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Functional MRI studies suggest that at least three brain regions in human visual cortex—the parahippocampal place area (PPA),
retrosplenial complex (RSC), and occipital place area (OPA; often called the transverse occipital sulcus)—represent large-scale informa-
tion in natural scenes. Tuning of voxels within each region is often assumed to be functionally homogeneous. To test this assumption, we
recorded blood oxygenation level-dependent responses during passive viewing of complex natural movies. We then used a voxelwise
modeling framework to estimate voxelwise category tuning profiles within each scene-selective region. In all three regions, cluster
analysis of the voxelwise tuning profiles reveals two functional subdomains that differ primarily in their responses to animals, man-made
objects, social communication, and movement. Thus, the conventional functional definitions of the PPA, RSC, and OPA appear to be too
coarse. One attractive hypothesis is that this consistent functional subdivision of scene-selective regions is a reflection of an underlying
anatomical organization into two separate processing streams, one selectively biased toward static stimuli and one biased toward
dynamic stimuli.
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Introduction
Visual scene perception is critical for our survival in the real
world. It is therefore reasonable to expect that the brain contains
neural circuitry specialized for processing the wealth of informa-
tion in natural scenes (Field, 1987; Vinje and Gallant, 2000; Bar,

2004; Geisler, 2008). At least three regions in the human brain—
the parahippocampal place area (PPA), the retrosplenial complex
(RSC), and the occipital place area (OPA)—produce larger blood
oxygenation level-dependent (BOLD) responses to scenes than to
isolated objects. These regions are therefore commonly consid-
ered to be involved in scene representation (Grill-Spector and
Malach, 2004; Dilks et al., 2013). The anatomical locations of
these regions are usually identified using functional localizers
(Spiridon et al., 2006). Each region of interest (ROI) is localized
by imposing a statistical threshold on the BOLD-response con-
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Significance Statement

Visual scene perception is a critical ability to survive in the real world. It is therefore reasonable to assume that the human brain
contains neural circuitry selective for visual scenes. Here we show that responses in three scene-selective areas—identified in
previous studies— carry information about many object and action categories encountered in daily life. We identify two subre-
gions in each area: one that is selective for categories of man-made objects, and another that is selective for vehicles and
locomotion-related action categories that appear in dynamic scenes. This consistent functional subdivision may reflect an ana-
tomical organization into two processing streams, one biased toward static stimuli and one biased toward dynamic stimuli.
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trast between scenes versus single objects. This localizer approach
implicitly assumes that all voxels within an ROI have similar
visual selectivity and that each ROI is functionally homogeneous
(Friston et al., 2006). However, recent reports suggest that sub-
regions within the PPA may differ in their visual responsiveness
(Arcaro et al., 2009), and that voxels within the PPA might have
heterogeneous spatial-frequency selectivity (Rajimehr et al.,
2011) and functional connectivity (Baldassano et al., 2013).
These findings suggest that the PPA, and perhaps other scene-
selective ROIs, might consist of several functional subdomains
that represent different visual information in natural scenes.

It is challenging to assess visual representations in scene-
selective areas because they are thought to respond to higher-
order correlations among natural image features that cannot be
easily decomposed (Lescroart et al., 2015). This difficulty has
fueled ongoing debates about what specific types of information
are represented in these areas (Nasr et al., 2011). Previous studies
suggested that scene-selective areas might represent low-level in-
formation related to spatial factors (Epstein and Kanwisher,
1998; MacEvoy and Epstein, 2007; Park et al., 2007, 2011; Kravitz
et al., 2011b) and texture (Cant and Goodale, 2011), high-level
information related to scene categories (Walther et al., 2009;
Stansbury et al., 2013), and/or contextual associations (Bar et al.,
2008). Some evidence also suggests that the PPA, RSC, and OPA
represent specific object categories (Reddy and Kanwisher, 2007;
Macevoy and Epstein, 2009; Mullally and Maguire, 2011; Troiani
et al., 2014). A recent voxelwise modeling study from our labo-
ratory showed that some PPA voxels are selective for specific
categories of inanimate objects in natural scenes (Huth et al.,
2012). Furthermore, another voxelwise modeling study from our
laboratory showed that the fusiform face area (FFA), another
classical functional ROI that is also category-selective, consists of
several functional subdomains with diverse tuning properties
(Çukur et al., 2013b). Therefore, it is possible that scene-selective
areas might also comprise distinct functional subdomains with
different selectivity for object and action categories.

Here, we specifically assess the functional heterogeneity of
representations in the PPA, RSC, and OPA. We first recorded
BOLD signals evoked by a large set of natural movies. We then
used voxelwise modeling (Huth et al., 2012; Çukur et al., 2013a)
to determine how thousands of distinct object and action catego-
ries were represented in single voxels located within each of these
three ROIs. Finally, we performed cluster analysis on the mea-
sured category-tuning profiles to determine whether there are
functional subdomains with diverse tuning properties within
each ROI.

Materials and Methods
Subjects. Six healthy human subjects (S1–S6; mean age, 26.7 � 3.1 years;
five males; one female) with normal or corrected-to-normal vision par-
ticipated in the study. The study consisted of five separate scan sessions:
three sessions for the main experiment and two sessions for functional
localizers. The protocols for these experiments were approved by the
Committee for the Protection of Human Subjects at the University of
California, Berkeley (UCB). Written informed consent was obtained
from all subjects before scanning.

Main experiment. The main experiment was conducted in three sepa-
rate sessions. During each session, whole-brain BOLD responses were
recorded while subjects passively viewed a distinct selection of color
natural movies. Potential stimulus biases were minimized by selecting
the movies from a diverse set of sources as described by Nishimoto et al.
(2011). High-definition movie frames were cropped to a square aspect
ratio and down-sampled to 512 � 512 pixels (24 � 24°; the entire movie
stimulus used as stimuli in this study is available at http://crcns.org/

data-sets/vc/vim-2/about-vim-2). Subjects maintained steady fixation
on a color dot (0.16 � 0.16°) superimposed onto the movies and located
at the center of the visual field. The color of the dot changed at 3 Hz to
ensure continuous visibility. Stimulus presentation was performed with
an MRI-compatible projector (Avotec), a custom-built mirror system,
and custom-designed presentation scripts.

Two separate datasets were acquired for training and testing voxelwise
models. The training and test runs contained different natural movies,
and the presentation order of these runs was interleaved during each scan
session. A total of 12 training runs and 9 testing runs were acquired across
the three sessions. A single training run lasted 10 min and was compiled
by concatenating distinct 10 –20 s movie clips presented without repeti-
tion. A single testing run was compiled by concatenating 10 separate 1
min blocks in random order. Each 1 min block was presented nine times
across three sessions and evoked BOLD responses were averaged across
these repeats. To minimize the effects of hemodynamic transients during
movie onset, data collected during the initial 10 s of each run were dis-
carded. These procedures resulted in a total of 3600 and 270 data samples
for training and testing, respectively.

Note that these same data were analyzed in several recent studies from
our laboratory (Huth et al., 2012; Çukuret al., 2013a,b). Huth et al.
(2012) reported that category selectivity is organized in broad gradients
distributed across the high-level visual cortex, and that some PPA voxels
are selective for inanimate objects. However, that study did not system-
atically examine the variability and spatial organization of tuning for
nonscene categories within individual scene-selective ROIs. The work of
Çukur et al. (2013a) involved a study of selective attention with aims
unrelated to those of the present study. In a separate study, Çukur et al.
(2013b) discovered several functional subdomains within the FFA that
showed differences in category tuning.

Functional localizers. Functional localizer data were acquired indepen-
dently from the main experiment. Localizers for category-selective brain
areas consisted of six 4.5 min runs of 16 blocks. Each block lasted 16 s and
contained 20 static images randomly selected from one of the following
categories: objects, scenes, faces, body parts, animals, and spatially
scrambled objects (Spiridon et al., 2006). The presentation order of the
category blocks was randomly shuffled across runs. Within a block, each
image was flashed for 300 ms, followed by a 500 ms blank period. To
maintain vigilance, subjects were required to press a button when they
detected two identical consecutive images. The localizer for retinotopi-
cally organized early visual areas consisted of four 9 min runs containing
clockwise rotating polar wedges, counter-clockwise rotating polar
wedges, expanding rings, and contracting rings, respectively (Hansen et
al., 2007). The localizer for the intraparietal sulcus consisted of one 10
min run of 30 blocks. Each block lasted 20 s and contained either a
self-generated saccade task (among a pattern of targets) or a resting task
(Connolly et al., 2000). The localizer for the human motion processing
complex (MT�) consisted of four 90 s runs of 6 blocks. Each block lasted
15 s and contained either continuous or temporally scrambled natural
movies (Tootell et al., 1995).

MRI parameters. Data collection was performed at UCB using a 3 T
Siemens Tim Trio MRI scanner (Siemens Medical Solutions) and a 32-
channel receiver array. T2

�-weighted functional data were collected using
a gradient-echo echo-planar imaging sequence with the following pa-
rameters: TR � 2 s; TE � 31 ms; a water-excitation pulse with flip angle
of 70°; voxel size, 2.24 � 2.24 � 3.5 mm 3; field-of-view, 224 � 224 mm 2;
and 32 axial slices for whole-brain coverage. Anatomical data were col-
lected using a T1-weighted magnetization-prepared rapid-acquisition
gradient-echo sequence with the following parameters: TR � 2.30 s,
TE � 3.45 ms, flip angle � 10°, voxel size � 1 � 1 � 1 mm 2, field-of-
view � 256 � 256 � 192 mm 3.

Data preprocessing. Functional brain volumes acquired in individual
scan sessions were first motion-corrected and then aligned to the first
session of the main experiment using Oxford Centre for Functional MRI
of the Brain’s Linear Image Registration Tool (Jenkinson et al., 2002). For
each run, the low-frequency drifts in BOLD responses of individual vox-
els were removed using a median filter over a 120 s temporal window.
The resulting time courses were normalized to have zero mean and unity
SD. After temporal detrending, no temporal or spatial smoothing was
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applied to the functional data from the main experiment. Functional
localizer data were also motion-corrected and aligned to the first session
of the main experiment. Following standard procedures, the localizer
data were smoothed with a Gaussian kernel of full-width at half-
maximum equal to 4 mm (Spiridon et al., 2006).

Definition of functional ROIs. Category-selective ROIs were function-
ally defined in individual subjects using standard procedures (Spiridon et
al., 2006). All scene-selective ROIs were defined from voxels with positive
scene-versus-object contrast (t test, p � 10 �4, uncorrected). The PPA
was defined as the contiguous cluster of voxels in the parahippocampal
gyrus, the RSC was defined as the contiguous cluster of voxels in the
retrosplenial sulcus, and the OPA was defined as the contiguous cluster of
voxels in the temporal-occipital sulcus with positive contrast. Additional
category-selective regions, including the FFA, extrastriate body area, and
lateral occipital complex, were defined using face-versus-object, body
part-versus-object, and object-versus-scrambled-object contrasts.

Retinotopically organized early visual areas (V1–V4, V3a/b, and V7)
were defined using standard retinotopic mapping techniques (Engel et
al., 1997; Hansen et al., 2007). Last, the intraparietal sulcus area was
defined as the contiguous cluster of voxels in the intraparietal sulcus that
yielded positive saccade-versus-rest contrast (t test, p � 10 �4, uncor-
rected). Area MT� was defined as the contiguous cluster of voxels in
lateral-occipital lobe that yielded positive continuous-versus-scrambled-
movie contrast (t test, p � 10 �4, uncorrected).

Voxelwise encoding models. Separate voxelwise encoding models
were fit to data from the main experiment to measure tuning for
object and action categories, for spatial structure of visual scenes, and
for elementary visual features. Each encoding model comprised a
basis set of visual features (e.g., hundreds of distinct object categories)
hypothesized to be represented in cortical voxels. The first step in
building a voxelwise model is to quantify the time course of individual
features across the movie stimulus. This was achieved by projecting
the stimulus separately onto each feature in the basis set. Taking
stimulus projections onto the model features as explanatory variables,
encoding models were then fit to best predict measured BOLD re-
sponses. These quantitative models represent weighted linear combi-
nations of features that best describe the relationship between natural

movies and evoked BOLD responses. Therefore, the model weights
for each voxel represent its selectivity for individual features in the
basis set. The following sections describe the model bases and the
regression procedures used to fit the models.

Category model. A primary goal of the study reported here is to assess
category tuning within single voxels comprising scene-selective ROIs. To
accomplish this, we used a voxelwise category model that was previously
shown to accurately predict BOLD responses in high-level visual cortex
(Huth et al., 2012; Çukur et al., 2013a). The basis set for this category
model contained 1705 distinct object and action categories present in the
natural movie stimulus. Using terms from the WordNet lexicon (Miller,
1995), the salient categories were manually labeled as present or absent.
WordNet contains a semantic taxonomy that was used to infer the pres-
ence of more general categories. For example, a scene labeled with “baby”
must contain a “human,” a “living organism,” and so on. Scene labels
were assigned for every second of the movies, and aggregated across the
stimulus to find the time courses for all model features (i.e., categories) as
shown in Figure 1. Each time course was then temporally downsampled
to 0.5 Hz to match the fMRI sampling rate. To reduce spurious correla-
tions between global motion-energy and visual categories, a nuisance
regressor was included that characterized the time course of total motion
energy in the movie stimulus. Total motion energy was calculated as the
summed output of all spatiotemporal Gabor filters used in the motion-
energy model.

Gist model. One common view of scene-selective ROIs is that they
represent information about the spatial structure of visual scenes. To
measure selectivity for spatial texture and layout in single voxels, we fit a
separate gist model. The gist model has been shown to provide a good
account of spatial factors important for scene recognition, such as natu-
ralness, expansion, and openness (Oliva and Torralba, 2001). Gist alone
can be used to accurately distinguish scenes that belong to several differ-
ent high-level categories. The features of the gist model were extracted by
first spatially downsampling the movie stimulus to 256 � 256 pixels. A
total of 512 model features were then calculated across eight orientations
per scale and four spatial scales, where each scale was divided into 4 � 4
blocks. Finally, the time courses for all features were temporally down-
sampled to 0.5 Hz to match the fMRI sampling rate.

Figure 1. Voxelwise category models. A voxelwise modeling framework was used to measure category selectivity in single voxels from individual subjects. The WordNet lexicon was used to label
salient object and action categories in each 1 s segment of the movies (Miller, 1995). This labeling procedure produced for each category a separate binary variable that indicates its presence/absence
throughout the stimulus. The binary variables for 1705 distinct categories were taken as the stimulus features. Regularized linear regression was used to find a weighted sum of stimulus features that
best describe the measured BOLD responses. The resulting model weights characterize the selectivity of single voxels to 1705 distinct object and action categories.
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Motion-energy model. Many voxels throughout the visual system are
selective for elementary visual features, such as spatial location or spatio-
temporal frequency. To measure selectivity for elementary features in
single voxels, a motion-energy model was fit that was previously shown
to accurately predict BOLD responses to natural movies in retinotopi-
cally organized early visual areas (Nishimoto et al., 2011). This motion-
energy model contained 2139 spatiotemporal Gabor filters. Each filter
was a three-dimensional spatiotemporal sinusoid multiplied by a spa-
tiotemporal Gaussian envelope. Filters were computed at six spatial
frequencies (0, 1.5, 3, 6, 12, and 24 cycles/image), three temporal fre-
quencies (0, 2, and 4 Hz), and eight directions (0, 45, 90, 135, 180, 225,
270, and 315°). Filters were positioned on a square grid that spanned
24 � 24°. Filters at each spatial frequency were placed on the grid such
that adjacent filters were separated by a distance of 4 SDs of the spatial
Gaussian envelope.

Model fitting. All voxelwise models were fit using regularized linear
regression with an l2-penalty on model weights to prevent overfitting.
The temporal sampling rates of the stimulus and BOLD responses were
matched by down-sampling the stimulus time course twofold. Hemody-
namic response functions were modeled separately for each model fea-
ture using separate linear finite-impulse-response (FIR) filters. FIR filter
delays were restricted to 4 – 8 s (equivalently 2– 4 samples), and FIR co-
efficients were fit simultaneously with model weights to obtain high-
quality fits.

A 10-fold cross-validation procedure was used to optimize model
weights to predict BOLD responses in the training data (Fig. 1). In each
fold, 10% of the training data were randomly held out, and the models
were fit to the remaining data. Model performance was assessed on the
held-out data by calculating prediction scores, i.e., the correlation coef-
ficient (Pearson’s r) between the actual and predicted BOLD responses.
The optimal regularization parameter for each voxel was determined by
maximizing its prediction score. Finally, the optimal parameters were
used to refit the models to all training data in a single step.

Model performance was assessed on independent test data using a
jackknifing procedure. BOLD response predictions on the test data were
randomly resampled 10,000 times without replacement (at a rate of
80%). Model performance was measured as the average prediction score
across jackknife iterations. Model fitting was performed using custom
software written in Matlab (MathWorks). When necessary, significance
levels were corrected for multiple comparisons using false-discovery-rate
control (Benjamini and Yekutieli, 2001).

Variance partitioning analysis. Objects and actions in natural movies
can be correlated with lower-level visual features. It is therefore possible
that the category models estimated here might be biased by selectivity for
low-level features in scene-selective ROIs. To check for this potential
confound, we performed a variance partitioning analysis. This analysis
corrects the response variance explained by the category model to ac-
count for variance that can be attributed to low-level features captured by
the gist or motion-energy models. To do this, we separately measured the
variance explained when all three models (category, gist, and motion
energy) are fit simultaneously, the variance explained when two models
are fit simultaneously, and the variance explained by regressors of indi-
vidual models. The proportion of variance for each model was calculated
with respect to the variance explained by the simultaneous fit of all three
models. Leveraging simple set-theoretic relations among the measure-
ments, we extracted the proportion of unique variance explained by each
model, and the proportion of shared variance explained commonly by
multiple models.

Cluster analysis. The core issue that we address in this report concerns
whether category selectivity is heterogeneous across voxels located within
scene-selective ROIs. To investigate this issue, we performed separate
cluster analyses on voxelwise tuning profiles measured within the PPA,
RSC, and OPA. The analyses were first run at the group level by pooling
tuning profiles in each ROI across subjects. This group analysis yields
common cluster labeling and facilitates comparisons among subjects. To
ensure that the group clusters were consistent at a single subject level,
cluster analyses were also repeated in individual subjects. The cluster
solutions were compared by calculating the correlation coefficient be-
tween the obtained cluster centers.

We examined the group structure among ROI voxels using a sensitive
spectral-clustering algorithm (Ng et al., 2001). The dissimilarity between
pairs of tuning profiles was characterized by a normalized Euclidean-
distance measure. To determine the number of clusters in the data, we
used an unsupervised stability-based validation method (Ben-Hur et al.,
2002; Handl et al., 2005). This validation method repeats the clustering
analyses for a given number of clusters on random subsamples of the
data. The stability for a given number of clusters is measured as the
similarity between the cluster solutions on different subsamples. By re-
peating this procedure many times, the empirical probability distribu-
tion of clustering stability is obtained. If the number of clusters is
appropriate for the data, then the cluster solutions should be stable. In
contrast, if a suboptimal number is chosen, then the cluster solutions
should be unstable.

Here we estimated the probability distribution of clustering stability
by a random subsampling procedure repeated 5000 times. To enhance
sensitivity, this procedure was performed after pooling voxels within
each area across subjects. During each repeat, 80% of voxels were ran-
domly selected without replacement twice, and the cluster solutions of
this pair of subsamples were compared. The similarity of the solutions
was quantified using the Jaccard Index (Jaccard, 1908). The cumulative
distribution of clustering stability was estimated using normalized histo-
grams (for a bin width of 0.005) across 5000 repeats. In this analysis,
distributions of stable cluster solutions will be concentrated around unity
similarity values, whereas distributions of unstable solutions will be more
variable. For this reason, we determined the optimal number of clusters
by comparing the value of the cumulative distribution functions at a high
stability threshold for different numbers of clusters (Ben-Hur et al., 2002;
Çukur et al., 2013b). A stability threshold of 0.9 was used here based on
previously suggested values (Ben-Hur et al., 2002), but similar results
were obtained for threshold values in the 0.80 – 0.95 range.

Functional importance of heterogeneous selectivity. Here we assessed
heterogeneous selectivity in scene-selective ROIs in two steps: we first fit
encoding models to measure category selectivity in individual voxels; we
then clustered the model weights to identify subdomains within each
ROI. We performed two complementary analyses to evaluate both the
functional importance of intervoxel differences in selectivity and inter-
cluster differences in selectivity. First we asked whether individual voxels
in each ROI show significant heterogeneity that would justify a cluster
analysis. We reasoned that if model weights are significantly different
across voxels, then a model fit to an individual voxel (self-prediction)
should explain more of that voxel’s responses than is explained by models
fit to other voxels within the ROI (cross-prediction). We thus compared
self-prediction and cross-prediction in terms of the proportion of vari-
ance explained in held-out test data.

Next we asked whether the voxel clusters within each ROI show func-
tionally important differences in selectivity. If selectivity is significantly
different across clusters, then a target voxel’s responses should be better
explained by models fit to other voxels in the same cluster (within-cluster
prediction) than it is by models fit to voxels in a different cluster (cross-
cluster prediction). Therefore we compared within-cluster and cross-
cluster prediction in terms of proportion of explained variance. This
analysis was repeated by obtaining separate predicted responses using
category, gist, and motion-energy models. In both analyses of heteroge-
neity, the proportion of variance for each model was calculated with
respect to the variance explained by the simultaneous fit of all three
models. Significant differences were assessed with bootstrap tests.

Visualization of cluster centers. To interpret differences between the
cluster centers, we visualized the mean tuning profile of each cluster
within its optimal model space. For the category model, a graphical tree
was constructed to visualize category responses to distinct objects and
actions. The vertices of the graph corresponded to 1705 distinct catego-
ries. The connecting edges of the graph represented the hierarchical re-
lationships between these categories as given by WordNet. The size and
color of vertices represented the magnitude and sign of the category
responses, respectively. For the motion-energy model, line plots were
used to visualize the responses to distinct spatiotemporal frequencies.

Visualization on cortical surfaces. To understand the spatial organiza-
tion of subregions within classical scene-selective ROIs, we projected
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category selectivity onto flattened cortical surfaces. The surfaces were
reconstructed in each individual subject from T1-weighted brain scans.
These anatomical data were processed in Caret for gray–white matter
segmentation (Van Essen et al., 2001). Surfaces were constructed from
the segmentations separately for each hemisphere. The cortical surfaces
were then flattened after applying five relaxation cuts placed so as to
minimize spatial distortion. To project voxelwise category models onto
the generated flat maps, functional data were aligned to the anatomical
data using in-house Matlab scripts (MathWorks). These scripts used
affine transformations to manually coregister three-dimensional func-
tional and anatomical datasets (Hansen et al., 2007).

Spatial segregation of voxel clusters. The cluster analysis procedure de-
scribed above was applied to voxelwise tuning profiles without including
any information about the spatial location of the voxels. Thus, that anal-
ysis alone does not provide any information about whether clusters iden-
tified within scene-selective ROIs are spatially segregated in the cortex. If
clusters are segregated spatially, then the three-dimensional anatomical
distances among voxels within each cluster should be smaller than the
distances among voxels between different clusters. In contrast, if clusters
are intermingled, within-cluster and between-cluster distances should be
similar. Therefore, to determine whether functionally distinct clusters
are also clustered anatomically, we first measured the three-dimensional
anatomical distance between every pair of voxels within each individual
brain, and we then aggregated these distances within and between clus-
ters separately. We used bootstrap tests to compare these distances to null
distributions of within-cluster and between-cluster distances obtained
by randomly shuffling the anatomical locations voxels in each individual
ROI and in each individual brain.

Results
Representation of nonscene categories in the PPA, RSC,
and OPA
There is substantial evidence that the three scene-selective areas
examined here—the PPA, RSC, and OPA—represent informa-
tion about natural visual scenes (Grill-Spector and Malach, 2004;
Spiridon et al., 2006; Nasr et al., 2011). However, these areas also
appear to represent information about nonscene categories
(Huth et al., 2012; Stansbury et al., 2013), though this is poorly
understood. Because natural scenes contain many distinct objects
and actions, elucidating the representations of objects and ac-
tions in scenes is a challenging problem. To investigate this issue,
we assessed selectivity for hundreds of object and action catego-
ries in the PPA, in the RSC, and in the OPA. We recorded BOLD
responses from six subjects who viewed 2 h of natural movies,
and we fit category models to each individual voxel in every sub-
ject. This enabled us to estimate voxelwise selectivity for 1705
separate object and action categories (Fig. 1). We find that the
category model yields significant prediction scores in all ROIs:
0.38 � 0.08 in the PPA (correlation; mean � SD across subjects),
0.38 � 0.09 in the RSC, and 0.40 � 0.06 in the OPA. All these
values are statistically significant (p � 10�4, bootstrap test). As a
control, we fit separate gist models that reflect voxelwise selectiv-
ity for the spatial texture and layout of visual scenes. The gist
model also yields significant prediction scores: 0.12 � 0.03 in the
PPA, 0.11 � 0.08 in the RSC, and 0.11 � 0.03 in the OPA (p �
10�4). However, the category model performs significantly bet-
ter than the gist model in all three ROIs (p � 10�4). These results
indicate that voxel responses in scene-selective areas carry signif-
icant information about object and action categories in natural
scenes.

Figure 2. Selectivity for object and action categories. a, Three separate models were esti-
mated for each voxel: a category model that describes selectivity for object and action catego-
ries; a gist model that describes selectivity for spatial structures of scenes; and a motion-energy
model that describes selectivity for low-level visual features. Models were validated by predict-
ing BOLD responses in a separate dataset reserved for this purpose. A variance partitioning
analysis was used to estimate the proportion of response variance predicted uniquely by each
model and jointly by multiple models (see diagram). b, The proportion of variance explained
uniquely by category, gist, and motion-energy models in each ROI (mean � SEM across sub-
jects). In early retinotopic visual areas (RET), the category model does not explain variance
beyond what can be attributed to selectivity for spatial structure or low-level visual features. In
contrast, the category model explains a significant portion of variance in scene-selective ROIs
( p � 10 �4, bootstrap test). This result suggests that selectivity for nonscene categories in the
PPA, RSC, and OPA cannot be fully explained by selectivity for spatial structure captured by the
gist model or selectivity for low-level visual features captured by the motion-energy model. c,
The proportion of variance explained commonly by category/gist (C�G), category/motion-
energy (C�M), and gist/motion-energy (G�M) models in each ROI (mean � SEM

4

across subjects). A relatively small portion of variance is explained jointly by category and
motion-energy models (p � 10 �4). Therefore, to reduce spurious correlations, a nuisance
motion-energy regressor was included in the category models during subsequent analyses.
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While early visual areas are commonly
thought to represent low-level stimulus
features (Grill-Spector and Malach, 2004;
Kay et al., 2008), recent studies suggest
that downstream scene-selective areas
might represent both low-level features
(Rajimehr et al., 2011) and global spatial
structure (Walther et al., 2009, 2011;
Kravitz et al., 2011b). Because objects and
actions in natural movies are partly corre-
lated with low-level features, the category
models estimated in scene-selective ROIs
might be biased. Thus we sought to deter-
mine whether the category model still ex-
plains a significant portion of the response
variance in the PPA, RSC, and OPA, after
accounting for variance that can be attrib-
uted to low-level features or scene struc-
ture. We used a variance partitioning
analysis to address this issue (Fig. 2a; see
Materials and Methods). The variance
partitioning analysis included three sepa-
rate models: the category and gist models
discussed above and a separate motion-
energy model that characterizes voxel se-
lectivity for low-level structural features,
including spatial position, spatiotemporal
frequency, and orientation. We calculated
the proportion of shared variance ex-
plained by multiple models and the pro-
portion of variance explained uniquely by
each model.

We performed the variance partition-
ing analysis for each of our subjects indi-
vidually, focusing on retinotopically
organized early visual areas (V1–V3) and
the PPA, RSC, and OPA (Fig. 2b). If the
category model explains a portion of the
response variance that cannot be attrib-
uted to the motion-energy or gist models,
then addition of the category model re-
gressors should improve the total
explained variance. We find that the per-
centage of explained variance that can be
attributed uniquely to the category model
is 39.4 � 7.3% (mean � SD across sub-
jects) in the PPA, 43.8 � 11.0% in the
RSC, and 39.2 � 6.7% in the OPA (p �
10�4, bootstrap test), but it is insignifi-
cant in retinotopic areas (p � 0.3). This
result suggests that scene-selective areas
represent significant information about
object and action categories in natural
scenes. Importantly, the variance parti-
tioning procedure ensures that this information cannot be attrib-
uted to selectivity for low-level features as reflected in the gist or
motion-energy models. At the same time a relatively small por-
tion of variance is explained commonly by category and motion-
energy models (p � 10�4; Fig. 2c). Therefore, to reduce spurious
correlations in subsequent analyses presented in this paper, a
nuisance motion-energy regressor was included in the category
models (see Materials and Methods).

Functional heterogeneity in the PPA, RSC, and OPA
Several recent studies report that subregions within the PPA vary
in their visual responsiveness and spatial-frequency tuning (Ar-
caro et al., 2009; Rajimehr et al., 2011; Baldassano et al., 2013).
These findings suggest that the PPA, and perhaps other scene-
selective ROIs, might contain multiple subdivisions with differ-
ent category selectivity. To test this heterogeneity hypothesis, we
first sought to determine whether individual voxels in the PPA,
RSC, and OPA differ in their tuning for object and action catego-

Figure 3. The optimal number of clusters for each scene-selective ROI. An unsupervised stability-based validation technique
was used to determine the optimal number of clusters in three scene-selective ROIs. a, Cluster analysis for the PPA. Left, The
cumulative distribution function of clustering stability, FJ( j), shown as a function of number of clusters (k) ranging from 2 to 7.
Right, Change in value of FJ across consecutive k at a stability threshold of J � 0.9 (Ben-Hur et al., 2002). The optimal k was
identified by detecting a sudden transition from narrow to widespread distributions. This transition was identified by a large
increase in the value of FJ when gradually increasing the number of clusters. The optimum number of clusters in the PPA is two
(data are aggregated across subjects and hemispheres). b, Cluster analysis for the RSC. Format same as in a. The optimum number
of clusters in the RSC is two. c, Cluster analysis for the OPA. Format same as in a. The optimum number of clusters in the OPA is two.
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ries. We reasoned that if model weights are significantly different
across voxels within an ROI, then the category model fit to an
individual voxel (i.e., self-prediction) should explain more of that
voxel’s response than can be explained using category models fit
to other voxels (i.e., cross-prediction). Comparison of the self-
prediction and cross-prediction performance of category models
in all voxels within each ROI shows that self-prediction im-
proves explained variance by 24.1 � 9.5% in the PPA (mean �
SD across subjects), by 28.5 � 11.0% in the RSC, and by
25.0 � 15.4% in the OPA ( p � 10 �4, bootstrap test). These
results confirm that voxels within the PPA, RSC, and OPA are
functionally heterogeneous.

We next tested whether the heterogeneously tuned voxels in
scene-selective ROIs form distinct functional clusters. To do this,
we first applied spectral clustering to the voxelwise category
model weights obtained within each area. We performed a
stability-based validation procedure to determine the optimal
number of clusters in the PPA, RSC, and OPA separately, and we
measured cluster stability by repeating the cluster analysis 5000
times on subsets of voxels selected randomly in each random
draw (see Materials and Methods). We find that in all three ROIs,
the optimal number of clusters based on the category model is
two (Fig. 3; for voxel numbers across clusters, see Table 1). To
determine whether these clusters are consistent across subjects,
we measured the intersubject correlation of cluster centers, where
the cluster center was taken as the average model weight within a
cluster. We find that individual-subject clusters are highly con-
sistent across subjects (r � 0.84 � 0.04 in the PPA, 0.81 � 0.03 in
the RSC, and 0.72 � 0.04 in the OPA; mean � SD across subjects,
p � 10�4, bootstrap test), and that they are consistent with the
group clusters (0.92 � 0.03 in the PPA, 0.91 � 0.02 in the RSC,
and 0.87 � 0.04 in the OPA, p � 10�4). For comparison, we also
performed the same cluster analysis procedure separately using the
gist model and the motion-energy model. In all three ROIs, the op-
timal number of clusters based on the gist and motion-energy mod-
els is one. Together, these results confirm that voxels within the PPA,
RSC, and OPA are functionally clustered according to their category
selectivity, but they are not clustered for lower-level features.

We next examined whether the differential category selectivity
between these two voxel clusters are functionally important. We
reasoned that if the intercluster differences are important, a target
voxel’s responses should be better explained by models fit to
other voxels in the same cluster (within-cluster prediction) than
by models fit to voxels in a different cluster (cross-cluster predic-
tion). Therefore, we simply compared the within-cluster and
cross-cluster prediction performance in the PPA, RSC, and OPA.
Separate response predictions were obtained using category, gist,
and motion-energy models (Fig. 4). We find that within-cluster
performances based on category models are significantly higher
than cross-cluster performances in all three ROIs (p � 0.001,
bootstrap test). For category models, percentage improvement in

explained variance is 6.3 � 3.6% (mean � SEM across subjects)
in the PPA, 6.0 � 3.2% in the RSC, and 9.6 � 3.6% in the OPA.
These results strongly support the hypothesis that there are two
functional subdomains with distinct category tuning in the PPA,
RSC, and OPA.

To examine the differences in category tuning between these
subdomains, we first visualized the cluster center weights for
1705 categories in each scene-selective ROI (Fig. 5 for group cen-
ters; see Figs. 12–14 for individual-subject centers). Figure 6 sum-
marizes the responses of each cluster to several important object
and action categories, along with response differences between
the two clusters. BOLD responses of both the first and second
cluster in each ROI (here denoted as PPA1, RSC1, and OPA1 for
cluster 1, and PPA2, RSC2, and OPA2 for cluster 2) increase when
structures, man-made instruments, vehicles, and movement are
present (p � 0.001, bootstrap test). Responses of these same
clusters are reduced by scenes presenting social communication,
such as people talking or gesturing (p � 0.001). Furthermore,
both clusters yield greater responses for man-made instruments
and vehicles than for buildings and geological formations (p �
0.001). However, in every ROI the two functional clusters differ
in their relative responses to these categories and to other ecolog-
ically relevant categories. Specifically, the first cluster (PPA1,
RSC1, and OPA1) produces relatively greater responses than the
second cluster when natural materials, body parts, humans, ani-
mals, and social communication are present in the movies (p �
0.05). In contrast, the first cluster produces relatively reduced
responses when the movies show movement, such as a moving
car or train, or a walking person (p � 0.001). Furthermore, re-
sponses in the RSC1 and OPA1 are reduced when vehicles are
present (p � 0.001). These results suggest that the first sub-
domain in scene-selective areas has stronger tuning for animate
objects and man-made instruments, while the second subdomain
is relatively more tuned for vehicles and action categories that
appear in dynamic visual scenes.

Table 1. Distribution of voxels across clusters identified in scene-selective ROIs

PPA1 PPA2 RSC1 RSC2 OPA1 OPA2

Total 277 243 185 228 223 184
S1 11 88 16 54 4 49
S2 36 11 13 19 7 6
S3 39 34 52 66 62 46
S4 59 28 13 22 68 30
S5 91 73 19 49 38 42
S6 41 9 72 18 44 11

The first row shows the total number of voxels within each cluster, pooled across subjects. Subsequent rows show
the number of voxels within each cluster in individual subjects (S1–S6).

Figure 4. Functional segregation of subdomains. If subdomains identified within an ROI are
functionally distinct, then the variance of a voxel’s response explained by other voxels in the
same subdomain (within-subdomain prediction) should be greater than the variance explained
by voxels in different subdomains (cross-subdomain prediction). We therefore compared
within-prediction and cross-prediction performances based on responses predicted by the cat-
egory, gist, and motion-energy models. Bar plots show the percentage difference in explained
variance in the PPA, RSC, and OPA (mean � SEM across subjects). Greater percentages indicate
better within-prediction than cross-prediction performance. Insignificant differences are
shown in blank outlines ( p � 0.05). In all ROIs, the within-prediction performance of the
category model is greater than the cross-prediction performance ( p � 0.001, bootstrap test).
This result suggests that there are functional subdomains with distinct category tuning in the
PPA, RSC, and OPA.
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Figure 5. Category tuning of the voxel clusters. Category tuning of the two functional subdomains identified in each scene-selective ROI. For each cluster, category tuning was taken as the mean
tuning profile of all voxels within the ROI (data are aggregated across subjects and hemispheres). Tuning for 1705 categories are shown here using graphs that consist of separate trees for object
(main tree, circular vertices) and action (smaller trees, square vertices) categories. To orient the reader, a subset of the categories has been labeled. The size of each vertex indicates the magnitude
while its color indicates the sign (red, �; blue, �) of the category response relative to the mean overall response. Left, Responses of PPA1, RSC1, and OPA1 are (Figure legend continues.)
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Several recent studies have reported variability in visual selec-
tivity across the anterior–posterior axis of the PPA that also ex-
tends into neighboring patches of the cortex (Arcaro et al., 2009;
Rajimehr et al., 2011; Baldassano et al., 2013). It is therefore
possible that category tuning follows a similar organization
within and nearby the three scene-selective areas examined here.
Alternatively, voxel clusters may show a patchy, noncontiguous
spatial distribution (Grill-Spector et al., 2006). To examine this
issue, we measured the category tuning profiles of all voxels
within a 40 mm radius of the geometric center of each scene-
selective ROI in each hemisphere. Separate principal component
(PC) analyses on category tuning profiles of voxels located within
each cluster reveal that the two clusters are clearly distinguished
by the first PC in each of the three ROIs (see below, PC analyses of
category models). To visualize these patterns, we mapped the first
PC projections of 1705-dimensional tuning profiles onto the cor-
tical surface. In Figure 7, voxels that belong to PPA1, RSC1, and
OPA1 have positive projections onto the first PC, while voxels in
PPA2, RSC2, and OPA2 have negative projections. Inspection of
these projections on cortical flatmaps suggests that voxels in the
first cluster tend to be located approximately in posterior-lateral
regions, and voxels in the second cluster tend to be located more
anteriomedially. Supporting this observation, a statistical analy-
sis indicates that there is significant spatial segregation between

the two clusters (p � 0.01, bootstrap test; see Materials and
Methods). On the other hand, this segregation is not complete
and some degree of intermixing between the clusters appears to
occur within each ROI. Together, these results imply that cate-
gory representation across the PPA, RSC, and OPA are likely
organized by both monotonic gradients and distributed peaks of
selectivity.

PC analyses of category models
Evidence from recent studies suggests that the human brain em-
beds visual categories into a relatively low-dimensional semantic
space mapped systematically across the cortical surface (Haxby et
al., 2011; Huth et al., 2012). To obtain a data-driven description
of the semantic information represented in scene-selective areas,
we performed PC analyses across voxelwise category models. We
assessed the consistency of representations across subjects by
evaluating the cross-subject correlations between the PCs esti-
mated for individual subjects (Huth et al., 2012). To avoid
stimulus-sampling bias, we measured correlations between PCs
that were estimated separately from responses to the first and
second halves of the movies. We find that the first three
individual-subject PCs are highly correlated across subjects (r �
0.61 � 0.02 in the PPA, 0.54 � 0.01 in the RSC, and 0.57 � 0.01
in the OPA; mean � SD across subjects, p � 10�4, bootstrap
test). These individual-subject PCs are also highly correlated with
the group PCs in all three areas (0.71 � 0.03 in the PPA, 0.62 �
0.01 in the RSC, and 0.64 � 0.02 in the OPA, p � 10�4).

Our cluster analyses indicate that voxels in each of the three
ROIs form two clusters that differ in their category tuning. To
examine the semantic dimensions that capture these tuning dif-
ferences, we projected the voxelwise tuning profiles onto the first

4

(Figure legend continued.) strongly increased by the presence of man-made instruments,
devices, vehicles, structures, roads, and locations (e.g., city, grassland), and they are weakly
increased by the presence of humans. Right, Responses of PPA2, RSC2, and OPA2 are strongly
increased by the presence of vehicles, roads, and traveling, and they are strongly reduced by
animals, plants, natural materials, body parts, and communication.

Figure 6. Predicted differences in category responses across clusters. The voxelwise category models fit to all voxels within each subdomain were used to estimate predicted responses to
geographic locations, structures (e.g., building), instruments, vehicles, movement, natural materials, humans, social communication, body parts, and animals. The response level for each of these
superordinate categories was taken as the average response across all of its subordinate categories included in the category model. Bar plots show the response level (mean � SEM across subjects)
for the two subdomains in each ROI as well as their difference (right column). Significant responses are shown in dark gray (p � 0.05, bootstrap test) and insignificant responses are shown in light
gray. Relative to the second subdomain, the first subdomain is observed to respond less to traveling, and relatively more to most of the remaining categories including those related to humans,
communication, and structures.
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Figure 7. Cortical flatmaps of category selectivity within and outside scene-selective ROIs. To examine the spatial distribution of category selectivity, category tuning profiles were
measured for voxels within and around the PPA, RSC, and OPA separately. The tuning profiles in the vicinity of each ROI were then projected onto the first group PC (calculated only from
voxels within the given ROI). Here the projections obtained for the PPA, RSC, and OPA are shown on separate cortical flatmaps for two representative subjects S2 and S6. Brain areas
identified using functional localizers are labeled and their extent is delineated with white lines. Voxels with positive projections onto the PC (i.e., category tuning more similar to PPA1,
RSC1, and OPA1) appear in red, and voxels with negative projections (i.e., category tuning more similar to PPA2, RSC2 and OPA2 appear in blue. The two voxel clusters in each ROI show
spatial segregation on the cortical surface.

Figure 8. Projections of voxelwise tuning profiles onto PCs. To independently assess the functional heterogeneity in scene-selective ROIs, voxelwise tuning profiles were projected onto
the first two group PCs obtained from voxels within each ROI (data aggregated across subjects and hemispheres). Each voxel in the first cluster (PPA1, RSC1, and OPA1) is denoted with
a blue circle, and each voxel in the second cluster (PPA2, RSC2, and OPA2) is denoted with a green square. Voxels in separate clusters are spatially segregated in the PC space. Projections
onto the first PC clearly separate voxels in the first and second clusters, implying that category representation in scene-selective ROIs is organized according to at least one semantic
dimension.
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two group PCs of category models in each area. Across subjects,
the first and second PCs explain 48.4 � 10.8% and 15.1 � 2.6% of
category responses in the PPA, 48.1 � 8.9% and 15.7 � 4.3% in
the RSC, and 58.9 � 9.1% and 14.2 � 5.7% in the OPA. This
result indicates that voxels in separate clusters project to segre-
gated regions in the semantic space defined by the selected PCs
(Fig. 8). Inspection of Figure 8 reveals that the first PC clearly
captures the differences in category tuning between the two clus-
ters in the PPA, RSC, and OPA. As shown in Figure 9, this first PC
appears to contrast categories related to civilization (e.g., instru-
ments, vehicles, roads, indoor spaces, and humans) with catego-
ries related to social interaction (e.g., communication) and
outdoor activities (e.g., outdoor events, movement, and natural
materials). While a more precise interpretation of PCs across a
1705-dimensional feature space is naturally difficult, our results
suggest that category representation is organized consistently
across subjects according to at least one semantic dimension.

Hemispheric symmetry of category representations
Several previous studies suggest that brain function in category-
selective areas in the high-level visual cortex are lateralized across
hemispheres (Rossion et al., 2000; Stevens et al., 2012). We there-
fore asked whether the voxel clusters identified in the PPA, RSC,
or OPA are lateralized. To address this issue, we first counted the
number of voxels included in the definition of scene-selective
areas in the left and the right hemispheres separately. We find no
consistent hemispheric lateralization in ROI definitions across
subjects for the PPA (p � 0.15, bootstrap test). However, 73.7 �
11.4% of all RSC voxels and 66.4 � 26.9% of all OPA voxels
(mean � SD across subjects) are located in the right hemisphere
(p � 0.05). We next examined the distribution of voxels across
the two hemispheres for individual clusters (subjects S1 and S2
had no OPA voxels in the left hemisphere and so were omitted
from this analysis). For each cluster, we computed the ratio of the
voxels in a given hemisphere to the total number of voxels across
both hemispheres. We find that there is no significant lateraliza-
tion for either of the two clusters in the PPA, RSC, or OPA (p �
0.30, bootstrap test). This result indicates that subdomains in

scene-selective areas are relatively balanced across cerebral
hemispheres.

Control analyses for potential confounds caused by bias in
the movie stimulus
We report here that the mean category tuning profiles of the voxel
clusters are highly consistent across individual subjects in the
PPA, RSC, and OPA. However, we were concerned that these
results might be an artifact of statistical bias in the natural movies
used as stimuli in the main experiment. After all, voxelwise tun-
ing profiles were measured using responses elicited by the same
stimulus in all subjects. Any natural stimulus of finite duration
will inevitably reflect some degree of stimulus sampling bias and,
if this bias is significant, then it might increase the apparent sim-
ilarity of model weights calculated across subjects. To rule out
this potential bias, we fit separate models to responses recorded
during the first and second halves of the movie. The clips used in
the first and second halves of the movie were completely unre-
lated, so if the results are consistent across the two halves then it
would suggest that statistical bias in the movies is not an impor-
tant concern. We ran cluster analyses individually on each set of
models, and we compared the resulting cluster centers. We find
that the split-half cluster centers are strongly correlated across
subjects (r � 0.79 � 0.04 in the PPA, 0.75 � 0.01 in the RSC, and
0.60 � 0.07 in the OPA, mean � SD, p � 10�4, bootstrap test).
This result indicates that the consistency of clusters across sub-
jects is unlikely to be due to stimulus sampling bias.

Another potential confound stems from the correlations
among different categories in the finite movie stimulus used in
this study. Multiple distinct categories of objects and actions may
co-occur in natural movies. If these category correlations are
large, then the corresponding category regressors used in our
voxelwise models will be highly correlated, which might bias the
fit model weights. To assess the effect of category correlations on
model fits, we measured the amount of variance in the voxelwise
category model weights that can be attributed to the stimulus
time course. To account for temporally lagged correlations, we
concatenated multiple delayed time courses for all 1705 catego-

Figure 9. Group PCs of tuning profiles in scene-selective ROIs. PC weights for the PPA, RSC, and OPA. Tuning diagrams are formatted as in Figure 5. Inspection of the tuning diagrams of the first
PC reveals the semantic dimension that distinguishes the two subdomains in each scene-selective ROI. The first PC approximately contrasts categories related to human civilization and man-made
artifacts (e.g., instruments, vehicles, roads, indoor spaces, and humans) with categories related to social interaction (e.g., communication) and outdoor activities (e.g., outdoor events, movement,
and natural materials). Thus the first subdomain tuned for objects commonly appearing in static scenes has positive projections onto this PC, while the second subdomain tuned for object and actions
in dynamic scenes has negative projections.
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ries with lags ranging between �5 and 5 s.
We then calculated PCs of the resulting
stimulus matrix, and separately calculated
the PCs of the category model weights. If
stimulus correlations strongly bias the
model fits, then the stimulus PCs should
explain a comparable portion of the vari-
ance in the model weights to that ex-
plained by the model PCs. We find that
model PCs explain a significantly larger
portion of the variance compared with the
stimulus PCs (Fig. 10; p � 10�4, boot-
strap test). In each ROI, we compared the
combined explanatory power of all model
PCs (total of 10 PCs) that individually ex-
plain �1% of the variance in model
weights with all stimulus PCs (total of 20
PCs) that each explain �1% of variance in
the stimulus matrix. We find that the vari-
ance in model weights explained by model
PCs is 87.0 � 3.3% in the PPA (mean �
SD across subjects), 83.9 � 3.2% in the
RSC, and 87.6 � 3.0% in the OPA. In con-
trast, the variance in model weights ex-
plained by stimulus PCs was substantially
smaller (p � 10�4, bootstrap test), merely
8.7 � 0.9% in the PPA, 9.9 � 0.8% in the
RSC, and 9.1 � 1.2% in the OPA. This
result indicates that the estimated voxel-
wise category model weights are not bi-
ased by category correlations in the movie
stimulus.

One final potential confound concerns
the correlation between low-level struc-
tural and high-level categorical features in
natural scenes. If scene-selective areas
represent low-level visual features (such
as spatiotemporal frequency or orienta-
tion) that differ systematically across cat-
egories, then the category model weights
might be biased. Of particular concern for
this study is the possibility that the heter-
ogeneity of category tuning across an area
could reflect heterogeneity of tuning for

Figure 10. Temporal stimulus correlations between categories in natural movies. Regressors for multiple distinct categories of objects and actions may be correlated in the natural movie
stimulus. To assess the effect of category correlations on our model fits, we compared the PCs of model weights with the PCs of the stimulus time course in terms of the amount of variance they can
explain in voxelwise category models. Plots show the mean and 68th-percentile bands of the explained variance across the population of voxels in each ROI. Regardless of the number of PCs used,
model PCs account for a significantly larger proportion of variance in the model weights compared with stimulus PCs (p � 10 �4, bootstrap test). This result indicates that the estimated voxelwise
category model weights are not biased by category correlations in the movie stimulus.

Figure 11. Motion-energy tuning of the voxel clusters. Differences in category tuning between the voxel clusters could poten-
tially be confounded by differences in tuning for low-level structural features. To examine this issue, the mean motion-energy
tuning of the clusters identified in Figure 5 were calculated for the PPA, RSC, and OPA separately. Spatial-frequency and velocity
tuning profiles of the first (PPA1, RSC1, OPA1) and second (PPA2, RSC2, OPA2) voxel clusters are denoted with blue and green lines,
respectively. Error bars indicate SEM across voxels in each cluster. There are no significant differences in spatial frequency or velocity
tuning of the two clusters in any of the three ROIs (p�0.05, bootstrap test). This result suggests that differences in category tuning
between the two subdomains identified in the PPA, RSC, and OPA cannot be attributed to heterogeneity of motion-energy tuning.
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low-level features. To examine this issue, we ran a control analysis
to identify potential confounds due to correlated low-level fea-
tures. First, we examined whether the two clusters obtained from
category models in the PPA, RSC, and OPA show significant
differences in motion-energy tuning. For this purpose, we fit
voxelwise motion-energy models, and measured the mean
motion-energy tuning across voxels in each of the clusters shown
in Figure 5. The spatial frequency and velocity tuning of the two
clusters identified in each ROI are displayed in Figure 11. We find
no significant differences in motion-energy tuning of the voxel
clusters in the PPA, RSC, and OPA (p � 0.05, bootstrap test).
Together with the result described earlier showing that the
motion-energy model produces only a single cluster in each of the
three scene-selective ROIs, our data confirm that functional clus-
tering of motion-energy tuning is much weaker than functional
clustering of category tuning in the PPA, RSC, and OPA. Thus
motion energy cannot explain the differences in category tuning
between subdomains in these scene-selective areas.

Discussion
Scene-selective regions in the human visual cortex—the PPA,
RSC, and OPA—are usually assumed to be functionally homo-
geneous. To determine whether this common assumption is true,

we aimed to precisely map cortical function in these regions by
leveraging the strength of fMRI in answering questions at the
representational level. We used a voxelwise modeling framework
to characterize the selectivity of single voxels in the PPA, RSC,
and OPA to 1705 object and action categories in natural movies.
As expected, we found that this model explains a greater portion
of the response variance in the PPA, RSC, and OPA than is ex-
plained by a gist model based on spatial texture and layout. We
then performed cluster analysis separately on the category mod-
els fit to voxels within each ROI, in each subject (Figs. 12–14).
This analysis reveals two distinct functional subdomains in
scene-selective ROIs. The first subdomain (PPA1, RSC1, and
OPA1) is approximately located posteriolaterally and the second
subdomain (PPA2, RSC2, and OPA2) is located anteriomedially
within each area. While a definitive functional interpretation of
these subdomains is not without challenge, our analyses reveal
that the first subdomain yields relatively increased responses to
man-made artifacts (buildings, furniture, devices, etc.), and that
the second subdomain yields relatively increased responses to
actions related to locomotion (e.g., walking, running, turning, or
jumping) and to vehicles (e.g., car, boat, or bicycle). We find that
these subdomains are highly consistent across all three scene-
selective areas, across both hemispheres, and across individual

Figure 12. Individual-subject cluster centers in the PPA. Cluster analysis was performed separately in individual subjects (data are aggregated across hemispheres). The left and right panels for
each subject show the centers of the two clusters in PPA1 and PPA2. The center of each cluster was taken as the mean tuning profile across voxels in that cluster. Tuning diagrams formatted as in
Figure 5. The cluster centers are highly consistent across individual subjects.

Çukur et al. • Functional Subdomains in Scene-Selective Cortex J. Neurosci., October 5, 2016 • 36(40):10257–10273 • 10269



subjects. One interesting possibility is that this consistent subdi-
vision reflects an underlying anatomical organization of scene
processing pathways into two processing streams, one biased to-
ward static stimuli and one biased toward dynamic stimuli.

Tuning for object and action categories in the PPA, RSC,
and OPA
In several previous reports, it has been questioned whether visual
objects elicit significant responses in scene-selective ROIs, such as
the PPA (Haxby et al., 2001; Downing et al., 2006; Reddy and
Kanwisher, 2007; MacEvoy and Epstein, 2011). Based on BOLD
responses elicited by isolated objects from a few different catego-
ries, such as houses, shoes, chairs, or cars, these earlier studies
suggested that some inanimate object categories evoke weak (al-
beit significant) responses in the PPA. Several recent studies have
further suggested that responses to nonscene objects in the PPA,
RSC, and OPA depend critically on the object’s navigational rel-
evance (Janzen and van Turennout, 2004), immobility (Mullally
and Maguire, 2011), or larger physical size (Troiani et al., 2014).
Consistent with these previous reports, we find that responses
measured in three scene-selective areas carry substantial infor-
mation about visual object categories, and that these responses
are increased in the presence of topographical elements, such as

buildings or roads, which carry cues about the spatial environ-
ment. However, we also find that all ROIs yield greater responses
for man-made instruments and vehicles than for large, stationary
objects, such as structures or geological formations. Thus, our
results imply that during natural vision, category representation
in scene-selective ROIs is not strictly constrained by physical size
or level of mobility.

That said, it remains an open question whether scene-selective
ROIs represent categories exclusively, or rather other visual fea-
tures that might be systematically related to categories. In a recent
study, we compared the predictive performance of Fourier
power, subjective distance, and object category models in the
PPA, RSC, and OPA using BOLD responses to natural images
(Lescroart et al., 2015). In that study we found that a significant
portion of the response variance explained by these three models
is shared. This unanticipated result is likely caused by the intrinsic
correlations between visual features in natural scenes. We were
therefore concerned that our current results might have been
biased by the correlation between low-level features and catego-
ries. To ensure that this was not the case, we ran separate control
analyses demonstrating that neither category tuning nor its het-
erogeneous distribution within scene-selective areas can be ex-
plained by tuning for low-level features, including spatial texture,

Figure 13. Individual-subject cluster centers in the RSC. Cluster analysis was performed separately in individual subjects (data are aggregated across hemispheres). The left and right panels for
each subject show the centers of the two clusters in RSC1 and RSC2. The center of each cluster was taken as the mean tuning profile across voxels in that cluster. Tuning diagrams formatted as in Figure
5. The cluster centers are highly consistent across individual subjects.
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layout, and spatiotemporal structure. However, previous studies
have argued that these areas also represent intermediate features,
such as subjective spatial distance (Lescroart et al., 2015), spatial
expanse (Op de Beeck et al., 2008; Kravitz et al., 2011b), space-
defining properties (Mullally and Maguire, 2011), or contextual
associations (Bar et al., 2008). Thus it is possible that the two
subdivisions in the PPA, RSC, and OPA are differentially tuned
for such features, and these tuning differences underlie the dis-
tinctive responses of the subdivisions to object/action categories.
Further research on this challenging question is warranted.

The natural movie stimulus used in this study depicts thou-
sands of object and action categories as they appear in the real
world. Thus, another stimulus-related concern was that our re-
sults might have been biased by the inherent correlations among
these categories. To preclude this possibility, we ran a control
analysis indicating that tuning for multiple objects and actions
measured in the PPA, RSC, and OPA is not biased by correlations
between distinct categories in the finite movie stimulus. How-
ever, our control analysis does not discern whether these areas
represent individual objects or statistical ensembles of objects
within visual scenes (Stansbury et al., 2013). A recent study from
our laboratory suggests that the highly selective and nonlinear
tuning of scene-selective areas causes them to respond to higher-

order correlations in natural images (Lescroart et al., 2015). As it
is difficult (perhaps impossible) to create stimuli in which these
correlations are completely removed, it is inherently challenging
to adjudicate between alternatives, such as an object category
model and a model that describes object co-occurrence statistics.
However, future studies may shed light on this problem by com-
piling a more controlled set of natural stimuli that minimizes
category co-occurrence while retaining a reasonable range of
variance in individual categories.

Functional similarity of category representation across the
PPA, RSC, and OPA
Functional differences among the PPA, RSC, and OPA have been
investigated in several previous studies. For example, Epstein et
al. (2007) reported that differential responses to images of famil-
iar versus unfamiliar locations are stronger in the RSC relative to
the PPA and OPA. In a separate study Epstein and Higgins (2007)
measured differential responses to static scenes viewed during
either location-identification or category-identification tasks and
reported larger task-related differences in the RSC than in the
PPA. These results have led to the view that the PPA and OPA
likely represent physical stimulus attributes, whereas the RSC
primarily represents spatial and contextual associations of the

Figure 14. Individual-subject cluster centers in the OPA. Cluster analysis was performed separately in individual subjects (data are aggregated across hemispheres). The left and right panels for
each subject show the centers of the two clusters in OPA1 and OPA2. The center of each cluster was taken as the mean tuning profile across voxels in that cluster. Tuning diagrams formatted as in
Figure 5. The cluster centers are highly consistent across individual subjects.
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local stimulus to the extended environment (Epstein, 2008). In
contrast, we observe a surprisingly similar pattern of functional
tuning across the three scene-selective ROIs (Figs. 5, 6). Several
methodological differences between our study and some pre-
vious studies may account for this apparent difference. First,
while many previous studies used an explicit identification
task or they manipulated scene familiarity, here we used pas-
sive fixation. Second, while previous studies primarily mea-
sured selectivity for spatial stimulus attributes, here we
focused on category representations that are mostly invariant
to spatial factors (DiCarlo et al., 2012). Therefore, our results
could be taken to imply that functional differences among
scene-selective ROIs are task-dependent, and that they are
relatively weaker for high-level category representations.

Spatial heterogeneity of category tuning in the PPA, RSC,
and OPA
Several recent studies have investigated the spatial distribution of
selectivity for high-level and low-level visual features across the
PPA (Arcaro et al., 2009; Rajimehr et al., 2011; Baldassano et al.,
2013). In an earlier study, Arcaro et al. (2009) identified a cortical
region that overlaps with the posterior PPA and yields a stronger
scenes– objects contrast than does a neighboring region that
overlaps with the anterior PPA. Baldassano et al. (2013) later
suggested that the posterior PPA yields stronger responses to
scenes and abstract objects than does the anterior PPA. It has also
been reported by Rajimehr et al. (2011) that a lateral-posterior
patch within the PPA responds preferentially to high spatial fre-
quencies, while remaining parts of the PPA do not show signifi-
cant frequency bias. Together these previous findings imply that
representations of both categorical and lower-level visual features
might be weaker in anterior parts of the PPA compared with the
posterior PPA.

The posterior subregions within the PPA previously suggested
to show stronger category and spatial-frequency tuning partly
overlap with the first subdomain (PPA1) identified here, which is
tuned for man-made artifacts in static scenes. However, the sec-
ond subdomain (PPA2) that we identify, located anteriomedially,
is also significantly selective for many object and action categories
related to navigation. Furthermore, we find no significant differ-
ences in spatial-frequency tuning between the two subdomains.
Thus, it appears that measured differences in category tuning
cannot be attributed to a mere spatial frequency bias. In contrast
to previous studies that used static stimuli containing isolated
objects (Arcaro et al., 2009; Rajimehr et al., 2011; Baldassano et
al., 2013), our study used dynamic natural movies. Thus, the
relatively weaker category selectivity in the anterior PPA that was
reported previously might merely reflect an experimental bias
due to the use of static stimuli, which contain relatively fewer
objects and actions clearly related to navigation.

In summary we identify two subregions in each scene-
selective area, the PPA, RSC and OPA: one primarily selective for
categories of inanimate, man-made objects encountered fre-
quently in daily life, and another selective for vehicles and
locomotion-related action categories that appear in dynamic
scenes. Spatial segregation of selectivity for objects and actions
that appear in static versus dynamic visual scenes has overarching
implications for the cortical organization of category representa-
tion. Scene-selective areas in humans and homologous areas in
monkeys have been shown to share functional properties with
visual areas along both the dorsal and ventral pathways (Kravitz
et al., 2011a). It is thus likely that heterogeneous category tuning
in scene-selective areas might be a reflection of the functional

division between dorsal and ventral visual pathways (Ungerleider
and Haxby, 1994; Shmuelof and Zohary, 2005). This view sug-
gests that there might be two separate and parallel processing
streams passing through scene-selective ROIs, one biased toward
static stimuli (i.e., low temporal frequency) and one biased to-
ward moving stimuli (i.e., high temporal frequency). While the
former stream might be critical for navigation within the ex-
tended spatial environment, the latter may play a role in avoiding
mobile obstacles.
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