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We investigate the presence of Cohen–Macaulay ideals in invariant rings and show 
that an ideal of an invariant ring corresponding to a modular representation of a 
p-group is not Cohen–Macaulay unless the invariant ring itself is. As an intermediate 
result, we obtain that non-Cohen–Macaulay factorial rings cannot contain Cohen–
Macaulay ideals. For modular cyclic groups of prime order, we show that the 
quotient of the invariant ring modulo the transfer ideal is always Cohen–Macaulay, 
extending a result of Fleischmann.
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1. Introduction

The depth and Cohen–Macaulay property of invariant rings have always been among the major interests 
of invariant theorists, see the references below. In this paper, we consider ideals of invariant rings (as modules 
over the latter), and investigate their depth and Cohen–Macaulayness. The original goal of this paper was 
to find filtrations of the invariant rings with Cohen–Macaulay quotients (a weakening of being “sequentially 
Cohen–Macaulay” as introduced in [18, Section III.2]). However, the results of this paper show that in many 
cases, invariant rings fail to contain any Cohen–Macaulay ideal, so the goal is missed in the first step already. 
Before we go into more details, we fix our setup. Let V be a finite dimensional representation of a group 
G over a field K. The representation is called modular if the characteristic of K divides the order of G. 
Otherwise, it is called nonmodular. There is an induced action on the symmetric algebra K[V ] := S(V ∗)
given by σ(f) = f ◦ σ−1 for σ ∈ G and f ∈ K[V ]. We let

K[V ]G := {f ∈ K[V ] | σ(f) = f for all σ ∈ G}
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denote the subalgebra of invariant polynomials in K[V ]. For any nonmodular representation, K[V ]G is 
a Cohen–Macaulay ring [12]. In the modular case, on the other hand, K[V ]G almost always fails to be 
Cohen–Macaulay, see [13]. The depth of K[V ]G has attracted much attention and has been determined for 
various families of representations, see for example [4,9,11,14,17]. In this paper we consider ideals of K[V ]G
as modules over K[V ]G. We show that, if V is a modular representation of a p-group, then K[V ]G does not 
contain a Cohen–Macaulay ideal unless K[V ]G is Cohen–Macaulay itself. Combining this with a result of 
Broer allows us to show the equivalence of the transfer ideal being Cohen–Macaulay or principal and the 
invariant ring being a direct summand of the polynomial ring for these groups, see Corollary 10.

However, our results hold in a broader generality. We first show that a Cohen–Macaulay ideal in an affine 
domain can not have height bigger than one. If, in addition, the affine domain is factorial, then only principal 
ideals can be Cohen–Macaulay. So we get the desired implication for the groups and their representations 
whose invariants are factorial. We also include an example that shows that the condition that the affine 
domain is factorial can not be dropped. We then restrict to modular representations of a cyclic group of 
prime order. Our main result here is that the quotient K[V ]G/IG of the invariant ring modulo the transfer 
ideal IG is Cohen–Macaulay. Note that this extends results of Fleischmann [10] in this case, namely that 
K[V ]G/

√
IG is Cohen–Macaulay, and that 

√
IG = IG if V is projective. This also allows us to compute 

the depth of the transfer ideal. We end with a reduction result that reduces computing the depth of a 
K[V ]G-module to computing a grade of the transfer ideal.

We refer the reader to [1,5,6] for more background in modular invariant theory.

2. Preliminaries

In this section we summarize our notation as well as some basic results that we use in our computations. 
Let R =

⊕∞
d=0 Rd be a graded affine K-algebra such that R0 = K, and M =

⊕∞
d=0 Md a finitely generated 

graded nonzero R-module. We call R+ :=
⊕∞

d=1 Rd the maximal homogeneous ideal of R. A sequence of ho-
mogeneous elements a1, . . . , ak ∈ R+ is called M -regular if each ai is a nonzero divisor on M/(a1, . . . , ai−1)M
for i = 1, . . . , k. For a homogeneous ideal I ⊆ R+, the maximal length of an M -regular sequence lying in I
is called the grade of I on M , denoted by grade(I, M). Furthermore, one calls depth(M) := grade(R+, M)
the depth of M . Recall that we have depth(M) ≤ dim(M) (where dim(M) := dim(R/ AnnR(M)) denotes 
the Krull dimension), and M is called Cohen–Macaulay if equality holds.

By Noether-Normalization, R contains a homogeneous system of parameters (h.s.o.p.), i.e., algebraically 
independent homogeneous elements a1, . . . , an ∈ R such that R is finitely generated as a module over the 
(polynomial) subalgebra A := K[a1, . . . , an]. Note that n = dim(R) is uniquely determined. Any subset of an 
h.s.o.p. is called a partial h.s.o.p. (p.h.s.o.p.). If R is also a domain, then homogeneous elements a1, . . . , ak ∈
R+ form a p.h.s.o.p. if and only if height(a1, . . . , ak) = k, (see [13, Lemma 1.5], [3, Theorem A.16]). Note 
that M is also an A-module, and from the graded Auslander–Buchsbaum formula [7, Exercise 19.8] we get 
that M is free as an A-module if and only if its depth as an A-module is equal to dim(A). But since the 
depths of M as an A- and as an R-module are equal (see [6, Lemma 3.7.2] or [3, Exercise 1.2.26]), this is 
also equivalent to the condition that the depth of M as an R-module is dim(R) = dim(A). In other words, 
M is free as an A-module if and only if M is Cohen–Macaulay and dim(M) = dim(R), i.e., M is maximal 
Cohen–Macaulay.

We include the following standard facts about depth for the reader’s convenience.

Lemma 1. (See [3, Proposition 1.2.9].) Assume that I is a homogeneous nonzero proper ideal of the graded 
affine ring R. Then we have the following inequalities.

(a) depth(R) ≥ min{depth(I), depth(R/I)}.
(b) depth(I) ≥ min{depth(R), depth(R/I) + 1}.
(c) depth(R/I) ≥ min{depth(I) − 1, depth(R)}.
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This lemma implies that depth(I) and depth(R/I) are often strongly related:

Lemma 2. Assume that I is a homogeneous nonzero proper ideal of the graded affine ring R.

(a) If one of the following conditions
(i) depth(R) > depth(I),
(ii) depth(R) > depth(R/I),
(iii) R is a Cohen–Macaulay domain
holds, then

depth(I) = depth(R/I) + 1.

(b) If depth(I) > depth(R), then depth(R/I) = depth(R).
(c) If depth(R/I) > depth(R), then depth(I) = depth(R).

Proof. (a) Assume first depth(R) > depth(I). From Lemma 1 (b) it follows that depth(I) ≥ depth(R/I) +1, 
and from Lemma 1 (c) we get depth(R/I) ≥ depth(I) − 1, implying the desired equality. Secondly, as-
sume depth(R) > depth(R/I). From Lemma 1 (b) it follows that depth(I) ≥ depth(R/I) + 1, and from 
Lemma 1 (c) we have depth(R/I) ≥ depth(I) − 1 so we obtain the result again. Finally assume R is a 
Cohen–Macaulay domain. As R is a domain and I �= {0}, it follows that dim(R/I) < dim(R). Hence we 
have the inequality depth(R/I) ≤ dim(R/I) < dim(R) = depth(R), so the assertion follows from (ii).

Statement (b) follows similarly from Lemma 1 (a) and (c). Statement (c) follows from Lemma 1 (a) 
and (b). �

For example, if R has positive depth, then the homogeneous maximal ideal always has depth one by the 
above lemma, as its quotient is zero-dimensional. Now we note that for any given number 1 ≤ k ≤ depth(R), 
there exists an ideal of depth k:

Lemma 3. Assume that the homogeneous elements a1, . . . , ak of positive degree form a regular sequence of R. 
Then

depth((a1, . . . , ak)R) = depth(R) + 1 − k.

Proof. We have depth(R/(a1, . . . , ak)R) = depth(R) − k < depth(R), and the result follows from the 
previous lemma. �
3. Cohen–Macaulay ideals in affine domains

The main result of this section is Theorem 5 where it is shown that only principal ideals can be Cohen–
Macaulay in factorial affine domains. Nevertheless, even when the affine domain is not factorial, the height 
of a Cohen–Macaulay ideal can be at most one.

Lemma 4. Assume that R is a graded affine domain, and I �= R a homogeneous ideal of height at least 2. 
Then I is not Cohen–Macaulay as an R-module.

Proof. As I is homogeneous of height at least two, it contains a p.h.s.o.p. p, q of R. We extend this p.h.s.o.p. 
to an h.s.o.p. h1, . . . , hn with h1 = p, h2 = q and consider the K-subalgebra A of R generated by this h.s.o.p., 
i.e., A = K[h1 . . . , hn]. Then A is isomorphic to a polynomial ring over K in dim(R) variables. Assume 
by way of contradiction that I is Cohen–Macaulay as an R-module. Then I is free as an A-module, i.e., 
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there exist elements g1, . . . , gm ∈ I such that I =
⊕m

i=1 Agi. As p, q are elements of I, we can find unique 
elements ai, bi ∈ A for i = 1, . . . , m such that p =

∑m
i=1 aigi and q =

∑m
i=1 bigi. Multiplying both equations 

with q and p respectively, we get 
∑m

i=1(qai)gi = pq =
∑m

i=1(pbi)gi. As qai, pbi ∈ A and g1, . . . , gm is a free 
A-basis of I, we get qai = pbi for all i = 1, . . . , m. As p, q are different variables in the polynomial ring A, it 
follows p|ai and q|bi for all i. Therefore there exist b′i ∈ A such that bi = qb′i for i = 1, . . . , m. Hence we get 
q =

∑m
i=1 bigi =

∑m
i=1 qb

′
igi, and as we are in a domain dividing by q yields 1 =

∑m
i=1 b

′
igi ∈

⊕m
i=1 Agi = I. 

This implies I = R, contradicting the hypothesis I �= R of the lemma. �
Theorem 5. Assume that R is a graded factorial affine domain. If I �= R is a homogeneous ideal which is 
not principal, then I is not Cohen–Macaulay as an R-module. Therefore, if R is not Cohen–Macaulay, then 
R does not contain any nonzero homogeneous Cohen–Macaulay ideal (as an R-module).

Proof. Assume by way of contradiction that I is Cohen–Macaulay and not principal. Let a1, . . . , an denote 
a finite set of generators of I. As we are in a factorial ring, we can consider the greatest common divisor d
of those elements. Then we have I = (a1, . . . , an) � (d), where the inclusion is strict as I is not a principal 
ideal by assumption. As R is a domain and d | ai for all i, the elements ai

d ∈ R are well defined, and we can 
consider the ideal J := (a1

d , . . . , an

d ) = 1
dI. Note that from I � (d) it follows that J � (1) = R, so J is a 

proper ideal of R. Multiplication by d yields an R-module isomorphism from J to I, and therefore J is also 
Cohen–Macaulay as an R-module. From Lemma 4 it follows that the height of J is at most 1. But R is a 
domain and J �= 0, so the height of J is 1. It follows that there exists a prime ideal ℘ of R of height one 
such that I ⊆ ℘. As R is factorial, height one primes are principal, and so ℘ is generated by a prime element 
p, so we have J ⊆ ℘ = (p), which implies that p is a common divisor of a1

d , . . . , an

d . This is a contradiction, 
as d is the greatest common divisor of a1, . . . , an.

Now the second assertion of the theorem follows from the first and the fact that principal ideals of R are 
isomorphic to R as R-modules. �

We demonstrate two examples of affine domains with non-principal Cohen–Macaulay ideals. First one 
is a Cohen–Macaulay ring, the second one is not. Therefore, a non-Cohen–Macaulay ring may contain a 
Cohen–Macaulay ideal, and the hypothesis of R being factorial can not be dropped out in the previous 
theorem.

Example 6. Consider the subalgebra R = K[x2, y2, xy] of the polynomial ring K[x, y] in two variables. Note 
that R is not factorial as the equality x2 · y2 = (xy) · (xy) shows. We claim that the ideal I = (x2, xy)
of R is Cohen–Macaulay and not principal. Clearly I is not principal, because R is a graded ring that 
starts in degree 2. We now consider the h.s.o.p. x2, y2 of R and the subalgebra A = K[x2, y2] generated 
by the h.s.o.p.. We claim that we have the direct sum decompositions R = A ⊕ Axy and I = Ax2 ⊕ Axy. 
In both cases, the sum is direct because in the first summands all x degrees are even, while in the second 
summands all x degrees are odd. As both sums contain the respective ideal generators, it only remains 
to show that both sums are invariant under multiplication with xy. For the sum for R, this follows from 
xy ·xy = x2y2 ∈ A. For the sum for I, we have xy ·x2 = x2 ·xy ∈ Axy and xy ·xy = y2 ·x2 ∈ Ax2. Therefore 
R and I are free A-modules, so R and I are Cohen–Macaulay as R-modules. Also note that I ⊆

√
(x2), as 

(xy)2 = y2 · x2 ∈ (x2). Thus, height(I) ≤ height((x2)) = 1, as predicted by Lemma 4.

We state the following example as a proposition.

Proposition 7. Consider the subalgebra R := K[x4, x3y, xy3, y4] of the polynomial ring K[x, y]. Then the ideal 
I := (x4, x3y) of R is of height one and Cohen–Macaulay as an R-module. (While R is not Cohen–Macaulay 
and not factorial.)
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Proof. First note that R is well known to be non-Cohen–Macaulay, see [6, Example 2.5.4], and as x4 · y4 =
(x3y) · (xy3), R is also not factorial. Also since (x3y)4 = y4x8 · x4 ∈ (x4) we have I ⊆

√
(x4), which shows 

that the height of I is 1. We consider the subalgebra A := K[x4, y4] of R generated by an h.s.o.p., and we 
will show that I is a free A-module, which implies that I is Cohen–Macaulay as an R-module. We set

a := x4, p := x3y, q := xy3, b := y4

and claim that

I = (a, p) = Aa⊕Aaq ⊕Ap⊕Ap2.

The inclusion “⊇” is clear. We first show that the sum on the right hand side is indeed direct. Let ε denote 
the map from the set of monomials of K[x, y] to N2

0 given by ε(xiyj) := (i, j). We compute the epsilon values 
of the A-module generators modulo 4:

ε(a) = (4, 0), ε(aq) = (5, 3) ≡ (1, 3), ε(p) = (3, 1), ε(p2) = (6, 2) ≡ (2, 2).

As ε(m) ≡ (0, 0) for any monomial m in A, it follows that the ε-values of monomials in Aa, Aaq, Ap, Ap2

fall into different congruence classes modulo 4, so the sum is indeed direct.
We now verify the inclusion “⊆”. Clearly, a, p ∈ S := Aa ⊕ Aaq ⊕ Ap ⊕ Ap2, and S is closed under 

multiplication with a and b. It remains to show that S is closed under multiplication with p and q, which 
follows from

p(Aa) = Aap ⊆ Ap, q(Aa) = Aaq,

p(Aaq) = Aax4y4 ⊆ Aa, q(Aaq) = Ax6y6 = Abp2 ⊆ Ap2,

p(Ap) = Ap2, q(Ap) = Apq = Ax4y4 ⊆ Aa,

p(Ap2) = Ax9y3 = Aa2q ⊆ Aaq, q(Ap2) = Ax7y5 = Ax4y4p ⊆ Ap. �
Remark 8. We learned from Roger Wiegand that there are theorems that say that, for some special classes 
of rings, non-free maximal Cohen–Macaulay modules have high ranks. Since the rank of an ideal in a domain 
is one, and non-principal ideals are non-free, Lemma 4 and Theorem 5 readily follow for such rings whose 
non-free maximal Cohen–Macaulay modules are known to have a high rank. But we can not expect that 
a non-free maximal Cohen–Macaulay module will always have rank > 1 as the previous two examples 
demonstrate.

We note two applications of Theorem 5 to modular invariant rings.

Corollary 9. Assume that K is of positive characteristic p and G is a finite p-group. For any finite dimen-
sional linear representation V of G over K such that the invariant ring K[V ]G is not Cohen–Macaulay, no 
nonzero homogeneous ideal of K[V ]G is Cohen–Macaulay (as a K[V ]G-module).

Proof. It is well known that K[V ]G is factorial, see for instance [5, Theorem 3.8.1]. The claim now follows 
from Theorem 5. �

The transfer ideal IG is defined as the image of the transfer map Tr, i.e.

IG = Tr(K[V ]), with Tr : K[V ] → K[V ]G, f → Tr(f) =
∑

σ∈G

σ(f).
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Corollary 10. Assume that K is of positive characteristic p and G is a finite p-group. Then the following 
are equivalent.

(1) K[V ]G is a direct summand of K[V ] as a graded K[V ]G-module.
(2) IG is a principal ideal of K[V ]G.
(3) IG is Cohen–Macaulay.

Proof. The equivalence of the first two statements is established in [2, Corollary 4]. Assume now that one and 
hence both of them hold. It is well known that from (1) it follows that K[V ]G is Cohen–Macaulay. The ideal 
IG is principal by (2), hence IG is also Cohen–Macaulay. Conversely, assume that IG is Cohen–Macaulay. 
Then since K[V ]G is factorial, Theorem 5 applies and so IG is principal. �
4. Depth of ideals and quotient of the transfer in invariant rings for a cyclic group of prime order

In this section we specialize to a cyclic group G of prime order p equal to the characteristic of the field K, 
which we assume to be algebraically closed. Fix a generator σ of G. There are exactly p indecomposable 
G-modules V1, . . . , Vp over K and each indecomposable module Vi is afforded by a Jordan block of dimension 
i with 1’s on the diagonal. Let V be an arbitrary G-module over K. Assume that V has l summands and 
so we can write V =

∑
1≤j≤l Vnj

. Notice that l = dimV G. We also assume that none of these summands is 
trivial, i.e., nj > 1 for 1 ≤ j ≤ l. We set K[V ] = K[xi,j | 1 ≤ i ≤ nj , 1 ≤ j ≤ l] and the action of σ is given 
by σ(xi,j) = xi,j + xi−1,j for 1 < i ≤ nj and σ(x1,j) = x1,j . We define the norm

N(f) :=
∏

τ∈G

τ(f) for all f ∈ K[V ].

Notice that for 1 ≤ i ≤ nj , N(xi,j) is monic of degree p as a polynomial in xi,j . For simplicity we set 
Nj := N(xnj ,j) for 1 ≤ j ≤ l. By a famous theorem of Ellingsrud and Skjelbred [8], depth(K[V ]G) =
min{dimK(V G) + 2, dimK(V )} = min{l + 2, dimK(V )}. In [4], this result is extended to some other classes 
of groups, and the proof is also made more elementary and explicit. Restricting the results of [4] to our case, 
we get the following description of a maximal K[V ]G-regular sequence, which allows to explicitly construct 
an ideal of a given depth at most that of the invariant ring.

Proposition 11. A maximal K[V ]G-regular sequence is given by

x1,1, x1,2, N1, . . . , Nl if l > 1;
x1,1, N(x2,1), N1 if l = 1, n1 > 2;

x1,1, N1 if l = 1, n1 = 2.

Let Ik denote the ideal of K[V ]G generated by the first k elements of the sequence. Then we have depth Ik =
depth(K[V ])G + 1 − k for 1 ≤ k ≤ depth(K[V ]G).

Proof. Let b denote the second element of the sequence, i.e., x1,2 or N(x2,1) = xp
2,1 − x2,1x

p−1
1,1 . As x1,1

and b are coprime in K[V ], and both are invariant, they form a regular sequence in K[V ]G. Proceeding 
by induction, we assume that the elements x1,1, b, N1, . . . , Nk−1 form a regular sequence for some k < l. 
Consider the standard basis vector enk,k ∈ V corresponding to the variable xnk,k. Then enk,k is a fixed 
point, and U := Kenk,k is a 1-dimensional submodule of V . Since no element of the regular sequence 
x1,1, b, N1, . . . , Nk−1 contains the variable xnk,k, [4, Corollary 17] applies to U and xnk,k, so the regular 
sequence can be extended by the element Nk. Since the length of the given sequence equals depth(K[V ]G)
in each case, we are done. The final statement now follows from Lemma 3. �
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The transfer ideal often plays an important role in computing the invariant ring and its various as-
pects have been subject to research. The vanishing set of IG equals the fixed point space V G (see [5, 
Theorem 9.0.10]), in particular we have dim(K[V ]G/IG) = dim(V G) = l. We will show that K[V ]G/IG is 
Cohen–Macaulay, which also allows us to compute the depth of the transfer ideal. To do this we prove that 
N1, . . . , Nl is a K[V ]G/IG-regular sequence. Let f ∈ K[V ] and 1 ≤ j1 < j2 < · · · < jt ≤ l be arbitrary. 
We denote the degree of f as a polynomial in xnj ,j by degj f . Since Nj1 is a monic polynomial of degree 
p in xnj1 ,j1

, we can write f = q1Nj1 + r1, where degj1 r1 < p. Next we divide r1 by Nj2 and we get a 
decomposition f = q1Nj1 + q2Nj2 + r2, where degj1 r2, degj2 r2 < p and degj1 q2 < p. In this way we get a 
decomposition

f = q1Nj1 + · · · + qtNjt + r,

where degji r < p for 1 ≤ i ≤ t and degji qi′ < p for i < i′. This is called the norm decomposition and r is 
called the remainder of f with respect to Nj1 , . . . , Njt . Notice that r is unique. If f ∈ K[V ]G is an invariant, 
then the quotients qi for 1 ≤ i ≤ t and the remainder r are also invariant, see [16, Proposition 2.1]. We 
denote the coset of an element f ∈ K[V ]G in K[V ]G/IG by f .

Theorem 12. The algebra K[V ]G/IG is Cohen–Macaulay, and an h.s.o.p. is given by the set {Nj | 1 ≤ j ≤ l}. 
In particular, we have depth(IG) = l + 1.

Proof. We show that N1, . . . , Nl forms a regular sequence for K[V ]G/IG. As its length l equals the dimension 
of K[V ]G/IG, it follows that this ring is Cohen–Macaulay. First, we show that Ni is a K[V ]G/IG-regular 
element for 1 ≤ i ≤ l. Assume fNi ∈ IG for some invariant f . Then fNi = Tr(g) for some g ∈ K[V ]. 
Consider the norm decomposition g = qNi + r of g with respect to Ni. We have

fNi = Tr(qNi + r) = Tr(q)Ni + Tr(r).

Hence,

0 = (f − Tr(q))Ni + Tr(r).

Note that the group action preserves the xni,i-degree, so we have

degi Tr(r) ≤ degi r < p = degi Ni.

So, we get that f − Tr(q) = 0 and Tr(r) = 0. Therefore f ∈ IG, and Ni is a K[V ]G/IG-regular element. 
Assume now by induction that N1, . . . , Nj−1 is a K[V ]G/IG-regular sequence, and we have

fNj = f1N1 + · · · + fj−1Nj−1 + Tr(t), (1)

where f, fi ∈ K[V ]G for 1 ≤ i ≤ j − 1 and t ∈ K[V ]. Consider the norm decompositions of f and t with 
respect to N1, . . . , Nj−1. Since the quotients and the remainder in the decomposition of f are invariants, 
we can replace f by its remainder. As for Tr(t), notice that Tr(t) and the transfer of the remainder of t
differ by a K[V ]G-linear combination of N1, . . . , Nj−1. Therefore, we can replace Tr(t) with the transfer of 
the remainder of t. Moreover, by considering the norm decomposition of fi with respect to N1, . . . , Ni−1
for 1 ≤ i ≤ j − 1, we can replace fi with its corresponding remainder. Therefore, we may assume that 
degi′ fi < p for 1 ≤ i′ < i and 1 ≤ i ≤ j − 1. Notice also that the degree of f and Tr(t) with respect to 
any variable xni′ ,i

′ is < p for 1 ≤ i′ ≤ j − 1. Now, considering Equation (1) as a polynomial equation in 
the variable xn1,1 gives that f1 = 0. Then comparing the coefficients of xn2,2 gives f2 = 0. In the same 
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way we get f1 = f2 = · · · = fj−1 = 0. So, Equation (1) becomes fNj = Tr(t). However, since Nj is a 
K[V ]G/IG-regular element, we have f ∈ IG as desired. This shows that N1, . . . , Nl is a regular sequence. 
From depth(K[V ]G/IG) = l < depth(K[V ]G) = min{l + 2, dimK(V )} (we assume a non-trivial action) and 
Lemma 2, it now follows that depth(IG) = l + 1. �

We also prove a reduction result for the depth of a module over the invariant ring, which is based on the 
following lemma. The statement is probably folklore, but for the convenience of the reader and the lack of 
a reference, we provide a proof.

Lemma 13. Assume that R is a graded affine ring and M is a finitely generated graded nonzero R-module. 
If h1, . . . , hr ∈ R+ form a homogeneous M -regular sequence and I is a homogeneous ideal of R such that √
I + (h1, . . . , hr)R = R+, then

depth(M) = grade(I,M/(h1, . . . , hr)M) + r.

Proof. As the homogeneous elements h1, . . . , hr ∈ R+ form an M -regular sequence, we have that 
depth(M) = depth(M/(h1, . . . , hr)M) + r. We show that

grade(I,M/(h1, . . . , hr)M) ≥ grade(R+,M/(h1, . . . , hr)M),

as the reverse inequality is obvious. Let f1, . . . , fd ∈ R+ be a maximal homogeneous M/(h1, . . . , hr)M -regular 
sequence. Since taking powers does not change the property of being a regular sequence, we can assume 
that all elements in the sequence are contained in I + (h1, . . . , hr)R. Therefore for 1 ≤ i ≤ d we can write 
fi = gi + bi with homogeneous elements gi ∈ I and bi ∈ (h1, . . . , hr)R. Since bi is in the annihilator of

M/(h1, . . . , hr, f1, . . . , fi−1)M = M/(h1, . . . , hr, g1, . . . , gi−1)M

it follows that gi is regular on M/(h1, . . . , hr, g1, . . . , gi−1)M as well. Hence the elements g1, . . . , gd of I form 
an M/(h1, . . . , hr)M -regular sequence. �

We recall that for any ideal I of the invariant ring K[V ]G, we have 
√
I =

√
IK[V ] ∩K[V ]G. This holds 

generally when G is a reductive group [15, Lemma 3.4.2], and an elementary proof for finite groups can be 
found in [5, Lemma 12.1.1].

Proposition 14. Let M be a finitely generated graded K[V ]G-module on which the norms N1, . . . , Nl form 
an M -regular sequence. Then

depth(M) = grade(IG,M/(N1, . . . , Nl)M) + l.

Proof. We have already mentioned that the zero set of IG is given by V G =
⊕l

i=1 Keni,i. As for an element 
v =

∑l
i=1 λieni,i ∈ V G with λi ∈ K, we have Ni(v) = λp

i , the common zero set of IG + (N1, . . . , Nl) is 
zero, hence by the Nullstellensatz 

√
(IG + (N1, . . . , Nl))K[V ] = K[V ]+. From the paragraph before the 

proposition we obtain that the radical ideal of IG + (N1, . . . , Nl) equals K[V ]G+, and the lemma above 
applies. �

Examples where the proposition applies include the case l = 1 and M = I a nonzero homogeneous ideal 
of K[V ]G. The corollary also applies for arbitrary l and M = K[V ]G by Proposition 11. In the “non-trivial” 
cases where depth(K[V ]G) = l+2, it follows from depth(K[V ]G) = grade(IG, K[V ]G/(N1, . . . , Nl)) + l, that

grade(IG,K[V ]G/(N1, . . . , Nl)) = 2.
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Therefore, there is a maximal K[V ]G-regular sequence consisting of the l norms and two transfers. Also 
compare with the known fact that grade(IG, K[V ]G) = 2 in these cases, see [4, Propositions 20 and 22]. As 
depth(K[V ]G) = l + 2, this also shows that depth(M) �= grade(IG, M) in general.
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