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Abstract

A multiclass c-server retrial queueing system in which customers arrive according to
a class-dependent Markovian arrival process (MAP) is considered. Service and retrial
times follow class-dependent phase-type (PH) distributions with the further assumption
that PH distributions of retrial times are acyclic. A necessary and sufficient condition for
ergodicity is obtained from criteria based on drifts. The infinite state space of the model
is truncated with an appropriately chosen Lyapunov function. The truncated model is
described as a multidimensional Markov chain, and a Kronecker representation of its
generator matrix is numerically analyzed.
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1. Introduction

Retrial queues are queueing systems in which an arriving customer who finds all servers
busy joins an infinite retrial queue (called the orbit) and retries to receive service. Such systems
have been considered in various application areas, such as call centers, computer networks,
and telecommunication systems. Detailed overviews and bibliographical information about
retrial queues may be obtained from the surveys by Gómez-Corral [29] and Kim and Kim [33],
the books by Artalejo and Gómez-Corral [4] and Falin and Templeton [26], and also from the
bibliographies by Artalejo [1], [2].

Criteria based on Lyapunov functions have been widely used for the stability analysis of
retrial queues. The following is a review to that end in which the list of references is not
exhaustive but covers many related papers. For single- and multi-class M/M/c queues with
exponential retrials respectively in [26] and [47], simple linear Lyapunov functions are used
to show the sufficiency and necessity of an ergodicity condition. Artalejo and Phung-Duc
[5] extended a single-class M/M/c queue with exponential retrial by allowing outgoing calls.
Sakurai and Phung-Duc [44] considered a more general model than that in [5] with multiple
types of outgoing calls. In both systems, simple linear Lyapunov functions are used in the
sufficiency proofs of ergodicity conditions.

Analysis of a system in which arrival or service processes include phases is more complicated.
For such systems, one possible approach is to obtain some of the parameters of the Lyapunov
function using algebraic properties of the blocks of an auxiliary M/G/1-type matrix (see [38]).
Phung-Duc and Kawanishi [40] considered an M/M/c retrial queue with exponential retrials
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and after-call work, and allowed for customer abandonment in [41]. Diamond and Alfa
[22] considered a retrial queue in which customers arrive according to a Markovian arrival
processes (MAP) [37], service times follow phase-type (PH) [38] distributions, and retrial
times follow exponential distributions. For these three systems, the auxiliary M/G/1-type
matrices are obtained from their classical queueing system counterparts in which customers
join infinite waiting lines instead of orbits. Dudin and Klimenok [24] defined asymptotically
quasi-Toeplitz Markov chains (AQTMCs) whose blocks converge to the blocks of an M/G/1-
type matrix as the level numbers increase. The sufficiency of an ergodicity condition is then
obtained by choosing a Lyapunov function whose parameters are determined using the results
for the blocks in the M/G/1-type matrix. They also showed that a single-server queue with
batch MAP (BMAP) arrivals, a semi-Markovian service process, and exponential retrials is in
the class of AQTMCs. Breur et al. [10] showed that a BMAP/PH/c queue with exponential
retrials is in the class of AQTMCs and gave a sufficient condition for its ergodicity. He et al.
[30] considered a BMAP/PH/c retrial queue with a waiting line and PH retrials. They obtained
a sufficient ergodicity condition by choosing a Lyapunov function whose parameters follow
from a classical BMAP/PH/c queue with no retrials.

Artalejo and Gómez-Corral [4, p. 33] indicated that mathematical analysis of multiclass
retrial queues in which all customers can join an orbit is more difficult compared to its single-
class counterpart since its joint queue length process is a random walk on the multidimensional
integer lattice. Expected waiting time expressions are given for two- and multi-class M/G/1
queues with batch arrivals and exponential retrials in [34] and [25], respectively. Avrachenkov
et al. [7] considered an M/G/c queue with waiting lines and constant retrial policy in which
only one customer in the orbit can attempt to get service. Shin and Moon [47] showed that the
stationary distribution of a multiclass M/M/c queue with exponential retrials converges to that
of a classical multiclass M/M/c queue with discriminatory random order service policy as retrial
rates tend to ∞, and they presented approximation formulae for some performance measures.
Kim [31] considered a multiserver multiclass retrial queue in which customers arrive according
to a class-dependent Poisson process, service and retrial times follow exponential distributions,
and each server can serve a specific class of customers. They obtained a necessary and sufficient
condition for positive recurrence by using the fluid limit approach. There are explicit results
for a multiclass retrial queue with multiple servers and a few papers take a computational
approach. The retrial queue in [16] has two customer classes in which customers either join an
infinite waiting line or a finite orbit depending on their class if all servers are busy upon arrival.
Therein, this system is modeled as an LDQBD and solved using the matrix-analytic method
in [39]. Choi et al. [17] obtained several performance measures; they considered a different
system than that in [16] in that the orbit is infinite and the waiting line is finite. Gharbi et al.
[28] modeled a finite source retrial system using generalized stochastic Petri nets and analyzed
it with the embedded Markov chain resolution algorithm in [15].

The analysis of a queueing system with PH retrials requires a state representation keeping the
number of customers in all retrial phases. This leads to a random walk on the multidimensional
integer lattice with more than one infinite dimension as for multiple customer classes. Therefore,
there are only a handful of papers that consider PH retrials. In those, either simple arrival
and service processes are assumed, or a methodology for numerical analysis is not proposed.
M/M/c queues with PH retrials appear in [35], [45], and [46]. Kumar et al. [35] analyzed the
waiting time distribution, and Shin and Moon [46] presented approximation formulae for the
distributions of numbers of customers in service and orbit. Shin [45] described the model with
two retrial phases as an LDQBD and gave an algorithmic solution. In [23], a stability condition
for an M/PH/1 queue with PH retrials was obtained. Besides, a method was proposed for

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2016.67
Downloaded from https://www.cambridge.org/core. Bilkent University Library, on 25 Nov 2018 at 08:36:49, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2016.67
https://www.cambridge.org/core


1100 T. DAYAR AND M. C. ORHAN

approximating its stationary distribution and waiting time moments. In [3], a MAP/PH/c queue
with PH retrials was numerically analyzed with a finite source assumption. Besides giving a
sufficient condition for ergodicity, He et al. [30] showed that the condition is also necessary
for the ergodicity of a BMAP/PH/c queue with a waiting line and PH retrials. However, a
methodology for numerical analysis was not proposed. Finally, Chakravarthy [14] studied a
MAP/PH/c queue with PH retrials via simulation due to its complexity. To the best of our
knowledge, a multiclass queueing system with MAP arrivals, PH services, and PH retrials has
not been analyzed previously.

In this paper a multiclass MAP/PH/c retrial queueing system with acyclic PH retrials is
considered. The acyclic PH distribution is a subclass of the PH distribution, but is considered
to be as powerful as a general PH distribution, since both are dense in the set of nonnegative
distributions (see, for instance, [13]). Therefore, the system under consideration is quite general.
A necessary and sufficient condition for its ergodicity is obtained from criteria based on drifts by
choosing appropriate Lyapunov functions. The system includes multiple customer classes, and
the construction of a useful auxiliary M/G/1-type matrix is not obvious. Hence, it seems that
the approach taken to choose the Lyapunov function for the BMAP/PH/c retrial queue in [30] is
not applicable when there are multiple customer classes. The infinite state space of the model is
truncated with the help of the Lyapunov function chosen in the sufficiency proof, so that a finite
state space including at least a given steady-state probability mass is determined [20]. Then
the truncated model is described as a multidimensional Markov chain (MC), and a Kronecker
representation of its underlying infinitesimal generator matrix is formed in a similar manner
to those models in [8] and [19]. Finally, the steady-state distribution of the truncated model is
computed iteratively using successive over-relaxation (SOR) [49]. Here, the truncated model is
not modeled as an infinite LDQBD and is not solved using the matrix-analytic method of Bright
and Taylor [11], although it is possible to do so by choosing an appropriate level definition, as
in [8], [19], and [21]. The reason for this choice is that the method does not scale well as the
number of dimensions in the multidimensional MC increases. This is due to the increase in the
order of the diagonal blocks as the level number increases in multidimensional MCs.

2. Mathematical model

The system under consideration is a multiclass MAP/PH/c queue with acyclic PH retrials,
where c is the number of servers. We model this system as a multidimensional MC and give
the generator matrix of the underlying Markov process.

Recall that a MAP can be viewed as a counting process or an irreducible MC with some
marked transitions (describing arrivals), as in [13]. We will be using the definition of a MAP
with the latter interpretation given below.

Definition 1. A MAP with representation (C, D) of order m is an irreducible MC with a state
space of size m and irreducible generator matrix (C + D), where C is a nonsingular matrix
with negative diagonal and nonnegative off-diagonal elements, and D ≥ 0.

A state of the MAP in Definition 1 is said to be a phase. Without loss of generality, we assume
that the phases of the MAP are numbered 1 through m. The MAP characterizes a stochastic
process, where C includes transitions without an arrival and D includes transitions with one
customer arrival. The definition of PH distribution which will be used to model service and
retrial times is given next.

Definition 2. Let m ∈ Z≥0, let β ∈ R
1×m
≥0 , and let T ∈ R

m×m
≥0 be a nonsingular matrix with

negative diagonal and nonnegative off-diagonal elements. A PH distribution with representation
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(β, T ) of order m is the distribution of time until absorption in a finite state space MC with
generator matrix

T̂ =
[
T T 0

0 0

]
(m+1)×(m+1)

,

and initial probability vector (β, 1 − βe) ∈ R
1×(m+1)
≥0 , where e represents a column vector

of 1s.

Without loss of generality, we assume that the state space of T̂ is {1, . . . , m + 1}, where
m + 1 is the absorbing state and the other states are transient. The transient states in a PH
distribution are called phases. We assume that the process does not start in the absorbing state;
hence, βe = 1 holds. Since T̂ is the generator matrix of an MC, T 0 = −T e is a nonnegative
column vector. Next, the definition of acyclic PH distribution is given.

Definition 3. A PH distribution with representation (ξ , U ) is said to be acyclic if its states can
be ordered in such a way that U is an upper-triangular matrix.

We consider a retrial queueing system with c ≥ 1 homogeneous servers and K ≥ 1 customer
classes. Customers of class k ∈ {1, . . . , K} arrive according to a MAP with representation
(Ck, Dk) of order mA

k . Since (Ck +Dk) is irreducible by Definition 1, there exists a nonnegative

row vector θk ∈ R
1×mA

k≥0 such that θk(Ck + Dk) = 0 and θke = 1. Furthermore, the average
arrival rate is given by λk = θkDke. If all servers are busy upon arrival, an arriving customer
of class k joins orbit k and retries to capture a server after a random amount of time. A retrial
customer is blocked if it attempts to receive service when there are no idle servers. The service
time of a class-k customer follows a PH distribution with representation (βk, Tk) of order mS

k

and T 0
k = −Tke. The retrial time of a class-k customer follows an acyclic PH distribution

with representation (ξk, Uk) of order mR
k and U0

k = −Uke. Hence, we assume that Uk is upper
triangular. For a customer of class k, the average service rate is given by μk = [−βk(Tk)

−1e]−1

and the average retrial rate is given by δk = [−ξk(Uk)
−1e]−1.

In [14], a single-class MAP/PH/c queue with PH retrials was modeled using a multidimen-
sional MC. The multiclass counterpart can also be modeled similarly. To that end, we let
Xk(t), XbR

k +iRk
(t), and XbS

k +iSk
(t) respectively denote the phase of the arrival process of class-k

customers, the number of class-k retrial customers in phase iRk , and the number of busy servers
serving class-k customers in phase iSk for iRk = 1, . . . , mR

k and iSk = 1, . . . , mS
k , where

mR =
K∑

k=1

mR
k , mS =

K∑
k=1

mS
k , bR

k = K +
k−1∑
k′=1

mR
k′ , bS

k = K + mR +
k−1∑
k′=1

mS
k′ .

Then the multidimensional MC X(t) = {X1(t), . . . , XK+mR+mS (t) : t ≥ 0} has the state space
S = SA × SR × SS , where

SA =
K×

k=1
{1, . . . , mA

k }, SR = Z
mR

≥0 , SS = {y = (y1, . . . , ymS ) ∈ Z
mS

≥0 | ye ≤ c},

and a possible state representation of the model is x = (x1, . . . , xK+mR+mS ) ∈ S. We let n(x)

denote the number of busy servers in state x; that is, n(x) = ∑K
k=1

∑mS
k

i=1 xbS
k +i . The set SS is

defined so that the number of busy servers does not exceed the number of servers, and its size
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1102 T. DAYAR AND M. C. ORHAN

is given by

|SS | =
c∑

i=0

(i + mS − 1)!
i! (mS − 1)! .

Note that another possible approach for modeling this system is to keep the phase of each server
in a single but different dimension of the state. However, that approach leads to a larger state
space, as discussed in [32] and [43].

Now we give the generator matrix underlying the model in terms of matrices associated with
arrival, service, and retrial. The matrix QA

k includes transitions associated with the arrival of
class-k customers and is given elementwise as

QA
k (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ck(xk, i) if i �= xk and y = x + (i − xk)e
	
k ,

Dk(xk, i)ξk(j) if n(x) = c and y = x + (i − xk)e
	
k + e	

bR
k +j

,

Dk(xk, i)βk(j
′) if n(x) < c and y = x + (i − xk)e

	
k + e	

bS
k +j ′ ,

0 otherwise,

for i = 1, . . . , mA
k , j = 1, . . . , mR

k , j ′ = 1, . . . , mS
k , and x, y ∈ S, where ek represents the kth

principal axis vector. The matrix QR
k includes transitions associated with the retrial of class-k

customers and is given elementwise as

QR
k (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

xbR
k +iUk(i, j) if i �= j and y = x − e	

bR
k +i

+ e	
bR
k +j

,

xbR
k +iU

0
k (i)βk(j

′) if n(x) < c and y = x − e	
bR
k +i

+ e	
bS
k +j ′ ,

0 otherwise,

for i, j = 1, . . . , mR
k , j ′ = 1, . . . , mS

k , and x, y ∈ S. Finally, the matrix QS
k includes

transitions associated with the service of class-k customers and is given elementwise as

QS
k (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

llxbS
k +iTk(i, j) if i �= j and y = x − e	

bS
k +i

+ e	
bS
k +j

,

xbS
k +iT

0
k (i) if y = x − e	

bS
k +i

,

0 otherwise,

for i, j = 1, . . . , mS
k and x, y ∈ S. Then the generator matrix underlying X(t) becomes

Q = Qoff + diag(−Qoffe) with Qoff =
K∑

k=1

(QA
k + QR

k + QS
k ).

Example 1. Now consider an example with K = 2 and c = 2. Let the vectors and matrices
describing the arrivals, services, and retrials be given by

C1 =
[−0.8 0.8

0 −0.8

]
2×2

, D1 =
[

0 0
0.8 0

]
2×2

, C2 = [−0.3]1×1, D2 = [0.3]1×1,

ξ1 = [1, 0]1×2, U1 =
[−1 1

0 −1

]
2×2

, ξ2 = [1]1×1, U2 = [−0.5]1×1,

β1 = [0.75, 0.25]1×2, T1 =
[−1 0.25

0 −0.25

]
2×2

, β2 = [1]1×1, T2 = [−0.5]1×1.
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Hence,

U0
1 =

[
0
1

]
2×1

, U0
2 = [0.5]1×1, T 0

1 =
[

0.75
0.25

]
2×1

, T 0
2 = [0.5]1×1.

Here λ1 = 0.4, λ2 = 0.3, δ1 = δ2 = 0.5, μ1 = 0.4, μ2 = 0.5, mA
1 = 2, mA

2 = 1, mR
1 =

2, mR
2 = 1, mS

1 = 2, and mS
2 = 1. This is an eight-dimensional model with mR = 3, mS = 3,

bR
1 = 2, bR

2 = 4, bS
1 = 5, bS

2 = 7, and n(x) = x6 + x7 + x8. Therefore, the state space of
the MC is given by S = SA × SR × SS , where SA = {1, 2} × {1}, SR = Z

3≥0, S
S = {(0,

0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0)}.

3. Ergodicity condition

With the help of Lyapunov functions, we show that the inequality

K∑
k=1

λk

μk

< c (1)

is a necessary and sufficient ergodicity condition for the multiclass MAP/PH/c queue with
acyclic PH retrials considered. The Lyapunov function used to show the sufficiency of this
condition will also aid us in finding a truncated state space with a given steady-state probability
mass. When the arrival, service, or retrial processes include phases, Lyapunov functions need
to be chosen so that the phases are carefully taken into consideration. Otherwise, a necessary
and sufficient ergodicity condition may not be found. In order to obtain Lyapunov functions
leading to such a condition, we start with Lyapunov functions that work for simple models, and
then add terms to these functions for the additional complexities of the model.

The following two lemmas introduce two vectors which include variables that will be used
in the additional terms.

Lemma 1. There exists a unique vector uk ∈ R
mA

k ×1 for a MAP with representation (Ck, Dk)

and λk = θkDke such that (Ck + Dk)uk = λke − Dke and uke = 1.

Proof. The reduced linear system of equations Âkuk = b̂k with Âk = Mk(Ck + Dk) =
(ImA

k
− emA

k
e	
mA

k

)(Ck +Dk) and b̂k = Mk(λke −Dke) = (ImA
k

− emA
k
e	
mA

k

)(λke −Dke), where

Mk = ImA
k

+ emA
k
(−e	

mA
k

+ θk) and ImA
k

denotes the identity matrix of order mA
k , has only its

last equation altered to make the equation 0 on both sides. Because (Ck +Dk) is an irreducible
generator matrix, this implies that Âk is of rank mA

k − 1. Thus, (Ck + Dk)uk = λke − Dke is
consistent (see [36, Chapter 2.3]), and there exists a unique vector uk under the normalization
condition uke = 1. �

Since transition rates describing arrivals in a MAP depend on the phase of the process,
elements of uk will be used in additional terms to obtain an ergodicity condition based on the
average arrival rate λk instead of phase-dependent arrival rates in Dk .

Lemma 2. There exists a unique vector vk ∈ R
mS

k ×1
≥0 for a PH service distribution with

representation (βk, Tk) and μk = [−βk(Tk)
−1e]−1 such that vk = −μk(Tk)

−1e and βkvk = 1.

Proof. The matrix −Tk is a nonsingular M-matrix, −T −1
k ≥ 0 [36, p. 626], and, therefore,

vk ≥ 0 exists. This implies that βkvk = 1 since

βkvk = −μk(βk(Tk)
−1e) = −μk(−μk)

−1. �
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1104 T. DAYAR AND M. C. ORHAN

Since transition rates describing PH service depend on the phase of the customer, elements
of vk will be used in additional terms to obtain an ergodicity condition based on the average
service rate μk instead of phase-dependent service rates in T 0

k = −Tke.

3.1. Necessary condition

The condition in (1) is necessary for ergodicity if it can be shown that the system is nonergodic
when the condition does not hold. Fortunately, the following theorem provides a nonergodicity
condition for MCs. Note that the theorem was originally proved for discrete-time MCs (see
[6, p. 22] and [27, p. 30]), but here we give a continuous-time version which is obtained by
considering the embedded MC.

Theorem 1. An MC with generator matrix Q is nonergodic if there exists two constants τ, σ ∈
R and a Lyapunov function f : S → R such that

(i)
∑

y∈SP (x, y)|f (y) − f (x)| ≤ τ for x ∈ S, and

(ii)
∑

y∈SP (x, y)(f (y) − f (x)) ≥ 0 for x ∈ R,

where the sets R = {x ∈ S | f (x) > σ } and (S\R) are nonempty, and the matrix P ∈ R
|S|×|S|
≥0

is given elementwise as

P (x, y) =
⎧⎨
⎩

Q(x, y)

|Q(x, x)| if y �= x,

0 otherwise,
for x, y ∈ S.

This theorem is used to prove a nonergodicity condition for an M/M/c retrial queue with
exponential retrial in [26, p. 98]. Therein, a Lyapunov function f (x) linear in the infinite
variables (i.e. numbers of different class customers in the orbits) is used. We have also chosen
a linear Lyapunov function, but have added constant terms, including elements of vectors uk

and vk from Lemmas 1 and 2. Thus, we consider

f (x) =
K∑

k=1

1

μk

( mR
k∑

i=1

xbR
k +i

)
+

K∑
k=1

uk(xk)

μk

+
K∑

k=1

1

μk

( mS
k∑

i=1

vk(i)xbS
k +i

)
.

The first term of f (x) is the initial function, whereas the other two terms are added to obtain a
phase-independent condition. Note that each of the three terms is in the form of a summation
of K other terms, each corresponding to a different customer class.

Since Q is a generator matrix, P (x, y) ≤ 1 for x, y ∈ S. The value of |f (y) − f (x)| is
finite if P (x, y) > 0 for x, y ∈ S. Besides, each row of the matrix P includes a finite number
of nonzero elements due to the form of the particular model considered. Therefore, there exists
some constant τ such that Theorem 1(i) is satisfied.

After some algebraic operations, we obtain

1

|Q(x, x)|
∑
y∈S

Q(x, y)(f (y) − f (x)) = 1

|Q(x, x)|
( K∑

k=1

λk

μk

− n(x)

)
.

The right-hand side of this equation is nonnegative if
∑K

k=1(λk/μk) ≥ c since |Q(x, x)| > 0
and n(x) ≤ c hold for x ∈ S. Besides, the sets R and (S \ R) are nonempty when σ =
maxx∈S(

∑K
k=1uk(xk)/μk). Therefore, Theorem 1(ii) also holds.

3.2. Sufficient condition

In coming up with a Lyapunov function to show the sufficiency of the condition in (1)
for ergodicity, we benefit from the next theorem in [48]. Note that the Lyapunov function is
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assumed to be nonnegative in [48], but the theorem is also valid if the Lyapunov function is
bounded from below (see [26, p. 97]). This theorem will also be used to bound the steady-state
probability mass associated with the truncated state space from below, as proposed in [20].

Theorem 2. The MC is ergodic if and only if there exists a Lyapunov function g : S → R that
is bounded from below and a finite set C ⊂ S satisfying the three conditions

(i) {x ∈ S | g(x) ≤ τ } is finite for all τ < ∞,

(ii) d(x) ≤ −γ for all x ∈ S \ C and some γ > 0, and

(iii) d(x) < ∞ for all x ∈ S,

where d(x) = ∑
y∈SQ(x, y)(g(y) − g(x)) is called the drift in state x ∈ S.

We will be choosing a quadratic Lyapunov function g(x) that is similar to those discussed
in [8] to obtain a drift function d(x) whose infinite variables have negative coefficients for
x ∈ S. If customers in the orbits attempt to receive service in all PH retrial phases, adding
terms with variables each corresponding to the number of customers in a service phase leads to
the condition in (1). However, if the PH retrial process of a class-k customer includes a phase,
say i, in which no attempt is made to receive service (i.e. if U0

k (i) = 0, where U0
k = −Uke),

then the coefficient of the corresponding variable, xbR
k +i , is positive in d(x) at states with no

busy servers. Therefore, the value of g(x) should also depend on the number of customers in
retrial phases. This can be managed by adding carefully chosen terms so that d(x) at states
with no busy servers become negative for a sufficiently large number of customers in the orbits.
Based on this explanation, the following lemma gives the vector that includes variables to be
used in the term added due to PH retrials of class-k customers.

Lemma 3. For an acyclic PH retrial distribution with representation (ξk, Uk), let Ûk = Uk +
diag(U0

k ) and ηk ∈ R
mR

k ×1 be given elementwise as

ηk(i) =
⎧⎨
⎩

−c

μk

if i ∈ Ik,

0 otherwise,
for i = 1, . . . , mR

k ,

where Ik ={i ∈ {1, . . . , mR
k } | U0

k (i) = 0}. Then there exists wk ∈R
mR

k ×1 such that Ûkwk =ηk .

Proof. Note that all elements in row i of Ûk are 0 if and only if Ûk(i, i) = 0. Then the result
follows from the row echelon form of the upper-triangular matrix Ûk obtained by interchanging
all zero rows with nonzero rows below them (see [36, Chapter 2.1]), that its rank is equal to its
number of nonzero rows, and Ûkwk = ηk is consistent and has infinitely many solutions (see
[36, Chapter 2.3]). Note that negative elements of ηk could take a smaller value than −c/μk that
may lead to a smaller truncated state space. We choose this value in order to bound coefficients
of infinite variables from above by (

∑K
k=1(λk/μk) − c) in d(x) for all states. �

There exist infinitely many solutions to Ûkwk = ηk . Hence, additional constraints need to
be imposed. Here, we choose to set wk(i) to 1 if row i of Ûk is 0. The elements of vector ηk

contribute to coefficients of infinite variables corresponding to class-k retrial customers in d(x);
hence, its elements need to be nonpositive with at least one negative element. If PH retrials
are allowed to be nonacyclic, it is a possibility that Ûkwk = ηk is inconsistent since Ûk is a
singular M-matrix. Hence, the acyclicity assumption is necessary due to the form of the chosen
g(x). We conjecture that the condition in (1) is also necessary and sufficient when PH retrials
are nonacyclic; however, we have not managed to provide a suitable g(x) for such a system.
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Having defined all necessary variables, as the Lyapunov function we consider

g(x) =
K∑

k′=1

K∑
l′=1

1

2μk′μl′

(mR
k′∑

i=1

xbR
k′+i

)( mR
l′∑

i=1

xbR
l′ +i

)
+

K∑
k′=1

( K∑
l′=1

ul′(xl′)

μk′μl′

)(mR
k′∑

i=1

xbR
k′+i

)

+
K∑

k′=1

( K∑
l′=1

1

μk′μl′

( mS
l′∑

j=1

vl′(j)xbS
l′+j

))(mR
k′∑

i=1

xbR
k′+i

)

+
K∑

k′=1

mR
k′∑

i=1

wk′(i)xbR
k′+i +

K∑
k′=1

αk′(x)

(mS
k′∑

i=1

xbS
k′+i

)
,

where

ak(i, x) = wk(i) + 1

2μ2
k

+
K∑

k′=1

uk′(xk′)

μkμk′
+

K∑
k′=1

1

μkμk′

( mS
k′∑

j ′=1

vk′(j ′)xbS
k′+j ′

)
for i �∈ Ik

and αk(x) = mini �∈Ik
(ak(i, x) − c/(U0

k (i)μk)) for x ∈ S and k = 1, . . . , K . The first term of
g(x) is the initial quadratic Lyapunov function. The second and third terms are added to obtain
a phase-independent condition, and the last two terms are added due to PH retrials. Note that
αk(x) is well defined since Ik �= {1, . . . , mR

k } for k = 1, . . . , K due to Definitions 2 and 3. Then
g(x) is a quadratic polynomial in which the coefficients of all infinite variables are finite and the
coefficient of each quadratic term (xbR

k +ixbR
k′+i′) is positive for i = 1, . . . , mR

k , i′ = 1, . . . , mR
k′ ,

and k, k′ = 1, . . . , K . Hence, the function g is bounded from below and condition (i) holds.
For n(x) = c, the drift is given by

d(x) =
K∑

k=1

1

μk

( K∑
k′=1

λk′

μk′
− c

)( mR
k∑

i=1

xbR
k +i

)
−

K∑
k=1

c

μk

(∑
i∈Ik

xbR
k +i

)

+
K∑

k=1

mA
k∑

i=1

Dk(xk, i)

[
uk(i)

μ2
k

+
K∑

k′=1, k′ �=k

uk′(xk′)

μkμk′
+

K∑
k′=1

1

μkμk′

( mS
k′∑

j ′=1

vk′(j ′)xbS
k′+j ′

)]

+
K∑

k=1

mA
k∑

i=1

Dk(xk, i)

[( mR
k∑

j=1

ξk(j)wk(j)

)
+ 1

2μ2
k

]
−

K∑
k=1

αk(x)

( mS
k∑

i=1

xbS
k +iT

0
k (i)

)
;

on the other hand, for n(x) < c, the drift is given by

d(x) =
K∑

k=1

1

μk

( K∑
k′=1

λk′

μk′
−

K∑
k′=1

mS
k′∑

i=1

xbS
k′+i

)( mR
k∑

i=1

xbR
k +i

)
−

K∑
k=1

c

μk

(∑
i∈Ik

xbR
k +i

)

+
K∑

k=1

∑
i �∈Ik

xbR
k +iU

0
k (i)(−ak(i, x) + αk(x))

+
K∑

k=1

αk(x)

( mA
k∑

i=1

Dk(xk, i) −
mS

k∑
i=1

xbS
k +iT

0
k (i)

)
for x ∈ S.
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When
∑K

k=1(λk/μk) < c holds, coefficients of all infinite variables are negative; hence,
Theorem 2(iii) holds. Besides, C = {x ∈ S | d(x) > −γ } is finite for any arbitrarily chosen
γ > 0. Therefore, Theorem 2(ii) also holds and the model is ergodic if

∑K
k=1(λk/μk) < c.

As discussed in [20], for some given positive ε < 1, we have
∑

x∈Cπ(x) ≥ 1 − ε, where
γ = supx∈S d(x)(1/ε − 1) and π is the steady-state solution.

Example 2. (Example 1 continued.) In this example,

u1 =
[

0.25
0.75

]
2×1

, v1 =
[

0.8
1.6

]
2×1

, w1 =
[

6
1

]
2×1

, u2 = v2 = w2 = [1]1×1.

Then I1 = {1}, I2 = ∅,

a1(2, x) = 4.125 + 6.25u1(x1) + 5u2(x2) + 5x6 + 10x7 + 5x8, α1(x) = a1(2, x) − 5,

a2(1, x) = 3 + 5u1(x1) + 4u2(x2) + 4x6 + 8x7 + 4x8, α2(x) = a2(1, x) − 8.

The Lyapunov function is given by

g(x) = 3.125(x3 + x4)
2 + 5(x3 + x4)x5 + 2x2

5 + 6x3 + x4 + x5

+ (6.25u1(x1) + 5u2(x2) + 5x6 + 10x7 + 5x8)(x3 + x4)

+ (5u1(x1) + 4u2(x2) + 4x6 + 8x7 + 4x8)x5 + α1(x)(x6 + x7) + α2(x)x8.

For n(x) = 2, the drift is given by

d(x) = −6x3 − x4 − 0.8x5 + 1{x1=2}(4u2(x2) + 4x6 + 8x7 + 4x8 + 8.55)

+ 1{x2=1}(1.5u1(x1) + 1.2x6 + 2.4x7 + 1.2x8 + 2.1)

+ α1(x)(−0.75x6 − 0.25x7) + α2(x)(−0.5x8),

where 1{·} denotes the indicator function, and, for n(x) < 2, the drift is given by

d(x) = 2.5(−0.4 − x6 − x7 − x8)(x3 + x4) + 2(−0.4 − x6 − x7 − x8)x5

+ α1(x)(1{x1=2} 0.8 − 0.75x6 − 0.25x7) + α2(x)(1{x2=1} 0.3 − 0.5x8).

4. Numerical results

Once a Kronecker representation of the truncated generator matrix Q̄ is obtained as in
[8] and [19], we can employ a memory-efficient Kronecker-based iterative solver in which the
nonzeros of Q̄ are not stored and no factorization takes place during the course of computing π̄ .
In practice, this approach always saves a significant amount of memory. Another approach is
to employ an LDQBD model, where level l has the state space

S(l) = {x = (x1, . . . , xK+mR+mS ) ∈ S | l = max{xK+1, . . . , xK+mR }},
and then use the matrix-analytic method proposed in [11]. In this method, conditional expected
sojourn time matrices between two given truncation levels need to be computed and stored. For
our system, the conditional expected sojourn time matrix at level l includes about M̄2l2(mR−1)

nonzeros, where M̄ = |SS |(∏K
k=1 mA

k )mR . Hence, the memory allocated to store these matrices
becomes extremely large. Phung-Duc et al. [42] proposed an algorithm to compute the
conditional expected sojourn time matrices of an LDQBD with a smaller memory usage (see
[42, Algorithm 1]). However, the stationary distribution was computed using the algorithm
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Table 1: Numerical results.

Model ρ |S̄| E1,1 E1,2 E2,1 Pblock ||π̄Q̄||1 ||π̃Q||1
ERL1 0.8 29 932 260 0.2584 2.0165 2.8985 0.6784 9e − 14 9e − 14
ERL2 0.6 811 800 0.1097 0.4422 0.6756 0.4164 2e − 14 2e − 12
ERL3 0.4 12 800 0.0317 0.0860 0.1511 0.2048 6e − 15 7e − 6
EXP1 0.8 270 400 3.1663 2.5486 0.6755 8e − 14 8e − 14
EXP2 0.6 25 600 0.7154 0.6302 0.4142 2e − 14 2e − 11
EXP3 0.4 1600 0.1464 0.1461 0.2038 4e − 15 6e − 6

proposed in [11] (see [42, Algorithm 3]), which requires computing and storing the conditional
expected sojourn time matrices (see [42, Remark 3.5]). Hence, memory usage is expected to
be large in this algorithm. On the other hand, the Kronecker-based iterative solver is expected
to solve the truncated system with comparable accuracy if the value of the stopping tolerance
it uses is sufficiently small.

We implemented a Kronecker solver [18] built on the Nsolve package [12] of the APNN
toolbox [9]. The solver obtains the truncated state space of the model, generates the Kronecker
structured matrix of the truncated model, and computes its steady-state solution by using the
SOR method of Nsolve. All computations were carried out on an Intel® Core™2 Duo 2.4 GHz
processor with 4 GB of main memory. Iterations are stopped when the infinity norm of the
residual vector of the truncated model (i.e. ||π̄Q̄||∞) becomes smaller than 10−15, and the
relaxation parameter of SOR is chosen as 0.9.

We considered six different models with ε = 0.2. In Table 1 we report the results of numerical
experiments with these models. The first column gives the name of the model. ERL1 is the
model introduced in Example 1. ERL2 and ERL3 are obtained by multiplying the matrices
describing the arrival processes of ERL1 by 0.75 and 0.5, respectively. EXP1 differs from the
first model in that the retrial time of customer class 1 is exponentially distributed with average
retrial rate 0.5. EXP2 and EXP3 are obtained by multiplying the matrices describing the arrival
processes of EXP1 by 0.75 and 0.5, respectively. The second column gives the traffic intensity
ρ = (

∑K
k=1λk/μk)c

−1. The third column gives the number of states in the truncated state
space. Columns E1,1, E1,2, and E2,1 give the average number of class-1 customers in retrial
phases 1 and 2, and the average number of class-2 customers in retrial phase 1, respectively.
Retrial process of customer class 1 has a single phase in EXP1, EXP2, and EXP3; hence,
E1,2 is undefined for those models. Column Pblock provides the probability that an arriving
customer finds all servers busy. Column ||π̄Q̄||1 provides the 1-norm of the residual vector
of the truncated model which is an indicator of the accuracy of the solution to the truncated
model. Column ||π̃Q||1 provides the 1-norm of the residual vector of the infinite model and is
obtained from

||π̃Q||1 =
∑
x∈S̄

∣∣∣∣r(x) −
∑
y �∈S̄

π̄(x)Q(x, y)

∣∣∣∣ +
∑
x∈S̄

∑
y �∈S̄

π̄(x)Q(x, y) with r = π̄Q̄.

This value is an indicator of the accuracy of the solution to the infinite model.
The relative difference between the average numbers of retrial customers in ERLi and EXPi

becomes relatively large as the traffic intensity increases. This difference ranges from 0.03
(customer class 2 in ERL3 and EXP3) to 0.39 (customer class 1 in ERL1 and EXP1). The
relative difference between the blocking probabilities is around 0.005. In ERL1 and EXP1,
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residuals of truncated and infinite models are about the same; hence, the truncation error is not
larger than the numerical error. In other models, the truncation error is larger than the numerical
error. Therefore, as the traffic intensity increases, choosing a smaller ε value does not introduce
additional inaccuracy to the computed solution.
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