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Abstract 

 

Certain bacteria selectively attack tumor tissues and trigger tumor shrinkage by producing toxins 

and modulating the local immune system, but their clinical utility is limited because of the dangers 

posed by systemic infection. Genetic engineering can be used to minimize the risks associated with 

tumor-targeting pathogens, as well as to increase their efficiency in killing tumor cells. Advances in 

genetic circuit design has led to the development of bacterial strains with enhanced tumor-targeting 

capacities and ability to secrete therapeutics, cytotoxic proteins and prodrug-cleaving enzymes, 

which allows their safe and effective use in the treatment of tumors. The present review details the 

recent advances in the design and application of these modified bacterial strains.  
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INTRODUCTION 

 The parasites and commensals of the human body are uniquely suited to survive in an 

environment that is hostile to any other form of life: having evolved in parallel with the mammalian 

immune system, these organisms are capable of avoiding the native defense mechanisms of their 

host and modulating its physiological responses to ensure their dispersal and reproduction. In 

addition, human parasites are often specific to a limited number of organs or tissues, with some 

targeting different tissue types at different stages of their life cycle. As such, they must identify and 

selectively infiltrate one or more target tissues to maximize their chances of survival – a goal that 

they share with various therapeutic delivery vesicles, which are inferior in their targeting 

performance and may benefit much from imitating their natural, parasitic counterparts. Although 

their activities are ordinarily detrimental, the sensitivity of human pathogens to tissue metabolic 

activity, in conjunction with their natural ability to evade the immune system, makes them ideal 

models for the development of novel therapeutic strategies against cancer and other diseases.  

 While delivery agents often use antibodies and similar proteins for selective targeting, an 

alternative approach proposes the use of pathogens as anticancer agents, utilizing the natural 

propensity of bacteria such as Salmonella and Clostridium to preferentially localize in tumor tissues 

[1]. Genetic engineering methods can be used to modulate the toxin production capacities and 

further augment the tumor-killing efficiency of these bacteria, creating biological anticancer agents 

that can be administered to eliminate tumors with minimal damage to the rest of the body [2]. While 

conventional delivery agents suffer from issues such as limited shelf-lives, high production costs, 

batch-to-batch variance, low circulation times, accumulation in non-specific tissues, 

immunogenicity and potential acquisition of drug resistance by cancer cells, tumor-killing bacteria 

can be used as a more reliable alternative for cancer targeting, or serve as a complementary therapy 

to increase the efficiency of well-established treatments [3-8].  

The present review will detail recent efforts in the engineering of bacteria for the treatment 

of cancer, with emphasis on the mechanisms by which pathogens localize in tumor environments, 



 

 

bacterial species that are suitable for cancer treatment and the genetic engineering systems used to 

increase their effectiveness for this purpose.   

SELECTIVE TARGETING OF CANCER BY BACTERIAL AGENTS 

 Tumors are characterized by an altered set of molecular and physiological conditions 

resulting from the expression of oncogenes by cancer cells and the direct consequences of 

unregulated cellular division on the host tissue. Solid tumors are therefore associated with their own 

tumor microenvironment (TME), a heterogenous cellular niche that favors the proliferation of tumor 

cells and exhibits a distinct metabolic profile that can be used to identify tumor presence. In 

particular, tumors often grow faster than the blood vessel network that surrounds them, leading to 

low oxygen concentrations, nutrient deprivation and increased acidity in the TME [9-11]. Each of 

these effects can be used to selectively target tumors while minimally damaging the surrounding 

tissue; however, these properties may also interfere with the function of antitumor agents, as the 

low-oxygen conditions interfere with the generation of reactive oxygen species during radiotherapy 

and the lack of adequate vascular supply limits the entry of therapeutic chemicals into the tumor. 

The resistance of cancer cells to conventional treatment is further enhanced by the ability of the 

TME to stimulate angiogenesis and locally suppress the immune system, facilitating the generation 

of aggressive cancer phenotypes.  

 Consequently, TME targeting and tumor cell infiltration is of considerable importance for 

cancer therapy, and a great number of delivery vesicles based on liposomes, dendrimers, hydrogels, 

supramolecular assemblies, metal particles and other nanomaterials have been developed for this 

purpose. These carrier systems typically localize in tumor sites with the help of antibodies or other 

molecular targeting agents; however, alternative approaches that utilize the distinct physiological 

features of the TME have also been reported in the literature: hypoxia- or pH-activated drug 

carriers, for example, selectively deposit their cargo in tumor sites due to the low-oxygen, high-

carbonic acid profiles of these regions. Bacteria with antitumor activities fundamentally belong to 

this second group, as their propensity to target tumor environments stems from the anoxic, immuno-



 

 

privileged nature of the TME, which makes it ideal for the growth of pathogenic or opportunistic 

anaerobes. As such, bacteria that have been reported to infiltrate tumors are typically anaerobic or 

facultatively anaerobic [9].  

 Several reasons exist for using these bacteria for cancer treatment over conventional drug 

delivery vesicles, principal among which are the self-motility and tumor-targeting capabilities that 

are inherent to bacterial agents and can be further augmented by the expression of therapeutic 

proteins [8, 12]. Furthermore, bacteria can assist the immune cells in recognizing and killing tumor 

cells prior to metastasis [13], and can easily be eliminated from the body by antibiotic treatment at 

the end of the therapy [8]. While the TME normally suppresses the immune system, prevents 

apoptosis and enhances angiogenesis at the tumor site [14], bacterial cells can assist in the 

recognition of tumor cells by stimulating the host immune response, recruiting immune cells (e.g. 

macrophages, neutrophils and lymphocytes) to the tumor site and reversing the immunosuppressive 

properties of the TME [1, 8, 9]. For instance, endotoxins from gram-negative bacteria can trigger 

the secretion of TNFα (tumor necrosis factor α) from immune cells [15] and bacterial presence can 

likewise induce IFN-γ (interferon gamma) production in tumors, thereby activating cytokine-

mediated pathways to destroy tumor cells [16].   

The antitumor activities of bacteria and immune cells have been reported to be synergistic: 

neutrophils have been shown to be activated against tumor cells by bacteria [17], while bacteria 

themselves exhibit enhanced antitumor activity in the presence of  cytotoxic T cells (CD8+ T cells) 

[18]. In addition to modulating the local inflammatory response, bacteria can also function as 

vectors to deliver cytokines [19] or tumor-specific antigens into antigen-presenting cells, priming 

the systemic immune response against tumors [20]. Furthermore, bacterial cells can be used to 

inhibit tumor-supporting processes such as angiogenesis, and their cytotoxicity against non-tumor 

cells can be avoided by attenuation, ensuring the site-specific growth and toxic activity of the 

engineered strain [21]. However, pathogenic bacteria do not natively exhibit all of these properties, 

and must be modified to maximize their antitumor efficiency while minimizing the potential 



 

 

complications associated with the administration of pathogenic species into the human body. 

Biosystems engineering is therefore necessary to produce modified bacteria with the capacity to 

express therapeutic proteins, toxins or prodrug-converting enzymes at a specific target site [8]. 

Methods used for this purpose are detailed below.  

BIOSYSTEMS ENGINEERING OF BACTERIA WITH ANTITUMOR ACTIVITY 

Modulation of toxicity and immunogenicity 

 Salmonella, Clostridium and Bifidobacterium are the most frequently used bacteria for the 

development of in vivo tumor therapies, while the model bacteria Escherichia and Bacillus are 

utilized to a lesser extent (Table 1). As Salmonella and Clostridium species typically produce toxins, 

reducing the virulence of these bacteria to tumor environments or otherwise preventing them from 

exerting their systemic toxicity is critical for successful antitumor applications. This is typically 

performed by the attenuation of these bacteria to either eliminate virulence-related genes entirely or 

to limit their production to the anoxic tumor microenvironment. Low et al., for example, reported 

that a knockout mutant of the Salmonella msbB gene, which is involved in lipid A synthesis and 

TNF-α induction, exhibits a 10000-fold decrease in virulence while retaining its tumor-inhibitory 

effects in mice [22]. Likewise, a strain of Clostridium novyi lacking α-toxin expression was able to 

destroy tumor cells and generate a strong antitumorigenic immune response without exhibiting 

systemic effects when injected to tumor cells [23].  

 Conversely, the toxin-producing and immune system-activating properties of bacteria may 

also be enhanced to improve the antitumor response. CD4- and CD8-dependent tumor inhibition 

was observed in a Salmonella enterica serovar typimurium strain modified to express the 

chemokine CCL21, while the expression of IL-18 in the same species also created an effective 

tumor response based on the recruitment of T-cells, NK-cells and granulocytes [24, 25]. S. enterica 

serovar typimurium expressing the TNF-family protein FasL and Escherichia coli strain K-12 

expressing cytolysin A were also used to effectively inhibit the growth of tumors, the former by 



 

 

itself and the latter in combination with radiation therapy [26, 27]. In addition, immunogenic agents 

can be provided in limited doses alongside an attenuated strain to provide greater control over the 

ensuing immune response: while msbB-deficient Salmonella is capable of inhibiting tumor growth 

in mice, its ability to colonize human tumors is limited in the absence of a lipid A-mediated TNF-α 

response, and the tumor-colonization efficiency of the strain can be improved by externally 

administering lipid A to generate a controlled immune response without systemic effects [28].  

Facultative intracellular parasites such as Listeria, Mycobacterium, Yersinia, Shigella and 

Salmonella are able to infiltrate bulk tumors or other cell types [29-31], and this ability can also be 

conferred to non-pathogenic bacteria: Laboratory strains of E. coli have been modified with the 

Yersinia pseudotuberculosis invasin gene to selectively enter immune cells following oral 

administration, and further modifications may allow these modified bacteria to serve as antigen-

presenting agents [32, 33]. The tumor-specificity of invasive bacteria can also be improved by 

hypoxia-responsive elements; as low oxygen concentrations are one of the primary hallmarks of 

solid tumors. Non-pathogenic Clostridium strains have been engineered to produce a single chain 

antibody that inhibits HIF-1α, a regulatory transcription factor of tumor cells, in response to the 

hypoxia [34]. Likewise, a pro-apoptotic protein (TRAIL), expressed under control of a hypoxia-

inducible (nirB) promoter in Salmonella, has been reported to show promise in mouse melanoma 

models [35, 36]. Clinical trial studies for VNP20009 (genetically attenuated Salmonella; msbB-, 

purl-) proved to be effective at localizing at the tumor site, shows immune activation and is safe 

enough for use as a vaccine; however, phase II clinical studies are necessary to further demonstrate 

its effectiveness in humans [37].  

In situ drug activation and antigen secretion 

 Bacteria can also be introduced alongside a prodrug to facilitate its activation directly at the 

tumor site, which of considerable advantage for drugs with short plasma half-lives or severe side 

effects. Herpes simplex thymidine kinase (HSV1-TK) and E. coli cytosine deaminase (CD) systems 

are the most popular enzymes for this approach, the former phosphorylating Ganciclovir into 



 

 

Ganciclovir triphosphate and the latter cleaving 5-fluorocytosine into 5-fluorouracil [38].  

S.enterica serovar typimurium strains engineered with herpes simplex thymidine kinase were shown 

to be effective in the treatment of melanoma-bearing mice, while the spores of C. sporogenes 

transformed with the E. coli CD enzyme were able to reduce tumor formation to a greater extent 

than 5-fluorouracil itself when administered with 5-fluorocytosine, the non-toxic prodrug of this 

molecule [39, 40]. The purine nucleoside phosphorylase/6-methylpurine 2'-deoxyriboside 

(PNP/6MePdR) system was also used for the treatment of melanomas in the mouse model [41]. In 

addition to prodrug converting enzymes, proteins or protein fragments that exhibit drug activity in 

themselves can also be expressed in tumor-colonizing bacteria: Salmonella and Bifidobacterium 

strains have been modified to produce endostatin, a well-established anti-angiogenic agent that 

facilitates tumor shrinkage by inhibiting the formation of blood vessels at the tumor periphery, 

thereby blocking the supply of oxygen and nutrients into cancer cells [42, 43].  

CB1954 is another prodrug for the treatment of cancer and can be converted into its toxic 

form by the activity of nitroreductase (NTR) enzymes. The activation of this prodrug was tested on 

human colorectal carcinoma-injected nu/nu mice with the co-administiration of NTR-expressing 

Clostridium sporogenes, which was able to significantly reduce tumor volume following repeated 

treatment [44]. DNA and RNA-based agents can also be delivered through tumor-invading bacteria, 

which eliminates the problems associated with the short plasma half-lives inherent to these drugs. 

Salmonella engineered with a short hairpin RNA (shRNA) that silences the immusuppressive 

molecule STAT3 was able to improve the effectiveness of conventional vaccines against highly 

immunosuppressive cancer cells [45]. In addition to vaccine therapy, the efficiency of the 

antiangiogenic peptide endostatin can also be increased through co-delivery with shRNAs: 

attenuated Salmonella enterica serovar typhimurium have been engineered to produce endostatin 

and a shRNA specific to STAT3 and shown to synergistically inhibit metastasis in mouse tumors 

[44].  

 



 

 

Tumor-colonizing bacteria typically trigger a local immune response that may assist in the 

recognition of cancer cells, and this effect can be further enhanced if the resident bacteria also 

secrete tumor-associated antigens. These so-called “live vaccines” are advantageous in that they are 

able to directly deliver their cargo into the target site, bypassing the immune privilege of the tumor 

microenvironment. Two pathways exist for the internalization of bacterial antigens: Bacteria may be 

phagocytosed by immune system cells, escape the phagocytotic machinery and secrete their antigen 

within the cytosol, or deliver their cargo on or inside target cells through the type 3 secretion 

system, which is ordinarily used for the delivery of toxins. Either way, the antigen of interest is 

delivered to an antigen presenting cell, which will then affect the production of an immune 

response. In addition to the delivery of bacteria-produced antigens, this method can also be used to 

introduce the cDNA of an antigen into the body, allowing its production (and subsequent immune 

recognition) within the cells of the host [46].  

 Although tumor cells are associated with the overexpression of certain antigens, these are 

ordinarily not recognized by the immune system. Live vaccines are able to reverse this effect by 

directly presenting immune cells with tumor antigens, bypassing the immunosuppressive properties 

of the tumor environment. c-Raf, a serine-threonine kinase of the Raf family, is an example of such 

an antigen, and a Salmonella enterica serovar typhimurium strain (aroA SL7207) expressing c-Raf 

antigen was able to reduce Raf-induced lung adenoma growth in mice [47]. In addition, since 

bacteria are able to express multiple proteins in tandem, the immunostimulatory effects of the 

secreted antigens can be enhanced through the co-expression of adjuvant proteins. Such an 

approach has been tested by Fensterle et al. by using a recombinant S. enterica serovar typhimurium 

aroA SL7207 strain, which co-expresses a tumor-associated antigen (PSA) and an adjuvant protein 

(CtxB) and allowed the efficient prevention of prostate tumors in mice [48]. More recent studies 

have also used recombinant strains of bacillus Calmette-Guérin (rBCG) [49],  S. enterica serovar 

typhimurium LB5000 and attenuated S. typhimurium SL3261 [50], and Listeria monocytogenes [51] 

as live cancer vaccines.     



 

 

Bacterial imaging and multi-modal approaches 

 The ability of anaerobic bacteria to target tumor tissues can also be used for tumor 

diagnostics through their transformation with reporter genes. Both primary and metastatic tumors 

have been visualized under in vivo conditions using light-emitting proteins such as GFP and 

luciferase, expressed in bacteria such as E. coli, S. enterica, Vibrio cholerae and L. monocytogenes. 

The safety of these bacteria have also been enhanced by attenuation and, in S. enterica serovar 

typhimurium A1, auxotrophic dependence on the amino acids found in the tumor environment, 

which ensures that the bacteria can proliferate only within the TME [52-54]. Magnetotactic bacteria 

can also colonize tumors and enhance MRI imaging through the magnetite crystals they contain:  

Magnetospirillum magneticum, for example, was shown to enhance the T1-weighted imaging of 

solid tumors derived from human embryonic kidney cells in the mouse model [55]. Similarly, S. 

enterica serovar typhimurium VNP20009-TK, an attenuated strain expressing HSV1-TK, was able 

to localize to tumors and accumulate the radioactive nucleoside analogue 2'-fluoro-1-beta-D-

arabino-furanosyl-5-iodo-uracil (FIAU) by converting it into FIAU-PO4, which is unable to pass 

through the cell membrane and allows the highly sensitive PET imaging of the tumor site [56].  

 The synergistic use of multiple methods can further increase the efficiency of treatment and 

eliminate potential issues with metastasis and relapse, while the inclusion of imaging modalities 

into treatment options can also allow physicians to make better-informed decisions. This form of 

approach, called theranostics or multi-modal therapy, is especially common with nanomaterials, 

which can be functionalized with several distinct targeting, imaging and therapeutic molecules. 

However, similar methods are also applicable to bacteria, which can be modified to express 

multiple genes for enhanced tumor invasion, immune response activation, anticancer activity and 

imaging capacity (Figure 1). A combination of the Yersinia invasin gene and two genetic sensory 

systems (fdhF and araBAD, inducible by low-oxygen conditions and arabinose), for example, has 

been used to produce a strain of E. coli that can invade cells under hypoxia or in the presence of a 

co-delivered chemical. The same bacterium was also modified with a quorum sensing system 



 

 

(Vibrio fischeri lux quorum sensing circuit) that ensures that invasion will occur only after a 

sufficient number of cells have localized to the tumor tissue [57]. Another environmental factor-

dependent expression circuit was developed on a Bifidobacterium strain, in which the expression of 

E. coli CD enzyme was modulated by salicylate-activated regulator elements (the gene xylS2 and 

the xylS2-dependent promoter Pm). CD expression and 5-fluorocytosine-to-5-fluorouracil 

conversion occurs only in the presence of acetyl salicylic acid, allowing cells to exhibit antitumor 

activity following the administration of this compound [58].  

CONCLUSION 

The administration of pathogenic bacteria into the human body is obviously a dangerous 

prospect; however, the risks posed by aggressive cancers and the lack of options for their treatment 

already necessitate the use of therapies with severe side effects. In addition, bioengineering can be 

utilized to minimize the dangers associated with human pathogens while retaining or enhancing 

their capacity to eliminate tumor tissue, creating treatments with greater specificity and higher 

safety than current chemo- and radiotherapy options. While such methods are currently limited to 

proof-of-concept demonstrations and pre-clinical studies, they would be greatly advantageous for 

the treatment of solid tumors and especially skin and gastrointestinal tract cancers, as these regions 

are already densely colonized by native microfauna. Indeed, probiotic bacteria are prime candidates 

for the engineering of novel bacterial treatments, as probiotic bacteria are already known to protect 

the gastrointestinal system against tumors and prevent the growth of existing tumors. The use of 

anaerobes also reduces the risk of systemic infection in the bacterial treatment of solid tumors, and 

genetic switches can be used to ensure that injected bacteria survives and produces toxins only in 

the presence of cancer cells. Combined treatments that either deliver bacteria in tandem with 

conventional anticancer therapies or modulate the secretion of multiple therapeutics may also 

reduce the risk of cancer recurrence and metastasis by delivering two or more highly toxic agents 

directly into the tumor site.  
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Table 1. Selective targeting of tumors by bacteria 
            
Tumor Targeting 

Bacteria 
Modification Tumor Model References 

Bifidobacterium breve Exression of lux gene  Murine B16 melanoma  [59] 

 

Bifidobacterium 

longum 

Expression of endostatin gene  HepG2 human liver cancer, 

Yac-1 mouse lymphoma, 

L929 human fibre cell 

[42] 

Clostridium 

beijerinckii 

Expression of pro-drug 

converting enzyme CD 

Murine EMT6 carcinoma [60] 

 

Salmonella enterica 

serovar typhimurium 

Attenuation by chromosomal 

deletion of the purI and msbB 

genes 

Clinical trial (metastatic 

melanoma and metastatic 

renal cell carcinoma) 

[61] 

 

S. enterica serovar 

typhimurium 14028 

Expression of HSV-TK gene Murine B16 melanoma [39] 

 

S. enterica serovar 

typhimurium 

Expression of IL-2 gene Murine K7M2 osteosarcoma [19] 

 

S.  enterica serovar 

typhimurium 

Expression of STAT3-specific 

shRNA 

Murine B16 melanoma [45] 

Salmonella 

choleraesuis 

Expression of endostatin gene Murine MBT-2 bladder 

cancer, MBT-2 bladder tumor, 

ML-1 hepatoma 

[43] 

 

S.  choleraesuis Expression of TSP-1 gene Murine B16 melanoma [62] 

 

Bifidobacterium 

adolescentis 

Expression of endostatin gene Murine Heps liver cancer [63] 

Clostridium 

acetobutylicum 

Expression of mTNF-α and  

E. coli CD 

Rat rhabdomyosarcoma R1 [64] 

Clostridium 

sporogenes 

Expression of E. coli CD SCCVII tumours in mice [40] 

C. acetobutylicum Expression of IL-2 gene Rat rhabdomyosarcoma [65] 

C. sporogenes and 

Clostridium novyi-NT 

Expression of pro-drug  

converting enzyme NTR  

Human colorectal 

carcinoma (HCT116) 

[66] 

S. enterica serovar 

typhimurium A1-R  

Making quiescent tumor cells 

susceptible to cytotoxic agents 
Quiescent MKN45 stomach 

adenocarcinoma in mice  

[67] 

S. enterica serovar 

typhimurium A1-R 

Making quiscent tumor cells 

susceptible to cytotoxic agents 

Human soft-tissue sarcoma 

growing in nude mice 

[68] 

S. enterica serovar 

typhimurium A1-R 

Making quiescent tumor cells 

susceptible to cytotoxic agents 

Human HER-2 positive 

cervical cancer in nude mice 

model 

[69] 

Salmonella enterica 

serovar typhimurium 

Co-expression of endostatin and 

STAT3-specific shRNA 
RM-1 mouse prostate cancer 

cell line 

[44] 

 

 

Escherichia coli K-12 Expression of ClyA Murine CT26 colon cancer  [70] 

Mycobacterium bovis 

bacillus Calmette-

Guérin (BCG) 

Expression of Th1 cytokines  

 

Human bladder cancer cell 

lines (T24, J82, 5637, 

TCCSUP and UMUC-3) 

[71] 

 



 

 

S. enterica serovar 

typhimurium 

 

Expression of 

immunostimulatory  

cytokine, CCL21  

Multi-drug-resistant CT26 

colon carcinoma, D2F2 

breast carcinoma and B16 

melanoma in mice 

[24] 

S. enterica serovar 

typhimurium 
Expression of proapoptotic 

cytokine, FasL  

Murine D2F2 breast 

carcinoma and CT-26 colon 

carcinoma  

[26] 

S. enterica serovar 

typhimurium 

Expression of IL-18  

 

Multi-drug resistant murine 

CT26 colon carcinoma and 

D2F2 melanoma 

[25] 

S. enterica serovar 

typhimurium 

aroA SL7207 
Expression of a fusion  

protein of PSA and CtxB  

 

Murine prostate cancer 
[48] 

 

S. enterica serovar 

typhimurium 

aroA SL7207 

Expression of c-Raf antigen  Murine lung adenoma [47] 

 

E. coli 
Expression of inv under the 

control of the quorum sensing 

lux operon 

HeLa, HepG2, and U2OS 

cell lines 

[57] 

S. enterica serovar 

typhimurium 

VNP20009 

 

Attenuation by chromosomal 

deletion of the purI, xyl 

and msbB genes with an 

increased resistance to 

EGTA  

Bl6-F10 murine melanoma, 

LOX human melanoma 

and DLD-1 human 

colon  

carcinoma 

[72] 

 

lux, luciferase; CD, cytosine deaminase; HSV-TK, herpes simplex virus thymidine kinase; IL, 

interleukin; STAT3, signal transducer and activator of transcription 3; shRNA, short hairpin RNA; 

TSP-1, thrombospondin-1; TNF-α, tumor necrosis factor-α; NTR; nitroreductase; ClyA, Cytolysin 

A; FasL, FAS ligand; CCL21, collagen crosslinking 21; PSA, prostate-specific antigen; CtxB, 

cholera toxin subunit B; inv, invasin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 

 
 

Fig. 1 Genetic elements used in the engineering of tumor-killing bacteria [73-78].  (Inl: Internalin; 

Opa: Opacity-associated proteins; Fn: Fibronectin;  FnBP: Fibronectin-binding protein; SfbI: S. 

pyogenes fibronectin-binding protein I;  InvA: Invasin A; YadA: Yersinia adhesin A) 
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