecreasing in t and κt ≥ 1 for all t .
The partition inequality is

p∑

t=1

t−1∏

l=1

κl

jt∑

j=it

min

{
c j
cit

, κt

}

y j ≥
p∏

t=1

κt . (1)

Pochet and Wolsey [16] prove that these inequalities are valid for the integer ≥-
knapsack set C. They also prove the following result on conv(C):

Theorem 1 The convex hull of C is described by its constraints and the partition
inequalities (1).

In addition, Pochet and Wolsey [16] establish the following results.

Theorem 2 Let g ∈ R
n and {i1, . . . , j1}, {i2, . . . , j2} , . . . , {i p, . . . , jp}be a partition

of {1, . . . , n} such that i p ≤ v(b). Suppose that g > 0,
g j
c j

is constant for j = it , . . . , jt

and
git
cit

>
git+1
cit+1

for t = 1, . . . , p−1,
gi p
ci p

= g j
c j

for j = i p, . . . , v(b) and gv(b)+1 = g j

for j = v(b) + 1, . . . , n.

i. All optimal solutions ofmin
{∑n

j=1 g j y j : cy ≥ b, y ∈ Z
n+
}
satisfy (1) at equality.

ii. All optimal solutions of min
{∑n

j=i2 g j y j : ∑n
j=i2 c j y j ≥

⌈
b
ci2

⌉
ci2 , y ∈ Z

n+
}

satisfy
p∑

t=2

t−1∏

l=2

κl

jt∑

j=it

min

{
c j
cit

, κt

}

y j =
p∏

t=2

κt .

iii. All optimal solutions of min
{∑n

j=i2 g j y j : ∑n
j=i2 c j y j =

⌊
b
ci2

⌋
ci2 , y ∈ Z

n+
}

satisfy
p∑

t=2

t−1∏

l=2

κl

jt∑

j=it

min

{
c j
cit

, κt

}

y j =
p∏

t=2

κt − 1.

3 The multi-item continuous ≥-knapsack set

In this section, we study the convex hull of the multi-item continuous ≥-knapsack set
Y≥ when the capacities are divisible.

Our goal now is to show that

conv(Y≥) = ∩S⊆M conv(QS≥) ∩ {(y, x) : xi ≤ ai , i ∈ M}
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Continuous knapsack sets with divisible capacities 5

where

QS≥ =
{
(y, x) ∈ Z

n+ × R
m+1 : x(S0) + cy ≥ b − a(M\S), x(S0) ≥ 0

}
,

and S0 = S ∪ {0}.
Note that in the extreme points of conv(Y≥), x0 takes integer values. We give the

convex hull proof for Y ′≥ = Y≥ ∩ {(y, x) : x0 = 0} since x0 can be considered an
integer variable with coefficient 1.

Given S ⊆ M , consider the following reformulation of QS≥
{
(y0, y, x) ∈ R

1+ × Z
n+ × R

m+1 : y0 + cy ≥ b − a(M\S), y0 = x(S0)
}

.

As the data is integral, y0 takes an integer value in every extreme point of the convex
hull of the above set. Setting y0 integer, we obtain the divisible capacity knapsack
cover set

⎧
⎨

⎩
(y0, y, x) ∈ Z

n+1+ × R
m+1 :

∑

j∈N0

c j y j ≥ B(S), y0 = x(S0)

⎫
⎬

⎭

where N0 = N ∪ {0}, c0 = 1 and B(S) = b − a(M\S).

Proposition 1 Let S ⊆ M, {i1 = 0, . . . , j1}, . . . ,
{
i p, . . . , jp = n

}
be a partition

of {0, 1, . . . , n} such that i p ≤ v(B(S)) and it = jt−1 + 1 for t = 2, . . . , p. Let

βp = B(S), κt =
⌈

βt
cit

⌉
, μt = (κt − 1)cit and βt−1 = βt − μt for t = p, . . . , 1. Then

the partition inequality

x(S0) +
j1∑

j=1

min{c j , κ1}y j +
p∑

t=2

t−1∏

l=1

κl

jt∑

j=it

min

{
c j
cit

, κt

}

y j ≥
p∏

t=1

κt (2)

is valid for both QS≥ and Y≥.

Using Theorem 1, we obtain the following result:

Corollary 1 conv(Q≥) is described by its constraints and partition inequalities (2)
with x = x(S0).

Theorem 3 conv(Y ′≥) is described by the initial constraints and the partition inequal-
ities (2).

Proof We use the technique of Lovász [9]. Suppose that we minimize
∑

i∈M hi xi +∑
j∈N g j y j overY ′≥ where (h, g) 	= 0.We need g ≥ 0 for the problem to be bounded.

Let Ω(h, g) be the set of optimal solutions.
If hi < 0 for some i ∈ M , then Ω(h, g) ⊆ {(y, x) : xi = ai }. If h � 0 and g = 0

with hi > 0 for some i ∈ M , Ω(h, g) ⊆ {(y, x) : xi = 0}. If g j = 0 and g j ′ > 0 for
some pair j, j ′ ∈ N , Ω(h, g) ⊆ {(y, x) : y j ′ = 0}. Thus we are left with h ≥ 0 and
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6 L. A. Wolsey, H. Yaman

g > 0. Let S = {i ∈ M : hi > 0}. If B(S) ≤ 0, then Ω(h, g) ⊆ {(y, x) : y j = 0} for
all j ∈ N .

Now suppose that B(S) > 0. If there exist indices j1 < j2 ≤ v(B(S)) such that
c j2
c j1

g j1 < g j2 , then y j2 = 0 for all (y, x) ∈ Ω(h, g). Similarly, if there exist j1 and j2
in {v(B(S)) + 1, . . . , n} such that g j1 < g j2 , then y j2 = 0 for all (y, x) ∈ Ω(h, g).

We are left with B(S) > 0, g1c1 ≥ . . . ≥ gv(B(S))

cv(B(S))
> 0 and gv(B(S))+1 = . . . = gn > 0.

One possibility is that Ω(h, g) ⊆ {(y, x) : x(M) + cy = b}.
The last case to be considered is that in which there exists an optimal solution

(y∗, x∗) with x∗(M) + cy∗ > b. Note that y∗ 	= 0 for any such solution since
B(S) > 0. Let q be the smallest index such that there exists an optimal solution
(y∗, x∗) with x∗(M) + cy∗ > b and y∗

q > 0. Then we know the following:

a. xi = 0 for all i ∈ S in any optimal solution (y, x)with x(M)+cy > b. Otherwise
one can decrease some xi with i ∈ S by a small amount, remain valid and improve
the objective function.

b.
gq−1
cq−1

>
gq
cq
. For j ∈ N , define e j to be the j-th unit vector of size n. If

gq−1
cq−1

= gq
cq
,

then (x∗, y∗ − eq + cq
cq−1

eq−1) is also optimal, contradicting the definition of q.

c. cq 	 |B(S). Suppose on the contrary that cq divides B(S). Let (y∗, x∗) be an optimal
solution with x∗(M) + cy∗ > b and y∗

q > 0. We have
∑n

j=q c j y
∗
j > B(S) since

y∗
j = 0 for j = 1, . . . , q − 1, x∗(S) = 0 and x∗(M) + cy∗ > b. As

∑n
j=q c j y

∗
j is

a multiple of cq , it follows that
∑n

j=q c j y
∗
j ≥ B(S) + cq . But now (x∗, y∗ − eq)

is feasible and cheaper since gq > 0, contradicting the optimality of (x∗, y∗).
d. cy ≥

⌊
B(S)
cq

⌋
cq in any optimal solution (y, x). If S = ∅, then by feasibility

we require cy ≥ B(S) and hence cy ≥
⌊
B(S)
cq

⌋
cq . If S 	= ∅, define φ(σ) =

min
{∑

i∈S hi xi : x(S) ≥ B(S) − σ, 0 ≤ xi ≤ ai i ∈ S
}
. Optimality of (y∗, x∗)

as in c) above implies gq ≤ φ(c(y∗ − eq)) − φ(cy∗). The fact that the knapsack
cover constraint is not tight together with cq does not divide B(S) implies that

cy∗ ≥
⌊
B(S)
cq

⌋
cq + cq . Suppose now that (y′, x ′) is an optimal solution with

cy′ <
⌊
B(S)
cq

⌋
cq . Now φ is a piecewise linear convex function with φ(σ) > 0

for σ < B(S) and φ(σ) = 0 for σ ≥ B(S). It is strictly decreasing on the
interval [max(0, B(S) − a(S)), B(S)]. Therefore, as cy′ ≥ B(S) − a(S), cy′ <

c(y∗ − eq) < B(S) and cy∗ > B(S), one has φ(cy′)−φ(c(y′ + eq)) > φ(c(y∗ −
eq)) − φ(cy∗). It follows that φ(cy′) − φ(c(y′ + eq)) > gq and thus g(y′ +
eq) + φ(c(y′ + eq)) < gy′ + φ(cy′). So increasing y′

q by 1 and picking the best
x improves the objective function value. Hence (y′, x ′) cannot be optimal.

Now let y0 = x(S) and q be as defined above. Let {i1, . . . , j1}, {i2, . . . , j2},
. . . , {i p, . . . , jp} be a partition of {0, . . . , n} such that i1 = 0, j1 = q − 1,

i p ≤ v(B(S)),
g j
c j

is constant for j = it , . . . , jt and
git
cit

>
git+1
cit+1

for t = 2, . . . , p − 1,
gi p
ci p

= g j
c j

for j = i p, . . . , v(B(S)) and gv(B(S))+1 = g j for j = v(B(S)) + 1, . . . , n.

We claim that all optimal solutions satisfy the corresponding partition inequality (2)
at equality.
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Continuous knapsack sets with divisible capacities 7

Take an arbitrary point (y, x) ∈ Ω(h, g). If the knapsack cover constraint is not
tight at (y, x), then xi = 0 for all i ∈ S, y j = 0 for j = 1, . . . , q−1 and (yq , . . . , yn) is

optimal for the problem ofminimizing
∑n

j=q g j ỹ j subject to
∑n

j=q c j ỹ j ≥
⌈
B(S)
cq

⌉
cq

and ỹ ∈ Z
n+. Then

∑p
t=2

∏t−1
l=2 κl

∑ jt
j=it

min
{
c j
cit

, κt

}
y j = ∏p

t=2 κt using (ii) of

Theorem2.Multiplying by κ1 ≥ 1 and adding the terms x(S)+∑ j1
j=0 min(c j , κ1)y j =

0, we see that (y, x) satisfies (2) at equality.
Now suppose that the knapsack cover constraint is tight at (y, x). There are two

cases.

Case 1) x(M\S) < a(M\S). Then xi = 0 for all i ∈ S since otherwise one can
decrease some xi with i ∈ S and increase some xi ′ with i ′ ∈ M\S by the
same amount and improve the objective function value.Now the set of optimal
points have the same y values as in the above case, completed by xi = 0 for
i ∈ S and xi for i ∈ M\S satisfying 0 ≤ xi ≤ ai , x(M\S) = b − cy.

Case 2) xi = ai for i ∈ M\S. Since (from (c)) B(S) is not a multiple of cq , we have
∑n

j=q c j y j ≤
⌊
B(S)
cq

⌋
cq . From (b), we know that gq−1

cq−1
>

gq
cq

and from (d) we

know that
∑n

j=1 c j y j ≥
⌊
B(S)
cq

⌋
cq . Hence

∑n
j=q c j y j =

⌊
B(S)
cq

⌋
cq . Since

the knapsack constraint is tight,wehave y0+∑q−1
j=1 c j y j = B(S)−

⌊
B(S)
cq

⌋
cq .

As B(S)−
⌊
B(S)
cq

⌋
cq = κ1, (y, x) satisfies y0 +∑q−1

j=1 min
{
c j , κ1

}
y j = κ1.

Using (iii) of Theorem 2, any optimal solution to the problem of minimiz-

ing
∑n

j=q g j y j subject to
∑n

j=q c j y j =
⌊
B(S)
cq

⌋
cq and y ∈ Z

n+ satisfies
∑p

t=2

∏t−1
l=2 κl

∑ jt
j=it

min
{
c j
cit

, κt

}
y j = ∏p

t=2 κt − 1. Now

p∑

t=1

t−1∏

l=1

κl

jt∑

j=it

min

{
c j
cit

, κt

}

y j

= x(S) +
q−1∑

j=1

min
{
c j , κ1

}
y j +

p∑

t=2

t−1∏

l=1

κl

jt∑

j=it

min

{
c j
cit

, κt

}

y j

= x(S) +
q−1∑

j=1

min{c j , κ1}y j + κ1

⎛

⎝
p∑

t=2

t−1∏

l=2

κl

jt∑

j=it

min

{
c j
cit

, κt

}

y j

⎞

⎠

= κ1 + κ1

( p∏

t=2

κt − 1

)

=
p∏

t=1

κt .

Thus all optimal solutions satisfy this partition inequality (2) at equality. �
As conv(QS≥) is described by the trivial inequalities and the partition inequalities,

we get conv(Y≥) = ∩S⊆M conv(QS≥) ∩ {(y, x) : xi ≤ ai , i ∈ M}.
As a corollary, one obtains a simple result concerning the intersection of two parallel

divisible knapsack sets.
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8 L. A. Wolsey, H. Yaman

Theorem 4 conv
({
y ∈ Z

n+ : b − a ≤ cy ≤ b
}) = conv

({
y ∈ Z

n+ : b − a ≤ cy
}) ∩

conv
({
y ∈ Z

n+ : cy ≤ b
})

.

Proof Consider the case of Theorem 3 when m = 1, i.e., when there is a single
continuous variable. Then we have

conv(Y ′≥) = conv
({

(y, x) ∈ Z
n+ × R : cy ≥ b − a

})

∩ conv
({

(y, x) ∈ Z
n+ × R+ : x + cy ≥ b

})∩
{
(y, x)∈R

n+1 : x ≤ a
}

.

We use the fact that if the inequality x + cy ≥ b defines a face of conv(Z), then

conv(Z) ∩ {(y, x) : x + cy = b} = conv(Z ∩ {x = b − cy}).

We now intersect the above sets with the hyperplane {(y, x) : x + cy = b} and then
project into the space of the y variables.

Intersecting the set on the left gives:

conv
({

(y, x) ∈ Z
n+ × R : x + cy ≥ b, 0 ≤ x ≤ a

}) ∩ {(y, x) : x + cy = b}
= conv

({
(y, x) ∈ Z

n+ × R : 0 ≤ x = b − cy ≤ a
})

= conv
({

(y, x) ∈ Z
n+ × R : b − a ≤ cy ≤ b, x = b − cy

})

= conv
({

(y, x) ∈ Z
n+ × R : b − a ≤ cy ≤ b

}) ∩ {(y, x) : x = b − cy},

and the projection is conv
({
y ∈ Z

n+ : b − a ≤ cy ≤ b
})
.

Using the facial property, we can show that the intersection of the set on the right
hand side with the set {(y, x) : x = b − cy} is equal to conv ({(y, x) ∈ Z

n+ × R : cy
≥ b − a, x = b − cy}) ∩ conv

({
(y, x) ∈ Z

n+ × R : cy ≤ b, x = b − cy
})∩{(y, x)

∈ R
n × R : b − cy ≤ a, x = b − cy} . The projection of the first gives directly

conv
({
y ∈ Z

n+ : cy ≥ b − a
})
, the second conv

({
y ∈ Z

n+ : cy ≤ b
})

and the third
{y : cy ≥ b − a}. The claim follows. �

4 The continuous ≤-knapsack set

Now we study the convex hull of the continuous ≤-knapsack set, namely the set

Q≤ =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
1+ :

n∑

j=1

c j y j ≤ b + x

⎫
⎬

⎭
,

where again the data are integer and c1| · · · |cn . Initially we suppose that c1 and hence
ci for all i do not divide b. Below we will define a new family of “≤-partition”
inequalities.

Given a partition {i1, . . . , j1}, · · · , {i p, . . . , jp} of {1, . . . , n} into intervals, let

βp = b, κt =
⌈

βt
cit

⌉
, μt = (κt − 1)cit , βt−1 = βt − μt and st = cit − βt−1 for

t = p, . . . , 1.
We first consider the partition into singletons ({1}, · · · , {n}).
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Continuous knapsack sets with divisible capacities 9

Observation 1 The following n + 1 points

zk = (yk, xk) = (0, 0, . . . , 0, κk, κk+1 − 1 . . . , κn − 1, sk) k = 1, . . . , n

z0 = (y0, x0) = (κ1 − 1, . . . , κk − 1, κk+1 − 1 . . . , κn − 1, 0)

are in Q≤.

Proof The point zn is inQ≤ since cyn − xn = cnκn − sn = cnκn − (cn − b+ cn(κn −
1)) = b. For 1 ≤ k ≤ n − 1, (c,−1)(zk+1 − zk) = ck+1 − sk+1 − ckκk + sk = 0, and
thus cyk − xk = b for k = 1, . . . , n. Finally (c,−1)(z1 − z0) = c1 − s1 > 0. Thus
cy0 − x0 = cy0 < cy1 − x1 = b and z0 is in Q≤. �
Observation 2 The ({1}, · · · , {n}) ≤-partition inequality

n∑

j=1

π j y j ≤ π0 + x (3)

passes through the n + 1 points given in Observation 1, where π1 = s1, π j =
κ j−1π j−1 + (s j − s j−1) for j = 2, . . . , n and π0 = κnπn − sn . These points define
the inequality uniquely (to within scalar multiplication) and are affinely independent.

Proof Let e′
j be the j th unit vector of size n+1. We suppose that all the points satisfy

the inequality
∑n

j=1 μ j y j − x ≤ μ0 at equality.

Since z1 − z0 = e′
1 + s1e′

n+1, we have μ1 = s1. For j = 2, . . . , n, z j − z j−1 =
e′
j − κ j−1e′

j−1 + (s j − s j−1)e′
n+1 and thus μ j = κ j−1μ j−1 + (s j − s j−1). Finally

μyn = μ0 + sn implies μ0 = κnμn − sn . As the inequality is uniquely defined by the
n + 1 points, the points are affinely independent. �
Observation 3 Let

∑n
j=1 α j y j ≥ α0 denote the ({1}, {2}, · · · , {n})partition inequal-

ity (1) for the ≥-knapsack set C. Then the ≤-partition inequality (3) for Q≤ can also
be viewed as a lifting of this inequality, and can be written in the form

n∑

j=1

(c j − (c1 − s1)α j )y j ≤ (b − (c1 − s1)α0) + x .

Proof ByObservation 2, the points zk satisfy (3) at equality. In addition y0 = y1−e1,
so cy0 = cy1 − c1 = b + s1 − c1 and αy0 = αy1 − α1 = α0 − 1. So z0 also lies on
the proposed inequality and the inequalities must be identical. �

4.1 Validity of partition inequalities

We need a refinement of the notation in this subsection. We denote the continuous
≤-knapsack set with n integer variables byQn≤ and the set with the first n − 1 integer

variables by Qn−1≤ . Similarly πn
0 is the right hand side of the partition inequality for
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10 L. A. Wolsey, H. Yaman

Qn≤ and πn−1
0 forQn−1≤ . In particular we will use validity of

∑n−1
j=1 π j y j ≤ πn−1

0 + x

for Qn−1≤ to show the validity of
∑n

j=1 π j y j ≤ πn
0 + x for Qn≤.

We first establish some basic properties. We still assume that c1 does not divide b.
First note that

β j = b −
⌊

b

c j+1

⌋

c j+1 for j = 1, . . . , n − 1

and

s j − s j−1 =
⌊

s j
c j−1

⌋

c j−1 for j = 2, . . . , n.

Lemma 1 i. π j ≤ c j for j = 1, . . . , n,
ii.

π j
c j

≥ π j−1
c j−1

for j = 2, . . . , n,

iii. πn
0 = πn−1

0 + (κn − 1)
(
πn − πn−1

cn
cn−1

)
,

iv. πn
0 = b − (cn − πn)κn .

Proof We use induction to prove part (i). For j = 1, we have π1 = s1 ≤ c1. Suppose
thatπ j−1 ≤ c j−1. Thenπ j = π j−1κ j−1+s j−s j−1 ≤ c j−1κ j−1+s j−s j−1. The right

hand side is equal to c j−1

⎡

⎢
⎢
⎢

b−
⌊

b
c j

⌋

c j

c j−1

⎤

⎥
⎥
⎥

+ c j − c j−1 +
⌊

b
c j

⌋
c j −

⌊
b

c j−1

⌋
c j−1 = c j .

Hence π j ≤ c j .
To prove (ii),

π j = κ j−1π j−1 + s j − s j−1

=
⌈
c j − s j
c j−1

⌉

π j−1 + s j − s j−1

= c j
c j−1

π j−1 −
⌊

s j
c j−1

⌋

π j−1 + s j − s j−1

≥ c j
c j−1

π j−1 −
⌊

s j
c j−1

⌋

c j−1 + s j − s j−1 = c j
c j−1

π j−1,

where the inequality is obtained using (i) and the last equality is obtained using s j −
s j−1 =

⌊
s j

c j−1

⌋
c j−1.

Next we prove part (iii). First, πn
0 = πnκn − sn and

πn−1
0 = πn−1

⌈
b

cn−1

⌉

− sn−1 = πn−1

(

κn−1 + (κn − 1)
cn
cn−1

)

− sn−1.

Now
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πn
0 − πn−1

0 = (κn − 1)

(

πn − πn−1
cn
cn−1

)

+ πn − πn−1κn−1 − sn + sn−1

= (κn − 1)

(

πn − πn−1
cn
cn−1

)

,

using the definition of πn .
Finally, since πn

0 = κnπn − sn and sn = cn − βn−1 = κncn − b, we have πn
0 =

b − (cn − πn)κn , which proves part (iv). �
Lemma 2 If

∑n−1
j=1 π j y j ≤ πn−1

0 + x is valid for Qn−1≤ , then

n−1∑

j=1

π j y j + πn−1
cn
cn−1

yn ≤ πn−1
0 + x

is valid for Qn≤.

Proof If (y1, . . . , yn, x) ∈ Qn≤, then
∑n

j=1 c j y j = ∑n−2
j=1 c j y j + cn−1(yn−1 +

cn
cn−1

yn) ≤ b+ x . Hence (y1, . . . , yn−2, yn−1 + cn
cn−1

yn, x) ∈ Qn−1≤ and
∑n−2

j=1 π j y j +
πn−1(yn−1 + cn

cn−1
yn) ≤ πn−1

0 + x as claimed. �
Theorem 5 The ({1}, · · · , {n}) partition inequality is valid for Qn≤.
Proof The proof is by induction.

For n = 1, the MIR inequality is:

c1(1 − f )y1 ≤
⌊
b

c1

⌋

c1(1 − f ) + x,

where (1 − f ) =
⌈

b
c1

⌉
− b

c1
= s1

c1
. This is precisely the ({1}) partition inequality

s1y1 ≤ (κ1s1 − s1) + x .
Now suppose that

∑n−1
j=1 π j y j ≤ πn−1

0 + x is valid for Qn−1≤ . We consider two
cases:

Case 1 yn ≥ κn .
Suppose that (y, x) ∈ Qn≤, so that

∑n
j=1 c j y j ≤ b + x , or rewriting

∑n−1
j=1 c j y j +

cn(yn −κn)+ cnκn ≤ b+ x . As c j ≥ π j by Lemma 1(i), y j ≥ 0 for j = 1, . . . , n−1
and yn − κn ≥ 0, we have

∑n−1
j=1 π j y j + πn(yn − κn) + cnκn ≤ b + x , or equiva-

lently
∑n−1

j=1 π j y j + πn yn ≤ b − (cn − πn)κn + x . Using Lemma 1(iv), we obtain
∑n

j=1 π j y j ≤ πn
0 + x .

Case 2. yn ≤ κn − 1.
From Lemma 2, (y, x) satisfies

∑n−1
j=1 π j y j + πn−1

cn
cn−1

yn ≤ πn−1
0 + x . Adding

πn − πn−1
cn

cn−1
≥ 0 (from Lemma 1(ii)) times yn ≤ κn − 1 gives

∑n
j=1 π j y j ≤

πn−1
0 + (κn − 1)(πn − πn−1

cn
cn−1

) + x = πn
0 + x where the last equality is obtained

using Lemma 1(iii).
Therefore by a disjunctive argument, the inequality is valid for Qn≤. �
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Example 1 Consider the continuous ≤-knapsack set defined by the constraints

5y1 + 10y2 + 30y3 ≤ 72 + x, y ∈ Z
3+, x ∈ R

1+.

The coefficients of the ({1}{2}{3}) partition inequality are calculated as follows:

t β κ μ s

3 72 3 60 18
2 12 2 10 8
1 2 1 0 3

Then π1 = 3, π2 = 1 × 3 + (8 − 3) = 8, π3 = 8 × 2 + (18 − 8) = 26 and
π0 = 26 × 3 − 18 = 60 giving the inequality

3y1 + 8y2 + 26y3 ≤ 60 + x .

Note that the ({1}{2}{3}) ≥-partition inequality for

5y1 + 10y2 + 30y3 ≥ 72, y ∈ Z
3+

is the inequality

y1 + y2 + 2y3 ≥ 6.

Now 5y1 + 10y2 + 30y3 ≤ 72 + x plus c1 − s1 = 2 times the latter inequality again
gives 3y1 + 8y2 + 26y3 ≤ 60 + x .

Now we describe the inequality associated with an arbitrary partition and we drop
the assumption that c1 does not divide b. Thus we suppose that r is the unique index
with cr−1|b, but cr 	 |b. Note that r ≤ v(b) + 1 and r = 1 implies that ci 	 |b for all i .

Proposition 2 For the partition {i1, . . . , j1}, . . . , {i p, . . . , jp} of {r, . . . , n}, the par-
tition inequality

p∑

t=1

πit

jt∑

j=it

c j
cit

y j ≤ π0 + x . (4)

is valid for Q≤.
The set of points of Q≤ that satisfy (4) at equality is the union of the sets

Zk =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
1 : y j = 0 j < ik,

jk∑

j=ik

c j
cik

y j = κk,

jt∑

j=it

c j
cit

y j = κt − 1 t = k + 1, . . . , p, x = sk

⎫
⎬

⎭
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for all k = 1, . . . , p and

Z0 =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
1 :

r−1∑

j=1

c j y j ≤ δ,

jt∑

j=it

c j
cit

y j = κt − 1 t = 1, . . . , p, x = 0

⎫
⎬

⎭

where δ = b −∑p
t=1 cit (κt − 1).

Proof First observe that inequality
∑p

t=1 πit yit ≤ π0 + x is valid for the set∑p
t=1 cit yit ≤ b + x, y ∈ Z

p
+, x ∈ R

1+. Now, the proof that the inequality (4)
is valid for

∑n
j=r c j y j ≤ b+ x, y ∈ Z

n−r+1+ , x ∈ R
1+ is as in Lemma 2. The structure

of the tight points follows from that of the tight points {zk}pk=0 in Observation 2. �

4.2 Decomposition and extended formulation for Q≤

Here we show how the setQ≤ can be decomposed allowing one to derive a polynomial
size extended formulation for conv(Q≤). First we look at the simple cases.

Observation 4 If c1| · · · |cn|b, the polyhedron
⎧
⎨

⎩
(y, x) ∈ R

n+ × R
1+ :

∑

j

c j y j ≤ b + x

⎫
⎬

⎭

is integral and describes conv(Q≤).

Observation 5 If c j |b for j = 1, . . . , v(b) and v(b) < n, then conv(Q≤) is described
by the original constraints cy ≤ b + x, y, x ≥ 0 and one additional constraint

n∑

j=1

(c j − b)+y j ≤ x .

4.2.1 Decomposition of conv(Q≤)

To avoid the case covered in Observation 5, we assume r ≤ v(b). Let

U =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
1+ :

v(b)∑

j=1

c j y j +
n∑

j=v(b)+1

(c j − K )y j ≤ b − K + x

⎫
⎬

⎭

where K =
⌊

b
cv(b)

⌋
cv(b).

Let R be the set of vectors (y, x, α, γ, δ) that satisfy

v(b)∑

j=1

c jα j + K
n∑

j=v(b)+1

α j ≤ K

(γ, γ0) ∈ conv(U)
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14 L. A. Wolsey, H. Yaman

y j = α j + γ j j = 1, . . . , v(b)

y j = γ j + δ j , γ j = α j j = v(b) + 1, . . . , n

x ≥ γ0 +
n∑

j=v(b)+1

c jδ j

α, δ ∈ R
n+.

Proposition 3 projy,xR = conv(Q≤).

Proof From the first constraint definingR, we see that α j = 0 for all j in any extreme
ray of R. The extreme rays (e j , c j ) for j = 1, . . . , v(b) and (0, 1) of conv(U) also
become extreme rays of projy,xR by taking γ j = 1 and γ0 = 1 respectively. The
variables δ j provide additional rays (e j , c j ) for j > v(b). Thus the rays of the two
sets are the same. In addition it is straightforward to check that the points (0, 0) and
the maximal points for the partition inequalities given in Proposition 2 lie in projy,xR.

To show that projy,xR ⊆ conv(Q≤), consider a point (y, x) ∈ projy,xR. Thus
there exist (α, γ, δ) such that (y, x, α, γ, δ) ∈ R. Let I be the set of extreme points
of conv(U) with

∑n
j=v(b)+1 γ j = 0. It is straightforward to check that the only other

extreme points are the points (e j , c j − b) for j = v(b) + 1, . . . , n. As (γ, γ0) ∈
conv(U), we can write

(γ, γ0) =
∑

i∈I
(γ i , γ i

0)λi +
n∑

j=v(b)+1

(e j , c j − b)ε j

+
v(b)∑

j=1

(e j , c j )δ j +
n∑

j=v(b)+1

(e j , c j − K )φ j + (0, 1)φ0

where
∑

i∈I λi +∑n
j=v(b)+1 ε j = 1, λ, ε, φ, δ ≥ 0.

Also

α =
n∑

j=0

α jν j ,

n∑

j=0

ν j = 1, ν ≥ 0,

where α j for j = 0, . . . , n are the extreme points of
{
α ∈ R

n+ : ∑v(b)
j=1 c jα j

+K
∑n

j=v(b)+1 α j ≤ K
}
. Specifically α0 = 0, α j = K

c j
e j for j = 1, . . . , v(b)

and α j = e j for j = v(b) + 1, . . . , n.
Then for (y, x) ∈ projy,xR, we have

(y, x) =
∑

i∈I
(γ i , γ i

0)λi +
v(b)∑

j=0

(α j , 0)ν j +
n∑

j=v(b)+1

(e j , c j − b)ε j

+
n∑

j=v(b)+1

(e j , c j − K )φ j +
n∑

j=1

(e j , c j )δ j + (0, 1)φ0.
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Let ρ = ∑
i∈I λi and σ = ∑v(b)

j=0 ν j . For j = v(b) + 1, . . . , n, since γ j = α j ,
we have ε j + φ j = ν j . Also

∑n
j=v(b)+1 φ j = ∑n

j=v(b)+1(ν j − ε j ) = 1 − σ − (1 −∑
i∈I λi ) = ρ − σ .

Let (yi j , yi j0 ) = (γ i , γ i
0) + (α j , 0) for i ∈ I and j = 0, . . . , v(b). Clearly

(yi j , yi j0 ) ∈ Q≤. Also let (zi j , zi j0 ) = (γ i , γ i
0) + (e j , c j − K ) for i ∈ I and

j = v(b)+1, . . . , n. As cγ i ≤ b−K+γ i
0 ,we have cz

i j = cγ i+c j ≤ b+(γ i
0+c j−K )

and thus (zi j , zi j0 ) ∈ Q≤. Also (e j , c j − b) ∈ Q≤ for j > v(b).
Now since

σ

ρ

∑

i∈I
(γ i , γ i

0)λi +
v(b)∑

j=0

(α j , 0)ν j =
∑

i∈I

v(b)∑

j=0

((γ i , γ i
0) + (α j , 0))

1

ρ
λiν j

=
∑

i∈I

v(b)∑

j=0

(yi j , yi j0 )
1

ρ
λiν j

and

ρ − σ

ρ

∑

i∈I
(γ i , γ i

0)λi +
n∑

j=v(b)+1

(e j , c j − K )φ j

=
∑

i∈I

n∑

j=v(b)+1

((γ i , γ i
0) + (e j , c j − K ))

1

ρ
λiφ j

=
∑

i∈I

n∑

j=v(b)+1

(zi j , zi j0 )
1

ρ
λiφ j ,

we can rewrite (y, x) as a convex combination of extreme points plus extreme rays

(y, x) =
⎛

⎝
∑

i∈I

v(b)∑

j=0

(yi j , yi j0 )
1

ρ
λiν j +

∑

i∈I

n∑

j=v(b)+1

(zi j , zi j0 )
1

ρ
λiφ j

+
n∑

j=v(b)+1

(e j , c j − b)ε j

⎞

⎠

+
n∑

j=1

(e j , c j )δ j + (0, 1)φ0,

as
∑

i∈I
∑v(b)

j=0
1
ρ
λiν j +∑

i∈I
∑n

j=v(b)+1
1
ρ
λiφ j +∑n

j=v(b)+1 ε j = σ + (ρ − σ) +
(1 − ρ) = 1 and all multipliers are nonnegative. Thus (y, x) lies in conv(Q≤). �
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16 L. A. Wolsey, H. Yaman

4.2.2 An extended formulation for conv(Q≤)

As before, we assume that c j |b for j < r , cr does not divide b, cv(b) < b and c j > b for
j > v(b). Repeating the decomposition a maximum of v(b)− r times, one terminates
with a set U of the form

⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
1+ :

r−1∑

j=1

c j y j +
n∑

j=r

c̃ j y j ≤ b −
⌊
b

cr

⌋

cr + x

⎫
⎬

⎭

where c j |(b − � b
cr

�cr ) for j < r and c̃ j > (b − � b
cr

�cr ) for j ≥ r , so Observation 5
gives conv(U) completing the polynomial size extended formulation.

Example 2 Consider a set Q≤ with n = 5, c = (3, 6, 18, 90, 180) and b = 737.
With r = 1 and v(b) = 5, this decomposes into 3α11 + 6α12 + 18α13 + 90α14 +

180α15 ≤ 720 and the convex hull of the set:

{
(γ, γ0) ∈ Z

5+ × R
1+ : 3γ1 + 6γ2 + 18γ3 + 90γ4 + 180γ5 ≤ 17 + γ0.

}

The latter with r = 1 and v(17) = 2 decomposes into 3α21 + 6α22 + 12α23 +
12α24 + 12α25 ≤ 12 and the convex hull of the set:

{
(γ, γ0) ∈ Z

5+ × R
1+ : 3γ1 + 6γ2 + (18 − 12)γ3 + 78γ4 + 168γ5 ≤ 5 + γ0

}

with γ3 = α23, γ4 = α24 and γ5 = α25.
The latter with r = 1 and v(5) = 1 decomposes into 3α31 + 3α32 + 3α23 + 3α24 +

3α25 ≤ 3 and the convex hull of the set:

{
(γ, γ0) ∈ Z

5+ × R
1+ : 3γ1 + (6 − 3)γ2 + (6 − 3)γ3 + 75γ4 + 165γ5 ≤ 2 + γ0

}

with γ2 = α32, γ3 = α23, γ4 = α24 and γ5 = α25.
This is of the form treated in Observation 5, so to complete the convex hull of the

latter, we add the constraints

3γ1 + (6 − 3)γ2 + (6 − 3)γ3 + 75γ4 + 165γ5 ≤ 2 + γ0

(3 − 2)γ1 + 1γ2 + 1γ3 + 73γ4 + 163γ5 ≤ γ0.

with (γ1, γ2, γ3, γ4, γ5) = (α41, α32, α23, α24, α25).
The complete extended formulation is:

3α11 + 6α12 + 18α13 + 90α14 + 180α15 ≤ 720
3α21 + 6α22 + 12α23 + 12α24 + 12α25 ≤ 12
3α31 + 3α32 + 3α23 + 3α24 + 3α25 ≤ 3
3α41 + 3α32 + 3α23 + 75α24 + 165α25 ≤ 2 + γ0.
1α41 + 1α32 + 1α23 + 73α24 + 163α25 ≤ γ0
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y1 = α11 + α21 + α31 + α41 + δ1
y2 = α12 + α22 + α32 + δ2
y3 = α13 + α23 + δ3
y4 = α14 + α24 + δ4
y5 = α15 + α25 + δ5
x ≥ γ0 + 3δ1 + 6δ2 + 18δ3 + 90δ4 + 180δ5
αi j ≥ 0 ∀ i, j, δ ∈ R

5+.

5 The multi-item continuous ≤-knapsack set

Finally, we study the multi-item continuous ≤-knapsack set

Y≤ =
⎧
⎨

⎩
(y, x) ∈ Z

n+ × R
m+1+ :

∑

j∈N
c j y j ≤ b +

∑

i∈M0

xi , xi ≤ ai , i ∈ M

⎫
⎬

⎭
.

Proposition 4 Let S ⊆ M, B(S) = b+a(M\S) and r(S) be the smallest index j such
that c j does not divide B(S). Let q ∈ {r(S), . . . , n} and {i1, . . . , j1}, · · · , {i p, . . . , jp}
be a partition of {q, . . . , n}. Define βp = B(S), κt =

⌈
βt
cit

⌉
, μt = (κt − 1)cit ,

βt−1 = βt − μt and st = cit − βt−1 for t = p, . . . , 1. Also let π1 = sq , πt =
κt−1πt−1+(st −st−1) for t = 2, . . . , p and π0 = κpπp−sp. The partition inequality

p∑

t=1

πt

jt∑

j=it

c j
cit

y j ≤ π0 +
∑

i∈S0
xi (5)

is valid for Y≤.

Proof Let

QS≤ =
{
(y, x) ∈ Z

n+ × R
m+1 : cy ≤ B(S) + x(S0), x(S0) ≥ 0

}
.

By Proposition 2, we know that the partition inequality is valid for the setQS≤ and this
set is a relaxation of Y≤. �
Theorem 6 conv(Y≤) is described by the initial constraints and the partition inequal-
ities (5).

Proof Let Ω(g, h) be the set of optimal solutions to the problem of maximizing∑n
j=1 g j y j −∑m

i=0 hi xi over Y≤ with (g, h) 	= 0.
If h0 < 0 or if there exists j ∈ N with g j > c j h0, then the problem is unbounded.

If hi < 0 for some i ∈ M , then all optimal solutions satisfy xi = ai . If g j < 0 or if
there exists i < j with

c j
ci
gi > g j , then Ω(g, h) ⊆ {(y, x) : y j = 0}.

Now suppose that h0 ≥ gn
cn

≥ . . . ≥ g1
c1

≥ 0 and h ≥ 0. If h0 = 0 then g = 0 and
Ω(g, h) ⊆ {(y, x) : xi = 0} for i ∈ M with hi > 0.
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18 L. A. Wolsey, H. Yaman

In the remaining case, we have h0 > 0, h ≥ 0 and h0 ≥ gn
cn

≥ . . . ≥ g1
c1

≥ 0. Let
S = {i ∈ M : hi > 0}. Note that if (y, x) is an optimal solution with cy < b+ x(M0),
then x(S0) = 0, since otherwise one can decrease some xi with i ∈ S0 by a small
amount and improve the objective function value. Since x(S0) = 0, we also have
cy < b + x(M0\S0) ≤ b + a(M\S) = B(S).

Consider the case in which there exists j ∈ {1, . . . , r(S)−1}with g j > 0. Take the
smallest such j , so that gi = 0 for i < j , g j > 0 and c j |B(S). Suppose that there exists
an optimal solution (y, x) with cy < b + x(M0). One has x(S0) = 0 by optimality
and setting xi = ai for i ∈ M\S, yi = 0 for all i < j does not destroy feasibility or
optimality. So cy < B(S), c j |B(S) and c j |cy. Then B(S)−cy is a positive multiple of
c j , y j can be increased by 1, the resulting solution remains feasible and the objective
value is increased, a contradiction. Thus Ω(g, h) ⊆ {(y, x) : cy = b + x(M0)}.

From now on, we take g j = 0 for j ∈ {1, . . . , r(S) − 1}.
We look at three cases. In one case, Ω(g, h) ⊆ {(y, x) : x(S0) = 0}. In the second

case, Ω(g, h) ⊆ {(y, x) : cy = b + x(M0)}.
Finally in the third case, there exists an optimal solution (y, x) with x(S0) > 0 and

there exists an alternative optimal solution with cy < b+ x(M0). Among the optimal
solutions (y, x) with x(S0) > 0, let q be the smallest index for which there exists a
solution with yq > 0. Note that cy = B(S) + x(S0) since x(S0) > 0. If gq = 0, one
can decrease yq by 1, decrease x(S0) and thereby improve the objective function. Thus
gq > 0 and q ≥ r(S) (since g j = 0 for all j = 1, . . . , r(S) − 1). Also if q > r(S),
gq
cq

>
gq−1
cq−1

as otherwise there would be an alternative optimal solution with yq−1 > 0.

Define φ(σ) = min
{∑

i∈S0 hi xi : x(S0) ≥ σ − B(S), x ∈ R
|S0|+ , xi ≤ ai , i ∈ S

}
.

If σ ≤ B(S), then φ(σ) = 0. For B(S) < σ , φ(σ) is piecewise linear, strictly
increasing and convex. Let (y∗, x∗) be an an optimal solution with x∗(S0) > 0 and

y∗
q > 0. Then since cy∗ is divisible by cq , we have cy∗ ≥

⌈
B(S)
cq

⌉
cq . In addition,

optimality of (y∗, x∗) implies that gq ≥ φ(cy∗) − φ(c(y∗ − eq)).

Suppose that (y, x) ∈ Y≤ and cy <
⌊
B(S)
cq

⌋
cq . Let y′ = y + eq . Then cy′ =

cy + cq <
⌊
B(S)
cq

⌋
cq + cq =

⌈
B(S)
cq

⌉
cq (since cq does not divide B(S)). Now as

cy∗ ≥
⌈
B(S)
cq

⌉
cq , we have cy′ < cy∗. Then gq ≥ φ(cy∗) − φ(c(y∗ − eq)) >

φ(cy′)−φ(c(y′−eq))where the strict inequality follows from the form of the function
φ and the fact that cy∗ > B(S). Hence (y, x) cannot be optimal. As a result, every

optimal solution (y, x) satisfies cy ≥
⌊
B(S)
cq

⌋
cq .

Now consider the partition {i1, . . . , j1}, . . . , {i p, . . . , jp} of {q, . . . , n} with g j
c j

=
git
cit

for t = 1, . . . , p and j ∈ {it , . . . , jt } and git
cit

>
git−1
cit−1

for t = 2, . . . , p.

We first consider optimal solutions with x(S0) = 0 and then optimal solutions with

x(S0) > 0. In an optimal solution with x(S0) = 0, we have
∑n

j=q c j y j =
⌊
B(S)
cq

⌋
cq

as gq
cq

>
gq−1
cq−1

or else q = r(S) and gq > 0, and
∑q−1

j=1 c j y j ≤ B(S) −
⌊
B(S)
cq

⌋
cq .

Since
git
cit

>
git−1
cit−1

for t = 2, . . . , p, we have
∑ jt

j=it
c j
cit

y j = κt − 1 for t = 1, . . . , p.

This point belongs to set Z0 of Proposition 2 and so lies on the partition inequality.
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Now we consider an optimal solution (y, x) with x(S0) > 0. Suppose that there
exists j with y j > 0 and c(y − e j ) ≥ B(S). Then as c(y − e j ) > cy′, we have
g j ≤ φ(c(y′ +e j ))−φ(cy′) < φ(cy)−φ(c(y−e j )). This contradicts the optimality
of (y, x). Hence, in any optimal solution (y, x) with x(S0) > 0, we have c(y − e j ) <

B(S) for all j with y j > 0. Then for (y, x) ∈ Ω(g, h) with x(S0) > 0, we have
∑n

j=ik c j y j =
⌈
B(S)
cik

⌉
cik for some k ∈ {1, . . . , p}, y j = 0 for j ∈ {1, . . . , ik − 1},

∑ jt
j=it

c j
cit

y j = κt − 1 for t = k + 1, . . . , p,
∑ jk

j=ik
c j
cik

y j = κk and x(S0) = sk . This

point is in Zk of Proposition 2 and so again lies on the partition inequality. �
We obtain two immediate corollaries.

Corollary 2 conv(Q≤) is described by its initial constraints and the partition inequal-
ities (4).

Corollary 3

conv(Y≤) = ∩S⊆M conv(QS≤) ∩ {(y, x) : xi ≤ ai i ∈ M} .

6 Conclusion

In this paper, we have studied the polyhedra associated with knapsack sets with integer
and continuous variables and divisible capacities.

In particular, we have studied the continuous ≥-knapsack set (equivalently the
splittable flow arc set) with multiple capacities (facilities) and given a description of
the convex hull when the capacities are divisible. We have shown that conv(Y≥) =
∩S⊆Mconv(QS≥)∩{(y, x) : x ≤ a}whereQS≥ is a continuous≥-knapsack set for each
S ⊆ M . As a corollary it follows that, in any non-trivial facet-defining inequality for
conv(Y≥), the coefficients of the continuous variables all take the values 0 or 1 (after
scaling).

Consider the optimization problemmin
{∑

i∈M hi xi +∑ j∈N g j y j : (y, x) ∈ Y≥
}
.

If hi < 0, xi = ai in every optimal solution and it suffices to solve a smaller
problem. Thus we can assume that 0 ≤ h1 ≤ . . . ≤ hm . Now there exists
an optimal solution (y, x) with x j = a j for j < i and x j = 0 for j >

i for some i . Thus it suffices to solve the m problems zi = ∑
j : j<i h j a j +

min
{
hi xi +∑

j∈N g j y j : xi + cy ≥ b −∑
j : j<i a j , 0 ≤ xi ≤ ai , y ∈ Z

n+
}
and take

the best solution. Each of these can be represented by a polynomial size linear pro-
gram, so the optimization problem is inP . Thus separation of conv(Y≥) is polynomial
using the ellipsoid algorithm.

Though polynomial time combinatorial separation algorithms are known both for
the partition inequalities for the integer ≥-knapsack set and the residual capacity
inequalities for the single facility splittable flowarc set (seePochet andWolsey [16] and
Atamtürk and Rajan [3], respectively), we do not know such an efficient combinatorial
algorithm to separate the exponential family of partition inequalities (2).

We have shown in Theorem 6 that a result similar to that of Theorem 3 holds for the
corresponding multi-item continuous≤-knapsack setY≤ with the same consequences

123



20 L. A. Wolsey, H. Yaman

for polynomial optimization and facet structure. It is natural to ask if similar results
hold for other continuous knapsack sets with some special structure. Recently Dash et
al. have shown that such results hold when there are just n = 2 integer variables and
arbitrary coefficients c1, c2. [4].

Kianfar [7] has shown how the partition inequalities for the integer ≥-knapsack set
with divisible capacities can be viewed as a special case of n-step MIR inequalities
and thus generalized. It seems likely that a similar approach can be taken for the
≤-knapsack set.
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