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ABSTRACT: We present a comprehensive and integrated
model-independent ab initio study of the structural, cohesive,
electronic, and optical properties of silicon quantum dots of
various morphologies and sizes in the framework of all-electron
“static” and time-dependent density functional theory (DFT,
TDFT), using the well-tested B3LYP and other properly
chosen functional(s). Our raw ab initio results for all these
properties for hydrogen-passivated nanocrystals of various
growth models and sizes from 1 to 32 Å are subsequently
fitted, using power-law dependence with judicially selected
exponents, based on dimensional and other plausibility
arguments. As a result, we can not only reproduce with
excellent accuracy known experimental and well-tested
theoretical results in the regions of overlap but also extrapolate successfully all the way to infinity, reproducing the band gap
of crystalline silicon with almost chemical accuracy as well as the cohesive energy of the infinite crystal with very good accuracy.
Thus, our results could be safely used, among others, as interpolation and extrapolation formulas not only for cohesive energy
and band gap but also for interrelated properties, such as dielectric constant and index of refraction of silicon nanocrystals of
various sizes all the way up to infinity.

1. INTRODUCTION

Silicon nanocrystals, or quantum dots (due to their zero
dimensionality, compared to infinite Si crystals, 3D, films, 2D,
or wires, 1D), have attracted a lot of interest over the last years
due to their potential band gap engineering properties. The
main reason is that, contrary to the electronic properties, the
optical properties of crystalline silicon are rather poor because
of the small (smaller than the lower edge of the visible
spectrum) and indirect band gap, resulting in phonon-assisted
emission. Thus, the optical properties of silicon quantum dots
(QDs), which are inherently connected with the electronic
properties as well as with the bonding and cohesive properties,
have been a very challenging and promising field of research
over the past decade for obvious technological and scientific
reasons.1−26 The culmination of the silicon quantum dots
research occurred with the observation of visible photo-
luminescence (PL) in porous silicon and silicon nanocrystals.1

Hence, most of the work in this field has been devoted to
understand and tune the visible photoluminescence of the QDs
by adjusting and correlating the optical gap with the size
(diameter) of the dots,2−4 not always without inconsistencies
and ambiguities,4 which are related with the difficulty to exactly
determine the QD size and the exact morphology and

composition of its surface layer.4 However, with the advance-
ment of technology in recent years, these problems are not so
serious. It is widely accepted by now that the visible
luminescence of small and pure (oxygen-free) QD samples
with well-defined diameters is mainly due to quantum
confinement of the corresponding quantum dots.4−6 Yet,
since the dot’s properties are sensitive to the preparation
conditions and the growth environment, several other
alternative mechanisms have been also considered in the past
for the detailed description of the variation of the gap with size
(number of particles or diameter) and surface conditions of the
dots, such as free-exciton collision7 and impurity luminescent
center mechanism.8

The unique size and composition and tunable electronic and
optical properties of Si quantum dots make them very
appealing for a variety of applications and new technologies.
Examples include LEDs,9 solid-state lighting displays,10 and
photovoltaics.11 Being zero dimensional, quantum dots have a
sharper density of states than higher dimensional structures.
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Their small size also means that electrons do not have to travel
as far as with larger particles, thus electronic devices can operate
faster. Examples of possible applications taking advantage of
these unique electronic properties include transistors12 and
logic gates13 and quantum computing,14 among many others.
The small size of quantum dots allows them to go anywhere in
the body, making them suitable for different biomedical
applications15 like medical imaging16 and biosensors,17 etc. At
present, fluorescence-based biosensors depend on organic dyes
with a broad spectral width, which limits their effectiveness to a
small number of colors and shorter lifetimes to tag the agents.
On the other hand, quantum dots can emit the whole spectrum,
are brighter, and have little degradation over time, thus being
superior to traditional organic dyes used in biomedical
applications.
In this study three distinct growth models (morphologies) of

silicon quantum dots are studied such as elongated, spherical
(grown along [111] direction), and reconstructed dots.
Spherical QDs with diameters d smaller than 2 nm (d < 2
nm) have been studied by our group earlier5 with considerable
success. These calculations have served, among others, as “yard
sticks”, especially in the gap-size dependence, in several
experimental and theoretical works. In this work we have
considered alternative QD morphologies and have expanded
their size up to 3.2 nm. In several cases we have also considered
alternative modern functionals for comparison, although we
have already tested B3LYP with high level ab initio results in the
past.5 As was expected, in the framework of the present
investigation, we found that there is no need to resort to other
types of functional(s). Concerning new morphologies, we have
considered, in addition to spherical, elongated and recon-
structed QDs. We have already introduced spherical silicon
quantum dots (d < 2 nm),5 whereas in this work, we include
large dots (up to 3.2 nm in diameter). For reconstructed dots,
Hongdo et al.18 reported that step and dimmer reconstruction
decrease the gap values and modulate the charge distribution,
inducing spatial separation of near-gap levels. The predicted
induction in spatial separation of HOMO−LUMO can be used
for designing efficient solar cells. In this work, special effort has
been placed in examining the quantum confinement concept on
large quantum dots in which the gaps have been obtained with
very high accuracy. Our results verify the quantum confinement
dependence and agree with experimental measurements
(wherever possible) in and outside the size range of our
calculations, making it possible to successfully extrapolate
nanoscale results in the intermediate region all the way to
infinite silicon crystal. On the basis of existing (empirical)
relationships between gap and dielectric constant or index of
refraction,27,28 if one wishes to rely on such methods, one can
also obtain estimates of such quantities for a given QD size and
morphology.

2. TECHNICAL DETAILS

All DFT, TDDFT, and frequency calculations were performed
with the TURBOMOLE29 suite of programs for medium size of
dots (d < 20 Å). For larger dots of diameter d > 20 Å,
calculations were performed in the GAUSSIAN 0330 package
because of the number of basis function limitations in
TURBOMOLE. All ab initio calculations are based on the
DFT/B3LYP method, employing the hybrid nonlocal ex-
change-correlation B3LYP31 functional. This functional has
been shown to efficiently reproduce the band structure of a

wide variety of materials, including c-Si, with no need for
further numerical adjustments.
The SVP32 basis set was used for geometry optimization of

the larger dots (for computational economy), after which
single-point calculations of the energy were performed with the
TZVP33 basis (and in some cases def2-TZVPP34). In addition
to this we have also tested (in selected cases) for possible basis
set superposition error by using the counterpoise method.
Convergence criteria for the SCF energies and for the electron
density (rms of the density matrix) were placed at 10−7 au,
whereas for the Cartesian gradients the convergence criterion
was set at 10−4 au.
Besides the standard spherical nanocrystals, widely used in

the literature5 (which consist of a central atom and the various
spherical layers of its near neighbors, all in Td geometry), we
have also considered surface-reconstructed structures, obtained
from their spherical counterparts. In addition to spherical and
reconstructed models, we have considered elongated (not
spherical) nanocrystals, grown along the [111] crystal direction.
In this last category, which is also of Td symmetry, there is no
“central atom” located at the origin of the axis (with
coordinates 0, 0, 0). Our results clearly include (and compare)
all these three categories, or morphologies.

3. RESULTS AND DISCUSSION
As we mentioned above, we present a very detailed discussion
on our results concerning various growth models. Thus, we
discuss the structural, electronic, cohesive, and optical proper-
ties, respectively, using DFT/TDDFT calculations in order to
investigate the stability and their size dependence of the silicon
quantum dots.

3.1. Structural Properties. We construct spherical
quantum dots with Td symmetry by keeping one atom at
origin and grow them spherically in the [111] direction. The
size of the spherical quantum dots, considered here, ranges
from 17 to 717 Si atoms with 36 to 300 H atoms (a total of
1017 atoms in the largest dot). The diameter of the small
(Si17H36) and large (Si717H300) cluster is 9.62 and 30.95 Å,
respectively. The optimized structures of spherical quantum
dots are shown in Figure 1.
However, elongated quantum dots are grown along [111] by

keeping two atoms in origin (instead of one). Elongated
quantum dots range from 26 to 274 Si atoms including 42 to
168 H atoms (a total of 442 atoms). The diameter of the small
(Si26H42) and large (Si274H168) dot is 10.05 and 20.98 Å,
respectively. Furthermore, reconstructed quantum dots are also
grown along [111] (with the same technique we used for
elongated dots) along with further surface reconstruction.18

These dots range from 26 to 274 Si atoms, with 18 to 120 H
atoms (a total of 394 atoms in the largest dot). The diameter of
the small (Si26H18) and large (Si274H120) dot is 10.66 and 20.06
Å, respectively. All reconstructed dots are of D3d symmetry. For
every distinct model, geometries have been fully optimized
within symmetry constraints, using the hybrid B3LYP func-
tional. The optimized structures of the elongated and
reconstructed quantum dots are shown in Figure 2.

3.2. Electronic Properties. We investigate electronic
properties for all stable spherical, elongated, and reconstructed
silicon quantum dots. Table 1 presents a summary of all
properties discussed in this study. Figure 3 shows a diameter-
dependent HOMO−LUMO gap of spherical quantum dots.
The black dots represent our previous work; the red curve
shows a QC fit (eq 1); whereas blue triangles represent our
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current work on large dots up to 32 Å (3.2 nm) in diameter.
Concerning this plot, it is worthwhile to understand that large
dots (blue triangles) are not included during quantum
confinement fit (fit is only applied to the small dots).
Surprisingly, large dots follow the fit very well, which is clear

evidence of an accurate formula. Based on our previous work5

using the quantum confinement concept, the “extrapolation
formula” of our ab initio results can be described by the
expected dependence of the HOMO−LUMO (also optical)
gap on size (number of atoms or “diameter”) as

= + * −E N A B N( ) n
(1)

or

= + * −E D C F D( ) m

where A, B, n, C, F, and m, respectively, are used as adjustable
parameters to be determined by the fit. The D is the diameter,
and/or N is total number of silicon atoms of the quantum dot.
Initially m (and n) were free fitting parameters to be
determined. The value obtained by the fit for m was m =
0.89 ± 0.15, whereas the values quoted in the literature vary

between 0.76 and 1.3. The value obtained for the parameter C
by the same fit, which did not include the large dots, was C =
1.02 ± 0.25 eV. As was explained in ref 5, this value of C
corresponds to the energy gap (band gap) of the infinite crystal
since as D→∞, E becomes equal to D(∞), which, surprisingly
enough, is in very good agreement with experiment. However,
after inclusion of some (not all) of the larger dots in the fit, the
quality of the fit (χ2) was improved, and the value of the
exponent m was shifted toward 1 (0.98 ± 0.10), which is highly
suggestive that this exponent might have some kind of
“universal” value equal to unity. One could rationalize this by
considering the analogy between the HOMO−LUMO gap
(which is a measure of chemical hardness or kinetic stability as
shown in the article of Zdetsis35 and stability (cohesive
stability) which is quantified by the cohesive energy, i.e., the

Figure 1. Optimized geometries of Si17H36, Si29H36, Si35H36, Si47H60,
Si71H84, Si99H100, Si147H100, Si215H148, Si281H172, Si317H172, Si389H196,
Si413H196, Si513H252, and Si717H300 spherical quantum dots.

Figure 2. Optimized geometries of Si26H42, Si50H56, Si62H56, Si82H72,
Si124H98, Si146H104, Si206H138, Si244H132, and Si274H168 elongated
quantum dots (a) and Si26H18, Si46H36, Si50H32, Si62H44, Si82H48,
Si124H74, Si206H102, Si244H120, and Si274H120 reconstructed quantum
dots (b).
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larger the gap, the larger the stability). In a recent paper by
Zdetsis et al.37 it was illustrated that cohesive energy of a
nanocrystal varies inversely proportional to its diameter.
Therefore, it is reasonable to assume that the HOMO−

LUMO (energy) gap would also vary inversely proportional
with the diameter of the nanocrystal. Hence, in subsequent fits
we have fixed the value of the exponent m = 1. With the same
reasoning the value of the exponent n was fixed to the value n =
1/3 (since the total number of silicon atoms, N, is proportional
to the third power of the diameter D). As will be explained
further below, the N-dependence of the gap can be described
more accurately, compared to the D-variation, due to the
uncertainties in defining the equivalent “diameter of the
nanocrystal”. Thus, the new D-dependence of the HOMO−
LUMO gap for spherical dots in Figure 3 has the form

= ± + ± × −E D D( ) (1.33 0.1) (41.8 1.6)HL,spherical
1

(2)

For this new fit which is included in the fitting process, the
larger (but not the largest) dots are shown in Figure 4 together
with an analogous fit for the elongated dots grown along the
[111] direction. As would be expected for large diameters, the
two fits practically coincide, and the trends as well as the fitted
parameters are the same within the (statistical) error margins,
as we can see in relation 3. Small differences exist for small
diameters due to small differences in the geometric arrange-
ment and the “neighborhood” around each silicon atom.
Obviously, for very large dots these differences become
marginal (and eventually zero).

Table 1. Structural (Total Number of Atoms, Symmetry, Diameter), Energetic (Cohesive Energy per Silicon Atom, Binding
Energy per Silicon Atom), Electronic (HOMO, LUMO, H−L Gaps from DFT Calculations), and Optical (Optical Gap for
TDDFT Calculations) Characteristics of Spherical, Reconstructed, and Elongated Silicon Quantum Dots, Respectively

Qdots sym
total # of
atoms

diameter
(Å)

cohesive energy
(eV/Si)

binding energy
(eV/Si)

HOMO
(eV)

LUMO
(eV)

H−L gap
(eV)

optical gap
(eV)

Si17H36 Td 53 9.62 1.86 9.21 −7.29 −1.56 5.72 5.03
aSi29H36 Td 65 10.44 2.78 7.09 −6.84 −1.69 5.14 4.52
Si35H36 Td 71 11.46 3.03 6.60 −6.70 −1.69 5.01 4.39
Si47H60 Td 107 13.45 2.77 7.20 −6.55 −1.93 4.62 4.02
Si71H84 Td 155 14.24 2.84 6.95 −6.38 −2.22 4.15 3.59
Si99H100 Td 199 16.62 3.05 6.55 −6.24 −2.31 3.93 3.40
Si147H100 Td 247 18.36 3.41 5.77 −6.00 −2.39 3.60 3.12
Si215H148 Td 363 21.64 3.40 5.79 −5.84 −2.65 3.19 2.79
Si281H172 Td 453 22.77 3.48 5.60 −5.76 −2.72 3.04 2.62
Si317H172 Td 489 22.95 3.56 5.44 −5.73 −2.71 3.02 2.69
Si389H196 Td 585 26.07 3.62 5.35 −5.82 −2.82 2.99 2.49
Si413H196 Td 609 26.55 3.66 5.28 −5.81 −2.85 2.96 2.46
Si513H252 Td 765 28.06 3.64 5.32 −5.70 −2.89 2.81 2.39
Si717H300 Td 1017 30.95 3.72 5.15 −5.69 −3.00 2.69 2.26
bSi26H18 D3d 44 10.66 3.13 5.54 −5.82 −2.24 3.58 2.96
Si50H32 D3d 82 11.86 3.33 5.56 −5.76 −2.31 3.45 -
Si62H44 D3d 106 12.13 3.32 5.79 −6.17 −2.18 3.99 -
Si82H48 D3d 130 15.47 3.43 5.47 −6.07 −2.41 3.66 -
Si124H74 D3d 198 16.90 3.44 5.52 −5.97 −2.44 3.53 -
Si206H102 D3d 308 17.89 3.56 5.29 −5.65 −2.46 3.19 2.79
Si244H120 D3d 364 19.05 3.61 5.31 −5.78 −2.58 3.20 -
Si274H120 D3d 394 20.06 3.59 5.12 −5.58 −3.27 2.31 -
cSi26H42 D3d 68 10.05 2.39 8.01 −6.80 −1.63 5.17 4.47
Si50H56 D3d 106 11.9 2.92 6.82 −6.47 −1.88 4.59 -
Si62H56 D3d 118 12.05 3.16 6.30 −6.37 −2.05 4.32 -
Si82H72 D3d 154 15.27 3.19 6.24 −6.19 −2.22 3.97 -
Si124H98 D3d 222 16.57 3.28 6.03 −5.99 −2.31 3.68 -
Si206H138 D3d 344 17.65 3.41 5.74 −5.84 −2.61 3.23 2.84
Si274H168 D3d 442 20.98 3.48 5.61 −5.77 −2.68 3.09 -

aStokes shift = 2.07 eV. bStokes shift = 0.38 eV. cStokes shift = 2.09 eV.

Figure 3. Plot shows HOMO−LUMO gap dependence on diameter
of spherical quantum dots. The black dots represent our previous
work,5 whereas blue triangles are from our current work (last five
dots), in order to verify QC fit accuracy.
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= ± + ± ×

= ± + ± ×

−

−

E D D

E D D

( ) (1.32 0.1) (41.8 1.2)

( ) (1.27 0.1) (40.2 1.0)

HL,spherical
1

HL,elongated
1

(3)

In Figure 4, together with the spherical and “elongated” dots,
we also display for comparison the HOMO−LUMO gaps of
reconstructed dots as random points. As we can see in eq 3 the
HL gap (parameter C) difference between spherical and
“elongated” quantum dots is around 0.05 eV (gap difference of
both infinite crystals). One can expect larger differences at small
quantum dots which is obvious. For example, the HOMO−
LUMO gap difference between spherical and “elongated” dots
at identical size of 8 nm is 0.09 eV (where Cspherical = 1.84 eV
and Celongated = 1.75 eV, respectively) which decreases with the
increase in dot size and finally becomes zero (or nearly zero) at
infinity. It is also worth mentioning that the HOMO−LUMO
gap value of infinite crystal 1.32 eV (or 1.27 eV for elongated)
is larger than the experiment band gap value which is probably
due to the negligence of many-body effects in most of the DFT
(electronic hence HL gap) calculations. For this reason we also
carried out TDDFT calculations as well so that we can
accurately compare experimental energy gap values with optical
gap (section 3.3).
We have already explained above that the N-dependence of

the gap can be described more accurately, compared to the D-
variation; therefore Figure 5 shows N-dependent energy gap
(HOMO−LUMO gap) fit for spherical dots together with the
elongated dots grown along the [111] direction and
reconstructed dots. It is clear from the comparison between
eqs 3 and 4 that the energy gap values of infinite crystal
(parameter A), for both spherical and elongated dots, are
expectedly the same (within the statistical error margin).

= ± + ± ×

= ± + ± ×

−

−

E N N

E N N

( ) (1.38 0.1) (11.4 0.2)

( ) (1.41 0.1) (11.2 0.3)

HL,spherical
1/3

HL,elongated
1/3

(4)

Figure 6 shows the distribution of the highest occupied
molecular orbitals (HOMOs) and lowest unoccupied molecular
orbitals (LUMOs) for all three candidate quantum dots. As we
can see in the figure, the HOMOs and LUMOs are mainly
localized in the interior of the dots for spherical and elongated

quantum dots (without reconstructions), whereas after
reconstruction, the HOMOs are localized inside and LUMOs
distributed on the surface near the reconstruction sites of the
quantum dots. This feature is also present in the work of ref 18
with which we agree. However, one must be careful when
making such comparisons because the isovalue used for the
drawing is very important. We can see in Figure 6 the
representation drawn at <0.02 is different from expectations (as
we observed in smaller dots <15 Å). Hence, special care must
be taken in making such graphical representations.
Clearly, for small−medium size dots the spherical dots have

larger gaps compared to reconstructed dots and, therefore, on
the basis of “kinetic stability” (or chemical hardness) would be
expected to be more stable with the highest HOMO−LUMO
gap for a given diameter compared to elongated dots. For larger
dots as n → ∞ the results for spherical and elongated dots, as
would be expected, are practically identical. Concerning
spherical dots, for which we have considered a much larger
number of sizes (larger number of points in the graph), the
results obtained here agree with our previous calculations4,5 and
with experimental results. For spherical and elongated dots,
quantum confinement fit produces excellent results with good
match to the experimental values for the HOMO−LUMO gap.
Due to the good quality of the fit one can predict a HOMO−
LUMO gap for the infinite system; obviously, reconstructed
dots are not expected to, and they do not follow such a fitting
scheme because of their random size dependence behavior for
large sizes.

3.3. Optical Properties. We perform TDDFT/B3LYP/
SVP level calculations for optical properties taking into account
for spherical dots and some selected candidate dots of
elongated and reconstructed growth models. We present
optical properties in the form of diagrams of N-dependence
and D-dependence of the optical gap (where D and N
correspond to the diameter and number of heavy atoms of dots,
respectively). In Figure 7, during the fitting process we consider
our small spherical dots (black spheres),5 and then we place
larger dots (blue triangles) which nicely follow the fitting curve.
The infinite crystal optical gap compared with experiment

results is in very good agreement (larger dots are not included
yet), hence results of fitting function can be observed

Figure 4. Representation of the HOMO−LUMO gap energy
dependence on the diameter of the dots for spherical and elongated
quantum dots.

Figure 5. Plot corresponding to the HOMO−LUMO gap energy
dependence on the number of Si atoms for spherical and elongated,
whereas reconstructed quantum dots are shown as random points.
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= ± + ± × −E D D( ) (1.14 0.1) (37.3 0.4)OPT,spherical
1

(5)

The results in Figure 8 include in the fitting process large
spherical dots (in addition to the small ones which are shown in
Figure 7), which were not included in the fitting process of
Figure 7. In the same we include some experimental results
from different research groups for comparison (Figure 8). First
of all, as we can see in the figure, the dispersion of the
experimental data for dots of similar or equal sizes is impressive
indeed. Besides uncertainties in the determination of diameters,
such scattering of the experimental data is related also to
different ways of preparation (for example, gas phase, solution,
etc.) and various surface conditions (ligands, etc.). Our data
and their expansion, through their fitting scheme, completely
free from any influence or bias from experimental data,
constitute true reference points and testing grounds, serving
also as clear and accurate guiding lines and virtual “yard sticks”
from all sizes. This is because the fit and the resulting

interpolation−extrapolation formula are of excellent quality, as
can be seen also from the numerical values (and interpretation)
of the fitted parameters and their statistical error bars

= ± + ± × −E D D( ) (1.08 0.1) (36.3 0.5)OPT,spherical
1

(6)

As can be seen, we have obtained the experimental value of
the gap with almost “chemical accuracy”. Clearly, the optical
(energy) gap value, which is 1.08 eV, is improved compared to
the previous fitting results (Figure 7) and in a perfect
agreement with the experiment value (i.e 1.1 eV). As we can
see in the figure, the randomly chosen small elongated dot
shows slightly smaller optical gap for that particular size,
compared to the corresponding spherical dot. For larger sizes,
as D → ∞, the results will coincide.
In addition to the D-dependence of the optical gap, Figure 9

shows the variation of the optical gap in terms of the number of
silicon atoms of spherical quantum dots. The quality of the fit,
as shown above (for the D-dependence), is excellent and even
more improved since there is not additional uncertainty about
the exact determination of the diameter D. The new parameters
are given by the following equation

= ± + ± × −E N N( ) (1.09 0.1) (10.4 0.1)OPT,spherical
1/3

(7)

The agreement with experiment is excellent.
We also present IR spectra in Figure 10 of one candidate

structure of each growth model. First peaks correspond to the
Si−H bonding frequencies, and second large peaks shows Si−Si
bond frequencies.

3.4. Cohesive Properties. In this section we discuss
cohesive/binding/atomization properties of our spherical,
elongated, and reconstructed quantum dots. We investigate
cohesive properties by calculating binding/atomization energy
and cohesive energy per silicon atom as a function of number of
silicon atoms (or N-dependence of binding and cohesive energy
using eq 1) for all three growth models (see Figures 11 and 12).
Binding energy of a quantum dot is defined as

= + −N E N E H EBE (Si) ( ) [Si H ]N NQD Si H QD Si H (8)

Figure 6. Highest occupied molecular orbital (HOMO)−lowest unoccupied molecular orbital (LUMO) graphical representation of Si281H172
(spherical), Si274H168 (elongated), and Si274H120 (reconstructed) quantum dots at isovalue 0.02 and 0.03, respectively.

Figure 7. Plot showing optical gap versus diameter of spherical
quantum dots. The black dots represent our previous work,5 whereas
blue triangles are from our current work (last five dots).
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where NSi and NH represent total number of silicon and
hydrogen atoms, respectively, within the silicon quantum dot;
E(Si) and E(H) are energies of single silicon and hydrogen
atom, respectively; and EQD[SiNSi

HNH
] represents total energy of

the quantum dot. Figure 11 shows binding energy per silicon
atom as a function of the size of spherical, elongated, and
reconstructed quantum dots. In this diagram, the reconstructed
dots are artificially appearing as less stable compared to
spherical and elongated dots because the contribution of
surface hydrogens is not taken fully and correctly into account.
When this is properly done (with the definition of cohesive
energy), as will be shown below, the reconstructed dots would
be clearly more stable as would be expected. In agreement with
the relative size of the HOMO−LUMO gap, we can verify in
Figure 11 that the spherical dots (for small and medium sizes)
are more stable compared to the elongated dots. Furthermore,

as was explained earlier in the discussion for the size variation
of the energy gap, the binding energy should follow a N−1/3 size
dependence.36,37 As was demonstrated by Zdetsis et al.,36,37 this
type of fitting process can reproduce with chemical accuracy the
cohesive energy of the infinite crystal, provided the proper
functional (or meta-functional) has been chosen. The
parameters obtained from the fit for the binding energy using
the B3LYP functional are

= ± + ± ×

= ± + ± ×

−

−

E N N

E N N

( ) (4.13 0.1) (9.9 0.6)

( ) (4.14 0.3) (9.2 1.0)

B,spherical
1/3

B,elongated
1/3

(9)

The extrapolated values of the binding energy of the infinite
crystal are 4.13 eV/atom and 4.14 eV/atom for spherical and
elongated dots, respectively, whereas the experimental value is
4.63 eV/atom.38 This result is quite good (especially when
considering the simplicity of the method versus other high level
direct methods) but is not so “spectacular” as for the energy
gap, for which the superiority of the B3LYP functional for
silicon has been demonstrated earlier by Zdetsis et al.35

Apparently, B3LYP is not as good for cohesive properties as for
electronic and optical properties. This is also verified by the
plot (and fit) of the “cohesive energy” (instead of binding
energy per atom), shown in Figure 12 below.
In addition to (or instead of) the binding energy, one can use

the related, but not identical, concept of the “cohesive energy”
to describe the cohesive properties of the nanocrystals in a
“more uniform way”. The cohesive energy deals with the
binding energy of the Si core for which the interaction of the
surface atoms has been taken into account in a uniform way
through the introduction of the chemical potential of hydrogen.
This way, reconstructed nanocrystals, which by construction
have a much smaller number of passivating hydrogen atoms,
would naturally appear more stable, which is obviously true.
Thus, although reconstructed nanocrystals, which technically
have appeared to be less stable on the basis of binding energy

Figure 8. Plot showing the energy (optical and H−L) gap with respect to the diameter of the spherical quantum dots (red) along with a few points
from reconstructed (green) and elongated (blue) quantum dots. We also include some experimental results19−25 from different research groups for
comparison. Dotted rectangles correspond to the visible-light range, and the black star (inset) shows the experimental band gap value for silicon.

Figure 9. Plot showing optical gap energy dependence on the number
of Si atoms for spherical quantum dots, whereas one point from
reconstructed and elongated quantum dots represents comparison.
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per (Si) atom, would be more stable by the use of cohesive
energy. As we can see in Figure 12 this is clearly so. The
cohesive energy is defined as

μ= +E N[BE ]Coh,QD QD H H (10)

where BEQD is the binding energy of the quantum dot; μH is
chemical potential of hydrogen; and NH is total number of
hydrogen atoms in a quantum dot. Figure 12 shows the plot of
cohesive energies versus the number of silicon atoms, fitted to
the same N−1/3 linear dependence as the binding energy per
atom. The new parameters have been somewhat improved as
can be seen in the following relations

= ± + − ± ×

= ± + − ± ×

−

−

E N N

E N N

( ) (4.21 0.1) ( 4.4 0.1)

( ) (4.23 0.1) ( 4.7 0.5)

COH,spherical
1/3

COH,elongated
1/3

(11)

As we can see, these cohesive energy values for the infinite
crystal are closer to the experimental values, compared to the
binding energy per atom, but still not as satisfactory as the
energy gap or the cohesive energies of the MgH2 and BeH2
crystals.36,37 Nevertheless, it has been demonstrated here that
the cohesive energy, for obvious reasons, is a better criterion of
stability for Si nanocrystals (with a varying number of surface
hydrogens) compared to binding energy per (Si) atom.
To improve the calculated (extrapolated) cohesive energy of

the infinite crystal, we have recalculated below the cohesive
(and in part the optical) properties of selective silicon dots of
small, medium, and large (but not very large, due to
computational cost) sizes using the M06 meta-functional,
which was very successful for MgH2 and BeH2 nanocrystals.

3.5. Comparison with the M06 Meta-Functional.39 For
the reasons explained above, we have chosen to compare the
results for silicon nanocrystals obtained with the B3LYP

Figure 10. IR spectrum of spherical Si29H36, reconstructed Si26H18, and elongated Si26H42 quantum dots. The continuous curves are produced by
Gaussian broadening. Calculations were performed at the B3LYP/SVP level.

Figure 11. Plot presenting binding energy per Si atom depending on
number of Si atoms for spherical, elongated, and reconstructed
quantum dots.

Figure 12. Plot corresponding to the cohesive energy per Si atom
dependence on the number of Si atoms for spherical, elongated, and
reconstructed quantum dots.
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functional with similar results using the M06 (Meta) functional,
using the same fitting scheme and procedures.
Figure 13 represents the N-dependence of the cohesive and

binding energy per silicon atom of small and medium size dots,
using the M06 functional. As we can see, in contrast to Figures
11 and 12 (with B3LYP results), the M06 functional
significantly improves (increases) both binding and cohesive
energy per atom of the infinite system. However, at the same
time it overestimates both of them. As was mentioned by
Zdetsis et al.,36,37 the M06 functional is very reliable for
cohesive properties, but for silicon it seems that its success is
not as dramatic as for the metal hydrides. This is partly due to
an inadequate number of points in the fit (as is indicated by the
larger uncertainties in the infinite energy parameter A, ±0.58

and ±0.39 eV in both cases compared to ±0.1 and ±0.1 eV for
B3LYP). Needless to say, the experimental value of 4.63 eV for
the cohesive energy is in fact obtained within the calculated
statistical uncertainty of ±0.4 or ±0.5 eV, but this is not
enough. Another possible reason for the not so good
performance of the M06 functional is the geometry
reoptimizations we have performed with this functional to
obtain the (new) equilibrium geometries corresponding to the
calculated cohesive and binding energies. As was shown by
Zdetsis et al.,36,37 although the M06 functional is very good for
energies, it is not so good for geometries. This is why in the
calculations of cohesive properties in refs 36 and 37 the
geometries were optimized using the PBE functional, before the
energies were computed by single-point M06 calculations. It is

Figure 13. N-dependence of the binding energy per heavy atom and cohesive energy per heavy atom comparison using the M06 functional.

Figure 14. D-dependence and N-dependence of HOMO−LUMO gap comparison using B3LYP and M06 functionals.
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anticipated that when we recalculate the equilibrium geometries
and add more points in the fit the cohesive energy would
improve significantly (perhaps close to the experimental value).
This remains to be seen in future work.
In addition to the comparisons of cohesive and binding

energies we have also performed comparisons for the electronic
and optical gaps, for which we have already shown the excellent
performance of the B3LYP functional. The results of such
comparisons are shown in Figure 14, which shows both D-
dependence and N-dependence of the HOMO−LUMO gap of
small and medium size (limited data sets) spherical silicon
quantum dots. Red squares represent B3LYP results, and blue
squares show M06 results. Red and blue curves correspond to
the fit using eq 1. Clearly, the M06 functional significantly
overestimates the HOMO−LUMO gap of each of the dots and
consequently the infinite band gap compared with the B3LYP
functional. Therefore, the comparison with the experimental
energy gap is getting worse. Again, avoiding the M06 geometry
optimization could improve the results and the agreement with
experiment since M06 is not so good for geometry optimization
(we can observe in Figure 14 that M06 slightly reduces the Si−
Si bond length, as can be seen by the differences in the
diameters of nanocrystals containing the same number of Si
and H atoms).
3.6. Other Related Properties. There are in the literature

several empirical (to one degree or another) relationships27

connecting the dielectric constant (and/or the index of
refraction) for a substance with the band gap as the key
quantity. For example

= +
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟n

A
E B

1
g

2

(12)

where A = 13.6 eV and B = 3.4 eV.
Therefore, from the above empirical relation (and its various

extensions) one could have quick estimates of n (and epsilon) if
one wishes to rely on such methods. For obvious reasons, in
our fully ab initio study here we have not attempted to obtain
any such estimates.

4. CONCLUSIONS
In conclusion, we have thoroughly and systematically studied
the structural, cohesive, electronic, and optical properties of
small, medium, and large silicon quantum dots, up to 32 Å in
diameter (a total of 1017 atoms, i.e., 717 silicon atoms and 300
hydrogen atoms) in terms of size, growth pattern, and model
description. Our results are fully consistent with the quantum
confinement interpretation. An important, perhaps the most
important, outcome of such a study, besides the very
satisfactory agreement with experimental measurements for
nanocrystals (up to 32 Å in diameter), is the judicious
extrapolation of the nanoscale results all the way to infinite
silicon crystal and the successful comparison with experiment
for both the energy gap and the cohesive energy of crystalline
silicon. We have found that the 1/3 expected dependence37 of
the cohesive energy on the number of particles can be fully
appropriate and compatible with the gap size dependence on
the grounds that “kinetic stability” and cohesive stability should
vary in parallel, although this is not always valid.35 The optical
gaps of the nanocrystals, calculated with TDDFT, lead naturally
(in an unbiased way) to the prediction of the band gap of
crystalline silicon with almost chemical accuracy. The cohesive

energy of the infinite crystal has been also obtained with very
good accuracy, which, if needed, can be further improved in a
systematic way. Our present results for the band gaps, which
are based on our earlier findings for spherical Si quantum dots
up to 20 Å in diameter, are in full agreement with those results
and predictions. Thus, our results can serve as a “yard stick” for
a quick (and rather accurate) estimate of such fundamental
quantities.
Comparing the three different growth models (spherical,

elongated, and reconstructed) for small and medium size dots,
the reconstructed nanocrystals are more stable in comparison
to both unreconstructed ones. The spherical ones are more
stable (and with larger HOMO−LUMO gaps) compared to the
elongated dots. However, for large enough nanocrystals the
stability and energy gaps become similar, and for very large dots
(as n → ∞) the results practically coincide, as would be
expected.
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