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We investigate how and when to diversify capital over assets, i.e., the portfolio selection problem, from a 
signal processing perspective. To this end, we first construct portfolios that achieve the optimal expected 
growth in i.i.d. discrete-time two-asset markets under proportional transaction costs. We then extend 
our analysis to cover markets having more than two stocks. The market is modeled by a sequence 
of price relative vectors with arbitrary discrete distributions, which can also be used to approximate 
a wide class of continuous distributions. To achieve the optimal growth, we use threshold portfolios, 
where we introduce a recursive update to calculate the expected wealth. We then demonstrate that 
under the threshold rebalancing framework, the achievable set of portfolios elegantly form an irreducible 
Markov chain under mild technical conditions. We evaluate the corresponding stationary distribution of 
this Markov chain, which provides a natural and efficient method to calculate the cumulative expected 
wealth. Subsequently, the corresponding parameters are optimized yielding the growth optimal portfolio 
under proportional transaction costs in i.i.d. discrete-time two-asset markets. As a widely known financial 
problem, we also solve the optimal portfolio selection problem in discrete-time markets constructed 
by sampling continuous-time Brownian markets. For the case that the underlying discrete distributions 
of the price relative vectors are unknown, we provide a maximum likelihood estimator that is also 
incorporated in the optimization framework in our simulations.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The problem of how and when an investor should diversify 
capital over various assets, whose future returns are yet to be 
realized, is extensively studied in various different fields from sig-
nal processing [1,2,12,28–30,33,35] and financial engineering [25,
26] to machine learning [13,34] and information theory [9]. Natu-
rally, this is one of the most important financial applications due 
to the amount of money involved. However, the recent financial 
crisis demonstrated that there is a significant room for improve-
ment in this field by sound signal processing methods [12,30], 
which is the main goal of this paper. In this paper, we investigate 
how and when to diversify capital over assets, i.e., the portfolio se-
lection problem, from a signal processing perspective and provide 
portfolio selection strategies that maximize the expected cumula-
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tive wealth in discrete-time markets under proportional transac-
tion costs.

In particular, we study an investment problem in markets that 
allows trading at discrete periods, where the discrete period is ar-
bitrary, e.g., it can be seconds, minutes or days [24]. Furthermore, 
the market levies transaction fees for both selling and buying an 
asset proportional to the volume of trading at each transaction, 
which accurately models a broad range of financial markets [3,24]. 
In our discussions, we first consider markets with two assets. Two-
stock markets are extensively studied in financial literature and are 
shown to accurately model a wide range of financial applications 
[24] such as the well-known “Stock and Bond Market” [24]. We 
then extend our analysis to markets having more than two assets, 
i.e., m-stock markets, where m is arbitrary.

Following the extensive literature [9,19,24–26,33], the market 
is modeled by a sequence of price relative vectors, say {X(n)}n≥1, 
X(n) ∈ [0, ∞)m , where each entry of X(n), i.e., Xi(n) ∈ [0, ∞), is 
the ratio of the closing price to the opening price of the ith stock 
per investment period. Hence, each entry of X(n) quantifies the 
gain (or the loss) of that asset at each investment period. The 
sequence of price relative vectors is assumed to have an i.i.d. “dis-
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crete” distribution [24–26,33], however, the discrete distributions 
on the vector of price relatives are arbitrary. In this sense, the 
corresponding discrete distributions can approximate a wide class 
of continuous distributions on the price relatives that satisfy cer-
tain regularity conditions by appropriately increasing the size of 
the discrete sample space. We first assume that the discrete distri-
butions on the price relative vectors are known and then extend 
our analysis to cover the case, where the underlying distributions 
are unknown. We emphasize that the i.i.d. assumption on the se-
quence of price relative vectors is shown to hold in most realistic 
markets [14,24].

At each investment period, the diversification of the capital 
over the assets is represented by a portfolio vector b(n), where 
∀i ∈ {1, . . . , m}, bi(n) represents the ratio of the capital invested in 
the ith asset at investment period n, i.e., we have 

∑m
i=1 bi(n) = 1, 

where 0 ≤ bi(n) ≤ 1. As an example, if we invest using b(n), 
we earn (or lose) bT (n)X(n) at the nth investment period, af-
ter X(n) is revealed. Given that we start with one dollar, af-
ter an investment period of N days, we have the wealth growth ∏N

n=1 bT (n)X(n). Under this general market model, we provide al-
gorithms that maximize the expected growth over any period N by 
using “threshold rebalanced portfolios” (TRPs), which are shown to 
yield optimal growth in general i.i.d. discrete-time markets [14].

In [9], Cover et al. showed that the portfolio that achieves 
the maximal growth is a constant rebalanced portfolio (CRP) in 
i.i.d. discrete-time markets, under certain assumptions on the se-
quence of price relatives and without any transaction costs. A CRP 
is a portfolio investment strategy, where the fraction of wealth in-
vested in each stock is kept constant at each investment period. 
A problem extensively studied in this framework is to find sequen-
tial portfolios that asymptotically achieve the wealth of the best 
CRP tuned to the underlying sequence of price relatives. Several 
sequential algorithms are introduced to achieve the performance 
of the best CRP (such as [9,13,16,34]) with different convergence 
rates and different performances on historical data sets. In [3], se-
quential algorithms that achieve the performance of the best CRP 
under transaction costs are introduced. However, we emphasize 
that keeping a CRP may require extensive trading due to a pos-
sible rebalancing at each investment period which deems CRPs 
(even the best CRP) ineffective in realistic markets even under mild 
transaction costs [19].

In continuous-time markets, however, it has been shown that 
under transaction costs, the optimal portfolios that achieve the 
maximal wealth are certain class of “no-trade zone” portfolios 
[7,11,32]. In simple terms, a no-trade zone portfolio has a com-
pact closed set and a rebalancing occurs if the current portfolio 
breaches this set, otherwise no rebalancing occurs. Clearly, such 
a no-trade zone portfolio may avoid hefty transaction costs since 
it can limit excessive rebalancing by defining appropriate no-trade 
zones. Analogous to continuous time markets, it has been shown 
in [14] that in two-asset i.i.d. markets under proportional trans-
action costs, compact no-trade zone portfolios are optimal such 
that they achieve the maximal growth under certain assumptions 
on the sequence of price relatives. In two-asset markets, the com-
pact no-trade zone is represented by thresholds, e.g., if at invest-
ment period n, the portfolio is given by b(n) = [b(n), (1 − b(n))]T , 
where 0 ≤ b(n) ≤ 1, then rebalancing occurs if b(n) /∈ (α, β), given 
the thresholds α, β , where 0 ≤ α ≤ β ≤ 1. Similarly, the interval 
(α, β) can be represented using a target portfolio b and a region 
around it, i.e., (b − ε, b + ε), where 0 ≤ ε ≤ min{b, 1 − b} such that 
α = b −ε and β = b +ε . Extension of TRPs to markets having more 
than two stocks is straightforward and explained in Section 3.2.

However, how to construct the no-trade zone portfolio, i.e., how 
to select the thresholds that achieve the maximal growth, has not 
yet been solved except in elementary scenarios [14]. In [15], a uni-
versal algorithm that asymptotically achieves the performance of 
the best TRP tuned to the underlying sequence of price relatives 
is introduced. This algorithm leverages Bayesian type weighting 
from [9] inspired from universal source coding and requires no 
statistical assumptions on the sequence of price relatives. In simi-
lar lines, various different universal algorithms are introduced that 
achieve the performance of the best expert in different competi-
tion classes in [1,2,17–20]. Although the performance guarantees 
in [1,2,15,18,19]) are derived without any stochastic assumptions, 
these methods are highly conservative due to the worst case sce-
nario optimization, i.e., they are only optimal in an asymptotical 
sense. However, the order of such performance upper bounds may 
not be negligible in actual financial markets [6,20], even though 
they may be neglected in source coding applications (where these 
algorithms are inspired from). We demonstrate that our algo-
rithm readily outperforms these universal methods over historical 
data.

Our main contributions are as follows. We first consider two-
asset markets and recursively evaluate the expected achieved 
wealth of a threshold portfolio for any b and ε over any invest-
ment period. We then extend this analysis to markets having more 
than two-stocks. We next demonstrate that under the thresh-
old rebalancing framework, the achievable set of portfolios form 
an irreducible Markov chain under mild technical conditions. We 
evaluate the corresponding stationary distribution of this Markov 
chain, which provides a natural and efficient method to calculate 
the cumulative expected wealth. Subsequently, the corresponding 
parameters are optimized using a brute force approach yielding 
the growth optimal investment portfolio under proportional transaction 
costs in i.i.d. discrete-time two-asset markets. We note that for the 
case with the irreducible Markov chain, which covers practically all 
scenarios in the realistic markets, the optimization of the parame-
ters is offline and carried out only once. However, for the case with 
recursive calculations, the algorithm has an exponential computa-
tional complexity in terms of the number of states. However, in our 
simulations, we observe that a reduced complexity form of the re-
cursive algorithm that keeps only a constant number of states by 
appropriately pruning certain states provides nearly identical re-
sults with the “optimal” algorithm. Furthermore, as a well studied 
problem, we also solve optimal portfolio selection in discrete-time 
markets constructed by sampling continuous-time Brownian mar-
kets [24]. When the underlying discrete distributions of the price 
relative vectors are unknown, we provide a maximum likelihood 
estimator to estimate the corresponding distributions that is incor-
porated in the optimization framework in the Simulations section. 
For all these approaches, we also provide the corresponding com-
plexity bounds.

The organization of the paper is as follows. In Section 2, we 
briefly describe our discrete-time stock market model with dis-
crete price relatives and symmetric proportional transaction costs. 
In Section 3, we start to investigate TRPs, where we first intro-
duce a recursive update in Section 3.1 for a market having two-
stocks. Generalization of the iterative algorithm to the m-asset 
market case is provided in Section 3.2. We then show that the 
TRP framework can be analyzed using finite state Markov chains 
in Section 3.4 and Section 3.5. The special Brownian market is 
analyzed in Section 3.6. The maximum likelihood estimator is de-
rived in Section 4. We simulate the performance of our algorithms 
in Section 5 and conclude the paper with certain remarks in Sec-
tion 6.

2. Problem description

We consider discrete-time stock markets under transaction 
costs. We first consider a market with two stocks and then ex-
tend the analysis to markets having more than two stocks. We 
model the market using a sequence of price relative vectors X(n). 
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A vector of price relatives X(n) = [X1(n), . . . , Xm(n)]T in a mar-
ket of m assets represents the change in the prices of the assets 
over investment period n, i.e., for the ith stock Xi(n) is the ratio 
of the closing to the opening price of the ith stock over period n. 
For a market having two assets, we have X(n) = [X1(n) X2(n)]T . 
We assume that the price relative sequences X1(n) and X2(n) are 
i.i.d. over with possibly different discrete sample spaces X1 and 
X2, i.e., X1(n) ∈ X1 and X2(n) ∈ X2, respectively [14]. For techni-
cal reasons, in our derivations, we assume that the sample space 
is X � X1 ∪X2 = {x1, x2, . . . , xK } for both X1(n) and X2(n) where 
|X | = K is the cardinality of the set X . The probability mass func-
tion (pmf) of X1(n) is p1(x) � Pr(X1 = x) and the pmf of X2(n) is 
p2(x) � Pr(X2 = x). We define pi,1 = p1(xi) and pi,2 = p2(xi) for 
xi ∈ X and the probability mass vectors p1 = [

p1,1 p2,1 . . . pK ,1
]T

and p2 = [
p1,2 p2,2 . . . pK ,2

]T
, respectively. Here, we first assume 

that the corresponding probability mass vectors p1 and p2 are 
known. We then extend our analysis to the case, where p1 and p2
are unknown, and sequentially estimate p1 and p2 using a maxi-
mum likelihood estimator in Section 4.

An allocation of wealth over two stocks is represented by the 
portfolio vector b(n) = [b1(n), b2(n)]T , where b1(n) and b2(n) rep-
resents the proportion of wealth invested in the first and second 
stocks, respectively, at investment period n. In two stock markets, 
we have b2(n) = 1 − b1(n), thus b(n) is completely characterized 
by the proportion of the total wealth invested in the first stock, 
i.e., b1(n). For notational clarity, we use b(n) instead of b1(n)

throughout the paper, hence our portfolio vector is denoted by 
b(n) = [b(n), 1 − b(n)]T .

We denote a threshold rebalancing portfolio with an initial 
and target portfolio b and a threshold ε by TRP(b, ε). At each 
market period n, an investor rebalances the asset allocation only 
if the portfolio leaves the interval (b − ε, b + ε). When b(n) /∈
(b − ε, b + ε), the investor buys and sells stocks so that the as-
set allocation is rebalanced to the initial allocation, i.e., b(n) = b, 
where the investor has to pay transaction fees. We emphasize that 
the rebalancing can be made directly to the closest boundary in-
stead of to b as suggested in [14], however, we rebalance to b for 
notational simplicity, whereas our derivations also hold for the re-
balancing to the boundary case. We model the transaction cost of 
rebalancing by a fixed proportional cost c ∈ (0, 1) [3,14,19]. As an 
example, if the investor buys or sells S dollars of stocks, then he 
pays cS dollars of transaction fees. Although we assume a sym-
metric transaction cost ratio, all the results can be carried over to 
markets with asymmetric costs [14,19].

We let S(N) denote the achieved wealth at investment pe-
riod N and assume, without loss of generality, that the initial 
wealth of the investor is 1 dollar. Then, as an example, if the 
portfolio b(n) does not leave the interval (b − ε, b + ε) and the 
allocation of wealth is not rebalanced for N investment peri-
ods, then the achieved wealth is given by S(N) = b 

∏N
n=1 X1(n) +

(1 − b) 
∏N

n=1 X2(n) and the current proportion of wealth invested 
in the first stock is given by b(N) =

[
b
∏N

n=1 X1(n)
]/

S(N). On 
the other hand, if the portfolio leaves the interval (b − ε, b + ε)

at period N , i.e., b(N) 	∈ (b − ε, b + ε), then the investor rebal-
ances the asset distribution to the initial distribution and pays 
cS(N)|b(N) − b| dollars for transaction costs [3]. In the next sec-
tion, we first derive a compact form for the expected achieved 
wealth E[S(N)] so that we can optimize b and ε to maximize 
E[S(N)].

3. Threshold rebalanced portfolios

In this section, we first investigate TRPs in discrete-time two-
asset markets under proportional transaction costs. We first intro-
duce an iterative method to calculate the expected achieved wealth 
Fig. 1. Block diagram representation of N period investment.

at a given investment period. We then present an upper bound on 
the complexity of this algorithm. We next calculate the expected 
achieved wealth of markets having more than two assets, i.e., 
m-asset markets for an arbitrary m. We then provide the necessary 
and sufficient conditions such that the achievable portfolios are fi-
nite such that the complexity of the algorithm does not grow at 
any period. We also show that the portfolio sequence converges to 
a stationary distribution and derive the expected achieved wealth. 
Based on the calculation of the expected achieved wealth, we 
optimize b and ε using a brute-force search. Finally, with these 
derivations, we consider the well-known discrete-time two-asset 
Brownian market with proportional transaction costs and investi-
gate the asymptotic expected achieved wealth.

3.1. An iterative algorithm

Before introducing the iterative algorithm, we first define the 
set of achievable portfolios at each investment period since the 
iterative calculation of the expected achieved wealth is based on 
the achievable portfolio set. We then introduce the portfolio tran-
sition sets and the transition probabilities of achievable portfolios 
at successive investment periods in order to iteratively find the 
probability of each portfolio state and to calculate E[S(N)].

We define the set of achievable portfolios at each investment 
period as follows. As |X | = K < ∞, the set of achievable portfolios 
at period N can only have finitely many elements. We define the 
set of achievable portfolios at period N as BN = {b1,N , . . . , bMN ,N}, 
where MN � |BN |. As illustrated in Fig. 1, for each achievable port-
folio bm,N ∈ BN , m = 1, . . . , MN , there is a certain set of portfolios 
in BN−1 that are connected to bm,n . At a given investment pe-
riod N , the set of achievable portfolios BN is given by

BN = {b} ∪
{

bm,N : bm,N = bk,N−1u

bk,N−1u + (1 − bk,N−1)v

∈ (b − ε,b + ε), u, v ∈ X
}
. (1)

Since b is an achievable portfolio at each N (due to a possible 
rebalancing), without loss of generality, we let b1,N = b for each 
N ∈ N. Note that in Fig. 1, the size of the set of achievable portfo-
lios may grow as N increases.

Having constructed a state transition diagram, we next repre-
sent the transition probabilities from bk,N−1 to bm,N as follows

qk,m,N � Pr
(
b(N) = bm,N |b(N − 1) = bk,N−1

)
, (2)

where k = 1, . . . , MN−1 and m = 1, . . . , MN . Given that b(N) =
bm,N , for some m = 1, . . . , MN , there exists a corresponding set of 
portfolios Nm,N ⊂ BN−1 from which bm,N is achievable, i.e.,
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Nm,N � {bk,N−1 ∈ BN−1 : qk,m,N > 0, k = 1, . . . , MN−1} (3)

where m = 1, . . . , MN . Then, the probability of each portfolio state 
can be calculated as follows

Pr
(
b(N) = bm,N

)=
∑

bk,N−1∈Nm,N

qk,m,N Pr
(
b(N − 1) = bk,N−1

)
(4)

where m = 1, . . . , MN . By the definition of BN and using the law 
of total expectation [31], we can write

E[S(N)] =
MN∑

m=1

Pr
(
b(N) = bm,N

)
E
[

S(N)|b(N) = bm,N
]
. (5)

To obtain an iterative formulation using (5), we next find the tran-
sition probabilities between achievable portfolios.

To accomplish this, we let Uk,m,N denote the set of price relative 
vectors that connect bk,N−1 to bm,N , i.e.,

Uk,m,N �
{

w = [w1, w2]T ∈ X 2 :
w1bk,N−1

w1bk,N−1 + w2(1 − bk,N−1)
= bm,N

}
,

for k = 1, . . . , MN−1 and m = 2, . . . , MN . We consider the price 
relative vectors that connect bk,N−1 to b1,N = b separately since, 
in this case, there are two subcases depending on whether 
the portfolio leaves the interval (b − ε, b + ε) or not. We let 
Uk,1,N = Vk,1,N ∪ Rk,1,N , where Vk,1,N is the set of price rela-
tive vectors that connect bk,N−1 to b1,N = b without rebalancing, 
i.e.,

Vk,1,N =
{

w = [w1, w2]T ∈ X 2 : w1bk,N−1

w1bk,N−1 + w2(1− bk,N−1)
= b

}
,

(6)

and Rk,1,N is the set of price relative vectors that connect bk,N−1
to b1,N with rebalancing, i.e.,

Rk,1,N =
{

w = [w1, w2]T ∈ X 2 :
w1bk,N−1

w1bk,N−1 + w2(1 − bk,N−1)
/∈ (b − ε,b + ε)

}
. (7)

With these definitions, we can obtain the transition probabilities 
as follows

qk,m,N = Pr
(
X(N) ∈ Uk,m,N

)
=

∑
w∈Uk,m,N

p1(w1)p2(w2), (8)

where k = 1, . . . , MN−1 and m = 1, . . . , MN .
Having derived a recursive formulation for the state probabili-

ties, we can calculate the term in the sum in (5) by considering 
two separate cases as follows.

i) As the first case, we consider b(N) = bm,N , where m =
2, . . . , MN , i.e., we know that the portfolio does not leave the in-
terval (b − ε, b + ε) at period N . Therefore, no transaction cost is 
paid and we have

Pr
(
b(N) = bm,N

)
E[S(N)|b(N) = bm,N ]

=
∑

bk,N−1∈Nm,N

E
[

S(N)|b(N) = bm,N ,b(N − 1) = bk,N−1
]

× Pr
(
b(N) = bm,N

)
Pr
(
b(N − 1) = bk,N−1|b(N) = bm,N

)
(9)

w
(1
A

E

P

P

w

X
a
re

P

=
∑

bk,N−1∈Nm,N

E
[

S(N)|b(N) = bm,N ,b(N − 1) = bk,N−1
]

× Pr
(
b(N − 1) = bk,N−1

)
qk,m,N , (10)

=
∑

bk,N−1∈Nm,N

E
[

S(N)|b(N) = bm,N ,b(N − 1) = bk,N−1
]

× Pr
(
b(N − 1) = bk,N−1

)
Pr
(
X(N) ∈ Uk,m,N

)
, (11)

=
∑

bk,N−1∈Nm,N

∑
w∈Uk,m,N

E
[

S(N)|b(N) = bm,N ,b(N − 1) = bk,N−1,

X(N) = w
]

× Pr
(
b(N − 1) = bk,N−1

)
Pr
(
X(N) = w|X(N) ∈ Uk,m,N

)
× Pr

(
X(N) ∈ Uk,m,N

)
, (12)

here (9) and (12) follow from the law of total expectation [31], 
0) follows from Bayes’ theorem [31], and (11) follows from (2). 

s no rebalancing occurs, we also have[
SN |b(N) = bm,N ,b(N − 1) = bk,N−1,X(N) = w

]
= E

[
S(N − 1)(bk,N−1 w1 + (1 − bk,N−1)w2)|
b(N − 1) = bk,N−1

]
. (13)

utting (13) back in (12), we obtain

r
(
b(N) = bm,N

)
E[S(N)|b(N) = bm,N ]

=
∑

bk,N−1∈Nm,N

∑
w∈Uk,m,N

Pr
(
b(N − 1) = bk,N−1

)
Pr (X(N) = w)

× E
[

S(N − 1)(bk,N−1 w1 + (1 − bk,N−1)w2)|
b(N − 1) = bk,N−1

]
(14)

=
∑

bk,N−1∈Nm,N

Pr
(
b(N − 1) = bk,N−1

)
× E

[
S(N − 1)|b(N − 1) = bk,N−1

]
×

∑
w∈Uk,m,N

(bk,N−1 w1 + (1 − bk,N−1)w2) p1(w1) p2(w2),

(15)

here the last line follows since Pr (X(N) = w) = p1(w1)p2(w2).
ii) In the second case, we have b(N) = b1,N . For this case, if 

(N) ∈ Vk,1,N , then the portfolio is not rebalanced and no trans-
ction fee is paid; whereas if X(N) ∈ Rk,1,N , then the portfolio is 
balanced and transaction cost is paid. Thus, we have

r
(
b(N) = b1,N

)
E[S(N)|b(N) = b1,N ]

=
∑

bk,N−1∈N1,N

E
[

S(N)|b(N) = b1,N ,b(N − 1) = bk,N−1
]

× Pr
(
b(N − 1) = bk,N−1

)
qk,1,N (16)

=
∑

bk,N−1∈N1,N

{ ∑
w∈Vk,1,N

Pr
(
b(N − 1) = bk,N−1

)
Pr (X(N) = w)

× E
[

SN |b(N) = b1,N ,b(N − 1) = bk,N−1,X(N) = w
]

+
∑

w∈Rk,1,N

Pr
(
b(N − 1) = bk,N−1

)
Pr (X(N) = w)

× E
[

SN |b(N) = b1,N ,b(N − 1) = bk,N−1,X(N) = w
]}

,

(17)
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where (16) follows from (10) and the last line follows in similar 
lines to (14). Here, when X(N) = w ∈ Vk,1,N , no rebalancing occurs. 
Thus, we have

E
[

SN |b(N) = b1,N ,b(N − 1) = bk,N−1,X(N) = w
]

= E
[

S(N − 1)(bk,N−1 w1 + (1 − bk,N−1)w2)|
b(N − 1) = bk,N−1

]
. (18)

On the other hand, when X(N) = w ∈ Rk,1,N , rebalancing occurs. 
Hence, we have

E
[

SN |b(N) = b1,N ,b(N − 1) = bk,N−1,X(N) = w
]

= E

[
S(N − 1)(bk,N−1 w1 + (1 − bk,N−1)w2)

×
(

1 − c

∣∣∣∣ bk,N−1 w1

bk,N−1 w1 + (1 − bk,N−1)w2
− b

∣∣∣∣
) ∣∣∣∣

b(N − 1) = bk,N−1

]
. (19)

Putting (18) and (19) back in (17), we obtain

Pr
(
b(N) = b1,N

)
E[S(N)|b(N) = b1,N ]

=
∑

bk,N−1∈N1,N

Pr
(
b(N − 1) = bk,N−1

){ ∑
w∈Vk,1,N

Pr (X(N) = w)

× E
[

S(N − 1)(bk,N−1 w1 + (1 − bk,N−1)w2)|
b(N − 1) = bk,N−1

]
+

∑
w∈Rk,1,N

Pr (X(N) = w)

× E

[
S(N − 1)(bk,N−1 w1 + (1 − bk,N−1))

×
(

1 − c

∣∣∣∣ bk,N−1 w1

bk,N−1 w1 + (1 − bk,N−1)w2
− b

∣∣∣∣
) ∣∣∣∣

b(N − 1) = bk,N−1

]}
.

After some algebra, we obtain

Pr
(
b(N) = b1,N

)
E[S(N)|b(N) = b1,N ]

=
∑

bk,N−1∈N1,N

Pr
(
b(N − 1) = bk,N−1

)
× E

[
S(N − 1)|b(N − 1) = bk,N−1

]
×
{ ∑

w∈Vk,1,N

(bk,N−1 w1 + (1 − bk,N−1)w2) p1(w1) p2(w2)

+
∑

w∈Rk,1,N

(bk,N−1 w1 + (1 − bk,N−1)w2) p1(w1) p2(w2)

×
(

1 − c

∣∣∣∣ bk,N−1 w1

bk,N−1 w1 + (1 − bk,N−1)w2
− b

∣∣∣∣
)}

. (20)

Hence, we can iteratively calculate (5) i) using (15), for the case 
where b(N) = bl,N and l = 2, . . . MN , ii) using (20), for the case 
where b(N) = b1,N = b. Since we have the recursive formulation, 
we can optimize b and ε by a brute force search as shown in the 
Simulations section. In the following section, we extend our anal-
yses to the m-asset market case.
3.2. Generalization of the iterative algorithm to the m-asset market case

In this section, we generalize our iterative method introduced 
in Section 3.1 for a market with m assets where m ∈ Z

+ . We 
model the market as a sequence of i.i.d. price relative vectors 
X(n) = [X1(n), . . . , Xm(n)], where Xi(n) ∈ X and the pmf of Xi(n)

is pi(x) = Pr(Xi(n) = x). For the m-asset case, the portfolio vec-
tor is given by b(n) = [b1(n), . . . , bm(n)], where 

∑m
i=1 bi(n) = 1 and 

bi(n) ≥ 0, the target portfolio vector is defined as b = [b1, . . . , bm]
and the threshold vector is given by ε = [ε1, . . . , εm]. Similar to the 
two-asset case, TRP(b, ε) rebalances the wealth allocation b(n) to 
b only when b(n) /∈ bε � (b1 − ε1, b1 + ε1) × (b2 − ε2, b2 + ε2) ×
. . .× (bm − εm, bm + εm). In this case, if the wealth allocation is not 
rebalanced for N investment periods, then the achieved wealth is 
given by S(N) =∑m

k=1 bk
∏N

n=1 Xk(N) and the proportion of wealth 

invested in the ith asset becomes bi(N) = bi
∏N

n=1 Xi(N)∑m
k=1 bk

∏N
n=1 Xk(N)

. We 
define the set of achievable portfolios at period N as

BN = {b} ∪
{

bm,N : bk,N = bm,N−1 ◦ x

xT bm,N−1
∈ bε, x ∈ Xm

}
, (21)

where b ◦ x � [b1x1, . . . , bmxm]T is an elementwise multiplication 
operation. In accordance with the definitions given in two-asset 
market case, the definitions of the portfolio transition sets and the 
transition probabilities of achievable portfolios follow. Then, similar 
to the iterative algorithm introduced in Section 3.1, i.e., (15) and 
(20), we can iteratively calculate the following expected achieved 
wealth

E[S(N)] =
MN∑
l=1

Pr
(
b(N) = bl,N

)
E
[

S(N)|b(N) = bl,N
]
. (22)

We emphasize that the complete iterations for the m-asset case 
can be obtained by changing the scalars in (15) and (20) by the 
corresponding vectors. For the rest of the paper, we consider two-
asset markets for ease of exposition.

3.3. Complexity analysis of the iterative algorithm

In this section, we investigate the number of achievable port-
folios at a given market period to determine the complexity of 
the iterative algorithm. We show that the set of achievable port-
folios at period N is equivalent to the set of achievable portfolios 
when the portfolio b(n) does not leave the interval (b − ε, b + ε)

for N investment periods. We first demonstrate that if the portfo-
lio never leaves the interval (b − ε, b + ε) for N periods, then b(N)

is given by b(N) = 1
/(

1 + 1−b
b e

∑N
n=1 Z(n)

)
, where Z(n) � ln X2(n)

X1(n)

with a sample space Z �
{

z = ln u
v | u, v ∈X

}
and |Z| = M . Then, 

we argue that the number of achievable portfolios at period N , 
i.e., MN , is equal to the number of different values that the sum ∑N

n=1 Z(n) can take when the portfolio does not leave the inter-
val (b − ε, b + ε) for N investment periods. We then observe that 
we have M ≤ K 2 − K + 1 as the price relative sequences X1(n) and 
X2(n) are elements of the same sample space X with |X | = K . Us-
ing this inequality, we finally find an upper bound on the number 
of achievable portfolios.

Lemma 1. The number of achievable portfolios at period N, i.e., MN , 
is equal to the number of different values that the sum 

∑N
n=1 Z(n) can 

take when the portfolio b(n) does not leave the interval (b −ε, b +ε) for 
N investment periods and is bounded by 

(N+K 2−K
N

)
, i.e., MN = |BN | ≤(N+K 2−K

N

)
.

Proof. The proof is in Appendix A. �
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Remark 1. Note that the complexity of calculating E[S(N)] is 
bounded by O

(∑N
n=1

(n+K 2−K
n

)
/N
)

since at each period n =
1, . . . , N , we calculate E[S(n)] as a summation of Mn terms in 
(5) and Mn ≤ (n+K 2−K

n

)
.

As can be observed from Remark 1, the number of achievable 
portfolios tends to go to the infinity as N increases. However, in 
the next section, we show that the number of achievable portfolios 
is finite under mild technical conditions, hence the computational 
complexity of our algorithm is constant.

3.4. Finitely many achievable portfolios

In this section, we investigate the cardinality of the set of 
achievable portfolios B �

⋃∞
n=1 Bn and demonstrate that B is fi-

nite under certain conditions. Consequently, when B is finite, we 
can derive a recursive update with a constant complexity to cal-
culate the expected achieved wealth E[S(n)] at any investment 
period. To show this, we demonstrate that the portfolio sequence 
forms a Markov chain with a finite state space and converges to 
a stationary distribution. Then, we investigate the limiting behav-
ior of the expected achieved wealth using this update to optimize 
b and ε . Before providing the main theorem, we first state a cou-
ple of lemmas that are used in the derivation of the main result of 
this section.

We first show that the portfolio b(n) does not leave the in-
terval (b − ε, b + ε) for N periods iff the sum 

∑k
n=1 Z(n) ∈

(α−, α+) for k = 1, . . . , N , where α− � ln b(1−b−ε)
(1−b)(b+ε)

< 0 and α+ �
ln b(1−b+ε)

(1−b)(b−ε)
> 0. We then prove that the number of achievable 

portfolios is equal to the cardinality of the set Y ∩ (α−, α+), where

Y �

⎧⎨
⎩

M+∑
i=1

yi zi : yi ∈ Z, zi ∈ Z+, i = 1, . . . , M+
⎫⎬
⎭ , (23)

Z+ � {z ∈ Z : z ≥ 0}, and M+ � |Z+|. Note that Z+ is the set 
of positive elements of the set Z and any value that the sum ∑N

n=1 Z(n) can take is an element of Y . Hence, if we can demon-
strate that the set Y ∩ (α−, α+) is finite under certain conditions, 
then it yields that the cardinality of the set B is also finite.

Lemma 2. The portfolio b(n) does not leave the interval (b − ε, b + ε)

for N investment periods iff the sum 
∑k

n=1 Z(n) ∈ (α−, α+), where k =
1, . . . , N.

Proof. The proof is in Appendix B. �
In the following lemma, we demonstrate that the set of dif-

ferent values that 
∑N

n=1 Z(n) can take for any N ∈ N, when 
the portfolio never leaves the interval (b − ε, b + ε) for N in-
vestment periods is equivalent to the set Y ∩ (α−, α+), when 
|z| < min{|α−|, |α+|}. Hence, we show that the cardinality of the 
set of achievable portfolios is equal to the cardinality of the set 
Y ∩ (α−, α+).

Lemma 3. If |z| < min{|α−|, |α+|}, ∀z ∈Z+ , then ∀y ∈Y ∩ (α−, α+), 
∃{Z(n) = Z (n)}N

n=1 ∈ Z for some N ∈ N such that y =∑N
n=1 Z (n) and ∑k

n=1 Z (n) ∈ (α−, α+), ∀k = 1, . . . , N.

Proof. The proof is in Appendix C. �
This lemma illustrates that the set of different values that the 

sum 
∑N

n=1 Z(n) can take for any N ∈ N when the portfolio does 
not leave the interval (b − ε, b + ε) for N investment periods is 
equivalent to the set Y ∩ (α−, α+). Thus, the number of achievable 
portfolios is equal to the cardinality of the set Y ∩ (α−, α+). In the 
following theorem, we demonstrate that if |z| < min{|α−|, |α+|}, 
∀z ∈ Z+ , and the set Y has a minimum positive element, then 
Y ∩ (α−, α+) is finite. Hence, the set of achievable portfolios is 
also finite under these conditions. Otherwise, we show that the 
set Y ∩ (α−, α+) contains countably infinite elements.

Theorem 1. If |z| < min{|α−|, |α+|}, ∀z ∈ Z+ , and the set Y has a 
minimum positive element, i.e., ∃δ = min{y ∈Y : y > 0}, then the set of 
achievable portfolios B = ∪∞

n=1Bn is finite. If such a minimum positive 
element does not exist, then B is countably infinite.

Proof. The proof is in Appendix D. �
In Theorem 1 we present a sufficient and necessary condition 

for the achievable portfolios to be finite. We emphasize that the re-
quired condition, i.e., |z| < min{|α−|, |α+|}, ∀z ∈Z+ , is a necessary 
required technical condition which assures that the TRP thresh-
olds are large enough to prohibit constant rebalancings at each 
investment period. In this sense, this condition does not limit the 
generality of the TRP framework.

By Theorem 1, we establish the conditions for a unique station-
ary distribution of the achievable portfolios. With the existence of 
a unique stationary distribution, in the next section, we provide 
the asymptotic behavior of the expected wealth growth by pre-
senting the growth rate. However, before proceeding further, we 
note that although Theorem 1 states that the number of achievable 
portfolios is finite under certain conditions, it does not specify the 
exact number. In the following corollary, we demonstrate that the 
number of achievable portfolios is �α+−α−

δ
� if the set of achievable 

portfolios is finite.

Corollary 1. If |z| < min{|α−|, |α+|}, ∀z ∈ Z+ , and ∃δ = min{y ∈ Y :
y > 0}, then the number of achievable portfolios is �α+−α−

δ
�.1

Proof. The proof is in Appendix E. �
In Theorem 1, we introduce conditions on the cardinality of 

the set of all achievable portfolio states, B, and showed that B
is finite under certain conditions. Using this result, we next ana-
lyze the asymptotic behavior of the expected achieved wealth, i.e., 
we demonstrate that when B is finite, the portfolio sequence con-
verges to a stationary distribution. Hence, we can determine the 
limiting behavior of the expected achieved wealth so that we can 
optimize b and ε . To accomplish this, we first present a recursive 
update to evaluate E[S(n)]. We then maximize

g(b, ε) � lim
n→∞

1

n
log E[S(n)] (24)

over b and ε with a brute-force search, i.e., we calculate g(b, ε)

for different (b, ε) pairs and find the one that yields the maximum 
expected wealth.

3.5. Finite state Markov chain for threshold portfolios

When B is finite, it follows from Corollary 1 that there are 
exactly L � �α+−α−

δ
� achievable portfolios. Then, we let B =

{b1, . . . , bL}, where b1 = b without loss of generality. We define 
the probability mass vector of the portfolio sequence as π (n) =

1 Here, �x/y� is the largest integer less than or equal to x/y and �x/y� is the 
smallest integer greater or equal to the x/y.
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[π1(n), . . . ,πL(n)]T where πi(n) � Pr (b(n) = bi). The portfolio se-
quence b(n) forms a homogeneous Markov chain with a finite state 
space B since the transition probabilities between states are inde-
pendent of period n. We observe that b(n) is irreducible since each 
state communicates with other states so that all states are null-
persistent as B is finite [31]. Then, it follows that there exists a 
unique stationary distribution vector π = limn→∞ π(n). To calcu-
late π , we first observe that the set of portfolios from which bm is 
achievable, i.e., Nm,n , and the set of price relative vectors that con-
nect bk to bm , i.e., Uk,m,n , are independent of the investment period 
n since the price relative sequences are i.i.d. ∀k, m ∈ {1, . . . , L}. 
Hence, we drop the subscript n from these terms for ease of expo-
sition and write Uk,m,n = Uk,m and Nm,n = Nm , ∀n ∈ N. We next 
note that the state transition probabilities are also independent 
of n, hence we also have qk,m,n = qk,m , ∀n ∈ N and ∀n ∈ N. There-
fore, we can write Pr (b(n) = bm) as follows

Pr (b(n) = bm) =
L∑

k=1

qk,m Pr (b(n − 1) = bk) , (25)

where qk,m = 0 if bk /∈ Nm . Now, by using the definition of π (n)

and (25), we get π(n + 1) = Pπ(n), ∀n ≥ 0, where P is the state 
transition matrix, i.e., Pi j = qi, j .

In order to determine the limiting behavior of E[S(n)], we 
first define the vector e(n) = [e1(n), . . . , eL(n)]T , where ei(n) �
Pr (b(n) = bi)× E[S(n)|b(n) = bi]. Then, from (5), we have E[S(n)] =∑L

i=1 ei(n) = 1T e(n), where 1 is the vector of ones. Hence, accord-
ing to the definition of e(n) and using (15) and (20), we can write 
e(n + 1) = Q e(n), where

Q �

⎡
⎢⎢⎢⎢⎣

∑
w∈U1,1

κ1 · · · ∑
w∈UL,1

κL

...
. . .

...∑
w∈U1,L

κ1 · · · ∑
w∈UL,L

κL

⎤
⎥⎥⎥⎥⎦ , (26)

and κi � (bi w1 + (1 − bi)w2) p1(w1)p2(w2), where we ignore re-
balancing for presentation purposes. If we take rebalancing into 
account, then only the first row of Q changes as follows

[Q]1,m =
∑

w∈Vm,1

(b1 w1 + (1 − b1)w2) p1(w1)p2(w2)

+
∑

w∈Rm,1

(b1 w1 + (1 − b1)w2)

×
(

1 − c

∣∣∣∣ b1 w1

b1 w1 + (1 − b1)w2
− b

∣∣∣∣
)

p1(w1)p2(w2),

where Vm,1 is the set of price relative vectors that connect bm to 
b1 = b without crossing the threshold boundaries and Rm,1 is the 
set of price relative vectors that connect bm to b1 = b by crossing 
the threshold boundaries.2

Here, we analyze E[S(n)] as n → ∞ as follows. We assume that 
the matrix Q is diagonalizable with eigenvalues λ1, . . . , λL , where, 
without loss of generality, we assume that λL ≤ · · · ≤ λ1, which 
is the case for a wide range of transaction costs [31]. Then, there 
exists a nonsingular matrix B such that Q = B�B−1 where � is 
the diagonal matrix with entries λ1, . . . , λL . We observe that Q has 
nonnegative entries. Therefore, it follows from Perron–Frobenius 
Theorem [27] that Q has a unique largest eigenvalue λ1 > 0 and 
any other eigenvalue is strictly smaller than λ1 in absolute value, 
i.e., λ1 > |λ j|, ∀ j ∈ {2, . . . , L}. Then, the recursion on e(n) yields 
e(n) = Qne(0), and E[S(n)] can be written as follows

2 Here, [Q]i, j represents the entry of the matrix Q at its ith row and jth column.
E[S(n)] = 1T Qne(0) = 1T B�nB−1e(0) =
L∑

i=1

ui viλ
n
i , (27)

where u � [u1, . . . , uL]T = BT 1 and v � [v1, . . . , v L] = B−1e(0). 
Then, it follows that

g(b, ε) = lim
n→∞

1

n
log

{
L∑

i=1

ui viλ
n
i

}

= lim
n→∞ logλ1 + lim

n→∞
1

n
log

{
L∑

i=1

ui vi

(
λi

λ1

)n
}

= logλ1, (28)

since limn→∞
(

λi
λ1

)n = 0, ∀i ∈ {2, . . . , L}. Hence, we can optimize b
and ε as follows[
b∗, ε∗]= arg max

b∈[0,1],0<ε
g(b, ε)

= arg max
b∈[0,1],0<ε

logλ1.

To maximize g(b, ε), we evaluate it for different values of (b, ε)

pairs and find the pair that maximizes g(b, ε), i.e., by a brute-force 
search in the Simulations section.

In the next section, we investigate the well-studied two-asset 
Brownian market model under transaction costs.

3.6. Two stock Brownian markets

In this section, we consider the well-known two-asset Brow-
nian market, where the stock price signals are generated from a 
standard Brownian motion [11,14,32]. Portfolio selection problem 
in continuous time two-asset Brownian markets with proportional 
transaction costs was investigated in [32], where the growth opti-
mal investment strategy is shown to be a threshold portfolio. Here, 
as usually done in the financial literature [11], we first convert 
the continuous time Brownian market by sampling to a discrete-
time market [14]. We then calculate the expected achieved wealth 
and optimize b and ε to find the best portfolio rebalancing strat-
egy for a discrete-time Brownian market with transaction costs. 
We emphasize that although, the growth optimal investment in 
discrete-time two-asset Brownian markets with proportional trans-
action costs was investigated in [14], the expected achieved wealth 
and the optimal threshold interval (b − ε, b + ε) has not been cal-
culated yet.

To model the Brownian two-asset market, we use the price rel-
ative vector X = [X1, X2]T , with X1 = 1 and X2 = eaZ where a
is a constant and Z is a random variable with Pr (Z = ±1) = 1

2 . 
This price relative vector is obtained by sampling the stock price 
processes of the continuous time two-asset Brownian market [14,
32]. We emphasize that this sampling results a discrete-time mar-
ket identical to the binomial model popular in asset pricing [14]. 
Under this framework, we next present the set of achievable port-
folios and the transition probabilities between portfolio states.

Since the price of the first stock is the same over investment 
periods, the portfolio leaves the interval (b − ε, b + ε) if either 
the money in the second stock grows over a certain limit or falls 
below a certain limit. If the portfolio b(n) does not leave the in-
terval (b − ε, b + ε) for N investment periods, then the money in 
the first stock is b dollars and the money in the second stock is 
(1 − b)eak dollars for some −N ≤ k ≤ N so that the portfolio is 
b(N) = b

b+(1−b)eak . Note that b(N) ∈ (b − ε, b + ε) iff kmin ≤ k ≤
kmax, where kmin �

⌈
1
a ln b(1−b−ε)

(1−b)(b+ε)

⌉
and kmax �

⌊
1
a ln b(1−b+ε)

(1−b)(b−ε)

⌋
. 

Hence, the set of achievable portfolios is given by
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B =
{

bk = b

b + (1 − b)ea(k+kmin−1)
: k = 1, . . . ,kmax − kmin + 1

}
.

(29)

For ease of exposition, we denote B = {b1, . . . , bL}, where L =
|B| = kmax − kmin + 1 and b1−kmin = b, without loss of generality. 
We see that the portfolio is rebalanced to b1−kmin = b only if it is 
in the state b1 and X2 = e−a or it is in the state bL and X2 = ea . 
Therefore, the transition probabilities are given by

qk,m =
{

1
2 , if |k − m| = 1 or k ∈ {1, L} and m = 1 − kmin

0, otherwise,
(30)

where qk,m is the probability that we have b(n) = bm given that 
b(n − 1) = bk at any period n. We then calculate E[S(n)] using 
the recursions in Section 3.5 as follows. The sets of price relative 
vectors that connect portfolio states are given by

Uk,m =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[1, ea]T
, if k ∈ {1, . . . , L − 1}, m = k + 1 or k = L,

m = 1 − kmin[
1, e−a

]T
, if k ∈ {2, . . . , L}, m = k − 1 or k = 1,

m = 1 − kmin

∅, otherwise.

Hence, we can calculate the matrix Q defined in (26) as follows

[Q]m,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 (bk + (1− bk)ea), if m ∈ {2, . . . , L} and k = m − 1
1
2 (bk + (1− bk)e−a), if m ∈ {1, . . . , L − 1} and

k = m + 1

0, otherwise,

where we ignore rebalancing. If we take rebalancing into account, 
then we can write

[Q]1−imin,1 = 1

2
(b1 +(1−b1)e−a)

(
1− c

∣∣∣∣ b1

b1 + (1− b1)e−a
− b

∣∣∣∣
)

,

and

[Q]1−imin,L = 1

2
(bS + (1 − bL)ea)

(
1 − c

∣∣∣∣ bL

bL + (1 − bL)ea
− b

∣∣∣∣
)

.

Then, using the recursions in Section 3.5, we can obtain E[S(n)] =
Qne(0). Then, we maximize g(b, ε) = limn→∞ 1

n log E[S(n)] =
logλ1, where λ1 is the largest eigenvalue of Q. Here, we optimize 
b and ε with a brute-force search, i.e., we find λ1 for different 
(b, ε) pairs and find the one that achieves the maximum.

4. Maximum likelihood estimation of the probability mass 
vectors

In this section, we sequentially estimate the probability mass 
vectors p1 and p2 corresponding to X1(n) and X2(n), respectively, 
using a maximum likelihood estimator (MLE). In general, these 
vectors may not be known or may change in time, hence, they 
should be estimated at each investment period prior to the cal-
culation of E[S(n)]. The MLE for a pmf on a finite set is well-
known [31], but we provide the corresponding derivations here for 
completeness. We consider the price relative sequence {X1(n)}N

n=1, 
where X1(n) = wn ∈ X , for n = 1, . . . , N is an arbitrary realization 
of this sequence. Here, our aim is to estimate p1, where we point 
out that similar derivations follow for the price relative sequence 
X2(n) and p2.

As demonstrated in our simulations, the corresponding estima-
tion can be carried out over a finite length window to emphasize 
the most recent data. We let w � [w1, . . . , w N ]T represent the re-
alization vector and θ �

[
θx1 , . . . , θxK

]T represent the parameter 
vector, where θxi � p1(xi |θ) is the conditional pmf for i = 1, . . . , K . 
Then, the MLE of the p1 is given by

θ̂ML = arg max∑K
i=1 θxi =1 : θxi ≥0

p1(w|θ)

= arg max∑K
i=1 θxi =1 : θxi ≥0

Pr (X1(1) = w1, . . . , X1(N) = w N |θ) .

Since the price relative sequence X1(n) is i.i.d., it follows that 
p1(w|θ) =∏N

i=1 p1(wi |θ) =∏N
i=1 θwi =∏N

i=1
∏K

j=1 θ
I(wi=x j)
x j

, where 
I(·) is the indicator function. If we change the order of the prod-

uct operators, then we obtain p1(w|θ) = ∏N
i=1
∏K

j=1 θ
I(wi=x j)
x j

=∏K
j=1 θ

∑N
i=1 I(wi=x j)

x j
=∏K

j=1 θ
N j
x j

, where N j �
∑N

i=1 I(wi = x j) rep-
resents the number of realizations that are equal to x j ∈ X for 
j = 1, . . . , K . Noting that 

∑K
j=1 N j = N , we can write θ̂ML =

arg maxθ

∑K
j=1

N j
N log θx j , since log(·) is a monotone increasing 

function. If we define the vector h �
[
hx1 , . . . ,hxK

]T
, where 

hx j � N j
N for j = 1, . . . , K , then we observe that hx j ≥ 0 for 

j = 1, . . . , K and 
∑K

j=1 hx j = 1. Since h and θ are probability 
vectors, i.e., their entries are nonnegative and sum up to one, it 

follows that D(h‖θ) �
∑K

i=1 hx j log

(
hx j
θx j

)
≥ 0 and D(h‖θ) = 0 if 

and only if θ = h [10]. Therefore, we get that 
∑K

j=1 hx j log θx j =
−D(h‖θ) + ∑K

j=1 hx j log hx j ≤ ∑K
j=1 hx j log hx j , where the equal-

ity is reached if and only if θ = h. Hence, it follows that θ̂ML =
arg maxθ

∑K
j=1 hx j log θx j = h, i.e., we estimate the probability mass 

vector p1 with h =
[

N1
N , . . . , NK

N

]
at each investment period N .

5. Simulations

In this section, we illustrate the performance of the proposed 
algorithm using historical data. We first compare the performance 
of the proposed algorithm with respect to the conventional meth-
ods using the historical data from [8,19], which is collected from 
the New York Stock Exchange (NYSE) over a 22-year period be-
tween 1963–1985. This NYSE data includes 34 stocks (where the 
Kin Ark stock is excluded) and 5651 investment periods (days). 
We then use the recent S&P 500 data to compare the perfor-
mances of the our algorithm, state-of-the-art algorithms, and the 
conventional algorithms. In particular, we consider the Consol En-
ergy Inc. (CNX) – Metlife Inc. (MET), Fidelity National Information 
Services (FIS) – United Parcel Service Inc. (UPS), Fluor Corpora-
tion (FLS) – Allegheny Technologies (ATI), Reynolds American Inc. 
(RAI) – eBay Inc. (EBAY) stock pairs over the period between June 
20, 2001 and May 29, 2015 (i.e., 3505 days), and present the av-
erage wealth returns. These stocks are chosen since their cumu-
lative returns over the corresponding time interval are between 
1–4 dollars per one dollar investment. Finally, we consider the 
Dow Jones Industrial Average (DJIA) data. We use the alphabetically 
sorted stock pairs of the DJIA data over the period between July 1, 
2009 and August 7, 2015, and present the average wealth returns. 
The proposed algorithms are assumed to be able to trade at the 
following approximated Volume Weighted Average Price (VWAP): 
0.4 × Open + 0.6 × Close, where “Open” and “Close” are the open-
ing and closing prices of the stocks, respectively. For all our data 
sets, adjustments were made for splits and dividends.

Throughout the experiments, the proposed TRP algorithm is 
constructed as follows. The algorithm introduced in Section 3.1
requires the sample space of the price relative sequences. This 
sample space is constructed by quantizing the observed realiza-
tions into 11 different bins, where each bin is created according to 
Theorem 1. We then consider a sliding window of length 100 and 
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Fig. 2. Accumulated wealths of the proposed algorithms for the NYSE data between 
1963–1985 under 1% transaction cost.

approximate the probability mass vectors of the price relative se-
quences using the past data for each window. The proposed TRP 
algorithm constructs its trading rule by maximizing the expected 
achieved wealth over b and ε according to the discussions in Sec-
tion 3.5, and we invest using this TRP for each window.

We compare the performance of the proposed TRP algorithm 
with respect to the state-of-the-art and conventional methods. 
These competitor algorithms can be briefly described as follows.

• Cover is the Cover’s universal portfolio algorithm in [8]. In this 
method, the wealth is distributed among various stocks ac-
cording to their wealth returns.

• SCRP is the semiconstant rebalanced portfolio algorithm of 
[19]. In this method, portfolio is rebalanced only on selected 
instants to mitigate the effects of transaction costs.

• Iyengar is the universal threshold rebalanced portfolio algo-
rithm of [15]. In this method, the wealth is distributed among 
various target portfolio and threshold pairs according to their 
wealth returns.

• CWMR is the confidence weighted mean reversion algorithm 
of [22]. In this method, the portfolio is modeled as a Gaussian 
distribution and trading is performed using the mean rever-
sion principle.

• OLMAR is the online portfolio selection with moving aver-
age reversion algorithm of [23]. This method is based on a 
multiple-period mean reversion strategy.

• Anticor is the anti-correlation algorithm of [5]. This method 
uses the predictable statistical relations between stocks to beat 
the best stock in the market.

• M0 is the Markov of order zero algorithm of [4]. This method 
uses the add-beta prediction rule on the Kelly projections of 
the market vectors.

In Figs. 2 and 3, we present the average wealth returns of the 
TRP, Cover, SCRP, and Iyengar algorithms over 10 randomly cho-
sen stock pairs from the NYSE data under 1% and 2% transaction 
costs, respectively. These figures illustrate that the proposed TRP 
algorithm significantly outperforms the competitor algorithms and 
achieve higher wealth returns. Since the TRP algorithm aims to 
mitigate the effects of hefty transaction costs, its performances is 
not significantly affected by a change in the commission rate. The 
proposed TRP algorithm achieves this robustness by avoiding ex-
cessive rebalancings. Although the SCRP and Iyengar algorithms are 
Fig. 3. Accumulated wealths of the proposed algorithms for the NYSE data between 
1963–1985 under 2% transaction cost.

Fig. 4. Accumulated wealths of the proposed algorithms for the S&P500 data be-
tween 2001–2015 under 0.03% transaction cost.

also robust against transaction costs, the TRP algorithm provides a 
better performance since it directly aims to maximize the expected 
achieved wealth.

We next compare the performance of the proposed TRP al-
gorithm with respect to the state-of-the-art algorithms using the 
recent S&P 500 data. In Figs. 4 and 5, we have presented the 
wealth returns of the proposed algorithms for transaction costs of 
0.03% and 0.1%, respectively. As shown in these figures, the pro-
posed TRP algorithm significantly outperforms the state-of-the-art 
competitor algorithms and achieve the highest final wealth re-
turns. For this experiment, we also provide the Sharpe, Calmar, 
and Sortino ratios of the proposed algorithms in Table 1, where 
the values in the table are found according to the model described 
in [21,22]. This table illustrates that the proposed TRP algorithm 
achieves the highest reward-to-variability ratios. Furthermore, as 
the transaction cost increases, the Sharpe ratio of our algorithm 
does not significantly decrease, whereas the Sharpe ratios of the 
competitor algorithms notably decreases. This illustrates the ro-
bustness of the proposed algorithm against transaction costs. Since 
the proposed algorithm optimizes its trading model with respect 
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Table 1
Risk of the proposed algorithms under different transaction costs for the S&P500 data between 2001–2015.

Transaction cost TRP CWMR M0 Anticor OLMAR

0.1% Sharpe ratio 0.3382 0.2750 0.2914 0.0116 −0.0319
Calmar ratio 0.2118 0.1860 0.1899 0.0642 0.0304
Sortino ratio 1.5686 1.4149 1.4515 0.7653 0.6979

0.03% Sharpe ratio 0.3404 0.2839 0.3001 0.0669 0.0142
Calmar ratio 0.2128 0.1899 0.1937 0.0885 0.0507
Sortino ratio 1.5738 1.4347 1.4722 0.8965 0.8095
Fig. 5. Accumulated wealths of the proposed algorithms for the S&P500 data be-
tween 2001–2015 under 0.1% transaction cost.

to a given transaction cost, the risk of the algorithm does not vary 
excessively.

Although the transaction costs in Figs. 4 and 5 are realistic 
for institutional trading, the transaction costs for retail trading are 
around 1–3%. Since these state-of-the-art algorithms does not op-
timize their trading model according to the transaction cost, their 
returns tend to go to zero as the transaction cost exceeds 1%. Thus, 
we have compared the performance of our algorithm with respect 
to only the conventional trading algorithms for 3% transaction cost 
in Fig. 6. For mild transaction costs (such as the ones in Figs. 4
and 5), the final wealth return of the TRP algorithm is around 
5.25 dollars per one dollar investment. On the other hand, for a 
hefty transaction cost (such as the one in Fig. 6), the total wealth 
return of the TRP algorithm is around 4.75 dollars per one dol-
lar investment. This illustrates that although the state-of-the-art 
trading algorithms cannot provide a reasonable wealth return for 
such hefty transaction costs, the performance of the proposed TRP 
algorithm is not significantly deteriorated as the transaction cost 
increases.

We also provide the wealth returns of the proposed TRP algo-
rithm and the conventional algorithms under no transaction cost 
over the S&P 500 data for a fair comparison. Fig. 7 illustrates that 
the algorithms that consider the effects of transaction cost on the 
wealth return, namely the TRP, SCRP, and Iyengar algorithms, pro-
vide similar returns for different transaction costs. On the other 
hand, the performances of the algorithms that do not take transac-
tion cost into account (e.g., the Cover algorithm) are highly volatile 
with respect to the transaction cost. Although the returns of the 
SCRP and Iyengar algorithms are not significantly affected by the 
transaction cost, the proposed TRP algorithm outperforms these 
methods for both no transaction cost and 3% transaction cost cases.

Finally, in Fig. 8, we present the average wealth returns of the 
TRP, CWMR, M0, Anticor, and OLMAR algorithms under 1% trans-
Fig. 6. Accumulated wealths of the proposed algorithms for the S&P500 data be-
tween 2001–2015 under 3% transaction cost.

Fig. 7. Accumulated wealths of the proposed algorithms for the S&P500 data be-
tween 2001–2015 under no transaction cost.

action cost. As can be seen from this figure, the TRP algorithm 
provides a superior performance with respect to the competitor 
algorithms that do not consider the effects of transaction costs. 
This result highlights the importance of designing portfolio opti-
mization algorithms that avoid excessive number of rebalancings 
when the transaction cost is high. In Fig. 9, we present the aver-
age wealth returns of the TRP, Iyengar, Cover, and SCRP algorithms 
under 0.5% transaction cost. Although the performances of the pro-
posed algorithms are comparable with one another since the trans-
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Fig. 8. Accumulated wealths of the proposed algorithms for the DJIA data between 
2009–2015 under 1% transaction cost.

Fig. 9. Accumulated wealths of the proposed algorithms for the DJIA data between 
2009–2015 under 0.5% transaction cost.

action cost is small, the TRP algorithm still provides a marginally 
higher return with respect to the competitor algorithms.

6. Conclusion

We study growth optimal investment in i.i.d. discrete-time 
markets under proportional transaction costs. Under this market 
model, we study threshold portfolios that are shown to yield the 
optimal growth. We first introduce a recursive update to calcu-
late the expected growth for a two-asset market and then extend 
our results to markets having more than two assets. We next 
demonstrate that under the threshold rebalancing framework, the 
achievable set of portfolios form an irreducible Markov chain under 
mild technical conditions. We evaluate the corresponding station-
ary distribution of this Markov chain, which provides a natural 
and efficient method to calculate the cumulative expected wealth. 
Subsequently, the corresponding parameters are optimized using 
a brute force approach yielding the growth optimal investment 
portfolio under proportional transaction costs in i.i.d. discrete-time 
two-asset markets. We also solve the optimal portfolio selection 
in discrete-time markets constructed by sampling continuous-time 
Brownian markets. For the case that the underlying discrete dis-
tributions of the price relative vectors are unknown, we provide 
a maximum likelihood estimator. In our simulations, we use the 
historical NYSE, S&P 500, and DJIA data and observe that the in-
troduced TRP algorithm significantly improves the wealth return 
under both mild and hefty transaction costs.

Appendix A. Proof of Lemma 1

Consider that an investor invests with a TRP(b, ε) for N invest-
ment periods, where we denote a portfolio sequence realization 
by {b(n) = bn}N

n=1. Let us partition the set of N-period market sce-
narios according to the last time the portfolio leaves the interval 
(b −ε, b +ε). Our claim is that any achievable portfolio at period N
can be achieved by an N-period market scenario where the port-
folio does no leave the interval (b − ε, b + ε) for N periods. To 
illustrate this, with an abuse of notation, we let P denote the set 
of N-period market scenarios, i.e.,

P �
{
{bn}N

n=1 : bn ∈ Bn ,n = 1, . . . , N
}

=
N+1⋃
i=1

Pi, (A.1)

where Pi is the set of N-period market scenarios where the port-
folio leaves the interval (b − ε, b + ε) at period i for the last time, 
i = 1, . . . , N , and PN+1 is the set of N-period market scenarios 
where the portfolio does not leave the interval (b − ε, b + ε) for 
N investment periods. We point out that Pi ’s are disjoint, i.e., 
Pi ∩P j = ∅ for i 	= j, and their union gives the set of all N-period 
market scenarios, i.e., 

⋃N+1
i=1 Pi =P .

Let Li denote the last elements of the sequences in Pi , 
i.e., Li � {bN : {bn}N

n=1 ∈ Pi}. Then, the set of achievable port-
folios at investment period N , i.e., BN , can be found as fol-
lows BN =⋃N+1

i=1 Li . Hence, our aim is to show that Li ⊂ LN+1, 
∀i ∈ {1, . . . , N}. To prove this, consider an arbitrary portfolio se-
quence {bn}N

n=1 ∈ Pi for some i = 1, . . . , N , thus we have bi = b
and bN ∈ BN , i.e., this sequence results in an achievable portfolio 
bN ∈ Li . Now, let us consider another N-period market scenario {

b′
n

}N
n=1 ∈PN+1, where

b′
j =

{
b, if j = 1, . . . , i

b j, if j = i + 1, . . . , N,
(A.2)

i.e., we have X ′
1(n) = X ′

2(n), ∀n ∈ {1, . . . , i}. Then, we have b′
N = bN

and consequently bN ∈ LN+1. Therefore, we conclude that Li ⊂
LN+1, ∀i ∈ {1, . . . , N}.

As Li ⊂ LN+1, ∀i ∈ {1, . . . , N}, we have BN = LN+1. Then, to 
determine |BN |, we consider that the portfolio never leaves the 
interval (b − ε, b + ε) for N investment periods, where

b(N) = b
∏N

i=1 X1(n)

b
∏N

i=1 X1(n) + (1 − b)
∏N

i=1 X2(n)
. (A.3)

Let us consider the reciprocal of b(N) and write

1

b(N)
= 1 + 1 − b

b

N∏
n=1

X2(n)

X1(n)

= 1 + 1 − b

b
e
∑N

n=1 Z(n),

where Z(n) � ln (X2(n)/X1(n)). Then, we observe that the number 
of different values that the portfolio b(N) can take is the same as 
the number of different values that the sum 

∑N
n=1 Z(n) can take. 

Since the price relative sequences X1(n) and X2(n) are elements 
of the same sample space X with |X | = K , it follows that |Z| =
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M ≤ K 2 − K + 1. Since the number of different values that the 
sum 

∑N
n=1 Z(n) can take is equal to 

(N+M−1
M−1

)
and M ≤ K 2 − K + 1, 

it follows that the number of achievable portfolios at period N is 
bounded by 

(N+K 2−K
K 2−K

)
, i.e., |BN | = MN ≤ (N+K 2−K

K 2−K

)
. �

Appendix B. Proof of Lemma 2

If the portfolio does not leave the interval (b − ε, b + ε) for N
investment periods, then

b(n) = b
∏n

i=1 X1(i)

b
∏n

i=1 X1(i) + (1 − b)
∏n

i=1 X2(i)
∈ (b − ε,b + ε), (B.1)

∀n ∈ {1, . . . , N}. Taking the reciprocal of b(n), we obtain

b(1 − b − ε)

(1 − b)(b + ε)
<

n∏
i=1

X2(i)

X1(i)
<

b(1 − b + ε)

(1 − b)(b − ε)
. (B.2)

Noting that X2(i)
X1(i) = e Z(i) and taking the logarithm of each side, it 

follows that

ln
b(1 − b − ε)

(1 − b)(b + ε)︸ ︷︷ ︸
:=α−

<

n∑
i=1

Z(i) < ln
b(1 − b + ε)

(1 − b)(b − ε)︸ ︷︷ ︸
:=α+

, (B.3)

i.e., 
∑n

i=1 Z(i) ∈ (α−, α+), ∀n ∈ {1, . . . , N}. Hence, if the portfolio 
leaves the interval (b − ε, b + ε) for the first time at period k for 
some k ∈ {1, . . . , N}, then we conclude that we have either b(k) ≤
b −ε or b(k) ≥ b +ε; and consequently we have either 

∑k
i=1 Z(i) ≤

α− or 
∑k

i=1 Z(i) ≥ α+ , i.e., 
∑k

i=1 Z(i) /∈ (α−, α+). �
Appendix C. Proof of Lemma 3

In Lemma 1, we showed that for any investment period N , the 
number of different portfolio values that b(N) can take is equal 
to the number of different values that the sum 

∑N
n=1 Z(n) can 

take where 
∑k

n=1 Z(n) ∈ (α−, α+) for k = 1, . . . , N . Since this is 
true for any investment period N , it follows that the number of 
all achievable portfolios is equal to the number of different val-
ues that the sum 

∑N
n=1 Z(n) can take for any N ∈ N such that ∑N

n=1 Z(n) ∈ (α−, α+).
Here, we show that if m ∈ M ∩ (α−, α+), then there exists a 

sequence {Z (n)}N
n=1 ∈ Z for some N ∈ N such that m =∑N

n=1 Z (n)

and 
∑k

n=1 Z (n) ∈ (α−, α+) for k = 1, . . . , N .
Let y ∈ Y ∩ (α−, α+) be an arbitrary element. Then, we have 

y =∑M+
i=1 yi zi for some yi ∈ Z and zi ∈ Z+ , where i = 1, . . . , M+ . 

We define S(k) �
∑k

n=1 Z (n) for k ≥ 1 and construct a sequence 
{Z (n)}N

n=1 ∈ Z for some N ∈ N such that y =∑N
n=1 Z (n) and S(k) ∈

(α−, α+) for each k = 1, . . . , N as follows. We first let S(0) = 0, 
where we obviously have S(0) ∈ (α−, α+) as α− < 0 and α+ > 0. 
Then, for any k ≥ 0, we iteratively construct our sequence as fol-
lows:

• If S(k) ≥ 0 and
◦ ∃zi ∈ Z+ such that yi < 0, then we let Z (k+1) = −zi and 

increase yi by 1. Note that S(k + 1) ∈ (α−, α+) since 
S(k), Z (k+1) ∈ (α−, α+), S(k) ≥ 0, and Z (k+1) < 0.

◦ ∀zi ∈ Z+ we have yi ≥ 0, then we consider set ZY+ �
{zi ∈ Z+ : yi > 0}. Using the elements of ZY+ , we con-
struct an arbitrary sequence, in which each z j ∈ ZY+ is 
repeated y j times. We then set Z (k+i) as the ith entry of 
this sequence. As we know from the previous step that 
S(k) ∈ (α−, α+) and we also know that y ∈ Y ∩ (α−, α+), 
i.e., S(N) ∈ (α−, α+), then we can conclude that S(k + i) ∈
(α−, α+), ∀k + i ≤ N .
• S(k) < 0 and
◦ ∃zi ∈ Z+ such that yi > 0, then we let Z (k+1) = zi and 

decrease yi by 1. Note that S(k + 1) ∈ (α−, α+) since 
S(k), Z (k+1) ∈ (α−, α+), S(k) < 0, and Z (k+1) ≥ 0.

◦ ∀zi ∈ Z+ we have yi ≤ 0, then we consider the set ZY− �
{zi ∈ Z+ : yi < 0}. Using the elements of ZY− , we con-
struct an arbitrary sequence, in which each z j ∈ ZY− is 
repeated y j times. We then set Z (k+i) as the ith entry of 
this sequence. As we know from the previous step that 
S(k) ∈ (α−, α+) and we also know that y ∈ Y ∩ (α−, α+), 
i.e., S(N) ∈ (α−, α+), then we can conclude that S(k + i) ∈
(α−, α+), ∀k + i ≤ N .

Therefore, we can write y = ∑N
n=1 Z (n) , where N = ∑M+

i=1 yi , 
{Z (n)}N

n=1 ∈Z , and 
∑k

n=1 Z (n) ∈ (α−, α+), ∀k ∈ {1, . . . , N}. �
Appendix D. Proof of Theorem 1

We first let H denote the set of values that the sum∑N
n=1 Z(n) ∈ (α−, α+) can take for any N ∈ N, i.e., H� {∑N

n=1 Z (n) :
{Z (n)}N

n=1 ∈ Z, 
∑k

n=1 Z (n) ∈ (α−, α+), ∀k{1, . . . , N}, ∀N ∈ N}. Then, 
assuming that the minimum positive element δ exists, we next 
show that ∀{Z (n)}N

n=1 ∈Z , we have 
∑N

n=1 Z (n) = kδ, for some k ∈ Z.
Assume the contrary that ∃{Z (n)}N

n=1 ∈ Z such that Z =∑N
n=1 Z (n) 	= kδ for any k ∈ Z. Then, if we divide the real line into 

intervals of length δ, then Z should lie in one of the intervals, i.e., 
∃k ∈ Z such that kδ < Z < (k + 1)δ so that we can write Z = kδ +η
where 0 < η < δ. According to the definition of Y , ∀y ∈ Y and 
∀c ∈ Z, we have cy ∈Y . Therefore, we can conclude that kδ ∈ Y as 
δ ∈ Y . Furthermore, according to the definition of Y , ∀y1, y2 ∈ Y , 
we have y1 − y2 ∈ Y . Then, as Z , kδ ∈ Y , we have η = Z − kδ ∈ Y . 
However, this contradicts the fact that δ is the minimum posi-
tive element of Y since 0 < η < δ and η ∈ Y . Therefore, it follows 
that ∀h ∈ H, ∃k ∈ Z such that h = kδ. As we also have ∀h ∈ H, 
h ∈ (α−, α+), then it follows that there are finitely many elements 
in H. As |B| = |H| according to Lemma 1, it follows that the set of 
achievable portfolios B is also finite.

If a minimum element δ does not exist, our claim is that B
contains countably infinitely many elements. Since every finite set 
of real numbers has a minimum, there are either infinitely many 
positive elements in the set Y or none. We know that there ex-
ists zi 	= 0 so that there are positive numbers in Y . Therefore, 
there are infinitely many elements in Y . Now assume that ∃γ1 > 0
such that γ1 = ∑N

n=1 Z (n) for some N ∈ N, where {Z (n)}N
n=1 ∈ Z

and 
∑k

n=1 Z (n) ∈ (α−, α+). Then, by Lemma 3, it follows that 
γ1 ∈ Y ∩ (0, α+) and since there exists no positive minimum el-
ement of Y , ∃γ2 > 0 such that γ2 < γ1 and γ2 ∈ Y ∩ (0, α+). 
Continuing in this manner, we can construct a decreasing sequence 
{γn} such that γn ∈Y ∩ (0, α+), ∀n ∈N. Note that we have γn ∈H, 
∀n ∈ N from Lemma 3, so that there are countably infinite ele-
ments in H. Hence, it follows that B has countably infinitely many 
elements. �
Appendix E. Proof of Corollary 1

Consider an arbitrary sequence {Z (n)}N
n=1 ∈ Z for some N ∈ N

such that Z = ∑N
n=1 Z (n) > 0 and 

∑k
n=1 Z (n) ∈ (α−, α+), ∀k ∈

{1, . . . , N}. Then, by Lemma 3, it follows that Z ∈ Y ∩ (0, α+). 
Since δ is the minimum positive element of Y , it follows that 
0 < δ ≤ M and δ ∈ Y ∩ (0, α+). Hence, by Lemma 3, we conclude 
that δ = ∑N ′

n=1 Z (n) for some N ′ ∈ N and {Z (n)}N ′
n=1 ∈ Z , where ∑k

n=1 Z (n) ∈ (α−, α+), ∀k ∈ {1, . . . , N ′}. As we showed in Theo-
rem 1 that ∀y ∈ Y , we have y = kδ for some k ∈ Z, then the 
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number of elements in Y ∩ (α−, α+) is �α+−α−
δ

�. Hence, it fol-

lows that there are exactly �α+−α−
δ

� achievable portfolios since 
Lemma 3 implies that the set Y ∩ (α−, α+) is equivalent to the 
set of different values that the sum 

∑N
n=1 Z(n) can take ∀N ∈ N, 

where Z(n) ∈ Z for ∀n ∈ {1, . . . , N} and 
∑k

n=1 Z(n) ∈ (α−, α+), 
∀k ∈ {1, . . . , N}, and the cardinality of the latter set is equal to the 
number of achievable portfolios. �
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