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Abstract It was previously proved that the Gödel-type metrics with flat three-
dimensional background metric solve exactly the field equations of the Einstein-Aether
theory in four dimensions. We generalize this result by showing that the stationary
Gödel-type metrics with nonflat background in D dimensions solve exactly the field
equations of the Einstein-Aether theory. The reduced field equations are the (D − 1)-
dimensional Euclidean Ricci-flat and the (D − 1)-dimensional source-free Maxwell
equations, and the parameters of the theory are left free except c1 − c3 = 1. We give a
method to produce exact solutions of the Einstein-Aether theory from the Gödel-type
metrics in D dimensions. By using this method, we present explicit exact solutions
to the theory by considering the particular cases: (D − 1)-dimensional Euclidean flat,
conformally flat, and Tangherlini backgrounds.

Keywords Gödel-type metrics · Einstein-Aether theory · Closed timelike curves ·
Charged fluid · Einstein–Maxwell–Dust field equations

1 Introduction

Gödel-type metrics were introduced in [1,2] as a generalization of the usual Gödel solu-
tion [3] in general relativity and used to obtain new solutions to various (super)gravity
theories in diverse dimensions. Just like in the original Gödel solution, the spacetimes
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described by such metrics also contain closed timelike and closed null curves when
the characteristic vector field that defines a Gödel-type metric is a Killing vector [4].
In three dimensions, Gödel type of metrics naturally provide charged perfect fluid
solutions and also give some special solutions to Topologically Massive Gravity [5].

In a recent publication [6], it was shown that the Gödel type of metrics with flat
backgrounds form an exact solution to the field equations of the Einstein-Aether theory
[7,8] in four dimensions. The parameters of the theory corresponding to this solution
obey the constraint c1 − c3 = 1 which decouples the twist degree of freedom from the
Lagrangian. Here we generalize this work by extending the dimension to D(≥ 4) and
relaxing the assumption that hμν be a flat metric of a (D −1)-dimensional (Euclidean)
space. We shall use the metric signature (−,+,+,+, . . .) throughout the paper.

Let (M, g) be a D-dimensional spacetime geometry with the Gödel-type metric
tensor [1,2,4]

gμν = hμν − uμ uν, (1)

where hμν is the metric of a (D − 1)-dimensional locally Euclidean Einstein space,
which we sometimes call the “background,” and uμ is a timelike unit vector field
(uμ uμ = −1). Here we take uμ = − 1

u0
δ
μ
0 without loosing any generality and assume

uμhμν = 0. We also assume that the background metric is time-independent, i.e.,
∂0hμν = 0. The inverse of gμν is given by

gμν = h̄μν + (−1 + h̄αβ uαuβ)uμuν + (h̄ναuα)uμ + (h̄μαuα)uν, (2)

where h̄μν is the (D − 1)-dimensional inverse of hμν ; i.e.,

h̄μα hαν = δ̄μ
ν ≡ δμ

ν + uμ uν .

Defining the Christoffel symbols of hμν as

γ
μ
αβ = 1

2
h̄μρ

(
hαρ,β + hβρ,α − hαβ,ρ

)
, (3)

one can show that the Christoffel symbols of the full metric are

	
μ
αβ = γ

μ
αβ + uμ uσ γ σ

αβ + 1

2
(uα f μ

β + uβ f μ
α) − 1

2
uμ (uα, β + uβ, α), (4)

where fαβ ≡ uβ, α − uα, β and a comma denotes partial differentiation. We assume
that the indices of uμ and fαβ are raised and lowered by the metric gμν . By using a
vertical stroke to denote covariant derivative with respect to the Christoffel symbols
γ

μ
αβ of hμν so that

uα|β = uα, β − γ ν
αβ uν, (5)

the Eq. (4) can be simply written as

	
μ
αβ = γ

μ
αβ + 1

2
(uα f μ

β + uβ f μ
α) − 1

2
uμ (uα|β + uβ|α). (6)
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We shall denote the covariant derivative with respect to the Christoffel symbols
	

μ
αβ of gμν by ∇μ or by a semicolon. For instance,

∇μ uν ≡ uν;μ = uν,μ − 	γ
νμ uγ . (7)

In this work we have three main assumptions: (i) u0 is a constant and taken to be
unity, (ii) the acceleration of uμ vanishes, i.e. u̇μ ≡ uα uμ;α = 0, and (iii) uμhμν = 0
and ∂0hμν = 0. The first assumption eliminates the dilaton field φ ≡ ln |u0| in the
field equations [2]. From the last two assumptions, we obtain that (a) uμ is a Killing
vector and (b) ∂0uμ = 0.

Proof of (a) We defined fαβ ≡ uβ,α − uα,β = uβ;α − uα;β . Since uμ is a unit vector,
which gives uμ uμ;α = 0, by assumption (ii) we find

uμ fμα = uμ uα;μ − uμ uμ;α = uμ uα;μ = 0.

Hence it follows that

uα;β = uα,β − 	
ρ
αβ uρ = uα,β − 1

2
(uα,β + uβ,α) = 1

2
(uα,β − uβ,α) = 1

2
fβα.

This last result tells us that uμ is a Killing vector. ��
Proof of (b) The last two assumptions above imply that uμ uα;μ = uμ uα,μ −
	

ρ
αμ uρuμ = 0 ⇒ uμ uα,μ = 0 with the choice uμ = − 1

u0
δ
μ
0 , and we get ∂0uμ = 0.

Using the above results, we can also show that

uμ

;μ = 0, 	μ
μν = γ μ

μν, (8)

which we need in calculating the Riemann and Ricci tensors of (1). The Ricci tensor
of (g, 	) is found as

Rμν = r̄μν + 1

2
fμ

α fνα + 1

2
(uμ jν + uν jμ) + 1

4
f 2 uμ uν, (9)

where f 2 ≡ f αβ fαβ ,

jμ ≡ f α
μ|α = ∇α f α

μ − 1

2
f 2 uμ, (10)

and r̄μν is the Ricci tensor of γ
μ
αβ . The Ricci scalar is obtained as

R = r̄ + 1

4
f 2 + uμ jμ,

where r̄ denotes the Ricci scalar of r̄αβ . ��
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Proposition 1 Let (M, g) be a stationary spacetime geometry described by the Gödel-
type metric (1) with hμν being the metric tensor of a (D − 1)-dimensional (locally
Euclidean) space. Then the Einstein tensor becomes

Gμν = r̄μν − 1

2
hμν r̄ + 1

2
T f

μν + 1

2
( jμ uν + jν uμ)

+
(

1

4
f 2 + 1

2
r̄

)
uμ uν − 1

2
(uα jα) gμν, (11)

where T f
μν denotes the Maxwell energy-momentum tensor for fμν , i.e.

T f
μν ≡ fμα f α

ν − 1

4
gμν f 2. (12)

This gives the Einstein tensor of the metric (1) in its full generality. To have a phys-
ical energy-momentum distribution, such as charged perfect fluid energy-momentum
tensor, we shall assume that the (D −1)-space is an Einstein space and jμ = 0, which
yields the following proposition.

Proposition 2 Let (M, g) be a stationary spacetime geometry with the Gödel type
metric (1). Let hμν be the metric tensor of a (D − 1)-dimensional Einstein space,
i.e. r̄μν = r̄

D−1 hμν , and let jμ = 0. Then the metric gμν satisfies the Einstein field
equations with a charged perfect fluid

Gμν ≡ 1

2
T f

μν + (p + E) uμ uν + pgμν, (13)

with

∇μ f μν − 1

2
f 2uν = 0, (14)

p ≡ (3 − D)

2(D − 1)
r̄ , (15)

E ≡ 1

4
f 2 + 1

2
r̄ . (16)

Here p is the pressure and E is the energy density of the fluid.

Remark 1 When D = 3 the 2-dimensional space with the metric hμν is identically an
Einstein space. The only field equations to be solved are those given in (14).

The rest of the paper is organized as follows. In Sect. 2, we give a brief review of
Einstein-Aether theory. Here we study the theory in generic D dimensions and present
the equations of motion. In Sect. 3, we show that the Gödel-type metrics discussed in
the introduction exactly solve the field equations of the Einstein-Aether theory and the
only equations that need to be solved are the (D − 1)-dimensional Euclidean vacuum
field equations and (D − 1)-dimensional Euclidean Maxwell equations. In Sect. 4,
we show how to construct such solutions in the theory by giving a recipe and present
three explicit examples. Finally, we conclude our main results in Sect. 5.
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2 Einstein-Aether theory

The so-called Einstein-Aether theory [7,8] is a vector–tensor theory of gravity in which
the Lorentz symmetry is broken by the existence of a preferred frame of reference
established by a vector field with fixed norm. The vector field defined in this way is
referred to as the “aether” and dynamically couples to the metric tensor of spacetime.
The theory has attracted a lot of interest in recent years and investigated from various
respects. For example, the stability issue of the aether was discussed in [9,10], time-
independent spherically symmetric solutions and black hole solutions were analyzed
in [11–18], generalizations and cosmological implications were studied in [19–23],
and extensions to include other fields were considered in [24,25].

The theory is described by, in the absence of matter fields, the action

I = 1

16πG

∫
d D x

√−g L, (17)

L = R − 2
 − K αβ
μν ∇α vμ ∇β vν + λ (vμ vμ + ε), (18)

K μν
αβ = c1 gμν gαβ + c2 δμ

α δν
β + c3 δ

μ
β δν

α − c4 vμ vν gαβ, (19)

where 
 is the cosmological constant and vμ is the aether field with the fixed-norm
constraint

vμ vμ = −ε, (ε = 0,±1) (20)

which is enforced into the theory by the Lagrange multiplier λ in (18). In general, for
ε = +1 (ε = −1) the aether field will be timelike (spacelike), and for ε = 0 it will
be null. However, in this paper we shall consider only the case ε = +1 (a unit time-
like vector field)–the case for which the Einstein-Aether theory is defined, actually.
In a later communication [26], we shall consider the case ε = 0 (a null vector field)
independently. The constants c1, c2, c3 and c4 appearing in (19) are the dimension-
less parameters of the theory and constrained by some theoretical and observational
arguments [7,8,19,27–33].

Variation of this action with respect to λ yields the constraint Eq. (20), and variation
with respect to the metric gμν and the aether vμ gives respectively the field equations

Gμν + 
gμν = ∇α [Jα
(μ vν) − J(μ

α vν) + J(μν) vα]
+ c1(∇μ vα ∇ν vα − ∇α vμ ∇α vν)

+ c4 v̇μ v̇ν + λvμ vν − 1

2
L gμν, (21)

c4 v̇α ∇μ vα + ∇α Jα
μ + λvμ = 0, (22)

where v̇μ ≡ vα ∇α vμ and

Jμ
ν = K μα

νβ ∇α vβ, (23)

L = K μν
αβ ∇μ vα ∇ν vβ. (24)
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In (21), we eliminated the term related to the constraint (20). Multiplying the aether
Eq. (22) by vμ, one can also derive

λ = c4 v̇α v̇α + vα ∇β Jβ
α. (25)

A special case of the theory (18) is the Einstein–Maxwell theory with dust distrib-
ution (no pressure) [7] (see also [34,35]). Let c2 = c4 = 0 and c3 = −c1. Then the
action becomes

I = 1

16πG

∫
d D x

√−g
[

R − 2
 − c1

2
F2 + λ (vμ vμ + 1)

]
(26)

with the field equations

Gμν + 
gμν = c1 T F
μν − λvμ vν, (27)

∇μ Fμν = − λ

c1
vν, (28)

vμ vμ = −1, (29)

where Fμν ≡ vν,μ −vμ,ν , F2 ≡ Fμν Fμν , and T F
μν is the Maxwell energy-momentum

tensor for Fμν . Actually, this theory differs from the usual Einstein–Maxwell theory
due to the last condition (29) which brakes the gauge invariance of the theory. A
generalization of this special theory is given in [34], called TeVeS, which contains
also a scalar (dilaton) field coupling to the unit timelike vector field and the metric
tensor.

3 Gödel-type metrics in Einstein-Aether theory

Now we will show that Gödel-type metrics with nonflat background in arbitrary dimen-
sions constitute solutions to Einstein-Aether theory. Let us first state the following
proposition.

Proposition 3 If we assume that the timelike vector vμ in the Einstein-Aether theory
defined in the previous section be also a Killing vector, which satisfies the relations

v
μ

;μ = 0, v̇μ = 0, vν;μ = 1

2
Fμν, (30)

where Fμν ≡ vν,μ − vμ,ν , then we obtain

Jμ
ν = 1

2
(c1 − c3) Fμ

ν, (31)

λ = −1

4
(c1 − c3) F2, (32)

L = 1

4
(c1 − c3) F2, (33)
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and the field Eqs. (21) and (22) reduce

Gμν + 
gμν = (c1 − c3)

[
1

2
T F

μν + 1

4
F2 vμ vν

]
, (34)

∇α Fαμ − 1

2
F2 vμ = 0. (35)

Here F2 ≡ Fμν Fμν and T F
μν is the energy-momentum tensor for the field Fμν .

An immediate consequence of this proposition is that the energy-momentum tensor
of the aether field vμ takes exactly the same form as that of a charged dust, as it can
be seen readily from the right hand side of (34). So this is indeed in the form desired
in Proposition 2. Moreover, the aether Eq. (35) resembles the condition (14) on the
vector field uμ in Gödel type of metrics. All these suggest that we can assume the
scalings1

vμ = σuμ, gμν = w2ggodel
μν , (36)

where uμ is the unit timelike vector in the Gödel-type metric (1), and σ and w are
constant scale factors such that ε ≡ σ 2/w2 = 1. This last identity stems from the
fixed-norm constraint (20). Therefore we have the proposition.

Proposition 4 If the relations (36) hold, we find that

Jμ
ν = 1

2σ
(c1 − c3) f μ

ν, (37)

λ = − 1

4σ 2 (c1 − c3) f 2, (38)

L = 1

4σ 2 (c1 − c3) f 2, (39)

where fαβ ≡ uβ, α − uα, β and f 2 ≡ fμν f μν , and the Einstein-Aether field Eqs. (34)
and (35) become

Gμν + 
gμν = Ggodel
μν + 
σ 2ggodel

μν = (c1 − c3)

[
1

2
T f

μν + 1

4
f 2 uμ uν

]
,

(40)

∇α Fαμ − 1

2
F2 vμ = ∇α f αμ − 1

2
f 2 uμ = 0. (41)

Here T f
μν is the energy-momentum tensor for the field fμν .

Thus by comparing Proposition 4 with Proposition 2, we can draw the following
conclusion:

1 These scalings were initially intended to get rid of the constraint c1 −c3 = 1 and also have solutions with
nonzero cosmological constant. However, at the end, it turned out that this is not possible (see Proposition 5
below).
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Proposition 5 The stationary Gödel-type metrics in Proposition 2 solve the Einstein-
Aether field Eqs. (21) and (22) with

vμ = σuμ, gμν = σ 2ggodel
μν , c1 − c3 = 1, (42)

if and only if hμν is the metric of (D − 1)-dimensional Ricci-flat space (and hence

 = 0).

At this point, it should be noted that in Proposition 2 it is assumed the (D − 1)-
dimensional metric hμν is an Einstein space and, as it turned out in Proposition 5,
it is Ricci-flat. However, this assumption is actually unnecessary. Indeed, the field
equations, together with the properties of the vector uμ, force hμν to be necessarily
Ricci-flat. This can be seen as follows. Taking jμ = 0 in (11) and using it in (40) with
c1 − c3 = 1 produces the condition

r̄μν − 1

2
r̄(hμν − uμuν) + 
σ 2ggodel

μν = 0 (43)

on the metric hμν , which, with the help of the definition (1), becomes

r̄μν − 1

2
(r̄ − 2
σ 2)ggodel

μν = 0. (44)

Now multiplying both sides by uμ and using the fact that uμr̄μν = 0, one obtains

r̄ = 2
σ 2. (45)

However, plugging this back into (44) yields r̄μν = 0 which in turn yields r̄ = 0.
Then from (45) it necessarily turns out that 
 = 0.

Remark 2 When D = 4, the 3-dimensional background metric hμν becomes flat. In
3 dimensions Ricci flat spaces have zero curvature tensor. Hence, in four dimensions
(D=4) we loose no generality by assuming hμν as a constant tensor (∂α hμν = 0), as
assumed in [6].

We can arrive at similar results for the special case of the Einstein-Aether theory
described by the action (26); that is,

Proposition 6 The special Einstein-Aether field Eqs. (27) and (28) are solved exactly
by the stationary Gödel type metrics in Proposition 2 with

vμ = σuμ, gμν = σ 2ggodel
μν , c1 = 1

2
, λ = − 1

4σ 2 f 2, (46)

if and only if the (D-1)-dimensional space hμν is Ricci-flat (and hence 
 = 0).
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4 Some exact solutions

Now using the results of the previous section, we shall explicitly construct exact
Gödel-type solutions to Einstein-Aether theory. Here is the recipe for doing this:

1. First, choose an appropriate Euclidean (D − 1)-dimensional background metric
hμν that satisfies the Ricci-flatness condition,

r̄μν = 0. (47)

2. Second, choose an appropriate timelike vector field uμ that satisfies the condition
(14), i.e. jμ = 0, or equivalently [1],

∂μ(h̄μα h̄νβ
√

h fαβ) = 0, (48)

where h̄μν is the (D − 1)-dimensional inverse of hμν , i.e. h̄μαhαν = δ̄
μ
ν .

3. Third, construct the Gödel-type metric defined by

ggodel
μν = hμν − uμuν . (49)

4. Finally, take
vμ = σuμ, gμν = σ 2ggodel

μν , c1 − c3 = 1, (50)

for some constant scale factor σ , which constitutes an exact solution to the Einstein-
Aether field Eqs. (21) and (22).

4.1 Solutions with (D − 1)-dimensional flat backgrounds

Let the (D−1)-dimensional (Euclidean) background metric hμν be flat. Since h0μ = 0,
this means that hi j = δ̄i j with the Latin indices running from 1 to (D − 1). Thus our
background reads

ds2
D−1 = hμνdxμdxν = δ̄i j dxi dx j = (dx1)2 + (dx2)2 + · · · + (dx D−1)2. (51)

This choice of the background trivially satisfies the Ricci-flatness condition (47).
Now let us assume that ui = Qi j x j where Qi j is an antisymmetric constant tensor,

i.e. ∂0 Qi j = 0. With this choice, fi j ≡ ∂i u j − ∂ j ui = −2Qi j and the condition (48)
is trivially satisfied. Then

uμdxμ = u0dx0 + ui dxi = dx0 + 1

2
Qi j (x j dxi − xi dx j ) (52)

and the following metric solves the Einstein-Aether theory with vμ = σuμ and c1 −
c3 = 1,

ds2 = σ 2ds2
godel , (53)
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where

ds2
godel = ggodel

μν dxμdxν = (hμν − uμuν)dxμdxν

= δ̄i j dxi dx j − (uμdxμ)2

= (dx1)2 + (dx2)2 + · · · + (dx D−1)2

−
[

dx0 + 1

2
Qi j (x j dxi − xi dx j )

]2

. (54)

Specifically when D = 4 (so i, j = 1, 2, 3) and Q13 = Q23 = 0 but Q12 	= 0, with
the coordinates labeled by (t, x, y, z), the Gödel-type metric (54) becomes

ds2
godel = dx2 + dy2 + dz2 −

[
dt + 1

2
Q12(ydx − xdy)

]2

, (55)

or in cylindrical coordinates (ρ, φ, z),

ds2
godel = dρ2 + ρ2dφ2 + dz2 −

[
dt − 1

2
Q12ρ

2dφ

]2

. (56)

As is already discussed in [1,4,6], since φ is a periodic variable, this spacetime contains
closed timelike and null curves xμ = (t, ρ, φ, z) with t, ρ, z = const. and ρ ≥
2/|Q12|.

The energy density (16) for the spacetime (54) can be found to be

E ≡ 1

4
f 2 = 1

4
fi j f i j = Qi j Qi j = const., (57)

which is regular everywhere in any dimension.

4.2 Solutions with (D − 1)-dimensional conformally flat backgrounds

This time let us assume that the background metric hi j be conformally flat; that is,
hi j = e2ψ(r)δ̄i j , where r is the radial distance in R

D−1 defined by r2 = δ̄i j x i x j =
xi xi . Then, denoting the derivative with respect to r by a prime, we work out that (see,
for instance, [36])

r̄i j = −δ̄i j

[
ψ ′′ + (2D − 5)

ψ ′

r
+ (D − 3)ψ ′2

]

−xi x j
D − 3

r

(
ψ ′′ − ψ ′

r
− ψ ′2

)
. (58)

For this to be equal to zero, we first assume that

ψ ′′ − ψ ′

r
− ψ ′2 = 0 (59)
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which has the generic solution

ψ(r) = a − ln(r2 + b) (60)

for some real constants a and b. Putting (60) back into (58) produces

r̄i j = δ̄i j
4b(D − 2)

(r2 + b)2 , (61)

which says that the Ricci-flatness condition (47) is achieved only when b = 0 (since
D > 2 always).

Next we have to find an appropriate vector field uμ that satisfies the condition (48).
For this purpose, let us take ui = s(r)Qi j x j where again Qi j is an antisymmetric
constant tensor. Then fi j turns out to be

fi j = 2
s′

r
xm Qm[i x j] − 2s Qi j , (62)

where the square brackets denote antisymmetrization, and the condition (48) becomes

(
A

r2

)D−5 [
s′′ + (10 − D)

s′

r
+ 4(5 − D)

s

r2

]
δ̄ jl Qlm xm = 0, (63)

where A ≡ ea . This equation is satisfied only if the expression inside the square
brackets vanishes, which gives the generic solution

s(r) = C1r D−5 + C2

r4 (64)

for some real constants C1 and C2. Therefore, we satisfy the condition (48), if we
choose

ui =
(

C1r D−5 + C2

r4

)
Qi j x j . (65)

Then the line element

ds2
godel = ggodel

μν dxμdxν = (hμν − uμuν)dxμdxν

= e2ψ δ̄i j dxi dx j − (uμdxμ)2

= A2

r4

[
(dx1)2 + (dx2)2 + · · · + (dx D−1)2

]

−
[

dx0 + 1

2

(
C1r D−5 + C2

r4

)
Qi j (x j dxi − xi dx j )

]2

(66)

solves the Einstein-Aether field Eqs. (21) and (22) if

vμ = σuμ, ds2 = σ 2ds2
godel , c1 − c3 = 1. (67)

123



63 Page 12 of 14 M. Gürses, Ç. Şentürk

In four dimensions (i.e. D = 4), as in the previous solution, assuming Q13 = Q23 = 0
but Q12 	= 0, and using cylindrical coordinates, one can write (66) in the form [1]

ds2
godel = A2

r4 (dρ2 + ρ2dφ2 + dz2) −
[

dt − 1

2

(
C1

r
+ C2

r4

)
Q12ρ

2dφ

]2

, (68)

where r2 = ρ2 + z2. As in the previous case, this spacetime also contains closed
timelike and null curves when t, ρ, z = const.

One can further compute the energy density (16) for the spacetime (66) by using
(62); so it is just a matter of computation to show that

E ≡ 1

4
f 2 = 1

4
h̄ik h̄ jl fi j fkl = e−4ψ

4
δ̄ik δ̄ jl fi j fkl

= 1

2A4

{
δ̄i j Qik Q jl

xk xl

r2

[
C1(D − 5)r D−1 − 4C2

]2

+ 2δ̄ik δ̄ jl Qi j Qkl

[
C1r D−1 + C2

]2}
. (69)

It is evident from this expression that there is no singularity at r = 0, for D > 1
always.

4.3 Solutions with (D − 1)-dimensional Euclidean Tangherlini backgrounds

Now consider the (D − 1)-dimensional Euclidean Tangherlini [37] solution as our
background metric hi j . Labeling the coordinates by (t, r, θ1, θ2, . . . , θD−3), so that
xμ = (x0, t, r, θ1, θ2, . . . , θD−3), we can write the metric as follows

ds2
D−1 = V (r)dt2 + dr2

V (r)
+ r2d�2

D−3, (70)

where
V (r) = 1 − 2m r4−D (D ≥ 4) (71)

with m being the constant “mass” parameter and d�2
D−3 is the metric on the (D −

3)-dimensional unit sphere. This metric solves the Euclidean Einstein equations in
vacuum, so the Ricci-flatness condition (47) is automatically satisfied.

To fulfill the condition (48), let us assume that ui = u(r)δt
i for which fi j =

u′(δr
i δ

t
j − δr

jδ
t
i ), where the prime denotes differentiation with respect to r . Then, with

the help of the metric (70), it reduces to (r D−3u′)′ = 0, and this can easily be integrated
to give

u(r) =
{

a r4−D + b when D ≥ 5,

a ln r + b when D = 4,
(72)

where a and b are two arbitrary constants, the latter of which can be gauged away and
taken to be zero.
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Therefore, we can construct the following solution to the Einstein-Aether theory
with vμ = σuμ and c1 − c3 = 1:

ds2 = σ 2ds2
godel , (73)

where

ds2
godel = ggodel

μν dxμdxν = (hμν − uμuν)dxμdxν

= hi j dxi dx j − (uμdxμ)2

= V (r)dt2 + dr2

V (r)
+ r2d�2

D−3 −
[
dx0 + u(r)dt

]2
, (74)

with V (r) and u(r) given by (71) and (72), respectively. Here the coordinate x0 plays
the role of the time coordinate. When D = 5, after relabeling the angular coordinates,
(74) becomes

ds2
godel =

(
1 − 2m

r

)
dt2 + dr2

1 − 2m
r

+r2(dθ2 + sin2 θdφ2)−
[
dx0 + a

r
dt

]2
. (75)

As is discussed in [1], in this spacetime, only the region r > 2m is physical. Otherwise,
the spacetime undergoes a signature change from (−,+,+,+,+) to (−,−,−,+,+).

We can also compute the energy density (16) for the spacetime (74) to obtain

E ≡ 1

4
f 2 =

{
a2(D−4)2

2 r2(3−D) when D ≥ 5,
a2

2r2 when D = 4,
(76)

revealing the spacetime singularity at r = 0 for a 	= 0.

5 Conclusion

In this work, we showed that the Gödel-type metrics [1,2] in D dimensions with nonflat
background metric hμν solve the field equations of the Einstein-Aether theory. We
proved that the Gödel-type metrics reduce the complete field equations of the Einstein-
Aether theory to a (D − 1)-dimensional vacuum field equations for the background
metric and (D−1)-dimensional Maxwell equations corresponding to the unit timelike
vector field, where all parameters of the theory are left free except c1 − c3 = 1. We
also showed that Gödel-type metrics in D dimensions with nonflat background solve a
special reduction of the Einstein-Aether theory [7,34,35]. In four dimensions with flat
background, the results of this work coincide with those published in [6]. We presented
some particular exact solutions to the Einstein-Aether theory in arbitrary dimensions:
We considered (D − 1)-dimensional Euclidean flat, conformally flat, and Tangherlini
background metrics and showed that in the first two cases there are solutions allowing
for the existence of closed timelike and closed null curves in the relevant spacetimes.
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