
IFAC-PapersOnLine 49-9 (2016) 007–012

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.07.479

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Parametric Identification of Hybrid
Linear-Time-Periodic Systems
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Abstract:
In this paper, we present a state-space system identification technique for a class of hybrid LTP
systems, formulated in the frequency domain based on input–output data. Other than a few
notable exceptions, the majority of studies in the state-space system identification literature (e.g.
subspace methods) focus only on LTI systems. Our goal in this study is to develop a technique
for estimating time-periodic system and input matrices for a hybrid LTP system, assuming
that full state measurements are available. To this end, we formulate our problem in a linear
regression framework using Fourier transformations, and estimate Fourier series coefficients of
the time-periodic system and input matrices using a least-squares solution. We illustrate the
estimation accuracy of our method for LTP system dynamics using a hybrid damped Mathieu
function as an example.
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1. INTRODUCTION

Our main focus in this paper is the identification of non-
linear, hybrid dynamical systems that operate near their
periodic solutions. A wide variety of dynamical phenom-
ena in biology and engineering include oscillatory and
hybrid characteristics (Buehler et al., 1994; Chevallereau
et al., 2009; Hurmuzlu and Basdogan, 1994). Thus, such
dynamical behaviors are commonly modeled as nonlinear
hybrid dynamical systems that operate near some isolated
periodic orbits (a.k.a. limit-cycle). Though, there are re-
markably fewer studies focusing on the problem of sys-
tem identification for hybrid dynamical systems operating
around limit-cycles than system identification studies on-
dynamical systems that operate near their point equilibria
(e.g. LTI systems).

In the broadest sense, a hybrid dynamical system is one
that both flows smoothly (defined by a set of differential
equations) and jumps discretely (defined by a set of
transition maps) (Guckenheimer and Holmes, 1991). These
discrete jumps are often accompanied by a switch between
different smooth flows, punctuating system trajectories
with discontinuous jumps, sometimes even changing the
dimension of the underlying state space (Burden et al.,
2015). Despite the generality of this definition, we limit
our scope to hybrid systems for which state trajectories
are continuous, but possibly non-differentiable. In other
words, we exclude systems that undergo discrete jumps in
states as well as changes in the state dimensions.

Under certain assumptions, the linearization of smooth
nonlinear systems around their periodic solutions (orbit),
yields linear time-periodic (LTP) systems (Guckenheimer
and Holmes, 1991), whereas the linearization of the class of
nonlinear hybrid systems we consider around their periodic
orbits yields hybrid LTP systems (DaCunha and Davis,
2011). Since we exclude hybrid transitions with discrete
jumps in system state and dimension, the class of induced
hybrid LTP systems that we study exhibit continuous
but only piece-wise differentiable vector fields (Uyanik
et al., 2015a, 2016). In Section 2.2, we formally define
the general form of LTP systems that we focus on. Our
main contribution in this paper is a parametric system
identification method for hybrid LTP systems that we
consider, using frequency domain representations of input-
output data.

Unlike the literature on LTP and/or Hybrid system iden-
tification, the identification of LTI systems is a relatively
mature field. There is a wide range of techniques for
the identification of LTI systems, appropriate for widely
differing needs of engineers and scientists (Ljung, 1998).

There are a number of methods that extend the LTI iden-
tification techniques to the identification of LTP systems.
For example Shi et al. (2007) utilizes the subspace sys-
tem identification method (Van Overschee and De Moor,
1996) to estimate physical parameters of smooth linear
time-varying systems, whereas Verhaegen and Yu (1995)
developed a different subspace system identification tech-
nique for discrete time periodically time-varying systems.
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In the context of piece-wise smooth system identification,
Verdult and Verhaegen (2004) introduced a formulation
to estimate state space models for piecewise LTI systems,
which may be considered as a special case of our formu-
lation in Section 2.2, when the switching time between
the subsystems is known. Similarly, Buchan et al. (2013)
utilizes a data-driven input–output system identification
method to estimate piecewise affine models for approxi-
mating dynamics of a hexapedal robot. However, none of
these methods completely cover our class of LTP systems
and they all perform identification based on time domain
input-output data.

In our formulation, we assume that switching times be-
tween different continuous LTP vector fields are known.
This information is used to separately identify individual
contributions from each LTP subsystem to the overall
periodic system. In our approach, we obtain Fourier series
coefficients for the state and input matrices and then for-
mulate the problem in a linear regression framework. After
estimating system matrices using a least squares solution,
we use Fourier synthesis to construct time-periodic system
and input matrices.

This paper is organized as follows. Section 2 details the
formulation of the problem as well as underlying models
and assumptions. Section 3 describes the theory behind
the estimation of time-periodic system matrices. Section 4
illustrates a case study on a simple example, time-switched
damped Mathie function with associated estimation re-
sults.

2. PROBLEM FORMULATION

2.1 Linear Time-Periodic Systems

In this paper, we focus on linear time-periodic systems,
whose state evaluation equation can be written as

ẋ(t) = A(t)x(t) +B(t)u(t) , (1)

where both system matrices are periodic with a fixed,
known period T > 0 such that A(t) = A(t + nT ) and
B(t) = B(t+nT ), ∀n ∈ Z. In this study, we further assume
that we can measure all system states.

In an LTI system, a sinusoidal input signal with a fre-
quency of ω, at steady state produces output only at the
same frequency, possibly at a different phase and magni-
tude. This is the well-known frequency separation principle
of LTI systems, allowing the use of transfer functions to
characterize input–output relations for such systems in the
frequency domain.

On the other hand, for an LTP system, a sinusoidal input
at a specific frequency ω, produces not only an output at
the same frequency, ω, but also components at frequencies
that are the sum of ω and the harmonics of the pumping
frequency ωp = 2π/T of the system (i.e. at ω+kωp, k ∈ Z),
all with possibly different magnitudes and phases in steady
state. Based on this property, the concept of Harmonic
Transfer Functions (HTFs) were developed by Wereley
(1991), where distinct transfer functions capture each of
these harmonic responses.

Existing literature on frequency domain system identi-
fication of LTP systems concentrates mainly on non-
parametric estimation of the harmonic transfer functions

(HTFs) (Hwang, 1997; Siddiqi, 2001; Louarroudi et al.,
2012; Uyanik et al., 2016), Even though a number of
previous studies perform parametric identification by fit-
ting parameterized transfer function models to the non-
parametrically identified HTFs (Ankarali and Cowan,
2014; Uyanik et al., 2015a,b), the present study focuses
on a direct state-space parametric identification method
for the hybrid LTP system without dealing with compu-
tational details of HTFs.

In this formulation, the steady-state response of the sys-
tem can be represented as

X(jω) =

∞∑
n=−∞

Hn(jω − jnωp)U(jω − jnωp) , (2)

where Hn(s) can be theoretically derived for certain
special cases when the state space representation of the
system is available, such as for systems with finite har-
monic expansions or constant system matrices (Wereley,
1991; Möllerstedt, 2000).

2.2 Modeling and Assumptions

In this paper, we will work with systems in the form of (1),
assumed to be driven by an observable input, u(t), with
measurements provided for all of its states. Moreover, we
also require the following assumptions to hold.
Assumption 1. Our models of interest consist of M alter-
nating “unknown” LTP sub-dynamics, A1(t), A2(t), · · · ,
AM (t), whose activations are triggered by M complemen-
tary “known” rectangular switching functions, s1(t), s2(t),
· · · , sM (t), during each cycle of the system. Both Ai(t) and
si(t) are T -periodic functions, with the switching functions
taking the form

si(t) =

{
1, if ti + nT ≤ t < ti+1 + nT, ∀n ∈ Z
0, otherwise,

(3)

where ti’s denote the known switching times and satisfy
the conditions t1 = 0, tM+1 = T , and ti < ti+1, ∀i ∈
1, · · · ,M . The state and input matrices of (1) can hence
be written as

A(t) =

M∑
i=1

Ai(t)si(t), B(t) =

M∑
i=1

Bi(t)si(t). (4)

�
Assumption 2. We assume that the system period T as
well as the transition times between different sub-system
dynamics can be measured and are known. This informa-
tion is sufficient to construct the switching functions, s1(t),
s2(t), · · · , sM (t), that trigger the activation of alternating
sub-systems. �

Based on the LTP framework and our assumptions listed
above, the problem we are interested can be defined as:
Given

• a number of single-sine (or sums-of-sines) input mea-
surements applied at different frequencies, u(t),

• corresponding state measurements, x(t),
• the system period, T , and the switching times be-
tween successive subsystems, s1(t), s2(t), · · · , sM (t),

Estimate piecewise smooth, linear time-periodic state
and input matrices, A1(t), A2(t), · · · , AM (t) and B1(t),
B2(t), · · · , BM (t).

2016 IFAC SSSC
June 22-24, 2016. Istanbul, Turkey

8



 İsmail Uyanık et al. / IFAC-PapersOnLine 49-9 (2016) 007–012 9

In the context of piece-wise smooth system identification,
Verdult and Verhaegen (2004) introduced a formulation
to estimate state space models for piecewise LTI systems,
which may be considered as a special case of our formu-
lation in Section 2.2, when the switching time between
the subsystems is known. Similarly, Buchan et al. (2013)
utilizes a data-driven input–output system identification
method to estimate piecewise affine models for approxi-
mating dynamics of a hexapedal robot. However, none of
these methods completely cover our class of LTP systems
and they all perform identification based on time domain
input-output data.

In our formulation, we assume that switching times be-
tween different continuous LTP vector fields are known.
This information is used to separately identify individual
contributions from each LTP subsystem to the overall
periodic system. In our approach, we obtain Fourier series
coefficients for the state and input matrices and then for-
mulate the problem in a linear regression framework. After
estimating system matrices using a least squares solution,
we use Fourier synthesis to construct time-periodic system
and input matrices.

This paper is organized as follows. Section 2 details the
formulation of the problem as well as underlying models
and assumptions. Section 3 describes the theory behind
the estimation of time-periodic system matrices. Section 4
illustrates a case study on a simple example, time-switched
damped Mathie function with associated estimation re-
sults.

2. PROBLEM FORMULATION

2.1 Linear Time-Periodic Systems

In this paper, we focus on linear time-periodic systems,
whose state evaluation equation can be written as
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3. ESTIMATION OF LINEAR TIME-PERIODIC
SYSTEM MATRICES

Our analysis begins with obtaining Fourier series expan-
sions for the state and input matrices, A(t) and B(t) as

A(t) =

∞∑
n=−∞

Ane
jnωpt, B(t) =

∞∑
n=−∞

Bne
jnωpt , (5)

and transforming (1) into

ẋ(t) =

∞∑
n=−∞

Ane
jnωptx(t) +

∞∑
n=−∞

Bne
jnωptu(t) . (6)

Assuming that the system is stable and that oscillations
reach steady-state, we can then switch to the frequency
domain through the Fourier transformation to yield

(jω)X(jω) =

∞∑
n=−∞

AnX(jω−jnωp)+

∞∑
n=−∞

BnU(jω−jnωp) . (7)

Fourier series coefficients of the multiplication of two
periodic signals with the same period can be obtained as
the convolution of the Fourier coefficients of the each in-
dividual signal. Considering the Fourier series coefficients
for the rectangular switching functions as

si(t) =

∞∑
n=−∞

Si
ne

jnωpt (8)

and using (4), Fourier series coefficients of A(t) can then
be obtained as

An =

∞∑
k=−∞

A1
kS

1
n−k + · · ·+

∞∑
k=−∞

AM
k SM

n−k. (9)

Substituting (9) and a similar expansion for Bn into (7),
we obtain

(jω)X(jω) =

∞∑
n=−∞

{ ∞∑
k=−∞

A1
kS

1
n−k

}
X(jω − jnωp) +

...
∞∑

n=−∞

{ ∞∑
k=−∞

AM
k SM

n−k

}
X(jω − jnωp) +

∞∑
n=−∞

{ ∞∑
k=−∞

B1
kS

1
n−k

}
U(jω − jnωp) +

...
∞∑

n=−∞

{ ∞∑
k=−∞

BM
k SM

n−k

}
U(jω − jnωp) . (10)

After reorganizing the terms, we obtain

(jω)X(jω) =

∞∑
k=−∞

A1
k

{ ∞∑
n=−∞

S1
n−kX(jω − jnωp)

}

︸ ︷︷ ︸
X1

k
(jω)

+

...
∞∑

k=−∞

AM
k

{ ∞∑
n=−∞

SM
n−kX(jω − jnωp)

}

︸ ︷︷ ︸
XM

k
(jω)

+

∞∑
k=−∞

B1
k

{ ∞∑
n=−∞

S1
n−kU(jω − jnωp)

}

︸ ︷︷ ︸
U1

k
(jω)

+

...
∞∑

k=−∞

BM
k

{ ∞∑
n=−∞

SM
n−kU(jω − jnωp)

}

︸ ︷︷ ︸
UM

k
(jω)

. (11)

Here, Xi
k(jω) and U j

k(jω) correspond to the convolution
of the Fourier coefficients for the switching functions with
the Fourier coefficients of the state and input functions,
respectively. Now, truncating the infinite Fourier series to
only K components in either direction and converting (11)
into matrix form yields

(jω)X(jω) =
[
A1

−K · · · A1
0 · · · A1

K

]
︸ ︷︷ ︸

A1




X1
−K(jω)

...

X1
0 (jω)
...

X1
K(jω)




︸ ︷︷ ︸
X1(jω)

+

...

[
AM

−K · · · AM
0 · · · AM

K

]
︸ ︷︷ ︸

AM




XM
−K(jω)

...

XM
0 (jω)
...

XM
K (jω)




︸ ︷︷ ︸
XM (jω)

+

[
B1

−K · · · B1
0 · · · B1

K

]
︸ ︷︷ ︸

B1




U1
−K(jω)

...

U1
0 (jω)
...

U1
K(jω)




︸ ︷︷ ︸
U1(jω)

+

...

[
BM

−K · · · BM
0 · · · BM

K

]
︸ ︷︷ ︸

BM




UM
−K(jω)

...

UM
0 (jω)

...

UM
K (jω)




︸ ︷︷ ︸
UM (jω)

. (12)
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Remark 1. In the identification of real systems and even
for most simulated non-linear systems, prior information
on the proper choice of K, the limit on the number of
Fourier series to be estimated, is unavailable. Moreover,
the “true” value of K can be even infinity. Since we cur-
rently focus on the identification of deterministic systems,
an ad-hoc, yet acceptable solution is to choose a sufficiently
big value for K and disregard Fourier series coefficients
that are less then a certain threshold. �

Remark 2. Note that our choice of K does not require
truncating infinite summations for computingX1

k(jω), · · · ,
XM

k (jω), U1
k (jω), · · · , UM

k (jω) in (11). On the other
hand, computing infinite summations in computerized
environments is of course not generally possible and hence
another, possibly larger truncation n = N can be used for
these summations involving known quantities. �

Before proceeding with a least-squares solution, we add an
additional constraint to (12) to capture the requirements
that system matrices, states and inputs are real valued.
Let

Ai
K = Ai

K,Re + jAi
K,Im , (13)

where Ai
K,Re and Ai

K,Im denote real and imaginary parts

of the Kth Fourier coefficient of the ith system matrix. We
must then have

Ai
−K = Ai

K,Re − jAi
K,Im (14)

to ensure that the system matrix is real-valued in the time
domain. This yields

Ai =
[
Ai

K,Re − jAi
K,Im · · · Ai

0 · · · Ai
K,Re + jAi

K,Im .
]

In order to simplify the formulation of our least-squares
solution, we re-organize the terms in Ai to eliminate
repetitions. More formally, we define

Āi :=
[
Ai

K,Re · · · Ai
0 · · · Ai

K,Im

]
(15)

and

P :=




I I
. . . . .

.

I 0 I
0 I 0

−jI 0 jI

. .
. . . .

−jI jI




, (16)

which are specifically constructed to satisfy

Ai = ĀiP . (17)

Using the decomposition above, (12) can be simplified
by reorganizing terms and grouping known and unknown
quantities in separate matrices as

(jω)X(jω)︸ ︷︷ ︸
yT (jω)

=
[
Ā1 · · · ĀM B̄1 · · · B̄M

]
︸ ︷︷ ︸

vT




P X̄ 1(jω)
...

P X̄M (jω)

P Ū1(jω)
...

P ŪM (jω)




︸ ︷︷ ︸
nT (jω)

.

Transposing both sides yields a linear equation as

n(jω) v = y(jω) (18)

As explained in Section 2.1, LTP system outputs contain
components not only in the input frequency but also

at frequencies shifted by the harmonics of the pumping
frequency. Consequently, we will evaluate (7) both at the
input frequency ω as well as the shifted harmonics ω ±
hωp, h ∈ Z in order to capture time-periodic system as




n(jω + hωp)
...

n(jω)
...

n(jω − hωp)




︸ ︷︷ ︸
N(jω)

v =




y(jω + hωp)
...

y(jω)
...

y(jω − hωp)




︸ ︷︷ ︸
Y (jω)

. (19)

In order to ensure that the solutions are real-valued, we
separate the real and imaginary parts of the possibly
complex-valued components computed from out test data
as [

Re{N(jω)}
Im{N(jω)}

]

︸ ︷︷ ︸
Nw

v =

[
Re{Y (jω)}
Im{Y (jω)}

]

︸ ︷︷ ︸
Yw

. (20)

Remark 3. Separating real and imaginary components of
complex-valued components computed from data doubles
the number of tests used for the least squares solution. �

Subsequently, collecting together multiple measurements
from different frequencies yields


...

Nw

...




︸ ︷︷ ︸
N

v =




...
Yw

...




︸ ︷︷ ︸
Y

(21)

Now, the least squares error solution can be found as

v = (NHN )−1NHY. (22)

We can extract Fourier series coefficient matrices from v
and then construct A1(t), A2(t), · · · , AM (t) and B1(t),
B2(t), · · · , BM (t) using Fourier series synthesis as

Ai(t) =

K∑
n=−K

Ai
ne

jnωpt, Bi(t) =

K∑
n=−K

Bi
ne

jnωpt. (23)

4. APPLICATION: A SWITCHING DAMPED
MATHIEU FUNCTION

In this section, we present an example system, a piecewise
smooth linear time-periodic function, and evaluate the
performance of the proposed algorithm on this example.

4.1 System Dynamics and Parameters

The piecewise smooth LTP system we consider in this ex-
ample consists of two switching damped Mathieu functions
with the form

ẍ(t) + 2ζωn︸ ︷︷ ︸
c

ẋ(t) + (1 + 2β cosωpt)ω
2
n︸ ︷︷ ︸

κ(t)

x(t) = u(t) (24)

where c represents piecewise constant damping term, while
κ(t) represents piecewise smooth time-periodic compliance
term in the Mathieu function.
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Remark 1. In the identification of real systems and even
for most simulated non-linear systems, prior information
on the proper choice of K, the limit on the number of
Fourier series to be estimated, is unavailable. Moreover,
the “true” value of K can be even infinity. Since we cur-
rently focus on the identification of deterministic systems,
an ad-hoc, yet acceptable solution is to choose a sufficiently
big value for K and disregard Fourier series coefficients
that are less then a certain threshold. �

Remark 2. Note that our choice of K does not require
truncating infinite summations for computingX1

k(jω), · · · ,
XM

k (jω), U1
k (jω), · · · , UM

k (jω) in (11). On the other
hand, computing infinite summations in computerized
environments is of course not generally possible and hence
another, possibly larger truncation n = N can be used for
these summations involving known quantities. �

Before proceeding with a least-squares solution, we add an
additional constraint to (12) to capture the requirements
that system matrices, states and inputs are real valued.
Let

Ai
K = Ai

K,Re + jAi
K,Im , (13)

where Ai
K,Re and Ai

K,Im denote real and imaginary parts

of the Kth Fourier coefficient of the ith system matrix. We
must then have

Ai
−K = Ai

K,Re − jAi
K,Im (14)

to ensure that the system matrix is real-valued in the time
domain. This yields

Ai =
[
Ai

K,Re − jAi
K,Im · · · Ai

0 · · · Ai
K,Re + jAi

K,Im .
]

In order to simplify the formulation of our least-squares
solution, we re-organize the terms in Ai to eliminate
repetitions. More formally, we define

Āi :=
[
Ai

K,Re · · · Ai
0 · · · Ai

K,Im

]
(15)

and

P :=




I I
. . . . .

.

I 0 I
0 I 0

−jI 0 jI

. .
. . . .

−jI jI




, (16)

which are specifically constructed to satisfy

Ai = ĀiP . (17)

Using the decomposition above, (12) can be simplified
by reorganizing terms and grouping known and unknown
quantities in separate matrices as

(jω)X(jω)︸ ︷︷ ︸
yT (jω)

=
[
Ā1 · · · ĀM B̄1 · · · B̄M

]
︸ ︷︷ ︸

vT




P X̄ 1(jω)
...

P X̄M (jω)

P Ū1(jω)
...

P ŪM (jω)




︸ ︷︷ ︸
nT (jω)

.

Transposing both sides yields a linear equation as

n(jω) v = y(jω) (18)

As explained in Section 2.1, LTP system outputs contain
components not only in the input frequency but also

at frequencies shifted by the harmonics of the pumping
frequency. Consequently, we will evaluate (7) both at the
input frequency ω as well as the shifted harmonics ω ±
hωp, h ∈ Z in order to capture time-periodic system as




n(jω + hωp)
...

n(jω)
...

n(jω − hωp)




︸ ︷︷ ︸
N(jω)

v =




y(jω + hωp)
...

y(jω)
...

y(jω − hωp)




︸ ︷︷ ︸
Y (jω)

. (19)

In order to ensure that the solutions are real-valued, we
separate the real and imaginary parts of the possibly
complex-valued components computed from out test data
as [

Re{N(jω)}
Im{N(jω)}

]

︸ ︷︷ ︸
Nw

v =

[
Re{Y (jω)}
Im{Y (jω)}

]

︸ ︷︷ ︸
Yw

. (20)

Remark 3. Separating real and imaginary components of
complex-valued components computed from data doubles
the number of tests used for the least squares solution. �

Subsequently, collecting together multiple measurements
from different frequencies yields


...

Nw

...




︸ ︷︷ ︸
N

v =




...
Yw

...




︸ ︷︷ ︸
Y

(21)

Now, the least squares error solution can be found as

v = (NHN )−1NHY. (22)

We can extract Fourier series coefficient matrices from v
and then construct A1(t), A2(t), · · · , AM (t) and B1(t),
B2(t), · · · , BM (t) using Fourier series synthesis as

Ai(t) =

K∑
n=−K

Ai
ne

jnωpt, Bi(t) =

K∑
n=−K

Bi
ne

jnωpt. (23)

4. APPLICATION: A SWITCHING DAMPED
MATHIEU FUNCTION

In this section, we present an example system, a piecewise
smooth linear time-periodic function, and evaluate the
performance of the proposed algorithm on this example.

4.1 System Dynamics and Parameters

The piecewise smooth LTP system we consider in this ex-
ample consists of two switching damped Mathieu functions
with the form

ẍ(t) + 2ζωn︸ ︷︷ ︸
c

ẋ(t) + (1 + 2β cosωpt)ω
2
n︸ ︷︷ ︸

κ(t)

x(t) = u(t) (24)

where c represents piecewise constant damping term, while
κ(t) represents piecewise smooth time-periodic compliance
term in the Mathieu function.
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Piecewise smooth LTP equations of motions can now be
written as

ẍ(t) =

{
u(t)− c1ẋ(t)− κ1(t)x(t), if Tn ≤ t ≤ Tn+ T/2

u(t)− c2ẋ(t)− κ2(t)x(t), otherwise.
(25)

Using (25), state and input matrices can be obtained as

A1(t) =

[
0 1

−(1 + 2β1 cosωpt)ω
2
n −2ζ1ωn

]
B =

[
0
1

]

A2(t) =

[
0 1

−(1 + 2β2 cosωpt)ω
2
n −2ζ2ωn

]

where the input matrix is time-invariant for this example.
Based on the parameters specified in Table 1, true values
of the Fourier series coefficients can be found as

A1
0 =

[
0 1

−39.4784 −3.7699

]
, A1

1 =

[
0 0

−3.9478 0

]

A2
0 =

[
0 1

−39.4784 −1.2566

]
, A2

1 =

[
0 0

−7.8957 0

]
(26)

Table 1. Mathieu Function Parameters

T ωp ωn ζ1 β1 ζ2 β2

0.5 4π 2π 0.3 0.1 0.1 0.2

4.2 Estimation Results with Single Sine Excitations

In order to illustrate our estimation method, we first simu-
lated the system to collect input-output data for the iden-
tification process. In this example, we simulated the piece-
wise smooth LTP dynamics of (25) by applying single sine
inputs, u(t) = sin (2πft), at each experiment/simulation.
We performed simulations using 20 diffrent frequencies
equally spaced in the frequency band [0.2, 4] Hz, and
record the state measurements.

Our input signals are 10 s. long and all data are sampled
at 100 Hz. Note that we currently use single sine inputs
in our tests but it is also posible to use sums-of-sines type
input stimuli to decrease the number of tests required for
system identification.

Note that previously, Hwang (1997) showed that in or-
der to estimate HTF components uniquely using single
sinusoidal signals (i.e. one experimental data per each
frequency), the input signal must not be equal to the
harmonics of the half of the pumping frequency, i.e. ω �=
kωp/2, k ∈ Z. Since we are attempting to compute the
parametric LTP matrices from input-output data, we no
longer need to satisfy this constraint for the case of pure
piece-wise smooth LTP systems. However, Ankarali (2015)
also showed that for the identification of non-linear sys-
tems that operate around a limit-cycle, input frequencies
that are equal to the harmonics of the pumping frequency
should also be avoided in order to isolate the frequency
components of the limit-cycle and response around the
limit-cycle. For this reason we also do not include the
harmonics of the pumping frequency in our input signals.

Once we have collected the input-output data from our
simulations, we need to make three implementation choices
before building our least squares estimation matrices.
First, we consider N = 20, yielding 41 Fourier series
coefficients for the computation of Xi

k(jω) and U i
k(jω) in

(11) (our bound here originates from the signal length,see
Remark 2). Secondly, we choose K = 1 for each sub
LTP dynamics, which yields exact number of Fourier
series coefficients, 3, for the simulated example. Finally,
we consider h = 2, total numer of computed harmonics of
the whole LTP system for (19), so that we evaluate each
input at 5 different output frequencies.

Based on our implementation choices explained above,
Fourier series coefficients are estimated as

Â1
0 =

[
0.0002 0.9999

−39.4404 −3.7786

]
(27)

Â1
1 =

[
−0.0001− j0.0003 −0.0001− j0.0000
−3.9253 + j0.0095 0.0090− j0.0012

]

Â2
0 =

[
0.0009 1.0003

−40.0038 −1.2824

]

Â2
1 =

[
0.0002− j0.0008 −0.0001− j0.0002

−7.9860 + j0.0242 0.0017 + j0.0084

]

with A1
−1 = A1

1
∗
and A2

−1 = A2
1
∗
. We then reconstruct

Â1(t) and Â2(t) using (23). Similarly, B is estimated as

B̂ =

[
0

0.9965

]
.

In order to better express our estimation results, we
plot time-domain graphs of κ(t) and c(t) defined in (24)
both using the actual and estimated system matrices as
illustrated in Fig. 1. κ(t) represents the piecewise time-
periodic compliance behavior in our Mathieu function,
while c(t) represents piecewise time-invariant damping
loss. Both of these variables switch to another parameter at
the half of the period, which brings a time-periodic nature
to both functions.

As illustrated in Fig. 1, our estimations with K = 1
fits well to the actual system parameters, since we didn’t
contaminate our simulation data with noise for experi-
ments. Apart from that, K = 1 is the exact number of
Fourier series coefficients for our system as seen in (26).
Actually, it gives an exact fit for κ(t) but it is an overfit
for c(t), since K = 0 would be sufficient to represent
its piecewise LTI nature. However, due to deterministic
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Fig. 1. Estimation results for compliance and damping
term for a single period.
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nature of our simulations overfitting does not generate an
error in estimation of c(t).

In order to investigate the effects of under-fitting, we
repeated our estimations for K = 0 and re-estimated our
system parameters as illustrated in Fig. 1. In this case, it
can be observed that κ(t) can not be estimated accurately,
although we can still obtain accurate estimations for c(t).

5. DISCUSSION

A huge class of physical physical dynamical systems ex-
hibit quasi-periodic trajectories and hybrid characteristics.
However, it is fair to assume that only a few of the
system identification studies in literature concentrate on
the identification of hybrid dynamic system that operate
around some periodic orbits, which is the main goal of this
paper. Specifically, we limit our attention to the hybrid
systems that has continuous state trajectories but poten-
tially discontinuous vector fields. Under some assumptions,
the local flow around the periodic orbit of such a system
can be approximated with a hybrid LTP system.

Based on these motivations, we introduced a state space
parametric identification framework for hybrid LTP sys-
tems for which the periodic switching times are assumed
to be known. We formulated the problem in a linear regres-
sion framework in frequency domain, where we estimated
Fourier series coefficients of the time-periodic system and
input matrices. Then, we re-constructed the time domain
system and input matrices using Fourier synthesis after a
least squares solution. Currently, our formulations assume
full state measurements which is the main limitation of
our method. As a future work, we will attempt to improve
our method such that we can relax this assumption also
including process and measurement noise.
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