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Abstract: Numerical computation of H∞ controllers for time delay systems has been a
challenge since 1980s. Even though significant techniques are developed to obtain direct optimal
controllers, application of these methods may require manual computation depending on the
plant. In this paper, an alternative computational technique is proposed for direct optimal
controllers originally obtained by Toker and Özbay (1995). The new controller expression
contains finite dimensional transfer functions and an infinite dimensional term, which is
stable. Thus it is suitable for finite dimensional approximations and practical non-fragile
implementations. In this method, in order to eliminate manual computation of the plant
factorization for neutral and retarded delay systems YALTA (a tool developed at INRIA) is
used. The new controller computation is implemented in Matlab, and it is illustrated on an
example.
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1. INTRODUCTION

Since 1980s, various methods have been developed for
numerical computation optimal H∞ controllers for time
delay systems. First results on direct optimal controllers
were given in Foias et al. (1986); Lypchuk et al. (1988);
Zhou and Khargonekar (1987). See also Mirkin and Tad-
mor (2002) and its references. One of the most practically
useful formulas for direct optimal controller was given in
Toker and Özbay (1995), see also (Foias et al., 1996).

The software implementing Toker-Özbay formula gives the
optimal controller Bode plots and it shows an implementa-
tion where internal unstable pole-zero cancellations occur.
Later Gümüşsoy (2012) has shown a reliable implemen-

tation of the Toker-Özbay controller using FIR blocks. In
this paper, we give an alternative way to obtain a reli-
able implementation of using stable and finite dimensional
terms in the controller. An alternative approach to design
H2 and H∞ controllers for time delay systems has been
proposed in Oliveira and Geromel (2004). Moreover, fixed
orderH∞ controller design for time delay systems has been
considered in Gümüşsoy and Michiels (2011).

The computation of the optimal controller depends on
inner-outer factorization of the plant. We provide here
a new Matlab based tool to perform such factorization
using YALTA, and then illustrating the controller in a new
format with an example that shows how an approximate

⋆ This work is supported by the Scientific and Technological Re-
search Council of Turkey (TÜBİTAK) under project EEEAG-
115E820.

finite dimensional suboptimal controller may be obtained
by using the results of Toker and Özbay (1995).

The rest of the paper is organized as follows. In the next
section, we review plant factorization and a procedure for
computing the optimal controller. We also give a new for-
mula for implementing the controller in an internally sta-
ble manner. Then in Section 3, we describe the new Matlab
program, which incorporates YALTA and implements the
controller and its approximations given in Section 2. In
Section 4, we provide a numerical example. Concluding
remarks are made in the last section

2. AN ALTERNATIVE FORMULA FOR H∞

OPTIMAL CONTROLLER

For general infinite dimensional systems, structure of H∞

controllers have been investigated and numerical compu-
tational methods have been proposed based on state space
and finite dimensional techniques. Most of the state space
methods require solving of operator valued Riccati equa-
tions. One of the most widely used technique is based on
inner-outer factorizations of the plant, (Toker and Özbay,
1995). For time delay systems such a factorization can be
done by using DDE-BIFTOOL, QPMR, YALTA or similar
tools, Avanessoff et al. (2008); Engelborghs et al. (2001);
Vyhl̀ıdal and Źıtek (2009). Once the factorization is done,

the method originally proposed by Toker and Özbay can
be applied. In this section we provide the details of this
algorithm which is separated into three steps.
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Vyhl̀ıdal and Źıtek (2009). Once the factorization is done,

the method originally proposed by Toker and Özbay can
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2.1 Plant Factorization for Time Delay Systems

We consider the following inner-outer factorization for the
plants for which H∞ controllers are to be computed:

P (s) =
MnNo

Md

(1)

where Mn and Md are inner functions and No is an outer
function. The right half plane zeros of the plant appear
in Mn and the right half plane poles of the plant appear
in Md. In this paper we will assume that Md is finite
dimensional. Hence, the plant has finitely many unstable
poles. We will use YALTA to compute the poles and zeros
of the plant in the right half plane. We consider plants in
the form

P (s) =
t(s) +

�N ′

κ=1 tκ(s)e
−κsh

p(s) +
�N

k=1 qk(s)e
−ksh

=
n(s)

d(s)
(2)

where t, p, tκ, qk are polynomials with

deg(p(s)) ≥ deg(qk(s)), deg(p(s)) ≥ deg(t(s))

and deg(p(s)) ≥ deg(tκ(s)). Note that additionally,
YALTA allows numerator and denominator of the plant
to have fractional powers, hence such plants can also be
incorporated into the H∞ optimal controller computation
that is discussed in the paper. However, we will restrict
our attention to non-fractional usual time delay systems.

2.2 Computation of the H∞ Optimal Performance Level

In this section we summarize computation steps for the
H∞ optimal controller and the optimal performance level
for the mixed-sensitivity minimization problem:

γopt = inf
(C,P ) stable

����
�

W1(1 + PC)−1

W2PC(1 + PC)−1

�����
∞

where W1 and W2 are sensitivity and multiplicative
uncertainty weights, respectively. We assume W1(s) =
nW1(s)/dW1(s) for polynomials nW1 and dW1 with
deg(dW1) = n1 ≥ deg(nW1).

The following is a summary of computation of γopt and the

optimal controller Copt in Toker-Özbay formula. We start
with the following notation

Eγ(s) =
W1(s)W1(−s)

γ2
− 1 =

nEγ(s)

γ2dW1(s)dW1(−s)
,

α1, . . . , αl : unstable poles of the plant P (s)

β1, . . . , βn1
: zeros of Eγ(s) in C+ and on

the positive Im-axis.

n : l + n1

R(γ) =

�
Vn DnVn

DnVnJn VnJn

�
(3)

Jn = diag{(−1)i} is an n× n diagonal matrix

Vn =

�
V n
α

V n
β

�
, combination of Vandermonde matrices

V n
α =



1 α1 · · · αn−1

1
...

... · · ·
...

1 αl · · · αn−1
l


, similarly for V n

β

Dn =

�
Dl 0
0 Dn1

�
where

Dl = diag{Mn(α1)F (α1), ...,Mn(αl)F (αl)}

Dn1
= diag{Mn(β1)F (β1), ...,Mn(βn1

)F (βn1
)}

Fγ(s) = γM1(s) �Gγ(s) where

M1 =
dW1(−s)

dW1(s)

and outer function �Gγ(s) is the spectral factor of

(W1(−s)W1(s)−W2(−s)W2(s)Eγ(s))
−1 .

With the above definitions, γopt is defined as the maximum
γ value that makes R(γ) in (3) singular. This method
allows us to compute γopt within any given tolerance spec-
ification, provided that an interval in which the optimal
performance level lies is known.

2.3 Computation of the H∞ Optimal Controller

By using the Toker-Özbay formula it can be shown that
Copt is in the form

Copt =
W1(s)

γ2
optd∞

�
�Gγ(s)N

−1
o (s)

1 +Hn(s) +Hd(s)

�

where

Hn(s) +Hd(s) = (4)

Ro(s)

d∞

�
Kopt(s)

γ
+Mn(s)M1(s)Ĝγ(s)

�
− 1,

d∞ = γ−1
optRo(∞)Kopt(∞), Ro(s) =

nW1(s)dW1(s)
nEγ(s)Md(s)

and Kopt is defined as

Kopt(s) =
[s0 s1 · · · sn−1]Ψ1

[s0 s1 · · · sn−1]Ψ2

where the vectors Ψ1 and Ψ2 satisfy

R(γopt)

�
Ψ1

Ψ2

�
= 0.

In the decomposition (4), Hn and Hd are selected in such
a way that the order of Hn is the same as the number
of unstable poles of Kopt, if any; the poles of Hn(s) are
precisely the unstable poles of Kopt. Then, we obtain
Hd ∈ H∞. If we define

C0(s) := (1 +Hn(s))
−1, C1(s) :=

W1(s)

γ2
optd∞

�Gγ(s)N
−1
o (s)

the resulting optimal controller is

Copt(s) =

�
C0(s)

1 + C0(s)Hd(s)

�
C1(s). (5)

Note that C0 is finite dimensional, and C1 is outer.

Thus, an internally stable implementation (non-fragile)
of the optimal controller is given above. Moreover, a
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finite dimensional approximately optimal controller can
be obtained by approximating Hd by a rational transfer

function, and approximating ĜN−1
o if this term is infinite

dimensional.

2.4 Stable Implementation and Approximation of the
Controller

Considering the controller expression (5), it is possible
to obtain a finite dimensional controller with guaranteed
feedback stability and performance bounds by replacing
stable infinite dimensional terms by their finite dimen-
sional approximations. More precisely, we define

Ca(s) :=

(
C0(s)

1 + C0(s)Hda(s)

)
C1a(s), (6)

where Hda ∈ H∞ is a finite rational approximation of Hd,
and C1a is defined as

C1a(s) :=
W1(s)

γ2
optd∞

Ĝγ(s)N
−1
oa (s) (7)

where Noa is a finite dimensional outer function approxi-
mating No.

Under the controller Ca defined above the resulting sensi-
tivity is

Sa =
Md(1 + C0Hda)

Md(1 + C0Hda) +MnNoC0C1a
(8)

where P = MnNo/Md is the plant factorization. Let
Ta = 1 − Sa, Sopt = (1 + PCopt)

−1 and Topt = 1 − Sopt.
Then, we have the following result on feedback system
stability and performance bound.

Proposition. The feedback system (Ca, P ) is stable if

δ := (δ1 + δ2) < 1 (9)

where

δ1 := �Sopt
C0(Hda −Hd)

1 + C0Hd

�∞ (10)

δ2 := �Topt(N
−1
oa No − 1)�∞ . (11)

Moreover, in this case the resulting performance level is
estimated by the following inequality

γa :=

∥∥∥∥
[
W1Sa

W2Ta

]∥∥∥∥
∞

≤ γopt
1 + ε

1− δ
(12)

where

1 + ε := max{�
1 + C0Hda

1 + C0Hd

�∞ , �N−1
oa No�∞}. ✷

The above result gives a guideline on how Hd and No

should be approximated for feedback system stability and
near optimal performance.

3. DESCRIPTION OF THE MATLAB PROGRAM

The software provides a GUI for user to enter necessary
inputs. The initial state of the GUI contains explanation
of each input.

As the user enters all inputs (W1, W2, P and allowable
precision level as well as the initial bounds for γopt),
the software computes Mn(s), Md(s) and No(s) by using
YALTA, and displays Mn(s) and Md(s) in a new panel.

Initially, the program calculates singular values of R(γ)
for each γ point in the given range [γmin , γmax]. The
algorithm continues with searching peaks of negative of
singular values of Rγ . By using findpeaks command in
Matlab, the local minimum points of singular values and
corresponding γ values are stored. The software iteratively
selects minimum and maximum γ closer to resulting γ,
until the corresponding singular value is less than the
defined tolerance level. If the iteration number exceeds
4 and the resulting singular value does not drop 4/5 of
the resulting value obtained in previous iteration, the next
γ in stored data is chosen and the iterative algorithm is
applied from the beginning. The implementation of this
algorithm is given in Fig. 1. Parameters defined as xval
and yval are γ values and corresponding singular values
of R(γ) respectively. Also ind represents the chosen peak
index starting from rightmost peak of negative values of
singular values of R(γ).

Lastly, the software directly follows Toker-Özbay formula
to compute infinite dimensional optimal controller, and
provides finite dimensional functions defined in the for-
mula. The Nyquist plot illustrates stability, performance
plot shows that the computed γopt is consistent. Also the
Bode plot of the optimal controller is given. Additionally,
approximation of Hd(s) and No(s) may be entered manu-
ally to find a suboptimal controller.

4. EXAMPLE

In this section, a nominal plant is chosen as

Po(s) =
e−τs

s+ 1 + 4e−hs
. (13)

The uncertainty weight

W2(s) =
1.667s3 + 6.333s2 + 4.001s+ 0.0004

s+ 4
,

bounds the error caused by parametric uncertainty in h,
and assumes increasing high frequency neglected dynamics
for ω > 6 rad/sec (see Fig. 2). Since the relative degree of
the plant is 1 and the relative degree of W−1

2 is 2 the
optimal controller is strictly proper with relative degree
2 − 1 = 1. The sensitivity weight is chosen so that the
feedback system tracks step-like reference inputs,

W1(s) =
εs+ 1

s+ ε
where ε = 0.0001.

Firstly, by varying τ and h, their effects on γopt are
observed. Then, by using constant τ and h, optimal and
suboptimal controllers are computed numerically.

When τ = 0.1 and h ∈ [0, 3], stability analysis by
using YALTA shows that nominal plant is stable for h ∈
[0, 0.4708). Furthermore, there are two unstable poles for
the interval h ∈ [0.4708, 2.0931) and four unstable poles
in h ∈ [2.0931, 3]. The root loci shows how location of
poles varies as h increases.

By applying only the first and second steps of the software,
γopt is obtained for different values of h in the interval
[0 , 3]. The resulting γopt shown in Fig. 4 are consistent
with the locations of unstable poles: it discontinuously
increases as number of unstable poles increases and de-
creases as natural frequency of conjugate unstable pole
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if iterNu==1
xvalue = xval;
yvalue=abs(yval);
plot(xvalue,yvalue)
newFunc=-yval;
figure;
plot(xval,newFunc)
[~,b]=findpeaks(newFunc);
gamma_opt=xval(b);
try

minValCoeff=0.5*(gamma_opt(ind:ind+1)*[1;-1]);
catch

if gamma_opt(ind)>1e-2
minValCoeff = 1e-2;

else
minValCoeff = 3*gamma_pos/4;

end
end
gamma_pos = gamma_opt(ind);
temp = yval(b);

else
[~,b]=min(yval);
gamma_pos=xval(b);

end
if yval(b)<EPS
break;

else
if iterNu>4 && yval(b)>4*temp/5

iterNu = 1;
ind = ind+1;
gamma_pos = gamma_opt(ind);
try
minValCoeff=0.5*(gamma_opt(ind:ind+1)*[1;-1]);

catch
if gamma_opt(ind)>1e-2
minValCoeff = 1e-2;

else
minValCoeff = 3*gamma_pos/4;

end
end

end
gmin=gamma_pos-minValCoeff
gmax=gamma_pos+minValCoeff

end

Fig. 1. Implementation of γopt computation

pairs decrease, since W2(jω) is a monotone increasing
function with respect to ω, as shown in Fig. 2.

To test reliability of the results, effect of τ on γopt has been
investigated when h = 2.7. As expected, γopt increases
with increasing τ (see Fig. 5). Moreover, h is more domi-
nant compared to τ in the sense of affecting γopt

A suboptimal controller is obtained for the plant (13),
where h = 2.7 and τ = 0.1 (see below).

By using YALTA, the plant factorization results are ob-
tained as

Mn(s) = e−0.1s , No(s) =
Md(s)

s+ 1 + 4e−2.7s

Md(s) =
(s2 − 0.6654s+ 0.9881)(s2 − 0.1602s+ 9.221)

(s2 + 0.6654s+ 0.9881)(s2 + 0.1602s+ 9.221)
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With such plant and weights, γopt is computed as
14.6755356 with a tolerance of 10−6. In particular, the
program generates

Hn(s) =
53243(s+ 0.1031)(s2 − 3.53s+ 10.29)

(s− 4.107)(s− 0.09333)(s2 − 1.258s+ 1.545)
.

The infinite dimensional term Hd(s) is approximated by
the following fourth order rational stable transfer function
by using fitfrd command of Matlab
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Hda(s) =
−43578(s+ 3.252)(s2 + 1.217s+ 1.611)

(s+ 2.99)(s+ 1.076)(s2 + 0.9903s+ 0.7462)
.
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Since No(s) is infinite dimensional, it also needs to be
approximated to find a finite dimensional suboptimal
controller. We use a 12th order transfer function (Noa(s))
by using fitfrd command again to approximate No(s) so
that the performance degradation is at an acceptable level.
The resulting finite dimensional controller Ca(s) is 16th

order and it turns out that it is a stable transfer function
(see Bode plots in Fig. 8).
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As mentioned before, when τ = 0.1 and h = 2.7, the plant
has four unstable poles. By observing that the Nyquist
plots of PCopt and PCa encircle −1 four times in the
CCW direction (see Fig. 9 and Fig. 10), we conclude that
Ca, Copt ∈ H∞.

Performance of suboptimal controller can be observed from
Fig. 11, where ψ(jω) is defined as

ψ(ω) :=

∥∥∥∥
[
W1(jω)Sa(jω)
W2(jω)Ta(jω)

] ∥∥∥∥
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Fig. 9. Nyquist plot of CoptPo
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where Sa = (1 + PoCa)
−1 and Ta = 1− Sa.

Since approximation of No(s) is a 12th order function, the
approximation error around 14.57 rad/s reaches its maxi-
mum value. Therefore, the performance can be improved
by using a higher order approximation of No(s). Applying
the result given by the main result of Section 2.4, we find
that

δ1 = 0.0339, δ2 = 0.0368,

δ = 0.0707, ε = 0.5731.

Since δ < 1, the finite dimensional controller Ca stabilizes
P . Furthermore, the approximation error is bounded by

γa − γopt
γopt

=
1 + ε

1− δ
= 1.69

that is, γa is within 69% of γopt. Indeed, from From Fig. 11,
we see that the actual relative error is 59%,

23.40− 14.68

14.68
= 0.59 ≤ 0.69.
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5. CONCLUSION

The paper proposes a software, which is implemented in
Matlab, that finds H∞ optimal controller directly by using
Toker-Özbay formula and allows a large set of plants to be
entered as input by using YALTA. There is an additional
iterative algorithm applied on Toker-Özbay’s formula, to
find γopt according to desired tolerance and given interval.
Many examples have been solved to test reliability of
the software. As a result, by combining one of the most
widely used formulas for numerical computation of H∞

controllers and YALTA, the developed software is able
to find optimal controllers for a wide set of time delay
systems. Also implemented in this software is approxi-
mation of the optimal controller by identifying its stable
infinite dimensional parts. Moreover, an approximation
error bound is derived for the performance deviation under
proposed controller approximation scheme.
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