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ABSTRACT

In this article we develop a procedure for estimating service levels (fill rates) and for optimizing stock and
threshold levels in a two-demand-class model managed based on a lot-for-lot replenishment policy and a
static threshold allocation policy. We assume that the priority demand classes exhibit mutually indepen-
dent, stationary, Poisson demand processes and non-zero order lead times that are independent and iden-
tically distributed. A key feature of the optimization routine is that it requires computation of the station-
ary distribution only once. There are two approaches extant in the literature for estimating the station-
ary distribution of the stock level process: a so-called single-cycle approach and an embedded Markov
chain approach. Both approaches rely on constant lead times. We propose a third approach based on a
Continuous-Time Markov Chain (CTMC) approach, solving it exactly for the case of exponentially distributed
lead times. We prove that if the independence assumption of the embedded Markov chain approach is true,
thenthe CTMC approach is exact for general lead time distributions as well. We evaluate all three approaches
for a spectrum of lead time distributions and conclude that, although the independence assumption does
not hold, both the CTMC and embedded Markov chain approaches perform well, dominating the single-
cycle approach. The advantages of the CTMC approach are that it is several orders of magnitude less compu-
tationally complex than the embedded Markov chain approach and it can be extended in a straightforward
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fashion to three demand classes.

1. Introduction

Inventory rationing among different customer classes arises in
several contexts. Our primary motivation is the situation of
managing service parts inventory in a parts distribution center
serving multiple customer classes, each of which has contracted
for a specific level of customer service, typically measured as fill
rate. By pooling demand across classes, the parts manager can
reduce safety stock requirements and, by setting threshold lev-
els for allocation and backorder clearing, the parts manager can
achieve differentiated service levels by demand class.

This area has been an active subject of research for several
decades. It remains a challenging problem due to the difficulty of
efficiently computing accurate service-level performance mea-
sures. In this article, we focus on a two-demand-class stocking
problem, in which pooled inventory is managed with a contin-
uous review order-up-to policy, together with a static rationing
policy, under which low-priority customers are not served as
long as the on-hand inventory is at or below a fixed threshold
level. Essentially only two methods are proposed in the literature
for this problem and both methods assume constant order lead
times. The single-cycle approach (Dekker et al., 1998; Desh-
pande et al., 2003) assumes that no orders were outstanding a
lead time ago. This dramatically simplifies the service-level cal-
culation. The embedded Markov chain approach (Fadiloglu and
Bulut, 2010b) samples the system at multiples of the lead time

and approximates the transition probabilities assuming that
delivery times are independent of the number of low-priority
backorders. The embedded Markov chain approach dominates
the single-cycle approach in accuracy of estimating service
levels; however, it is much more computationally complex.

In this article, we introduce a third approach and evaluate all
three methods in the context of general lead time distributions.
We use a continuous-time Markov chain approach and solve
for exact expressions of the service levels under the assump-
tion of exponentially distributed lead times. We further show
that if the independence assumption of the embedded Markov
chain approach is true, then these same service-level expressions
are true for generally distributed lead times. These expressions
are computed using recursive procedures that are several orders
of magnitude less computationally complex than the embedded
Markov chain approach. We further show that the stock opti-
mization problem can be solved with simple line searches and a
single evaluation of the stationary probability distribution.

Our computational studies reveal that service levels are
relatively insensitive to the form of the lead time distribution.
Consequently, any good approximation algorithm, whether for
constant or exponentially distributed lead times, may be used
with general lead time distributions with likely good results. In
particular, the continuous-time Markov chain approach is close
in accuracy to the embedded Markov chain approach and both
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methods dominate the single-cycle approach, performing well
over a broad range of lead time distributions. The embedded
Markov chain performs best with low coefficients of variation of
the lead time and the continuous-time Markov chain performs
better as the coeflicient of variation increases. Furthermore,
as shown in a companion paper (Vicil and Jackson, 2015),
it is straightforward to extend the continuous-time Markov
chain approach to three demand classes. In summary, this
article presents an extensible and computationally efficient
way of computing optimal stocking and threshold levels for a
two-demand-class model and provides service level estimates
comparable to the best existing heuristic.

The article is organized as follows. After reviewing the
literature in Section 2, we introduce the stocking and allocation
optimization model in Section 3 together with properties
of the stationary probability distribution. We exploit these
properties in Section 4 to present an algorithm to solve the
optimization problem. The unique feature of this algorithm
is that it requires only a single computation of the stationary
probabilities. The remainder of this article focuses on this
computation. In Section 5, we consider the special case of expo-
nentially distributed lead times. This exact approach exploits
the special structure of the probability transition matrix in a
novel way and results in an efficient recursive procedure. In
Section 6, we describe counterexamples that hamper traditional
approaches to exact analysis of such problems under generally
distributed lead time settings. We cast the essential difficulty as
a theorem, highlighting the so-called Independence Condition,
which, if satisfied, leads to a distribution-invariant result. In
Section 7, we use numerical simulation to evaluate the quality of
the Continuous-Time Markov Chain (CTMC) approximation
under a variety of lead time probability distributions for two-
demand-class models and compare the relative quality with the
existing heuristics. In the conclusion, we note that the model
can be extended to three-demand-class models but leave the
development and discussion to a supplemental technical report
(Vicil and Jackson, 2015).

2. Literature review

Kleijn and Dekker (1999) review the literature on inventory sys-
tems with multiple demand classes. Their taxonomy focuses on
two characteristics: (i) periodic versus continuous review and
(ii) the number of demand classes considered (two or more).
We highlight several papers published after their work. Ding
et al. (2006) consider a single-period, single-item, multiple-
class model that allows the use of dynamic price discounts to
encourage backlogging of demand for customers classes not
immediately satisfied. They determine the optimal discounts to
offer and characterize the optimal inventory allocation policy.
In a subsequent paper, Ding et al. (2007) consider an infinite
horizon, deterministic demand, economic-order-quantity-like
environment with holding, backorder, lost demand, and setup
costs. They determine the optimal policy in this deterministic
environment, where partial backlogging of unfilled demand is
possible, based on dynamic price discounts. They also study the
effect of changes in various system parameters on performance
measures such as profitability and customer service. Teunter and
Haneveld (2008) consider a single-period, two-demand-class
model with Poisson demand and backordering. They study a

dynamic rationing strategy where the number of units reserved
for critical demand depends on the remaining time until the
next order arrives. They derive a set of expressions that enable
calculation of the optimal rationing level based on the time
remaining. In a later study, Fadiloglu and Bulut (2010a) conduct
simulation studies for both backordering and lost sales envi-
ronments, in order to compare the performance of the dynamic
policy with the static critical level and common stock policies
and to quantify the gain obtained from dynamic rationing.

The following papers employ a static threshold policy and
develop procedures to determine the optimal threshold level(s).
Nahmias and Demmy (1981) use a continuous review (c, s, Q)
policy for two demand classes (the parameter c is the critical
level for on-hand inventory below which low-priority customers
are not served). In their model, backorders are allowed, demand
is a Poisson process, and the order lead time is constant. They
further assume that there is at most one order outstanding.
Deshpande et al. (2003) consider a situation similar to that of
Nahmias and Demmy (1981) but allow multiple replenishment
orders to be present in the pipeline at the same time. They use
a hitting time approach with a creative approximation to the
distribution of backorders among customer classes at the time a
replenishment order arrives. Empirical results demonstrate that
the approximation is quite good for the parameters considered.
Deshpande and Cohen (2005) extend their threshold clearing
mechanism from two to N demand classes. Also, in a similar
work, Arslan et al. (2007) analyze a single-location, single-
product inventory rationing problem for N demand classes
that are characterized by different shortage costs or service
requirements. They assume a backorder clearing mechanism,
in which a backorder for a lower-priority class is treated as
equivalent to a reserve-stock shortfall for the higher-priority
class. They propose a computationally efficient heuristic and
develop a bound on its performance. They also show that there
is sample-path equivalence between their backorder clearing
rule and the threshold clearing rule in Deshpande et al. (2003)
and Deshpande and Cohen (2005).

Dekker et al. (1998) use a continuous review (¢, S — 1, S)
policy for two demand classes. As with Nahmias and Demmy
(1981), their model is based on the assumption that excess
demand is backordered. The demand process is a Poisson
process and order lead times are constant. They use a hit-
ting time approach under the approximating assumption that
there was no order outstanding a lead time ago. The accuracy
of the approach can be increased by assuming, instead, that
there was no order outstanding two lead times ago. Kocaga
and Sen (2007) study a similar environment as Dekker et al.
(1998); however, their model differs in the way the non-critical
orders are satisfied. According to their model, critical orders
are due immediately, whereas non-critical orders allow for a
deterministic demand lead time. They provide an approxima-
tion for the critical service level while the service level for the
non-critical demand is exact. Dekker et al. (2002) consider a
(¢, S — 1, S) replenishment policy for N demand classes (c is an
N-dimensional vector in this case). Their model includes lost
sales, Poisson demand processes, and a general lead time dis-
tribution. The lost sales assumption simplifies the state space.
They derive the exact steady-state distribution of on-hand
inventory and, from there, develop techniques to find optimal
policy parameters.



The problem we consider is most closely related to the mod-
els in Dekker et al. (1998) and Dekker et al. (2002). For zero
setup costs, it is also identical to the model of Deshpande et al.
(2003). We focus on (S — 1, S) replenishment policies, as these
are appropriate in the high-cost, low-demand-rate service parts
distribution contexts of our applied work. We also assume a
static threshold policy and seek to determine the service levels
provided for each customer class.

Fadiloglu and Bulut (2010b) consider a model that is iden-
tical to the one developed in this article, but is restricted to
a constant lead time. They suggest that an embedded Markov
chain approach can be used to estimate the stationary proba-
bility distribution by sampling the system at multiples of the
lead time. The transition probabilities are approximated under
the assumption that delivery times are independent of the num-
ber of low-priority backorders. They provide a recursive proce-
dure for computing the transition probabilities of the Markov
chain. The stationary probabilities are computed as the limit
of a convergent sequence of bounds using a sophisticated tech-
nique from computational algebra. They demonstrate through
simulation that the approximation is quite good. We show that
the assumption that delivery times are independent of the num-
ber of low-priority backorders permits the analysis of the same
model under general lead time distributions. However, instead
of a Markov chain approach, we are led to the analysis of a
continuous-time Markov process. We refer to our approach
as the CTMC approach to distinguish it from the embedded
Markov chain approach of Fadiloglu and Bulut (2010b). The
resulting algorithm is several orders of magnitude less compu-
tationally complex than the embedded Markov chain approach.

3. Stock optimization for a two-demand-class model

We consider a model with two priority demand classes: gold and
silver. The gold customers have contracted for a service-level fill
rate, ¢,, and the silver customers have contracted for fill rate
¢, with ¢g > ¢,. We assume that the demand streams for gold
and silver customers are independent Poisson processes with
demand rates A, and A, respectively, and that the demands for
both classes can be backordered. We further assume that replen-
ishment orders for the product are placed according to a con-
tinuous review (S — 1, S) policy based on inventory position.
Hence, the arrival of any demand, by either a gold or a silver cus-
tomer, triggers an immediate replenishment order of size 1. Ser-
vice is differentiated using a threshold level, S,. No silver demand
or backorder is satisfied as long as the on-hand inventory, OH,
is at or below S;. Gold demands are backordered only if the on-
hand inventory is zero. The overall policy is referred to as a lot-
for-lot replenishment and threshold allocation policy.

The delivery lead times for successive orders form a sequence
of independent and identically distributed random variables
with mean T. In this article, we consider simulations of the
system using a variety of lead time probability distributions
including the constant, the exponential, the Erlang, the geomet-
ric, and the lognormal distributions. However, the service-level
estimation techniques discussed rely only on the value of T, the
mean lead time. Consequently, the model is parameterized by
the vector (S, Sg; Ag, A5, T).
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Let B; (respectively, B;) denote the steady-state fill rate for
gold (respectively, silver) customers as functions of the param-
eters (S, Sg; Ag, As, T). Denote the stationary probability distri-
bution of a random process by P, (-). By the PASTA principle
(Poisson Arrivals See Time Averages), arriving demands face the
stationary distribution of on-hand inventory, OH (Tijms, 1986).
A silver customer arrival will be served if and only if OH > S,
whereas a gold customer arrival will be served if and only if
OH > 0.

Consequently,

B.=1-Pu(OH < S,),
and
Bg =1— P (OH = 0).
A natural formulation of the optimization problem is

min S

subject to:
Bs(S. Sg) = ¢
Be(S,8o) = ¢
§>8=>0

for management-specified service levels ¢, and ¢;,c; > ¢;. That
is, we seek the minimum target level of inventory required to
achieve the service level constraints.

Atany timet, let OH (¢) denote the number of units on hand,
let R(t) denote the number of units in resupply, let B, (¢) denote
the number of outstanding gold backorders, and let B;(t) denote
the number of outstanding silver backorders. Under the lot-for-
lot replenishment and threshold allocation policy, the following
relations hold:

§= OH(t) + R(t) — By(t) — Bs(¢) (1)
OH(t) = [S—R(t) + By(1)]" ()
By(t) = [R(t) — B(t) — S]* . )

These relations will also apply to the stationary distribution of
these quantities denoted by OH, R, B,, and B,. Consequently,
it is sufficient to capture the stationary distribution of the pair
(R, By), the number of units in resupply, and the number of out-
standing silver backorders.

If we consider only the number of units in resupply, R, then
only the replenishment policy has any effect and the result-
ing system can be analyzed according to a single-demand-class
system with demand rate A = Ay + A;. Due to Palms Theo-
rem (Muckstadt and Sapra, 2010), for a general, positively val-
ued lead time distribution with no probability mass at zero, the
steady-state distribution of the units in resupply is Poisson dis-
tributed with mean AT. The importance of Palm’s Theorem is
that the form of the lead time probability distribution has no
effect on the stationary behavior of the system beyond the mean
of the distribution. It follows that the silver fill rate is given by

Bs = P (OH > Sg)
= Po(R<S—S$,)
§—8—1 ()\‘T)k e—AT

=) g @)

k=0
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Since the silver fill rate is easily determined, the challenge in
subsequent analysis is to estimate the steady-state distribution
of states for which R > S — S, in order to determine f,, the gold
fill rate.

The first observation is that a stationary distribution does,
in fact, exist over states (R(t), Bs(t)) for this system. Let Z;, =
{0, 1,2, ...}, denote the set of non-negative integers and & =
(r,bs) € Zy x Zy denote the system state at time f, t > 0.
Denote the transitition probability by

Pirby. byt 1) = P{& = (7, ) | & = (r. b)) }.

The following theorem establishes the existence of a stationary
distribution under general lead time distributions.

Theorem 1. For a general, positively valued lead time distribution
with no probability mass at zero, and for any (r, bs) € Zy X Zy,
limy—, o6 P00y, (1,6, (0, 1) = Tr(y,p,) exists and is well defined.

Proof. Provided in the online supplement. O

3.1. Properties of the stationary distribution

In this section we present several invariance and monotonicity
results that simplify the optimization problem. We have already
seen one invariance result (4) that states that f;, the silver fill
rate, depends only on the difference S — S, and that this result is
unaffected by the form of the lead time probability distribution.
Let 77(r,6,) (S, Sp), (1, bs) € Zy X Zy, denote the stationary distri-
bution of (R(t), Bs(t)) when the policy parameters are given by
(S, Sg). Let m; (S, S,) denote the stationary distribution of on-
hand inventory: forh =10,1,...,S:

74 (S, Sg) = Po (OH(t) = h) .

Recall that OH (t) = [S — R(t) + B,(t)]™. It follows that the sta-
tionary distribution of on-hand inventory is given by

(S S) =Y Y man(S.Sy). (5)
reZy bseZy
(S—r+bs)*=h
For h > 0, this can be written as
o0
T (S, 8) = Y Terin-s)(S, Sy). (6)

r=S—h

Finally, let B,(S, Sg) denote the gold fill rate as a function of
the policy parameters. We make no claim that these quantities,
T(r,b,)> Th» and B, are invariant to the form of the lead time prob-
ability distribution. However, we do establish certain fundamen-
tal properties of these quantities that hold without regard to the
lead time distribution.

We use sample path arguments to establish the subsequent
results. Beginning from a regeneration point in which no orders
are outstanding, let (n, T,, E,) describe the nth event in the
system: T, is the time of the nth event, and E, is the type of
event where E, € {v, g, s} representing events “delivery,” “gold
demand,” and “silver demand,” respectively. Clearly, T,, > 0. Let
R, denote the number of units in resupply after the nth eventand
B, , denote the number of silver backorders after the nth event.

Proposition 1. The dynamics of (Ry, Bs.n) can be completely
described in terms of the sample path {(n, T,, E,);n=

1,2,3,...}:
R _ Rn +1 En # «l) »,

n+l — Rn -1 En - 97
Bs,n+1

07 Rn+1 S S - S 5
Bs,n + 1, En = “S”, Rn > S — Sg7
B BS,”_ L, Eﬂ = “Dn’ Rn > S_Sg’ Bs,n =Rn_ (S—Sg),
Bsn otherwise.

Proof. We have earlier noted the simplicity of the dynamics for
the number of units in resupply. The only situation in which B ,,
can be decremented is with the arrival of a delivery (E, = v)
when on-hand inventory prior to the delivery is S, and there is
at least one silver backorder. If the on-hand inventory equals Sg,
then, by Equation (1), S — R, + B; , = S,. The number of sil-
ver backorders in this case is given by B; , = R, — (S — Sg). For
there to be at least one silver backorder, we require R, — (S —
S¢) > 1, or equivalently R, > (S — Sg). This describes the situ-
ation where B , is decremented. If the on-hand inventory is less
than or equal to Sg, then R, > (S — Sg) and any arriving silver
demand is backordered. Hence, B , is incremented in this event.
The remaining dynamics are straightforward. O

Let A = § — S,, the difference between the target inventory
and the gold threshold. As is clear from the formulas, the dynam-
ics governing the sample paths depend only on the value of A.
Figure 1 illustrates the sample path dynamics by representing
all reachable states for (R,, B;,) and the transitions that can
occur to (Ry41, Bs nt1) for an arbitrary #. In the figure we clas-
sify states based on how an arriving delivery is treated. Observe
that if R, < A, then a delivery is used to replenish inventory.
We classify these states as “deliver to stock” If R,, > A, then the
treatment of deliveries is restricted. Silver backorders can exist
only if R, > A. A silver backorder is filled by a delivery if and
only if B; , = R, — A. We classify these states as “deliver to sil-
ver” When R, > A and B;,, < R, — A, then deliveries are used
to satisfy gold backorders or to replenish gold reserves (up to S,).
We classify these states as “deliver to gold” Among these latter
states, we further distinguish those states that form the interface
between deliver-to-gold states and deliver-to-stock or deliver-
to-silver states. These interface or bridge states have the prop-
erty B, , = R, — A — 1. Bridge states play an important role in
a subsequent section.

Corollary 1. The stationary probabilities 1, (1, bs) € Zy x
Zy, are invariant to changes in S provided A = S — S, is constant.

Proof. The sample path dynamics depend only on A, the differ-
ence between the target inventory and the gold threshold.  [J

Let 77 (.., (A), (1, bs) € Zy X Zy, denote the stationary prob-
abilities computed using the knowledge that S — S, = A. The
remainder of this section assumes that a method for computing
these probabilities is available. An example of such a method will
be presented in a subsequent section.

We exploit this result to simplify the computation of gold
fill rates. Suppose we have computed the stationary probability
distribution of the on-hand inventory, 7, h =0, 1, ..., S, for



Legend
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Deliver to silver
Deliver to gold
Deliver to gold: bridge

Delivery
Gold or silver demand

Gold demand
Silver demand

Figure 1. Sample path dynamics.

some combination of parameters Sand S, = S — A. The follow-
ing result shows how to extract the stationary on-hand distribu-
tion for other target inventory levels, S — k, provided A is fixed.

Corollary 2. For fixed A

T (S—k,S—k—A)=mp11 (5,8 — A)
forallk=0,1,2,...,S—Aandallh=1,2,...,S—k.
Proof. By Equation (5),

nh(S—k,S—k—A):Z Z

reZy bseZy
(S—k—r+bs)"=h

=2 2

reZy bseZy
(S—k—r+bs)"=h

n(,,bs)(S — k, S — k — A)
T(rb) (S, S — A),

by the invariance of 7.5, (S, S,) to S when S — S, is fixed. The
result follows easily. O

Corollary 3. For fixed A, andk =0,1,...,5— A:

S
Bo(S—k.S—k—A)= Y 7;i(S.$—A).

j=k+1
Proof. By definition
Be(S—k,S—k—A)

1—m(S—k,S—k—A)
S—k

=Y m(S—kS—k—A)
h=1
S—k

=D k(.S = A)

h=1

by the invariance result. A change of variables (j = h + k) com-
pletes the result. O

This last result gives rise to a recursive scheme to compute
the gold fill rate.
Corollary 4. When A =S — S, is fixed, we have for r = A +
1,...,S:

Be(rir —A)=Be(r—1,r—1—=A) + 75,41 (5,S—A).

All that is needed to initiate this scheme is B, (A, 0)
and m(S,S— A), k=1,...,S— A. When S; =0, we have

r=A+1
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r=A+2 r=A43 r=4A+44 r=A45

Be(A,0) = Po(OH > 0) = P, (OH > S,) = B,(A). That is,
for a given value of A, we can initiate the calculation of the gold
fill rate with the silver fill rate.

Our final result is a monotonicity property of the gold fill rate.

Proposition 2. For fixed S, B,(S, S,) is nondecreasing in S,.

Proof. Consider two systems with identical event sequences
{(n, T,,E,);n=1,2,3,...}. In one system, the policy
parameters are (S, S,) and the resulting states are given by
{(Ry, Bs.n);n=1,2,3,...}. In the second system, the policy
parameters are (S, Sp) with §; > S, and the resulting states are
given by {(R}, B, );n=1,2,3,...}. We claim that R, = R,
and B, > B;,. That R} = R, has already been established. To
show B; , > B; , by induction, we first assume that it is true for
some value of n and then establish the result for n + 1. Since the
backorders change by at most one unit per transition, it suffices
to assume B;, = B, and then show that B, ., < B, is
not possible. Thus, suppose Bs,+1 = B, + 1. This can hap-
pen only if a silver demand occurs and R, > S —S,. Since
S, > S,, we have R}, =R, > S—§, and in this situation we
will have B, ., = B, + 1= B;, + 1 = B, 541. Now suppose
B; ., = B, — 1. This can happen only if a delivery occurs and

s,n+1
B, =R, —(S— Sé). But this would imply

Bs’n = B;n = R; — (S — S(/g) > Rn — (S - Sg),

which is not possible. Under all sample paths, therefore, we have
that B, , > B, ,. By Equation (2), the on-hand inventory for the
second system will be no less than the on-hand inventory for
the first system. Consequently, the gold fill rate for the second
system must be at least as high as for the first system. O

4. Optimization algorithm

In this section we use the previous results to develop an algo-
rithm to solve the two-demand-class fill rate optimization prob-
lem. Two important features of the algorithm are that it requires
only one computation of the stationary probability distribution
and it relies on simple line searches and recursive calculations
for the remaining steps.
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Let A™ be the smallest value of A = S — S, that satisfies the
required silver fill rate

A-1 k —\T
. (AT)" e
*
= N _— >
A Aer{rll}zr} A kE_O k! > ¢ (7)

and let S* be the smallest value of S that satisfies the required
gold fill rate under the condition that §, = § — A*:
* . . A%
§* = smin {S:8,(S.S— A%) = ¢} (8)

Proposition 3. The parameters (S, Sy) = (8, S* — A*) are opti-
mal for the fill rate optimization problem.

Proof. Suppose there exists another solution (S', §;) that is fea-
sible but for which " < S§*. For this solution to be feasible with
respect to the silver fill rate constraint we must have §' — S;, >
A*. Consider the solution (S, § — A*). By construction, this
solution satisfies the silver fill rate constraint. Since the gold fill
rate is nondecreasing in S, for fixed Sand since §' — A* > §,, we
must have ,Bg(S’, S — A*) > ¢, However, this implies &' > §*
by the definition of $*, a contradiction. Consequently, there is
no other feasible solution with a smaller value of S. O

Let S denote an upper bound on the optimal target inventory
level. A natural choice is to set

S—1 k ,—\T
= ) (AT)" e

In this case, we can set S; = 0 and then ﬂg(g, 0) = B:(S,0) >
¢g > ¢; and so both service level constraints are satisfied.

We are now in a position to sketch the optimization algo-
rithm (Table 1). We do not address implementation issues such
as when to truncate infinite series.

The algorithm uses simple line searches to find A*, S, and the
smallest value of S satisfying B, > c,. Each of these can be imple-
mented using recursive forms. The validity of the calculation for
Bgis a consequence of Corollary 4. The optimality of the solution
is ensured by Proposition 3. The only challenging calculation
is the determination of the stationary probabilities, 7, 5 ) (A*),
for all (r, bs) € Zy x Zy. This is the focus of the remainder of
this article. Note, however, that these probabilities are computed
exactly once in the algorithm. This is an important consequence
of the invariance results established above.

Table 1. Optimization algorithm for the two-demand-class problem.

1. Compute A* and B (A*) using (7);
2. Compute Susing (9);
3. Compute n(i‘D(A*), forall (i, j) € Z, x Z,, by some method, to be
determined;
4. Compute 7, (S,S — A*)fork =1,2,...5 — A* using (6);
5. Setf, =B (A%),i=A%;
6. If ﬂg > ¢, 90 to7.
Otherwise, repeat until ﬁg e
a)Seti=i+T1;
b) Set,Bg = ,Bg + 75 1(5 5 =A%)
7. SetS* =1, SetS; =S5* — A%
Return (S, Sg) = (§*, S;).

g
» . Delivery
NN\ _« Gold or silver
—9-|>A Gold demand
As

2> Silver demand

Figure 2. Flow rates.

5. Special case: Exponentially distributed lead times

In general, exact determination of the stationary probabilities,
T (rby) (A*), forall (r, bs) € Zy x Zy, for arbitrary lead time dis-
tributions is an unsolved problem. An excellent approximation
for the case of constant lead times is provided by Fadiloglu and
Bulut (2010b). In this article, we show that exact expressions for
the stationary probabilities are available in the special case of
exponentially distributed lead times and that these probabilities
can be computed using a straightforward recursive scheme. In
subsequent sections we present analytical and numerical evi-
dence suggesting that this method provides fill rate estimates
that are good approximations for systems with other lead time
distributions, provided that the coefficient of variation of these
distributions is not too high.

For the remainder of this section, we assume that lead times
are exponentially distributed with rate © = 1/T. It is easy to see
that in this case the resulting process {(R(t), Bs(t)) : t > 0} is
a CTMC. Let the state space be denoted by D(A) = {(r, b;) €
Zoy X Zy : by < r — A}. Let the matrix A denote the infinitesimal
generator of the process. The balance equations 7A = 0 can be
developed easily with reference to the state transition diagram
(Fig. 1) and the key to transition rates (Fig. 2). Table 2 lists the
resulting balance equations.

We are unable to obtain a closed-form solution to these bal-
ance equations. However, a rearrangement of terms in these
equations suggests a computational scheme. Table 3 presents this
suggested scheme.

Note that by Palm’s Theorem, 7o) = e */*, so the recur-
sive scheme has a valid starting point. However, a study of
the table reveals that there is no formula for determining
T(a+kk—1) for k=1,2,..., in terms of quantities obtainable
recursively through other formulas. We refer to these states
{(A+k,k—1):k=1,2,...} as bridge states: they lie at the
interface between the states where deliveries are restricted to
gold and states where deliveries are either unrestricted or are
used to fill silver backorders. In Fig. 1, they are depicted as
rounded rectangles. The challenge, then, is to determine the sta-
tionary probabilities of these bridge states. We present a solu-
tion to this challenge in the next sections and then integrate
the results with Table 3 to present an algorithm for solving the
CTMC balance equations.

5.1. Determining the stationary probabilities of
the bridge states

5.1.1. The bridge probabilities and the bridge theorem
We first review basic CTMC results as applied to this system.
Let 6, denote the parameter of the exponential distribution of a



Table 2. Balance equations for the two-demand-class CTMC.
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State classification

Balance equation

r=0,b=0
0<r<Ab,=0
r=A,b,=0
r>Ab,=0
r>Ab,=r—A
r>A0<b, <r—A

)“”(0,0) = T 0)

(rie+2)7 gy = AT 0y T T+ DUT (446,

(i + 207 0y = A 0y + T+ DT g 0) + (FEDRT g

(e +2)7 o) = Ao rq,0) + (DT 140

(ru + )“)ﬂ(r,bs) = }”sn(r—1.bs—1) +(r+ 1)/“T<r+1.bs) +(r+ 1)“”(r+1‘b$+1)
(rn + )‘)”(r,bs) = As”(rq.b;n + )‘g”(rq.bs) +(r+ 1)W"(r+1,l>5)

sojourn time in state s € D(A). If s = (r, b;), then, since r rep-
resents R(¢), the number of units in resupply, the rate 6; is given
by

O =1+ A.

Let the matrix Q denote the probability transition matrix of the
underlying Markov chain. If s, s € D(A) and s # ¢, then the
elements of Q can be deduced from Table 2 and the relation

Qs,s’ = As,s’/es-

The Markov chain on the set D(A) given by Q is irreducible.
Consequently, since state (0, 0) is recurrent (Palm’s Theorem),
all states in D(A) are recurrent. Let 7 = (7;) denote the sta-
tionary probability distribution of the imbedded Markov chain.
Then 7 is an invariant measure

Furthermore

T = (10)

We are thus led to focus on 7, the stationary probabilities of the
bridge states in the underlying Markov chain.

The fundamental relationship we exploit is the following
result for discrete-time Markov chains:

Proposition 4 (Resnick, 1992, p. 118). Let &, be the system state
at time n, ty (1) be the first hitting time to state s', and 7 be the
steady-state probability of being in state s. Also, let s' € S be recur-
rent, and define for s € S:

2

0<n<ty(1)—1

vs = Eg Lig,=s)

I
M2

P& =5t (1) > nl§ =5}.

Il
)

n

Table 3. Computational scheme for the two-demand-class CTMC.

Then v is an invariant measure. If state s’ is positive recurrent so
that Egty (1) < 00, then

~ Vs
g = ———.
Es’Ts’(l)

The proposition states that the stationary probability of any state
sin a discrete-time Markov chain is proportional to the expected
number of times the state is visited in one cycle of consecutive
visits to another recurrent state s'.

We relate this result to the Markov chain on D(A) as follows.
Let s’ be any recurrent state in D(A). Let v; denote the expected
number of visits to state s € D(A) between two consecutive vis-
itstos’. Let 7" denote the first hitting time of state s’ and let Es[7]
denote the expected first hitting time of this state starting from
state s € D(A).

Corollary 5. For all k = 1,2, ..., and any pair of states s, s” €
D(A):

‘T[SQS _ 7?5 _ US

70y Ty vg

Proof. By Proposition 4 we have

~ Vs ~ (2
Ty = ———, and Ty = .
Es’ ['L’ ] Es’ [T ]

The expected cycle length cancels when computing the ratio.
The extension to the CTMC stationary probabilities, 77, follows
from Equation (10). U

In what follows, the role of the recurrent state s” in the propo-
sition is played by the deliver-to-silver recurrent states: {(A +
k,k):k=1,2,...}. For any value of k, to simplify notation, we
reference nodes of interest relative to the node s’ = (A + k, k)
and suppress the dependence on k. Figure 3 illustrates. The
deliver-to-gold states of interest are those with k — 1 silver back-
orders (B; = k — 1). These are labeled u;, u, u3, ... Thus, in
general, u;, i = 1,2, ..., refers to state (A +k—1+1i, k—1).

State classification Suggested computation

r= 0, bs =0 ﬂ(LO) = %7[(0’0)

O<r<A,b,=0 (41,00 = ((r,/iim”o,m - ﬁ”(rq,m
r=A4,b=0 1) = %”(m) - ﬁ”(r—w) ~ 4,0y
r>Aa.b;=0 1.0 = G T o) ~ T r-1.0)

r>Ab,=r—A

r>A0<b, <r—A

_ (un) _ _
Trinb 1) = e (b ~ T Tr-1b,-1)  ~ Tr1b,)

_ (utn) _ A _
Tr+1.b) = inp T(rb) T T (r—1.b,-1) o T (r-1.b,)
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s; F—Df ss

r=A+k-1 r=A +k

Figure 3. General bridge node notation.

We refer to these states as gated states, G = {uy, up, us, .. .}.
The bridge state of interest—that is, the state whose steady-state
probability we seek to calculate—is the leading gated state: u;.
We also need to reference non-gated states that can reach states
in G by means of a single demand arrival. We label these states
by so, $1, $2, 3, ... Thus, for k > 2, sy refers to state (A + k —
1, k — 1), which can reach G with a single gold arrival and, in
general, for i = 1,2, ..., state s; refers to state (A +k—2+
i, k — 2), which can reach G with a single silver arrival. We refer
to these states as feeder states, F = {sg, s1, sz, .. .}. Thecasek = 1
is special: In that case, there is only one feeder state: F = {sy} =
{(A, 0)}. Let f denote the set of possible feeder indices: f = {0}
when k =1and f = {0, 1,2, ...}, otherwise.

State s' communicates with the gated states G only through
state sp. Between two consecutive visits to s, the Markov pro-
cess may visit any of the gated states multiple times, up until a
silver demand occurs in one of these states. Once a silver demand
occurs in a gated state the process must visit state s’ before any
of these states can be revisited. Similarly, the gated states com-
municate with the feeder states only through state sy. These are
the facts we exploit to develop a solution.

Let t’ denote the first hitting time of state s’ in the Markov
chain on D(A). We continue to suppress the dependence on k.
Let 7y denote the first hitting time of state sp. Let p; denote the
probability that the process will reach state s, before it reaches
state s', starting from gated state u;:

p,-:P{ro <t/|§o=ui}.

We refer to these probabilities p; as bridge probabilities. A
method for computing these probabilities is described in the
next section. In this section, we establish their relationship to
the bridge state probability, m,, . The major result of this section
is the following.

Theorem 2 (Bridge Theorem). For a given deliver-to-silver state
s = (A + k, k), gated states G, and feeder states F, defined rela-
tive to index k, the stationary probabilities, 7t , of the CTMC satisfy
the following relationships: For k = 1:

(A +1) umy,, = Agp17,.

Fork > 1:

(A + k) MUy, = )\gplnso + Z )"spins,-

i=1

r=A+k+1 r=A +k+2

Proof. Provided in the online supplement. O

Interpreting the result, we imagine flows across a bridge from
the bridge state u; to state sp. In steady state, this flow occurs
at rate (A + k)pum,,, which is the rate of deliveries multiplied
by the steady-state probability of the bridge state. Due to the
unusual form of the Markov chain, the only flow that is possi-
ble in this direction must have first come from one of the feeder
states, s; for i € f. The rate of flow in this direction (from s; to
the matching gated state) is Ay, if i = 0 and A7, otherwise.
However, only a portion of this flow returns across the bridge.
The rest of the flow will return to the feeder states through s', the
deliver-to-silver state, which is our reference state. The fraction
that returns across the bridge is given by p;, the probability that
the underlying Markov chain will make that transition before
visiting state s’, given that it starts in the bridge state.

5.1.2. Computing the bridge probabilities

In this section, we develop simple recursive formulas for cal-
culating the bridge probabilities p; introduced in the previous
section. In one sense, we continue the analysis of the previous
section but in another sense, we establish general results for a
simplified discrete-time Markov chain and apply these results to
the imbedded Markov chain of the previous section.

The simplified Markov chain is depicted in Fig. 4. It has two
absorbing states, sp and §’, and an infinite number of transient
states, 1y, Uy, us, ... Each transient state #; can make a transi-
tion directly to absorbing state s’ with probability y; and to state
u;_1, provided i > 0, with probability «;. State u; can make a
transition directly to absorbing state sp with probability ;. Each
transient state u; can also make a transition directly to state u;1;
with probability B;. No other transitions are possible. We assume
that all transition probabilities are positive: «;, B;, ;i > 0. We
further assume that {«;} (respectively, {8;}) is a monotonically
increasing (respectively, decreasing) series with limit 1 (respec-
tively, 0) as i — o0o. The annotations for r and b; in the figure
can be ignored for now; they will be useful later in this section.
Let 7’ be the hitting time of absorbing state s’ and let 7, denote
the hitting time of absorbing state sy. Let £, denote the state of
the Markov chain at step n. Let p; denote the probability that
the process reaches state s before it reaches state s’, given that it
starts in state u;:

pi= P{To <tl§ = ui} .
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et pe=leid

B3

r=A+k r=A+k+1 r=A4A +k+2

Figure 4. Simplified Markov chain: Bridge transitions.
Let py = 1. It is easy to see the following relation must hold

pi = aipi-1 + Bipit1 (11)

fori=1,2, ... This gives rise to a general recursive formula for
these probabilities:

pir1 = B (pi — cipi1) . (12)

The only difficulty is in finding the value of p; to initiate the
calculation. We begin by relating each p; to p;. The first few for-
mulas in the series are

P2 =P — Byl

10(1

1 1
m:E<EﬂQm_EE
() w))
= B g~ ) @ )2

1 (1 (03] O{1>
— == —as— ).
Bs \ B2 B B

The pattern should be apparent: let a;, b;, i=2,3,..., be
defined recursively
a1 = B (ai — aiainy) (13)
biy1 = B (b — aibi_y)
with initiating values
ay=—1,a;,=0, by =0, by =1. (14)
The following proposition states the pattern.
Proposition 5. Fori =1,2,...:
pi=bip1 —a;. (15)

Proof. Itis easily verified for i = 1, 2, 3, and 4. Assume it is true
for i. Then for i + 1 we have
piv1 =B (Pi - OliPi—1)
= B; " (bip1 — ai — i [bimip1 — ai1])
= B (bi — aibiny) p1 — B (ai — aiai_y)
= biy1p1 — a1
The result, therefore, holds by induction. O

We refer to the quantities a; and b; as bridge factors. Observe
that the same linear recursion generates each series: {p;}, {a:},

and {b;}. The series differ only in their initial values: {po, p:1},
{ao, a1}, and {by, b }.

Proposition 6. Under the condition that «; /' 1 and B; \( 0 as
i— oo:

lim 27 — 0.
i—00 b;
Proof. Provided in the online supplement. O

Corollary 6. Under the conditions of Proposition 6:

i— 00 bi.

(16)

To relate this result to the previous section, we consider Fig. 4
again but, this time, with attention to the annotations for r and
bs. Focusing on state u, we have

(A+ku
= 17
T AR LA 7
B = s
T At
— )\’S
T Aavhpr

and it follows that ; + B + y1 = 1. In general, for any state u;,
i=1,2,...,

A+k+i—Dp

o= - , 18
(Ad+k+i—1)u+ar (18)
Bi = e

A+ k+i—-Dp+ A

Vi s

T Atkti-Dptr

Observe that ; /' 1 and B; N\ 0 as i — 00, so the conditions
of Proposition 6 are satisfied. Therefore, Equation (16) shows
that the bridge probability p; for state u; = (r + A, k — 1) can
be computed as the limit of a ratio of bridge factors, which can
be recursively computed using Equation (13) from initial values
(14). Successive bridge probabilities for states with by = k — 1
can then be computed using Equation (12). Let £ > 0 denote a
tolerance factor and let K denote an upper limit on the num-
ber of silver demand backorders to compute. Table 4 defines
a function BP(A, k, 1, A, A4, K, €) that returns a vector p =
(p1, p2, - - -, px) by applying these recursions.
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Table 4. Bridge probability function, BP().

Step Inputs: A, k, , A, Ag, K, e
1 Initialize: ar;, B, using (17), ;. a;, by, b, using (14);
2. Compute: a,, a3, B,, B using (18); Compute a,, d;, b,, by using (13);
3. n <« 3;
4. WhiIe(Z—: — Z:*: >gandn <K):
Compute:at,, ;. B, using (18); Compute a, . ;, b, |, using (13);
n < n + 1;End while loop;
5. Py < Z—”; n<1,

n

6. While (n < K) : Compute P41 Using (12);
n < n+ 1;End while loop;
Output: (p;, Py, - -+ s Pg)-

5.2. The Bridge Algorithm

In this section, we assemble the previous results into an algo-
rithm for computing the stationary distribution, , of the two-
demand-class CTMC defined on the state space D(A), for given
A = § — §,. Control parameters K, &, and the bridge probabil-
ity function, BP(A, k, i, A, A, K, €), are as described in the
previous section. Table 5 summarizes the algorithm, called here
the Bridge Algorithm, for computing the stationary distribution
of the two-demand-class CTMC. What is noteworthy about the
algorithm is that it is composed entirely of recursive calcula-
tions. No matrix inversion is required.

Computational complexity: Examining Table 4, we observe that
computing the bridge probabilities requires O(K) computations
for each combination of A and k considered (steps 4 and 6 iter-
ate over n and n < K). Similarly, in Table 5, steps 1 to 3 require
O(A) steps and we can take A to be less than K. Steps 4 to
7 are each at most O(K). Step 8 is O(K?). Consequently, the
Bridge Algorithm has computational complexity at most O(K?).
We earlier showed that when optimizing stock levels, the Bridge
Algorithm needs to be run for only one value of A, the value A*
that optimizes Equation (7). This calculation and the other line

searches to find S and S* are no more than O(K), so it follows
that optimization of stock levels using this approach is at most
O(K?). This is in contrast with the embedded Markov chain
approach of Fadiloglu and Bulut (2010b) that requires O(DS,,,)
computations where D,,,, &~ K. Hence, this simple recursive
algorithm is several orders of magnitude less complex than the

embedded Markov chain approach.

6. The case of generally distributed lead times

The previous section detailed an exact analysis leading to a
recursive algorithm to determine the stationary probabilities
for the (R, B;) process in the special case of exponentially
distributed lead times. For the case of generally distributed lead
times, two examples shall suffice to demonstrate the difficulty
of exact analysis for this problem. Both examples assume that
lead times, L, are constant.

Example 1: The sequence of arrivals matters

Given the state (R, B;) at any point in time, the state of the
system a lead time from now depends not only on the total
numbers of gold and silver demand arrivals during the next L
time periods but also on the sequence of these arrivals. To see
this, suppose S =5, S, =2, R =0, and B; = 0. Suppose also
that during the next L time periods there are exactly three silver
demands followed by two gold demands. The resulting state
after L time periods will be R =5 and B; = 0. On the other
hand, if the sequence of arrivals had been reversed (two gold
demands followed by three silver demands), the resulting state
would have been R = 5 and B, = 2.

Example 2: The sequence of deliveries matters

Given the state (R, B;) at any point in time, the state of the sys-
tem a lead time from now depends not only on the total num-
bers of gold and silver demand arrivals during the next L time
periods but also on the delivery times of the units currently in
resupply. To see this, suppose S = 5 and S, = 2 as before, but
this time R = 1 and B; = 0. Suppose also that during the next L

Table 5. The Bridge Algorithm for computing the stationary distribution of the two-demand-class CTMC.

Step
1. Ty < e n,
A .
2. Ta0) < 5700y
3. Foreachrin1,2,...,A—1:
(rp42) A . .
T41.0) < Tiha Tn0) T Tina Ta—,0)) NEXtrs
4 (P Pyr -5 Pg) <= BP(AT, 1, A, 2, K €);
)hg
5. a0 < GangPrTa0)
(Ap+dr) A .
6 Tiapn < Ginn (A0 T EET(A-10) T T(A+10)

7. ForeachrinA+1,A+2,...,A+K:

Py

(rp+h) . .

(1,00 < e Fr.0) (f+§|?)/l,7r(/’f1.0)’ Nextr;
8. Foreachkin2,3,...,K:

a) (P Pas - s Py) < BP(AL K. . dg, 2y, K, £):

50

A A K
g .
D) T askkoty < ElR P (Abk—1k—1) T GiRR 2 it P Ak k-2

c)Foreachrin A +k, A +k+1,..., A+K:
x

(rpi+3) A g . .

Tt k=1 < @i k=)~ G Tr-1k-2) T i T—1k—1); Nextr;
(A+k=D)p+2) A .
DT (s < Bl T (Atk—1k-1) ~ AFROR T (A+k—2k-2)  T(Atkk-1)’

e) Next k;




time periods there are three silver demands followed by two gold
demands. The state of the system a lead time from now depends
on when the unit in resupply is delivered. If it is received before
any of the demands occur then the resulting state after L peri-
ods will be R = 5 and B, = 0. On the other hand, if it is received
after all of the demands occur, then the resulting state will be
R=5and B, =1.

As suggested by these examples, there is no known exact solu-
tion for this rationing policy, except for the special case of expo-
nentially distributed lead times, as detailed above. Several papers
in the literature consider the constant lead time case and pro-
pose approximation methods to solve for the stationary distri-
bution of (R, B,). Dekker et al. (1998) base their approximation
on the assumption that at an arbitrary point in time, ¢, the on-
hand inventory at time t — L, a lead time ago, was equal to the
order-up-to-level S. Deshpande et al. (2003) use a different rea-
soning for their approach and allow for order quantities greater
than one. However, when applied to an (S — 1, S) policy, the
resulting formulas are identical to the approach of Dekker et al.
(1998). We refer to this approach as the single-cycle approach.
More recently, Fadiloglu and Bulut (2010b) consider the (R, B;)
process sampled at multiples of the fixed lead time as a Markov
chain. In determining the transition probabilities of the Markov
chain, they assume, for the purpose of approximation, that the
delivery times are unaffected by the level of the silver backorders,
B;. They then develop a scheme for computing the stationary
probabilities of the Markov chain using recursive calculations.
Rapidly converging upper and lower bounds on the stationary
probabilities are then computed using a sophisticated technique
from the field of computational linear algebra. The accuracy of
the resulting fill rate estimates compared with simulation runs is
excellent. We refer to this as the embedded Markov chain
approach and make use of a similar assumption in our approach.

As noted, Palm’s Theorem implies that the stationary distri-
bution of R(t) for general lead time distributions is identical to
that obtained when the lead time is exponentially distributed,
with the same mean. A similar result obtains for the stationary
distribution of (R(t), Bs(t)) if the following condition holds.

Definition 1. The Independence Condition is said to hold if,
whenever the state of the system (R, B;) = (r, b;) at an arbitrary
point in time ¢, the probability of a unit delivery in the interval
(t, t + h) for an infinitesimally small # > 0 does not depend on
the value of b;.

Observe that this condition is very similar to that used in
the embedded Markov chain approach for constant lead times.
The Independence Condition holds in the case of exponentially
disributed lead times due to the memoryless property of the
exponential distribution. To show the importance of this con-
dition, we offer the following theorem.

Theorem 3. Assuming a general, positively valued lead time dis-
tribution having finite mean, T, with no probability mass at zero,
then, if the Independence Condition is true, the steady-state distri-
bution of (R, B,) satisfies the same balance equations as a system
with an exponential lead time distribution with the same mean.

Proof. See Appendix A. O

Although the proof of Theorem 3 uses several concepts from
the classic proof of Palm’s Theorem, it employs a new approach
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to describe the limiting behavior of state transitions under the
threshold rationing policy. The classic proof of Palm’s Theo-
rem does not consider the state transition probabilities and their
limiting behaviors (Muckstadt and Sapra, 2010). The proof in
Appendix A also identifies the critical point where the Indepen-
dence Condition is required. This highlights the essential dif-
ficulty of exact analysis for this problem: dependence of the
probability distribution of delivery times of units in resupply
on B;, the number of silver backorders. The theorem holds for
the case of exponentially distributed lead times but, as suggested
by the examples above, it is unlikely to hold in general. On the
other hand, if the dependence is weak, the theorem suggests
that the stationary distribution under exponentially distributed
lead times might lead to a very good approximation for general
lead time distributions. It is this conjecture that motivates the
experimental studies of this article. We refer to our approach
as the CTMC approach, which uses the results from exponen-
tial lead time distributions to approximate general lead time
distribution situations. Furthermore, if the Independence Con-
dition were true, then we would expect that CTMC approach
would lead to exactly the same result as the embedded Markov
chain approach in the case of constant lead times. Differences in
numerical results must therefore trace either to numerical issues
or to a failure of the Independence Condition.

As the Independence Condition is central to both the embed-
ded Markov chain approach for constant lead times and the
CTMC approach for general lead time distributions, we inves-
tigate it in some detail. It is well known that if we condition on
the total number of Poisson arrivals in the interval (t — L, t],
say, ro, then the unordered demand arrival times would be
distributed as ry independent random variables, each uniformly
distributed on (t — L, t]. Under the (S—1,S) policy, each
demand arrival triggers a replenishment order that is to be
received L periods later. Consequently, the replenishment order
delivery times in (¢, t + L] would be distributed as ry uniform
random variables on (¢, t + L]. As Fadiloglu and Bulut (2010b)
note, this property is no longer guaranteed to hold when one
conditions also on the value of B, the silver backorders. Vicil
and Jackson (2015) report on simulation experiments that
demonstrate, indeed, that the distribution of replenishment
order delivery times in (f, t 4+ L] is not uniformly distributed,
when the value of Bi(t) is known. Nevertheless, Fadiloglu
and Bulut (2010b) report that the embedded Markov chain
approach works quite well for constant lead times. The pur-
pose of this article is to show how well the CTMC approach
works.

7. Performance analysis using numerical simulation

For the remainder of this article, we concentrate on using
numerical simulation to evaluate the quality of the CTMC
approach for the two-demand-class model under a variety of
lead time probability distributions. Unless otherwise stated, the
duration of each simulation is 200 000 time periods and 10 inde-
pendent simulations are performed for each parameter scenario.
We use the observed gold fill rate, B4, from each of the 10 simula-
tions to construct confidence intervals around the performance
metric. The confidence intervals are constructed based on the
t-distribution, as the sample size is small. In each scenario, the
silver fill rate, B, can be determined analytically.
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There are currently three heuristics in the literature for con-
stant lead times: Dekker et al. (1998), Deshpande et al. (2003),
and Fadiloglu and Bulut (2010b). For zero setup costs, the
model of Deshpande et al. (2003) is identical to the single-cycle
approach of Dekker et al. (1998).

Our numerical study is divided into two major sections. First
we compare the CTMC approach with the single-cycle approach
of Dekker et al. (1998). We also summarize other simulation
results evaluating the quality of the CTMC approach for con-
stant lead times that are included in Vicil and Jackson (2015).
Then, we compare the CTMC approach with the embedded
Markov chain approach, which is the most recent heuristic.

7.1. A comparison of the CTMC approach with the
single-cycle approach

To compare the CTMC approach with the single-cycle approach
of Dekker et al. (1998), we construct a series of experiments for
which A and A, values vary and we assume order lead times
are constant. The parameters are chosen in such a way that
Bs > 60% and B, > 85%, levels, which are no less than what we
would anticipate in practice and capture the situation where gold
customers contract for substantially higher service levels than
silver customers.

In Table 6, 30 different cases are presented in order to com-
pare the accuracy of approximations with respect to various sys-
tem parameters. From these results, we conclude that several
factors affect the performance of the Dekker et al. heuristic.
First, it is clear that as long as the expected lead time demand
is sufficiently low, the Dekker et al. heuristic provides a good

Table 6. Comparison of the CTMC approximation to the single-cycle heuristic.

approximation. However, as soon as the expected lead time
demand exceeds some threshold (e.g., 15 units) in these exper-
iments, we start observing significant deviations from the sim-
ulated fill rate figures (cases (19) to (24) are good examples of
this pattern). Second, it is also apparent that the accuracy of the
Dekker et al. heuristic improves for high gold fill rates (i.e., 95%).
Third, we also observe that in addition to gold fill rates, silver fill
rates are also driving factors in the quality of the approxima-
tion of the Dekker et al. heuristic. For example, cases (11) and
(12) both correspond to high gold fill rates, 98.84% and 97.23%,
respectively. However, the former has a 82.17% silver fill rate,
whereas the latter has a 65.32% fill rate. Although both cases cor-
respond to high gold fill rates, the quality of the approximation
in the Dekker et al. (1998) heuristic is lower for the lower silver
fill rate (compare cases (17) and (18)).

On the other hand, it can be concluded that the Indepen-
dence Condition holds well for these system parameters and the
CTMC approach works well for all cases. In fact, the CTMC
approach provides a very high-quality approximation across all
the scenarios considered. The predicted gold fill rate differs from
the center of the confidence interval by no more than 0.5%.
However, it is apparent that the CTMC approach consistently
but slightly overestimates the simulated gold fill rate, in contrast
with the single-cycle approach, which underestimates the gold
fill rate, often by a substantial amount.

7.1.1. Summary of the additional numerical studies
In Vicil and Jackson (2015), we explore a wide range of sys-
tem parameters and, where possible, compare the results of

Case S Sg )‘g/ (}‘s + )‘g) AL ﬂs (%) ﬂg (Simulation) (%) ﬂg (CTMC) (%) ﬂg (single—cycle) (%)
M 5 2 12 15 80.88 99.53 +£ 0.02 99.57 97.40
() 7 2 12 3 81.52 99.17 + 0.03 99.23 98.78
©)] 10 2 12 6 74.40 97.90 + 0.04 98.08 96.31
(4) 19 2 12 15 66.41 9538 + 0.07 95.80 89.76
(5) 29 3 12 24 63.19 97.78 + 0.05 98.01 91.46
(6) 37 4 12 30 68.34 99.26 + 0.03 99.35 95.50
() 5 1 13 225 80.94 97.41 + 0.04 97.51 96.64
(8) 7 1 1/3 4.50 70.29 94.32 + 0.08 94.63 91.62
(9) 13 2 13 9 70.60 98.60 + 0.03 98.75 96.43
(10) 27 1 1/3 225 74.33 9342 £+ 0.13 93.59 87.29
(W 44 2 /3 36 82.17 98.84 + 0.04 98.85 95.33
(12) 50 2 13 45 65.32 97.23 £+ 0.08 97.37 87.20
(13) 6 2 2/3 2.25 80.94 98.79 + 0.02 98.86 98.50
(14) 8 2 2/3 45 70.29 96.16 £ 0.06 96.44 94.65
(15) 13 2 2/3 9 70.60 94.50 + 0.09 94.83 91.49
(16) 27 1 2/3 225 74.33 86.84 £ 0.21 87.10 82.63
(17 44 2 2/3 36 82.17 9536 + 0.14 95.34 91.46
(18) 50 2 2/3 45 65.32 89.01 £ 0.16 89.37 79.25
(19) 8 2 1/5 375 82.29 99.86 £ 0.01 99.87 99.69
(20) n 2 1/5 75 66.20 99.47 £ 0.03 99.51 98.29
(21) 19 2 1/5 15 66.41 99.26 + 0.05 99.34 96.83
(22) 42 2 1/5 375 63.71 98.97 £ 0.05 99.04 92.86
(23) 65 2 1/5 60 63.38 98.89 + 0.05 98.93 90.32
(24) 81 2 1/5 75 66.28 98.94 + 0.05 98.99 90.28
(25) 9 3 4/5 375 82.29 99.22 £ 0.03 99.30 99.05
(26) 12 2 4/5 75 77.64 94.98 + 0.09 95.14 93.65
(27) 20 2 4/5 15 74.89 92.09 £ 0.11 9231 89.40
(28) 43 2 4/5 375 69.52 87.07 + 0.18 87.26 81.51
(29) 66 3 4/5 60 63.38 88.02 £ 0.31 88.43 79.06
(30) 82 3 4/5 75 66.28 88.59 £ 0.31 88.93 79.90




the CTMC approach with competing heuristics. We briefly
summarize some of the results here.

The impact of total workload changes: Our aim in this part
is to analyze the effect of total workload on the performance
of approximations, while keeping all other system parameters
fixed. We fix A/ (A; +Ag) = 0.5, S=5, and S, = 2 and vary
the total workload, AL. The results are presented in Appendix B,
Table B1. As the total workload increases, we observe that the
absolute error of the approximation increases up to some point
and then starts to decrease. It is also interesting to observe that as
workload increases, with the rest of the system parameters kept
fixed, the gold customer fill rate is not significantly affected after
AL = 15 in these experiments. This might be counter-intuitive.
One explanation for this phenomenon is that for AL > 15, sil-
ver customers do not get any service at all despite the exis-
tence of silver customer demands. On the other hand, all of the
replenishment orders due to silver customer demands are used
to satisfy gold customers. Hence, this offsets the negative effect
of an increase in workload on gold customer fill rate. However,
the degree of such an offset would vary depending on the ratio
Ag/ (As + Ag). We investigate the impact of that ratio next.

Varying the demand rate for gold service: Our aim in this series
of experiments is to analyze the performance of approximations
under a fixed workload while varying the ratio A,/ (As + Ag).
We set S =8, S, =2, and AL = 5. The results are presented
in Appendix B, Table B2. Based on the numerical results, we
see that the CTMC approximation provides a higher-quality
approximation in all cases than the single-cycle heuristic. We
also observe that as the ratio Ag/(A; + A,) increases up to
2/3, the performance of both the CTMC approximation and
the single-cycle heuristic are negatively affected. As the ratio
increases beyond this point, the quality of both approximations
increases. One explanation for this behavior is that as the ratio
approaches zero, the system behaves more like a single-customer
system with silver demands, whereas as the ratio approaches
one, the system moves toward a single-customer system with
gold demands. Hence, the effect of rationing decreases and
therefore both approximations provide higher-quality results at
the extremes.

7.2. A comparison of the CTMC approach with the
embedded Markov chain approach

In this part of the the study, we compare the performance of the
CTMC approach with respect to the embedded Markov chain
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approach under lognormal, geometric, and Erlang lead time dis-
tributions, as well as under constant lead times. As suggested
by Theorem 3, the form of the lead time distribution will have
no effect on the stationary distribution and, hence, no effect
on customer service levels provided the Independence Condition
holds. The extensive experimentation reported in Vicil and Jack-
son (2015) reveals that, in fact, the achieved gold service level is
relatively insensitive to the form of the lead time distribution.
Therefore, another important contribution of this article is to
note that any good approximation algorithm for the constant
lead time case or any other lead time distribution can be used
to approximate general lead time distributions. Hence, our ana-
lytical and experimental results suggest that both the embedded
Markov chain and our CTMC approach should work well across
a variety of lead time distributions.

On the other hand, as shown earlier, the CTMC approach is
several orders of magnitude less complex than the embedded
Markov chain approach.

In the following series of experiments, we refer to the same
numerical examples considered in Fadiloglu and Bulut (2010b).
The expected lead time is the same in each example. Note
that the embedded Markov chain approach assumes that the
Independence Condition holds for constant lead times, whereas
the CTMC approach assumes the same condition holds for gen-
eral lead time distributions.

In Table 7, we report simulation studies that consider a con-
stant lead time and Erlang-distributed lead times with shape
parameters 16, 4, and 2. (For the Erlang distribution, the coeffi-
cient of variation CV = \/1/7, where k is the shape parameter.
Hence, the CV of the Erlang distribution varies between zero and
one for k > 1.) For the constant lead time case, we observe that
the Independence Condition appears to hold, as long as the silver
fill rate is not too low. In particular, for B, > 90%, we observe
that the absolute error for the estimated gold fill rate under the
CTMC approach is zero, whereas for 8; > 42.32%, the absolute
error is still less than 1.15%. On the other hand, for B, as low
as 6.20%, the absolute error increases up to 3.22%. However,
for the cases considered, the embedded Markov chain approach
estimates the gold fill rate extremely well, even when the silver
fill rate is small.

On the other hand, for Erlang-distributed lead times, it
is interesting to observe that as the CV increases, the qual-
ity of the CTMC approach increases, whereas the quality of
embedded Markov chain approach decreases. For the cases with
CV =0.707 and B; = 42.32%, the maximum absolute error for
the CTMC approach drops to 0.63% and for f; it reaches as low

Table 7. Comparison of CTMC approximation versus the results in Fadiloglu and Bulut (2010b), S = 4, Sg =1

Erlang
AT )“g/)L /gs (%) ﬂg (constant) (%) ﬁg(CV:O.ZS) (%) ﬁg(CV:O.SO) (%) ﬁg(CV=O.707) (%) ﬂg (CTMC) (%) ﬁg (Fadiloglu and Bulut) (%)
/4 99.54 £ 0.01 99.54 + 0.02 99.53 + 0.02 99.51 £ 0.03 99.54 99.5
1 12 91.97 99.07 £ 0.02 99.06 + 0.02 99.04 + 0.03 99.07 £ 0.04 99.07 99.1
3/4 98.59 £ 0.04 98.58 + 0.02 98.59 £ 0.02 98.57 £ 0.02 98.59 98.6
/4 9113 + 0.10 9115 £ 0.13 91.30 £ 0.12 91.48 + 0.09 91.87 91.2
3 12 4232 8238 + 0.13 82.38 + 0.06 82.69 £ 0.18 82.84 £ 0.12 83.47 824
3/4 73.67 + 0.10 73.62 £ 0.1 7374 £ 014 74.04 £+ 0.4 74.59 737
1/4 78.89 + 0.09 78.93 £ 0.17 799 £ 0.12 79.74 + 0.21 80.90 787
6 12 6.20 58.05 £ 0.06 57.98 + 0.08 58.62 £ 0.16 59.43 + 0.15 6127 58.1
3/4 37.60 £ 0.1 37.70 £+ 0.09 38.00 £+ 0.14 38.89 £ 0.19 40.49 38.1
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Table 8. Comparison of CTMC approximation versus Fadiloglu and Bulut (2010b) approximation, S = 4, Sg =1

Lognormal
AT )‘g/)‘ ﬂs (%) ﬁg(CV:S,OO) (%) lBg(CV:Z.OO) (%) ﬁg(CV:LSO) (%) ﬂg (geometric) (%) ﬂg (CTMC) (%) 'Bg (Fadiloglu and Bulut) (%)
1/4 99.58 + 0.03 99.55 + 0.02 99.55 + 0.02 99.52 + 0.02 99.54 99.5
1 12 91.97 99.12 £ 0.02 99.07 £ 0.03 99.06 + 0.02 99.06 + 0.03 99.07 99.1
3/4 98.66 + 0.03 98.62 £+ 0.04 98.57 £+ 0.02 98.58 + 0.03 98.59 98.6
1/4 92.87 £ 0.06 92.30 £ 0.09 9179 £ 0.13 9139 £+ 0.12 91.87 912
3 12 42.32 85.06 £ 0.10 84.08 £+ 0.14 83.23 £+ 0.16 82.82 £+ 0.13 83.47 824
3/4 76.34 £ 0.20 7529 £ 0.21 7450 £ 0N 7401 £ 0.22 74.59 737
1/4 8325 £ 0.3 8175 + 0.12 80.40 + 0.12 80.02 £ 0.1 80.90 787
6 1/2 6.20 65.07 £ 0.18 62.73 £ 0.16 60.62 £ 0.16 60.08 + 0.15 61.27 58.1
3/4 4472 £+ 030 4221 + 0.21 40.08 £ 0.1 3949 + 0.22 40.49 38.1

as 6.20% and the maximum absolute error drops to 1.84%. On
the other hand, the maximum absolute error for the embedded
Markov chain approach can be as high as 1.33%.

These results drive our motivation to study other cases to
observe how the quality of approximation changes as the CV
increases. To do so, we use the same setting as before but this
time with lognormal and geometric lead time distributions. We
study the cases with CV = 1.50, 2.00, and 3.00. The results are
presented in Table 8. For all of the cases with lognormal lead
time distributions, the CTMC approach either matches or dom-
inates the embedded Markov chain approach. Furthermore, we
also see that the embedded Markov chain approach underesti-
mates the simulated gold fill rates. However, this situation varies
for the CTMC approach depending on the CV values and other
system parameters. For CV < 2.00 and S, as low as 42.32%, the
maximum absolute error for the CTMC approach is 0.7%, wher-
ever the error can be as high as 1.6% for the embedded Markov
chain approach. For the geometric lead time distribution cases,
for B, = 91.97%, both methods provide excellent approxima-
tions. For the cases with S, = 42.32%, the two methods are in a
tie in terms of approximation performance. On the other hand,
for B; as low as 6.20%, the CTMC approach provides better
approximations than the embedded Markov chain approach. It
is surprising that as the CV increases, the CTMC approach out-
performs the embedded Markov chain approach given that the
Independence Condition is the basis for both approaches. It is
noteworthy that the differences are most pronounced in scenar-
ios where the Independence Condition is least likely to hold.

8. Conclusions

In this article, we consider a model where there are two prior-
ity demand classes exhibiting mutually independent, stationary,
Poisson demand processes with non-zero order lead times that
are independent and identically distributed. We assume an (S-
1, S) ordering policy and a threshold-level-based allocation and
backorder clearing policy.

Currently, there is no exact solution for this rationing policy
in the literature, except for what we have provided in the spe-
cial case of exponentially distributed lead times. We pinpoint
the difficulty for exact steady-state analysis and then show why
a CTMC approach might provide a good approximation to the
calculation of stationary probabilities under general lead time
distributions. We also present a procedure to solve the CTMC
by exploiting the special structure of the transition matrix in a
novel way. This results in an efficient recursive procedure. For

the generally distributed lead times setting, we develop an effi-
cient algorithm in which the optimal parameters can be found
by computing stationary probabilities only once. The algorithm
relies on a simple line search. We are the first to provide an opti-
mization scheme for this model subject to demand class specific
fill rate constraints.

We compare our results with the the single-cycle approach
of Dekker et al. (1998). We report that for constant lead times,
the resulting solution outperforms their approach. Based on the
simulation studies, for realistic scenarios that we expect to see in
real-life situations (such as 8, > 60% and B, > 85%), the abso-
lute error for the CTMC approximation is less than 0.5%.

We also compare the performance of the CTMC approxima-
tion with respect to the most recent approximation provided by
Fadiloglu and Bulut (2010b). Although both approaches share
an Independence Condition, their method is customized to the
constant lead time case. For the numerical examples considered
with constant lead times, although our method provides a rea-
sonably good approximation, their method is clearly more accu-
rate. We also show that as the form of the lead time distribution
changes, the gold service levels do not vary by much. There-
fore, another important contribution of our article is that, as
Theorem 3 establishes the theoretical foundation, any valid
approximation algorithm for constant lead time case or any
other lead time distributions might be used to approximate gen-
eral lead time distributions. Comparing the performance of the
CTMC approach with the embedded Markov chain approach,
for lognormal and Erlang lead time distributions, we demon-
strate that as the CV of the lead time increases, the quality of
the embedded Markov chain approach diminishes, whereas the
quality of the CTMC approach increases.

For practical applications, it is important to provide sim-
ple and accurate approximations and to investigate their behav-
ior under different system settings. Therefore, our proposed
method, which requires only knowledge on the mean value of
the lead time distributions, performs well over a wide range
of parameter settings for general lead time distributions, pro-
vided that the silver fill rate is maintained in excess of 60%. Also,
our simple recursive algorithm is several orders of magnitude
less computationally complex than the embedded Markov chain
approach. Hence, it may be worth exploring this approach with
different rationing models under general lead time distributions.

It is straightforward, but tedious, to extend the model to con-
sider three demand classes: adding a platinum demand class to
the previously described gold and silver demand classes. Let 1,
denote the arrival rate for platinum customers. Platinum cus-
tomers are assumed to require a higher level of service than



both gold and silver customers. We extend the rationing pol-
icy to include a threshold S, < S, at and below which only
platinum customers are served. The state space must be
expanded to include gold backorders: (R, Bs, By) but, in the
case of exponentially distributed lead times, it is not difficult to
derive the balance equations that can be solved for the steady-
state probabilities. The balance equations and the numerical
results for the three-demand-class model are included in Vicil
and Jackson (2015). For the cases considered there, we observe
a similar pattern as in the two priority demand classes setting:
the CTMC approximation overestimates the true gold and plat-
inum fill rates. However, for sufficiently high silver fill rates (i.e.,
Bs = 50%), the absolute errors for CTMC approximation with
respect to (mean) simulated gold and platinum fill rates are less
than 0.75%. We also conclude from those experiments that the
two-step rationing provides even larger protection from being
backordered for the highest-priority demand class than the
single-step rationing policy.

As a suggestion for future research, since the CTMC
approximation provides quite satisfactory results under a static
rationing policy for general lead time distributions, it may be
interesting to explore the performance of this approach under
dynamic replenishment policies.
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Appendices

Appendix A

The proof of Theorem 3 is modeled after the proof of Palm’s
Theorem. We focus initially on the aggregate number of units
in resupply, whether they are from gold or silver demands. We
analyze the limiting behavior of transition probabilities for this
process during an infinitesimal time interval h. This is accom-
plished in two lemmas, the first of which provides limits related
to p(h), the probability that a unit in resupply will not be deliv-
ered in the next h time units, and the second of which applies
these limits to provide formulas for derivatives of the transition
probabilities. We are then in a position to prove the main result.
For a general system state (R, B;) = (i, j) with i > § — S, and
j > 1, we provide the limiting behavior of the transition prob-
abilities during an infinitesimal time interval h by conditioning
on the state of the system at time t. Under the Independence
Condition, the resulting system of equations is identical to the
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balance equations in the CTMC. Consequently, we show that
under the Independence Condition, the steady-state distribution
of (R, B;) satisfies the balance equations of a system with an
exponential lead time distribution having the same mean.

Our first task is to establish the stochastic behavior of a gen-
eral unit in resupply. Let G(-) denote the probability distribution
of the lead time. We assume that lead times are positively valued
random variables, thus G(-) has no atom at zero. Any probability
distribution can be written as the sum of a discrete distribution
and an absolutely continuous distribution. That is, there exist
constants {(wg, yx) : k = 1,2, ...} and a non-negative, contin-
uous function g() such that

t
G(t) = Z Wil +/ g(uydu.
7 0

Let G.(t) = |, Ot g(u)du denote the absolutely continuous portion
of the distribution. Initially, we assume the existence of a con-
stant, y, that bounds the discrete portion of the distribution y; <
y for all k. Later, dependence on this assumption will be omitted.

Let p be the common probability that any demand that
arrives during [0, ) remains in the resupply system at time ¢.
Recall that for a Poisson arrival, given that an arrival occurs dur-
ing [0, t), the time of arrival is uniformly distributed over this
interval. Consequently, conditioning on the time of arrival, we
have

t 1
p= / [1 — Gt —s)]-ds.
0 t

Let p(h) be the probability that a unit in resupply at time ¢ will
still be in the resupply system at time ¢ 4+ h. Conditioning on
the time of the arrival, which belongs in [0, ¢), this probability
is given by

p(h)
P {a unit arrives in [0, t) and is in resupply at time ¢ + h}

P{a unit arrives in [0, t) and is in resupply at time ¢ }

B Jo[1 =Gt +h—s)]Lds
=Gt —9)]ids

B [o11— Gt +h —s)]ds
=Gt —9))ds

Trivially, limy_. p(h) = 1.

Lemma Al. Fort > y:

I DO G(t)
1 - h [ h i+1 -~
fim 2150 = pU0'*) = =
and
. L—ep(h) G(1)
llm —_— = lt—'
h—0 h Joll — G(w)]du

Proof. Assume initially that there exists a constant y such that
0 <y < yx <y for all k and that we consider only values of h
and f such that h <y and t > y. Under this assumption:

t
/ [1—-G({t+h—s)lds
0

t t
- / (1= Gt +h—9lds— 3w / Lehosmyds
0 k 0
t
=/[1—Gc(t—i—h—s)]ds—Zwk(t—i-h—yk).
0 k

and hence p(h) is differentiable with
— [y gt +h—s)ds— 3, wi
Jy[1 = G(t — 5)1ds

_ - fot gt +h—s)ds— Y L wilysnzyy
[11 = G(t —s))ds

ph) =

since 1{>,) = 1 for all k. After a change of variable, this leads
to
— i g du = 3y Wil ny,
fot[l — G(u)]du
- (Gc(t + h) - Gc(h)) - Zk wkl{tJrhzyk}
[0 = G(w)ldu
G(t +h) — G(h)
[l = Gw)ldu

t is not a point of discontinuity of G().

P (h)

Observe that
Consequently,

G()

lim §/(h) = ———————.
T T = Gw))du

This result enables us to apply LHopital’s rule:

1 . . " ) » . N o
lim E[p(h)’ —p™ = lim [ip(h) ™" — (i+ D)p(h)'] p' (h)
3 G(t)

B fOt[I—G(u)]du'

) G(t)
= At
Joll — G(w)]du

Since the result is true for all y > 0, it will hold in the limit as
y— 0. B |

Suppose there are i replenishment orders outstanding. Let
ufy denote the age of the kth oldest replenishment order and
letu = (upyy, up, - - ., u;)) denote the age-of-pipeline vector.

Denote the state of the system at time t by & = (i, j, u) where
i is the number of replenishment orders outstanding, j is the
number of silver backorders, and u is the age-of-pipeline vec-
tor. We assume &, = (0, 0, ¥). That is, the process begins with
nothing on order.

It is easily seen that, for general lead time distributions, the
process & = {&;, t > 0} is a Markov process.

With an abuse of notation, we write & = (i, j) to denote all
possible states with i replenishment orders outstanding and j
silver backorders. Similarly, we write & = i to denote all possible
states with i replenishment orders outstanding.



We define

Q. it t+h)= P[number of units in resupply at time t + h is
j | number of units in resupply at time ¢ is
i and number of units in

resupply at time zero is 0]
=P[§z+h=]'|ft =i7§0=0]-

In the case where i < j, we further qualify this quantity by
¢ € {s, g}, the last type of demand (silver or gold) to arrive:

in) (t,t+h) = P[number of units in resupply at time ¢ 4 h is j,
the most recent demand in [0, t + h) is of
type ¢, and all units in resupply at time ¢ are
still in resupply at time t + h | the number
of units in resupply at time ¢ is i, and the

number of units in resupply at time zero is 0].

We have the following expressions for the derivatives of these
quantities.

Lemma A2. Fort >y,

iy L= Quit £+ h) Gt
m— =i
h—0 h Jo [l — Gw)]du
Vi1 it t+h G(t
th+1,( +)=(i+1) : (1) :
h—0 h Joll = G(w))du
56)
(k4 h
lim M — )"S; and
h—0 h
QO+ R
R

Proof. The state of the system changes if an arrival of either type
of demand occurs or a unit is received from the resupply system.
Since demand is a Poisson process and orders from suppliers
are triggered whenever a demand occurs, during an infinitesi-
mal time interval h, the probability of more than one event to
occur is o(h) due to the Poisson nature of the process. In addi-
tion, keep in mind that demands are independent and identically
distributed so the resupply process is independent of the subse-
quent demand process. We next define a set of probabilities that
will be used later in the proof.

Qi,i(t, t+h)=P (no demand occurs during (¢, t + k]
and all 7 units in resupply at time ¢ are still

in resupply after h time units) + o(h)
i\~ -
= <i)p(h)’ (1= pm)° + o(h)

=e P’ + o(h):;
éi+1,i(t, t+h)=P (no demand occurs during (¢, t + k]
and among the 7 + 1 units in resupply
at time ¢, only one of them is received
in (t,t +h]) + o(h)
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i+ 1\~ . . -
= (l . )p(h>’ (1= p(h) + o(h)

=e ™ (i+1) [ﬁ(h)" - ﬁ(h)"“} + o(h);

and
Qi_ri(t,t+h) =P (a demand occurs during (¢, t + h] and
all i — 1 units in resupply at time ¢ are still
in resupply after h time units) + o(h)
=1\ . . -
= Ahe M (’ 1)p(h)'1 (1- p(h))0 + o(h)
i—
= A e B! + o(h).
Let

Q.(E)Li(t, t+h)=P (a demand of type ¢ occurs during
(t,t + h] andall i — I units in resupply
at time ¢ are still in resupply after
h time units where ¢ € {s, g}) + o(h).
Given that a customer demand occurs, the probability of

it being a silver or gold customer demand are A;/A and Ag/A,
respectively. It follows that

QY (., t +h) = Ahe ™ )t + o(h)
QE, Lt t+h) = Aghe () + o(h).

Next, we derive the limits of the above expressions as h — 0,
which we will use for the steady-state analysis of system behav-
ior.

Limits as h — 0:

()
1= Qult.t+h)
lim ————~
h—0 h
A
_ o L o)
h—0 h—0 h
= A + i#, due to Lemma Al.
Joll = Gw)] du
(b)
iy Qi+ )
im———
h—0 h
Y SLNi T 1yitl
e [p(h) 70 ] o
= lim + lim —=,
h—0 h h—0 h

[ﬁ(h)i - ﬁ(h)"“}
h

= lim [e”’(f + 1)] lim
h—0 h—0

G(t)
fo11 — G(w)] du

= (@{+1 , due to Lemma Al.
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(c)

QY t+h)

lim ————

h—0 h
g L b -1 o(h)
= ;lll_r)l’éh)\.she ph)y ™ + 1
Y —h = pnie1
—,P_rfﬁ))‘fe p(h)
oy i Zepyiel
—)‘s}lll_l;%p(h)
:)\'51

lim Q¥ it t+h)

hLo h

1 i o(h)

= }111_1)1}] E)Lghe ’\hp(h) Uy hm—

— }IIIEE}) )‘fg e—)»h[)(h)i—l
_ : g i—1
= 3 lim j(h)

= .

Theorem 3. Assuming a general, positively valued lead time dis-
tribution having finite mean, T, with no probability mass at zero,
then, if the Independence Condition is true, the steady-state distri-
bution of (R, By) satisfies the same balance equations as a system
with an exponential lead time distribution with the same mean.

Proof. Now, let us develop the ideas for the original problem.
The proof for the balance equations (which holds under the
Independence Condition) will be given for a more general gen-
eral state (i, j) with i > § — S, and j > 1. The other cases can
be proven in a similar way. In Fig. A1, the balance equation for
i>S§—Sgand j > 1is given by

i+1

i
i, j) |:)»5+)»g + Ti| = T(i-1,jjrg + T j)— T

+ (-1, j-1)As

Recall that at time 0 there are no orders outstanding by
assumption; hence the system state is (0, 0). Let

Pieny.ijy (8. t') = P& = (i, j) | & = (k. D],
Pueny.ijy(t. 1) = P& = (i, j) | & = (0,0), & = (k. ])].

By conditioning on the state of the system at time ¢:

P0.,0).i.j(0, t +h) = Z Pio,0y. k1) (0, )Py i,y (£, £ + h).
!

Assuming h is an infinitesimal time unit, the probability of
more than one event to happen is o(h), and we have

P0,0y.Gi.j) (0, t + 1)
= {P(O,O),(i—l,j) (0, t)ls(i—Lj),(i,j)(t, t+ h)

+ P0,0y,(i+1, 1) (0, ) Pii1, jy.i.jy (£, t + h)

+ P0,0),-1,j-1) (0, )Pzt j1)..jy (E. t + h)
+ P0,0),i,j (0, )P jy..j) (t, t +h)

+o(h) }

Subtracting P,0),, j) (0, t) from both sides and then taking
the limits as h — 0:

P0,0,G. ) (0, t + 1) — Po,0).:,j(0, 1)

i
hoo -
bt+h
{P(OO) (i— 1])(0 t)l (z 1.j), (,];l( )
o (b E+ R
+ Po.oy. 41, (0, 1) lim Pis1.j).G. J;l( )

Pyor,j1),i.p(t.t +h)
h

+ Po,0),i-1.j-1) (0, t)l

(1 — P jy.qij (.t + h))
— lim
h—0 h

o(h) }

P0.0).(.j (0, 1)

+ lim

(A1)
h—0

For the Right-Hand Side (RHS) of the above equation, the
transitions, P(-), expressed in the limit terms arise because a gold
demand occurs, a unit is received from resupply, a silver demand
occurs, and nothing happens, respectively. Now it is time to use
the concept that was developed earlier in this section. Examining
each of these terms:

f’(i—l,j),(i,j)(t, t+h)
= P (a gold demand occurs during (¢, + h] and alli — 1

units in resupply at time ¢ are still in resupply after h time
units | & = (i — 1, j), & = (0,0)) + o(h)

= P (a gold demand occurs during (¢, + h] and alli — 1
units in resupply at time ¢ are still in resupply after h time

units | & =i—1, & = 0) + o(h),

by the Independence Assumption. Hence,

p(i—l,j),(i,j) (t,t+h) = Q, Lt t+h).

In like manner,

Pis1jp.p(t t+h)

= P (no demand occurs during (¢, t + h] and among the i + 1
units in resupply at time ¢, only one of them is

receivedin (t,t +h] | & =i+ 1, & = O) + o(h)

= Qii1ilt, t +h).

Py jo1y..) (t, t + h)
=P (a silver demand occurs during (¢, ¢ + k] andalli —1
units in resupply at time ¢ are still in resupply after / time
units | & =i—1, & = O) + o(h)

QY. (t,t+ h).

111
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Total flow out of state (i,j)
AL

By

z(i‘j)(/ls +;£g + %) y A (AT
i+1 A, | @I
Terjon) As ey Ag F sy~

Total flow into state (ij)

Figure Al. Under the Independence Condition, the balance equation for a generic system state (i, j) fori > S — Sg and j > 1.

ﬁ(i,j),(i,j)(t, t+h)

= lim {P, i—1.170,t) - Ay + P, i1 0(0,)-(i+1
:P(no demand occurs during (¢, t + h] and all i units in t—o00 { ©0.0.6-1.) (0. 1) - &g ©0.0.61. 0. 1) - )

resupply at time ¢ are still in resupply after h time G(t)
: e ——————— + P0,0),-1,j-1) (0, ) - A
= = P .0),(i—1, j
units | & =1, & 0) + o(h) fo[l — G(u)] du
= Quit.t +h). , G(t)
—()»s +hg +i- t—Gd> - Po,0y.i,j (0, f)}-
As a result, we have fO (1= G@w)] du
lim Pirj.ajtt+h) - Q_i({)l,i(t, t+h) A (42)
h—0 h T =0 h e Since
. Pirij.ap t+h) . Qiprit, t+h) ) G(t) 1
lim = lim ————= lim ——m—— = =
0 h h—>0 h =00 [[1—Gw)ldu T
G(t
—(i+1)- ©

m? and due to Theorem 1, the limit exists for the RHS of Equation
0 (A2). After reordering the terms, the RHS becomes

P11t t+h) im Qit.t+h) _

lim =1 = A i+1
h—0 . h h—0 B h = {7{(,’1,]‘) . )"g =+ 7'[(i+1’j) . T =+ 71(1;1’]',1) . )»3 — JT(,"]')
. 1=Pijpapt,t+h) 1—Qit, t+h)
lim = lim —————— i
h—0 h h—0 h '()»s +Ag + _)}
= hs+ Ag T
4 G(t) The left-hand side of Equation (A2) is given by

.
[1 —Gu)] du )
fO = tl_l)l’gjp/(oqo)y(i’j)(t).
Using the above results in Equation (A1), we get )
Note that Py, j) (t) is bounded by zero and one for all £.

i P0,0,G.jy (0, t +h) — Po,0),:,j(0, 1) Therefore, if lim;_, o, P ’(0!0),(1.!].) (t) converges, then it must con-
hl_r,% h verge to zero. However, we have already shown that it is conver-
= P0,0),-1,1) (0, 1) - Ag + Po.0), 41,7 (0, ) - (i + 1) gent by the RHS of Equation (A2).
G(t) As a result, by rearranging the terms in Equation (A2), we
P T —— get
Jol1 = G(w)] du
Y AN N i+1
+ P0,0).(i-1,j-1) (0, £) - As i) ( sthg + 7) =Ti-1j) cAg F W) T
. G(t) G j—1) * Ase
—(As+ A +1-—)-P0,0,<_~(0,t). '
( st A =G ds) 00

This is the same balance equation as in CTMCwith u = 1/T.
The other balance equations for special cases i = § — S, as well
as j = 0 follow from similar analysis and match the correspond-
i Lim Po,0),i.j) (0, t + h) — P0,0).(:,j(0, 1) ing balance equations in the CTMC. O
t—>00 h—0 h

Taking the limit as t — oo:
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Appendix B

Table B1. Performance of approximations with respect to an increase in workload.

Case S Sg AL /35 (%) ﬂg (Simulation) (%) 'Bg (CTMC) (%) AE cTmc (%) ﬁg (sgl—cycle) (%) AE(sgI—Cycle) (%)
0] 5 2 15 80.88 99.53 4+ 0.02 99.57 0.04 99.40 0.13
(n 5 2 3 4241 95.42 £ 0.04 96.05 0.63 92.47 2.95
(1 5 2 6 6.33 82.59 £0.13 85.92 333 55.94 26.65
(V) 5 2 15 ~0 7545 £0.23 78.93 348 244 73.01
(V) 5 2 24 ~0 7502+0.13 77.64 252 ~0 7512
(V) 5 2 30 ~0 7526 £0.34 777 191 ~0 7526

Table B2. Performance of approximations with respect to an increase in ratio Ag/(ks + kg) under fixed workload.

Case )‘g/()‘s + )‘g) /35 (%) ﬂg (Simulation) (%) 'Bg (CTMC) (%) AE CcTMC (%) ﬂg (sgl—cycle) (%) AE(sgl—cycle) (%)
0} 1/10 61.60 99.86 £ 0.02 99.89 0.03 99.60 0.26
(1 1/5 61.60 99.47 £ 0.03 99.54 0.07 98.61 0.86
(1 173 61.60 98.54 £+ 0.04 98.70 0.16 96.77 177
(IvV) 12 61.60 96.66 £ 0.07 97.02 0.36 94.14 2.52
(V) 2/3 61.60 94.10 £ 0.08 94.57 0.47 91.48 2.62
(VI 4/5 61.60 9150 £0.12 91.96 0.46 89.45 2.05
(v 9/10 61.60 89.21 £ 0.17 89.56 0.35 88.01 1.20
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