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Abstract FM-based passive bistatic radar (PBR) systems
suffer from low range resolution because of the low base-
band bandwidth of commercial FM broadcasts. In this paper,
we propose a range resolution improvement method using
deconvolution. The output of the PBR matched filter is
processed using a deconvolution algorithm which assumes
that targets are isolated, i.e., sparse in the range domain. The
deconvolution algorithm is iterative andwas implemented by
performing successive orthogonal projections onto support-
ing hyperplanes of the epigraph set of a convex cost function.
Simulation examples are presented.

Keywords Passive radar ·Range resolution ·Deconvolution

1 Introduction

PBR systems take advantage of an illuminator of opportu-
nity, which is typically a commercial broadcast such as FM,
DAB, DVB or GSM. Since commercial broadcasts are not
intended for radar applications, PBR systems cannot change
the transmitter characteristics or transmitted waveform for
better radar performance [20]. Thus, one of the disadvantages
of a PBR system is the detection range and range resolution,
which is inversely proportional to the baseband bandwidth
of the transmitted waveform. Often, the exploited waveform
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is an FM radio channel in PBR systems. However, baseband
bandwidth of an FMsignal is around 200kHz. This lowband-
width heavily depends on the broadcast program and may
result in a range resolution of 1.8–16kms [3]. In other possi-
ble commercial broadcasts such as GSM, DAB or DVB, the
range resolution is about 1.8, 0.2 and 0.044km, respectively
[3–6].Unfortunately, they suffer froma lower detection range
compared to FM due to transmitter characteristics [1–11].
Digital broadcasts address range resolution issue, especially
DVB; however, themaximumdetection range is limited com-
pared to FM broadcast.

Multiple FM signals at different channels are used at the
same time to overcome the low range resolution problem of
FM-based PBR systems [2,17]. In [2,17], FM radio channels
(and later DAB and DVB channels) are concatenated in the
frequency domain to obtain a wide bandwidth illumination
signal, the so-called multichannel FM signal. This approach
increases the range resolution of a PBRsystem, but additional
high amplitude peaks at the vicinity of target peaks are also
generated as a side effect of matched filter processing.

In this paper, we propose a time-domain deconvolution
scheme in order to increase the range resolution of a FM-
based PBR system. The deconvolution algorithm is based
on the projection onto convex sets theory [18]. In this algo-
rithm, convex sets are hyperplanes which represent time
delays of targets. In order to regularize the deconvolution
process, orthogonal projections onto the epigraph set of �1-
norm function are performed [4]. The �1-norm-based cost
function assumes that the signals are sparse [5,8,13]. This
assumption is justified because targets are isolated in space.
Other deconvolution applications in radar signal processing
include [21], inwhich authors increase the angular resolution.

The proposed method effectively increases the range res-
olution of single-channel FM-based PBR systems compared
to the ordinary matched filter processing. It is also possible
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to apply this deconvolution scheme to multichannel FM-
based PBR systems. Our algorithm can effectively suppress
the sidelobes and increases the detection performance of the
multichannel FM signal-based PBR system. The article is
organized as follows. In Sect. 2,we describe how thematched
filter output can be further processed to improve the range
resolution of a PBR system. In Sect. 3, the application of
the deconvolution algorithm onto the ambiguity function is
presented. In Sect. 4, simulation examples are presented.

2 Ambiguity function and the deconvolution

The classical method of time of arrival estimation is based
on the matched filter. The transmitted signal and the received
signal are correlated using the ambiguity function. Natu-
rally, transmitted waveform is not available directly in a
PBR system unlike conventional radars. The PBR collects
the transmitted waveform from a separate antenna. The sur-
veillance signal is in the following form:

ssurv(t) =
P∑

p=1

aps(t − τp)e
j2π f pt + ass(t − τr ) + η(t), (1)

where s(t) is the transmitted waveform, P is the number of
targets in the coverage area, ap is the complex attenuation
coefficient of the signal echoing from pth target, f p is the
Doppler shift of the pth target, τp is the time delay of the sig-
nal echoing from the pth target, as is the complex attenuation
coefficient of the direct signal received via the sidelobe of the
surveillance antenna, τr is the distance between the transmit-
ter and receiver, and η(t) is the additivewhiteGaussian noise.
The reference signal is a delayed version of the transmitted
waveform:

sre f (t) = ar s(t − τr ), (2)

where ar is the complex attenuation coefficient of the trans-
mitted signal and τr is the distance between the transmitter
and receiver.

Since the reference antenna is directed to the transmitter,
sref(t) can have high SNR. The delay τr can be known in
practice, so the effect of τr can be compensated by shifting
the signal in time. In addition to this, the effect of the direct
signal in the surveillance signal can be reduced considerably
using beam-forming techniques at the surveillance antenna
and adaptive filters [9].Wewill assume that τr is equal to zero
in the rest of this paper and the effect of the direct signal is
considerably less compared to target echoes. The continuous-
time ambiguity function ξ(τ, f ) is defined as:

ξ(τ, f ) =
∞∫

−∞
ssurv(t + τ)s∗

ref(t)e
− j2π f tdt, (3)

where τ is the time delay representing the range of the target
and f is the Doppler shift. Matched filter is the optimal max-
imum likelihood receiver under the assumption of known P
and additive white Gaussian noise [7]. However, the num-
ber of targets, P , is not known in practice. Additionally, the
range resolution of the matched filter is limited by the main
lobe of the autocorrelation of the transmitted waveform.

We now show that the ambiguity function defined in
Eq. (3) can be expressed as the convolution of two two-
dimensional (2-D) functions. With the assumption that the
distance between transmitter and radar is known, we can
substitute τr = 0 into Eq. (3), and with beam forming and
adaptive filtering, we can assume the effect of the direct sig-
nal can be diminished, and then using Eq. (1), we obtain

ξ(τ, f ) =
∞∫

−∞

[ P∑

p=1

aps(t−(τp − τ))e j2π f p(t+τ)+η(t)

]

× s∗(t)e j2π f tdt (4)

and with rearranging the summation, we obtain

ξ(τ, f ) =
P∑

p=1

ape
j2π f pt

∞∫

−∞
s(t − (τp − τ))

× s∗(t)e j2π( f p− f )tdt + μ(τ) (5)

where the noise μ(τ) = ∫ ∞
−∞ η(t + τ)s∗(t)e− j2π f tdt is now

signal dependent. The ambiguity function produces peaks
at (τp, f p) locations whenever it matches the signal due to
a target. That is why it is also called a matched filter. We
rewrite Eq. (5) as follows:

ξ(τ, f ) =
P∑

p=1

ape
j2π f pτ r(τ − τp, f − f p) + μ(τ), (6)

where

r(τ − τp, f − f p) =
∞∫

−∞
s(t − (τp − τ))

× s∗(t)e j2π( f p− f )tdt (7)

As a result, Eq. (6) can be re-arranged as a 2-D convolution:

ξ(τ, f ) =
P∑

p=1

ape
j2π f pτ δ(τ − τp, f − f p) ∗ r(τ, f ) + μ(τ),

(8)

where r(τ, f ) = ∫ ∞
−∞ s(t + τ)s∗(t)e− j2π f tdt and δ(τ, f ) is

the 2-D Dirac delta function. The so-called channel impulse
response

h(τ, f ) =
P∑

p=1

ape
j2π f pτ δ(τ − τp, f − f p) (9)
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is a complex function whose magnitude has clear peaks at
(τp, f p) pairs. These peaks must be sharper than the peaks
of the ordinary ambiguity function which is the left-hand
side of Eq. (8). Both ξ(τ, f ) and r(τ, f ) can be computed
from the observed signals ssurv(t) and s(t) using 1-D Fourier
transforms. As a result, unknown time delays τp andDoppler
frequencies f p, p = 1, 2, . . . , P in Eq. (8) can be estimated
from the channel impulse response, which can be determined
using deconvolution.

In many practical cases, Doppler frequencies, f p, can be
accurately estimated from the ambiguity function. In such
cases, only time delays τp need to be estimated from Eq.
(8). As a result, the problem becomes a 1-D deconvolution
problem.

3 Complex deconvolution

Most deconvolution algorithms are developed for real sig-
nals, but they can be extended to complex signals in a
straightforward manner.

The deconvolution problem in Eq. (8) can be discretized
and re-expressed as a matrix-vector product as follows:

e = Rh + μ, (10)

where e is the observation vector obtained from the ambi-
guity function values, R contains samples from r(τ, f ), h
represents the channel impulse response vector, and μ is the
noise. Inverse or pseudo-inverse of the matrix R may not
produce good results because of the noise. It is possible to
estimate h using iterative algorithms. One of the these itera-
tive algorithms [10] is based on the following equation:

hi+1 = hi − λ(e − r ∗ hi ), i = 0, 1, 2, . . . (11)

where e is the discretized version of the 2-D ambiguity func-
tion, i is the iteration number,λ is the convergence parameter,
and r is the discretized version of r(τ, f ). With an appropri-
ate choice of λ, Eq. (11) converges in the absence of noise.
Another related iterative algorithm can be obtained using the
projection onto convex sets (POCS) framework [19] which
is based on the following equation:

hi+1 = hi + λ
e[n,m] − (r ∗ hi )[n,m]

||r||2 r, (12)

where e[n,m] is the [n,m]th sample of the discrete ambi-
guity function e and 0 < λ < 2 for convergence in the
absence of noise. In one iteration cycle of projection, oper-
ations described in Eq. 12 are repeated for all [n,m] values
of the ambiguity function e. Both Eqs. 11 and 12 may not
converge under noise. They may oscillate. In order to obtain

a robust performance under noise, the deconvolution process
has to be regularized. Both of the above iterative algorithms
can be regularized by projecting the iterates onto the epigraph
set of a convex cost function, which can be selected as the
�1 norm cost function. The choice of �1 norm instead of the
�2 energy function is a good choice for this problem because
the ambiguity function is sparse in practice [5,13]. Ideally, it
is nonzero only at the P target locations.

Regularization using projection onto epigraph set of the �1
norm Deconvolution algorithms described in Eqs. 11 and 12
are regularized by performing orthogonal projections onto
the epigraph set of the �1 norm (PES-�1) during iterations
[18]. In this problem, the system is complex. Therefore, we
only project the magnitude of the iterate hi onto the epigraph
set of the �1 norm. Phase of the iterate is saved, and the next
iterate is simply constructed from the projection result and
the saved phase. Let the current iterate be hi . As described
above, only the magnitude gi = |hi | is projected onto the
epigraph set of �1 (PES- �1) norm:

C1 =
{

g = [gi z] ∈ R
L+1 :

L∑

l=1

|g[l]| ≤ z

}
, (13)

where gi is assumed to be L-dimensional in this paper. The
vector g is obtained by concatenating z at the end of vector
g. PES-�1 set is the set of vectors whose �1-norm is less then
or equal to some z. It is an upside-down pyramid in L + 1-
dimensional space, and it is a closed and convex set [19].
Projection onto C1 is obtained by the following equation:

g
pi

= argmin
g∈C1

||g − g
i
||2, (14)

where g = [h 0] is in R
L+1 and g

pi
is the projection of g

i
onto the epigraph set of �1-ball. The solution gpi becomes
sparser than gi because the projection removes small-valued
coefficients of vector gi . As pointed above, only the magni-
tude giof the hi = gi exp( jφ) is projected onto the set C1.
After the projection, the phase of the hi is combined with gpi
and the next iterate hpi = gpi exp( jφ) is obtained. Equation
(12) is actually an orthogonal projection onto a hyperplane
Cn,m representing the set of h vectors which can produce the
e[n,m] value of the ambiguity function e at the [n,m] pair.
In this paper, iterations described in Eq. (12) [or Eq. (11)] are
combined with the regularization step described in Eq. (14).
After one cycle of projections onto all Cn,m sets, an orthog-
onal projection onto C1 is performed. This cyclical process
is repeated until the convergence is achieved. POCS theory
states that iterates converge to a solution h
 which is in the
intersection of the sets Cm,n and C1 provided that the inter-
section set is non-empty. In practice, iterations are stopped
either after several projection rounds or when the minimum
mean square error ||hi+1 −hi || is below a predefined thresh-
old (Fig. 1).
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Fig. 1 Regularization using projection onto epigraph set of �1 norm.
Graphical representation in R

3 [4]

4 Simulation examples

We consider a simplified bistatic radar geometry in which
there is one transmitter and one receiver which are both colo-
cated. We assume that FM channels are all transmitted from
one antenna site that includes several clustered antennas in
close proximity. We generate the FM signals according to
references [12,16]. Three different set of experiments are
conducted.

First experiment set includes only two targets, and we
investigate the amount of improvement deconvolution algo-
rithms introduced to the system in the range resolution
department.

In the second experiment, we investigate the performance
of deconvolution algorithms with multichannel FM sig-
nals. Multichannel FM signals are an efficient proposal to
overcome the range resolution problem of FM-based PBR
systems; however, the ambiguity function is cluttered by
many powerful sidelobes as a by-product of the ambiguity
function. We expect deconvolution algorithms to suppress
these sidelobes and improve the performance of the multi-
channel FM signal-based PBR systems.

In the last experiment set, the performance of the deconvo-
lution approach is inspected under a crowded scenario with
many targets and clutters.

We comparematched filter with three deconvolution algo-
rithms: iterative deconvolution in Eq. (11) with PES-�1,
POCSalgorithm inEq. (12)with PES-�1 and awell-known2-
D deconvolution algorithm, Lucy–Richardson method [15].
In the first simulation example, two targets, one at 10km
bistatic range and theother at 25kmbistatic range, are consid-
ered with SNRs −10 and −13dB respectively. The Doppler
f p is the same, 25Hz, for both targets. The target at 25km
gradually approaches to the target at 10km to investigate
the limits of the deconvolution algorithms and the ambiguity
function. The start and end of the scenario is in Table 1.

Table 1 Start and end scenarios for the first experiment

Bistatic
range (km)

Doppler
shift (Hz)

SNR (dB)

Start
positions

target1 10 25 −10

target2 25 25 −13

Direct signal NA NA 30

Stop
positions

target1 10 25 −10

target2 17 25 −11

Direct signal NA NA 30
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Fig. 2 Experimental results for two targets, one at 10 and the other at
25km, respectively. 25Hz Doppler frequency line

Experimental results are shown in Fig. 2. Only the f p =
25Hz line of the two-dimensional ambiguity function is plot-
ted in Fig. 2. When there is 15km distance between the
two targets, the matched filter is barely able to separate
the targets from each other. There is a 5dB dip between
the two targets [14]. However, deconvolution-based algo-
rithms can clearly separate the targets with a 15dB dip.
When the distance between the two targets is 7km, the
results are shown in Fig. 3. The matched filter can no longer
separate the targets. On the other hand, the deconvolution-
based algorithms can still separate the targets with a more
than 3dB dip between the two targets. In Fig. 3, peaks due
to targets are no longer as sharp as Fig. 2. In Fig. 3, the
best result is obtained when the POCS deconvolution algo-
rithm Eq. 12 is combined with the regularization scheme of
PES-�1.

In Table 2, target separation distances of various methods
are summarized. The best result (7km) is obtained when Eq.
12 is combined with the PES-�1 regularization scheme.

It can even increase the range resolution of thePBRsystem
up to 7 kms, which is about two times better than the ordinary
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Fig. 3 Experimental results for two targets, one at 10 and the other at
17km, respectively. f p = 25Hz Doppler frequency

Table 2 Performance of various methods for a single-channel FM case

Algorithm Dip level (dB)
between
targets

Target SNRs
(dB) (# 1, # 2)

Target distance:
15km f p = 25Hz

Amb. Func. Eq. (3) −5 −10/−13

Eq. (11) −7 −10/−13

Eq. (12) −12 −10/−13

Eq. (11)+ PES�1 −10 −10/−13

Eq. (12)+ PES�1 −16 −10/−13

Lucy–Rich. −20 −10/−13

Target distance: 7km
f p = 25Hz

Amb. Func. Eq. (3) 0 −10/−13

Eq. (11) −3 −10/−13

Eq. (12) −5 −10/−13

Eq. (11)+ PES�1 −20 −10/−13

Eq. (12)+ PES�1 −35 −10/−13

Lucy–Rich. −9 −10/−13

ambiguity function Eq. (3). We experimentally observed that
targets closer than 7kms are not separated by any of the
deconvolution algorithms.

In the second set of examples, we use multichannel FM
signals as the illuminator of opportunity. We use three FM
channels in all simulation examples with each FM channel
having 200 and 100kHz distance from each other in the fre-
quency domain. In addition to the effect of deconvolution,
we also investigate the effect of channel separation in this
experiment. Some examples of spectrumofmultichannel FM
signals with 3 channels with different channel spacing are
shown in Fig. 4.

We assume that there are two targets: one at 10km and
the other at 14km away from the radar with SNRs 10 and
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Fig. 4 Spectrum of a signal with single FM channel (top), a multi-
channel FM signal with 3 FM channels and 200kHz channel spacing
(middle), and amultichannel FMsignalwith 3FMchannels and100kHz
channel spacing (bottom)

0 20 40 60 80
-40

-30

-20

-10

0
Amb. Fun. Eq. (3)

10 20 30 40 50 60
-40

-30

-20

-10

0
Eq. (12) + PES-l1

0 20 40 60 80
-40

-30

-20

-10

0
Eq. (11) + PES-l1

0 20 40 60 80
-40

-30

-20

-10

0
Lucy-Richardson

R
el

at
iv

e 
S

N
R

 (
dB

)

Range (km)

Fig. 5 Experimental results for two targets: one at 10km and the other
at 14km for a multichannel scenario with 3 FM channels and channel
space 200kHz; 20Hz Doppler frequency line

11dB, respectively. Since the theoretical bandwidth is three
times that of the single- channel FM case, it is possible to
resolve targets even when there is a 4km distance between
them compared to the single-channel FM signal case. How-
ever, it is known that the multichannel FM case has spurious
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peaks compared to the single-channel case at the output of
the matched filter [17]. These peaks consist of actual target
peaks and unwanted sidelobes. Due to the high amplitude of
sidelobes, it is not possible to distinguishwhich peaks belong
to the target and which peaks belong to the sidelobes in the
ordinary ambiguity function. It is possible to observe that
iterative deconvolution algorithms suppress most of the side-
lobes as shown in Fig. 5. The iterative algorithm of Eq. (12)
with PES-�1 suppresses the side lobes to about−14dBwhich
is a significant improvement over the other iterative decon-
volution algorithms. The 2-D Lucy–Richardson algorithm
also successfully suppresses the sidelobes to about −9dB.
The ambiguity function Eq. (3) has also two peaks, but the
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Fig. 6 Experimental results for two targets: one at 10km and the other
at 14km for a multichannel scenario with 3 FM channels and channel
space 100kHz; 20Hz Doppler frequency line

peaks are not sharp enough to determine the exact locations
of targets.

In Fig. 5, when three FM channels with 200kHz channel
spacing are employed, the overall range resolution increases.
However, due to the aforementioned powerful sidelobe
problem with the ambiguity function, the targets are not dis-
tinguishable. There is only a −1.8dB dip between the two
peaks and they overlap. Due to the definition of resolving two
close proximity targets in [14], in the multichannel scenario,
the conventional ambiguity function could not resolve the
two targets. However, the deconvolution algorithms are able
to generate clean peaks by suppressing the sidelobes. Equa-
tion (12) with PES-�1 regularization determines the targets
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Fig. 7 Experimental results for five targets with a single FM channel
system, 20Hz Doppler frequency line

Table 3 Performance of various
methods for a single-channel
FM case

Algorithm # of targets
resolved

Highest sidelobe level
w.r.t. target (dB)

Target SNRs
(dB) (# 1, # 2)

3 FM channels
� f : 200kHz

Amb. Func. Eq. (3) 0 −1.8 −11/−13

Eq. (11) 2 −3.8 −11/−13

Eq. (12) 2 −6.8 −11/−13

Eq. (11)+ PES�1 2 −5.8 −11/−13

Eq. (12)+ PES�1 2 −13.8 −11/−13

Lucy–Rich. 2 −6.8 −10/−13

3 FM channels
� f : 100kHz

Amb. Func. Eq. (3) 2 −3.3 −11/−13

Eq. (11) 2 −5.6 −11/−13

Eq. (12) 2 −7.7 −11/−13

Eq. (11)+ PES�1 2 −9.3 −11/−13

Eq. (12)+ PES�1 2 −15.8 −11/−13

Lucy–Rich. 2 −8.8 −11/−13
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Table 4 Experimental results
for the last experiment with both
single- and multichannel FM
signals

Algorithm # of targets
resolved

Highest sidelobe level
w.r.t. target (dB)

Target SNRs
(dB) (# 1, # 2)

Single FM
channel

Amb. Func. Eq. (3) 2 0 0/−2/−5 / −3/−5

Eq. (11) 3 1 0/−2/−5/−3/−5

Eq. (12) 3 2 0/−2/ −5/−3/−5

Eq. (11)+PES�1 4 3 0/−2/−5/−3/−5

Eq. (12)+PES�1 5 5 0/−2/−5/−3/−5

Lucy–Rich. 3 3 0/−2/−5/−3/−5

3 FM channels
� f : 200kHz

Amb. Func. Eq. (3) 5 5 0/−2/−5/−3/−5

Eq. (11) 5 5 0/−2/−5/−3/−5

Eq. (12) 5 5 0/−2/−5/−3/−5

Eq. (11)+ PES�1 5 5 0/−2/ −5/−3/−5

Eq. (12)+ PES�1 5 5 0/−2/−5/−3/−5

Lucy–Rich. 5 5 0/−2/−5/−3/−5

3 FM channels
� f : 100kHz

Amb. Func. Eq. (3) 5 5 0/−2/−5/−3/−5

Eq. (11) 5 5 0/−2/−5/−3/−5

Eq. (12) 5 5 0/−2/−5/−3/−5

Eq. (11)+ PES�1 5 5 0/−2/−5/−3/−5

Eq. (12)+ PES�1 5 5 0/−2/−5/−3/−5

Lucy–Rich. 5 5 0/−2/−5/−3/−5
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Fig. 8 Experimental results for five targets with a multichannel FM
channel system with 3 FM channels and 200kHz channel separation,
20Hz Doppler frequency line

with a dip level of −13.8dB for side lobes and is the best
resulting deconvolution scheme.

The effect of channel spacing is shown in Fig. 6. Overlap-
ping the FM channels so that the channel spacing is 100kHz
instead of 200kHz decreased the overall sidelobe level at the
output of the ambiguity function. However, this decrease in
sidelobes is achieved with a trade-off of the overall range
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Fig. 9 Experimental results for five targets with a multichannel FM
channel system with 3 FM channels and 100kHz channel separation,
20Hz Doppler frequency line

resolution. Since the channel spacing is 100kHz, the overall
bandwidth of the signal used is now narrower. With over-
lapping FM channels, the sidelobe levels decreased and the
deconvolution schemes further enhance the performance of
the ambiguity function by suppressing the sidelobe levels to
the noise floor. A summary of this experiment is given in
Table 3.
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In the next experiment, there are five targets with ranges,
10, 18, 27, 40 and 49kms, and the relative attenuation values
compared to the most powerful target power are 0,−3,−3,
−2 − 1dB, respectively. In addition to the targets, there
are 6 stationary objects (clutters) in the environment with
ranges, 1, 3, 4, 8, 12 and 23kms, and the relative attenua-
tion values compared to the most powerful target power are
13, 10, 8, 10, 12 and 13dB, respectively. The clutters are
eliminated from the surveillance signal using an RLS adap-
tive filter [9]. All of the targets have the same f p = 20Hz
with a single-channel FM case. The experimental detec-
tion results are shown in Fig. 7. Equation (12) with PES-�1
regularization can find all targets. The ambiguity function
is not able to find any of the actual target peaks. It only
generates two peaks. Equation 11 with PES-�1 can resolve
four targets. Other deconvolution methods can only resolve
three of the targets. Experimental results are summarized in
Table 4.

Equation (12) with PES-�1 regularization can find all tar-
gets. The ambiguity function is not able to find any of the
actual target peaks. It only generates twopeaks.Equation (11)
with PES-�1 can resolve four targets. Other deconvolution
methods can only resolve three of the targets. Experimental
results are summarized in Table 4.

In Figs. 8 and 9, amultichannel FMsignalwith 3FMchan-
nels with 200 and 100kHz channel spacing, respectively, is
employed on the same scenario. The targets can be easily
distinguished, and even the ambiguity function is able to gen-
erate 5 separate target peaks with lower sidelobe levels in the
100kHz channel spacing case as expected. However, there
are many powerful sidelobe peaks around the target peaks
in the 200kHz channel spacing case. It can be observed that
deconvolution algorithms are able to suppress these sidelobes
significantly in both 200 and 100kHz channel spacing.

5 Conclusion

A new complex deconvolution algorithm is proposed for
PBR systems. The deconvolution algorithm is implemented
as a post-processing method, and it is applied to the range-
Dopplermap output of thematchedfilter. In all the simulation
examples that we tried, our deconvolution-based approach
improves the target separation performance of the PBR sys-
tem. The PES-based regularization during the deconvolution
process further improves the target detection results. The
proposed algorithm works for both single-channel FM and
multichannel FM cases.

In addition to the FM-based PBR systems, this approach
can be further extended to any radar system in order to
improve the range resolution because the method is based
on the exploitation of the well-known ambiguity function.
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