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Human Activity Recognition Using Tag-Based Radio
Frequency Localization
Aras Yurtman and Billur Barshan

Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara, Turkey

ABSTRACT
This article provides a comparative study on the different
techniques of classifying human activities using tag-based
radio-frequency (RF) localization. A publicly available dataset
is used where the position data of multiple RF tags worn on
different parts of the human body are acquired asynchronously
and nonuniformly. In this study, curves fitted to the data are
resampled uniformly and then segmented. We investigate the
effect on system accuracy of varying the relevant system para-
meters. We compare various curve-fitting, segmentation, and
classification techniques and present the combination result-
ing in the best performance. The classifiers are validated using
5-fold and subject-based leave-one-out cross validation, and
for the complete classification problem with 11 classes, the
proposed system demonstrates an average classification error
of 8.67% and 21.30%, respectively. When the number of classes
is reduced to five by omitting the transition classes, these
errors become 1.12% and 6.52%, respectively. The results indi-
cate that the system demonstrates acceptable classification
performance despite that tag-based RF localization does not
provide very accurate position measurements.

Introduction and related work

With rapidly developing technology, devices such as personal digital assis-
tants (PDAs), tablets, smartphones, and smartwatches have made their way
into our daily lives. It is now becoming essential for such devices to recognize
and interpret human behavior correctly in real time. One aspect of these
context-aware systems is recognizing and monitoring daily activities such as
sitting, standing, lying down, walking, ascending/descending stairs, and most
importantly, falling (Özdemir and Barshan 2014).

Several different approaches for recognizing human activities exist in the
literature (Logan et al. 2007; Yurtman and Barshan 2014). A large number of
studies employ vision-based systems with multiple video cameras fixed to the
environment in order to recognize a person’s activities (Marín-Jiménez, Pérez de

CONTACT Billur Barshan billur@ee.bilkent.edu.tr Department of Electrical and Electronics Engineering,
Bilkent University, Bilkent, TR-06800 Ankara, Turkey.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/UAAI.

APPLIED ARTIFICIAL INTELLIGENCE
2016, VOL. 30, NO. 2, 153–179
http://dx.doi.org/10.1080/08839514.2016.1138787

© 2016 Taylor & Francis

http://www.tandfonline.com/UAAI


la Blanca, and Mendoza 2014; Moeslund, Hilton, and Krüger 2006; Wang, Hu,
and Tan 2003; Aggarwal and Cai, 1999). In many of these studies, points of
interest on the human body are pre-identified by placing visible markers such as
light-emitting diodes (LEDs) on them and recording the positions with cameras
(Sukthankar and Sycara 2005). For example, the study reported in (Luštrek and
Kaluža 2009) considered a total of six activities, including falls, using an infrared
motion capture system. As attributes, they used body part positions in different
coordinate systems and angles between adjacent body parts. In Luštrek et al.
(2009), walking anomalies such as limping, dizziness, and hemiplegia were
detected using the same system. Camera systems obviously interfere with priv-
acy because they capture additional information that is not needed by the system
but that might easily be exploited with a simple modification to the software.
Further, people usually act unnaturally and feel uncomfortable when camera
systems are used, especially in private places. Other disadvantages of vision-
based systems are the high computational cost of processing images and videos;
correspondence and shadowing problems; the need for camera calibration; and
inoperability in the dark. When multiple cameras are employed, several 2D
projections of the 3D scene must be combined. Moreover, this approach
imposes restrictions on the person’s mobility because the system operates only
in the limited environment monitored by the cameras.

A second approach utilizes wearable motion sensors, whose size, weight, and
cost have decreased considerably in the last two decades (Altun, Barshan, and
Tunçel 2010; Barshan and Yüksek 2014; Barshan and Yurtman 2016). The
availability of such lower-cost and medium-performance units has opened
new possibilities for their use. In this approach, several motion sensor units
are worn on different parts of the body. These units usually contain gyroscopes
and accelerometers, which are inertial sensors, and sometimes also magnet-
ometers. Some of these devices are sensitive around a single axis, whereas others
are multiaxial (usually two- or three-axial). Two examples are shown in Figure 1,
and a wearable system is illustrated in Figure 2(a).

Figure 1. (a) Xsens MTx (Xsens 2016) and (b) 3DM-GX2 (MicroStrain 2016) sensor units.
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Inertial sensors do not directly provide linear or angular position informa-
tion. Gyroscopes provide angular rate information around an axis of sensi-
tivity, whereas accelerometers provide linear or angular velocity rate
information. These rate outputs need to be integrated once or twice to obtain
the linear/angular position. Thus, even very small errors in the rate informa-
tion provided by inertial sensors cause an unbounded growth in the error of
integrated measurements.

The acquired measurements are either collected and processed in a battery-
powered system such as a cellular phone, or wirelessly transmitted to a com-
puter for processing. Detailed surveys on activity recognition using inertial
sensors can be found in the literature (Altun, Barshan, and Tunçel 2010;
Sabatini 2006; Zijlstra and Aminian 2007; Mathie et al. 2004; Wong, Wong,

Figure 2. (a) Motion sensor units worn on the body (Xsens 2016) © Xsens. Reproduced by
permission of Xsens. Permission to reuse must be obtained from the rightsholder. (b) An active
RFID tag (SYRIS SYSTAG245-TM-B) worn as a bracelet (SYRIS 2016) © SYRIS. Reproduced by
permission of SYRIS. Permission to reuse must be obtained from the rightsholder. (c) An RFID tag
inserted under the skin © GeekWire.com. Reproduced by permission of GeekWire.com.
Permission to reuse must be obtained from the rightsholder. (d) Tiny RFID tags of size 2mm x
2mm © Tagent Corp. Reproduced by permission of Tagent Corp. Permission to reuse must be
obtained from the rightsholder.
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and Lo 2007). We used inertial sensors in our earlier work on human activity
recognition (Altun, Barshan, and Tunçel 2010; Altun and Barshan 2010;
Ayrulu-Erdem and Barshan 2011; Tunçel, Altun, and Barshan 2009), and
although this method results in accurate classification, wearing the sensors
and the processing unit on the body might not always be comfortable or even
acceptable, despite how small and lightweight they have become. Further,
people might forget or neglect to wear these devices. This approach has other
limitations: Although we have demonstrated that it is possible to recognize
activities with high accuracy (typically above 95%), the same is not true for
human localization because of the drift problem associated with inertial sensors
(Altun and Barshan 2012; Welch and Foxlin 2002). In Altun and Barshan
(2012), we exploited activity cues to improve the erroneous position estimates
provided by inertial sensors and achieved significantly better accuracies when
localization was performed simultaneously with activity recognition. Ogris et al.
(2012) describe the design and evaluation of pattern analysis methods for the
recognition of maintenance-related activities (hands tracking) using a combi-
nation of inertial and ultrasonic sensors.

Rather than monitoring human activities from a distance or remotely, we
believe that “activity can best be measured where it occurs,” as stated in Kern,
Schiele, and Schmidt (2003). Unlike computer vision systems, the second
approach described previously directly acquires motion data, and the third
approach (which we use in this study) directly acquires position data in 3D.
The latter uses the radio-frequency (RF) localization technique1 to record the
3D positions of RF tags worn on different parts of the body. The size and cost
of these sensors are comparable to inertial sensors but they require an
instrumented environment, whereas this is not needed for inertial sensors.
In an RF localization system, there are multiple antennas, called readers,
mounted in the environment that detect the relative positions of small
devices called RF tags (Figure 2(b)–(d)). Each tag emits RF pulses containing
its unique ID for identification and localization. Active RF tags have internal
power sources (batteries) to transmit RF pulses, whereas passive tags do not
contain a power source and rely on the energy of the waves transmitted by
the readers (Zhang, Amin, and Kaushik 2007). Passive RF tags are stickers
similar to radio-frequency identification (RFID) tags, and can be as small as
2 mm × 2 mm (Figure 2(d)), whereas active RF tags are much larger
(Figure 2(b)). RF tags are inexpensive and lightweight and thus comfortable
for use on the human body (Weis 2012). Unlike bar codes, the tag does not

1Radio-Frequency Identification (RFID) involves tag detection and identification (deciding which tags exist in the
environment), whereas in RF localization, tags are identified and localized. The tags are called “RFID tags” in the
former system and “RF tags” in the latter, although they can be identical in some cases (Bouet and dos Santos
2008; Zhang, Amin, and Kaushik 2007). In this text, the tags used for localization are not the same as RFID tags,
hence, they will be called “RF tags.” In some texts, the term “RFID localization” is used instead of “RF localization”
because there are systems estimating the positions of RFID tags that are designed for identification only (Bouet
and dos Santos 2008).
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need to be in the reader’s line of sight; it can be embedded in the tracked
object or even inserted under the skin (Figure 2(c)).

The operating range of most RF readers is not more than 10 m (Liu et al.
2007). In uncluttered, open environments, typical localization accuracy is about
15 cm across 95% of the readings (Steggles and Gschwind 2005). Because each
tag must be detected by multiple readers for localization, this method cannot
be used in large areas because numerous readers would be needed, and that
would be too costly. Further, the number of RF tags that can be worn on the
body is limited. In systems that use active tags, the pulses transmitted by the
tags may interfere with each other, whereas with passive tags, it is difficult for
the system to distinguish between tags that are close together.

RFID technology is a valuable tool in a variety of applications involving
automatic detection, identification, localization, and tracking of people, ani-
mals, vehicles, baggage, and goods (Want 2006). An excellent review of the
academic literature on this topic can be found in Ngai et al. (2008). RFID
systems are used for general transport logistics, collecting tolls and contactless
payment, tracking parcels and baggage, and deterring theft from stores. With
RFID tags, assembly lines and inventories in the supply chain can be tracked
more efficiently and products become more difficult to falsify. This attribute is
particularly important for the pharmaceutical industry, with its increasing need
for anticounterfeit measures (Yue, Wu, and Bai 2008). RFID tags are also used
for identifying and tracking pets, farm animals, and rare animal species such as
pandas. They are in contactless identity cards for managing access to and
monitoring of hospitals, libraries, museums, schools and universities, and
restricted zones. Machine readable identification and travel documents such
as biometric passports that contain RFID tags are becoming very common.
RFID tags are used for key identification in vehicles, for locking/unlocking
vehicles from a distance, ticketing for mass events and public transport, and
transponder timing of sporting events.

RFID systems are also suitable for indoor localization and mapping (Ni
et al. 2004). Hahnel et al. (2004) analyze whether RFID technology in the
field of robotics can improve the localization of mobile robots and people in
their environment and determine computational requirements. In Choi, Lee,
and Lee (2008), multiple RFID tags are placed on a floor in a grid config-
uration at known positions, and a robot localizes itself by detecting the tags
with its antenna. To resolve issues concerning the security and privacy of
RFID systems, Feldhofer, Dominikus, and Wolkerstorfer (2004) propose an
authentication protocol based on RFID tags.

In earlier work on human activity recognition using RFID technology,
daily activities are mostly inferred based on a person’s interactions with
objects in his/her environment. RFID antennas are usually worn in the
form of gloves or bracelets, and RFID tags are fixed to objects in the
environment such as equipment, tools, furniture, and doors. The main
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limitation of these systems is that they provide activity information only
when the subject interacts with one of the tagged objects, thus, the only
recognizable activities are those that involve these objects. This type of
approach is followed in several studies (Philipose et al. 2004; Smith et al.
2005; Huang et al. 2010; Wang et al. 2009; Tapia, Intille, and Larson 2004).
Similarly, in (Buettner et al. 2009), the authors employ RFID sensor networks
based on wireless identification and sensing platforms (WISPs), which com-
bine passive UHF RFID technology with traditional sensors. Everyday objects
are tagged with WISPs to detect when they are used, and a simple hidden
Markov model (HMM) is used to convert object traces into high-level daily
activities such as shopping, doing office work, and commuting. Wu et al.
(2007) present a dynamic Bayesian network model that combines RFID and
video data to jointly infer the most likely household activity and object labels.
Stikic et al. (2008) combine data from RFID tag readers and accelerometers
to recognize ten housekeeping activities with higher accuracy. A multiagent
system for fall and disability detection of the elderly living alone is presented
in Kaluža et al. (2010), based on the commercially available Ubisense smart
space platform (Steggles and Gschwind 2005).

A necessary aspect of most RF systems is that the system measures the
tag positions asynchronously and nonuniformly at different, arbitrary time
instants. In other words, whenever the readers receive a pulse transmitted
by an RF tag, the system records its relative position along the x, y, and z
axes as well as a unique timestamp and its unique ID. Although each tag
transmits pulses periodically, tags cannot be synchronized because their
pulses must not interfere with each other; thus, tag locations are sampled
at different time instants. Furthermore, readers sometimes cannot detect
pulses due to low signal-to-noise ratio (SNR), interference, or occlusion.
Under these circumstances, localization accuracy might drop significantly.
The detection ratio of a tag increases when it is close to the antennas and
decreases when it is near conductive objects such as a metal surface or a
computer. Thus, it is not possible to treat the raw measurements as
ordinary position vectors sampled at a constant rate in time. In
Hapfelmeier and Ulm (2014), variable selection has been suggested for
random forests to improve data prediction and interpretation when data
with missing values are used.

In this study, we consider a broad set of daily activity types (11 activities)
and recognize them with high accuracy without having to account for a
person’s interaction with objects in his/her environment. We track the
position data of four RF tags worn on the body, acquired by the Ubisense
platform (Steggles and Gschwind 2005) and provided as a publicly available
dataset. In the data preprocessing stage, we propose a method to put the
dataset in a uniform and synchronously sampled form. After feature reduc-
tion in two different ways, we compare several classifiers through P-fold and
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subject-based leave-one-out (L1O) cross-validation techniques. We investi-
gate variations of the relevant system parameters on the classification
performance.

This article is organized as follows. In “The System Details,” we provide details
of the experimental setup and the dataset. Following that, we describe preproces-
sing of the dataset. “Feature Extraction and Reduction” is explored, followed by
listing the classifiers for activity recognition in “Classification.” In “Performance
Evaluation Through Cross Validation,” we evaluate the classifier performance
through the use of two cross-validation techniques. In “Experimental Results,”we
present and interpret the experimental results, and in the final section, we draw
conclusions and set out possible directions for future research.

The system details

We employed a publicly available dataset in this study (University of California,
Irvine, Machine Learning Repository 2010). The human activity recognition
system from which the dataset was acquired employs four active RF tags worn
on different parts of the body, whose relative positions along the three axes are
detected by a computer or a simple microcontroller via four RF antennas
mounted in the environment. The RF tags are positioned on the left ankle (tag
1), right ankle (tag 2), chest (tag 3), and belt (tag 4). In Figure 3, a similar
configuration is shown with three antennas and a single tag.

The 3D position data of a subject’s RF tags are measured over time while she/he
performs a fixed sequence of predetermined activities. The operating range of the
system is about 46 m. Although each tag transmits a pulse every 0.1 s, the readers
might miss some of the pulses (due to occlusion, low SNR at large distances, etc.)

Figure 3. Ubisense hardware components (Steggles and Gschwind 2005). © Ubisense.
Reproduced by permission of Ubisense. Permission to reuse must be obtained from the
rightsholder.
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and therefore, the data acquisition rate is not constant. However, the average
detection rate does not much vary and the average sampling rate is 7.2 Hz for the
whole dataset.

The 11 activity types are numbered as follows: (1) walking, (2) falling,
(3) the process of lying down, (4) lying down, (5) sitting down, (6) sitting
on a chair, (7) standing up from lying down, (8) on all fours, (9) sitting
on the ground, (10) standing up from sitting on a chair, (11) standing
up from sitting on the ground.

Each subject performs a sequence of activities, referred to as an “experi-
ment” in this work. Each experiment consists of the following sequence of
activities with different but similar durations:

walking—sitting down—sitting on a chair—standing up from sitting on a chair—
walking—falling—lying down—standing up from lying down—walking—the process
of lying down—lying down—standing up from lying down—walking—falling—lying
down—standing up from lying down—walking—sitting down—sitting on a chair—
sitting on the ground—standing up from sitting on the ground—walking—the process
of lying down—lying down—standing up from lying down—walking—the process of
lying down—on all fours—lying down—standing up from lying down—walking.

There are five subjects, each performing the same experiment five times.
Thus, there is a total of 5 × 5 = 25 experiments of the same scenario. The
dataset described and used in this study is titled “Localization Data for
Person Activity Data Set” and is publicly available at the University of
California, Irvine, Machine Learning Repository (2010). The dataset is an
extremely long but simple-structured 2D array of size 164,860 × 8 (see
Figure 4 for sample rows). Each line of the raw data corresponds to one
measurement, in which the first element denotes the subject code (A–E) and
the experiment number (01–05); the second element is the tag ID (the
unique ID of one of the four tags); the third column is a unique timestamp;
the fourth column is the explicit date and time; the fifth, sixth, and seventh

...
A01, 020-000-032-221, 633790227929538017, 27.05.2009 14:06:32:953, 2.1674482822418213, 1.7744109630584717, 0.768406093120575, standing up from lying down
A01, 010-000-024-033, 633790227929808316, 27.05.2009 14:06:32:980, 2.083272695541382, 1.605885624885559, -0.019668469205498695, standing up from lying down
A01, 020-000-033-111, 633790227930348903, 27.05.2009 14:06:33:033, 2.1095681190490723, 1.670161485671997, 1.096860647201538, standing up from lying down
A01, 020-000-032-221, 633790227930619202, 27.05.2009 14:06:33:063, 2.1871273517608643, 1.8179994821548462, 0.7751449942588806, standing up from lying down
A01, 010-000-024-033, 633790227930889495, 27.05.2009 14:06:33:090, 2.124642848968506, 1.3958414793014526, 0.05755209922790527, standing up from lying down
A01, 010-000-030-096, 633790227931159787, 27.05.2009 14:06:33:117, 2.3755478858947754, 1.9687641859054565, -0.02469586208462715, walking
A01, 020-000-033-111, 633790227931430084, 27.05.2009 14:06:33:143, 2.162515878677368, 1.688720703125, 1.1396502256393433, walking
A01, 020-000-032-221, 633790227931700376, 27.05.2009 14:06:33:170, 2.1584346294403076, 1.7068990468978882, 0.7499973177909851, walking
A01, 010-000-024-033, 633790227931970674, 27.05.2009 14:06:33:197, 2.007559299468994, 1.7204831838607788, -0.04071690887212753, walking
A01, 020-000-032-221, 633790227932781551, 27.05.2009 14:06:33:277, 2.1662490367889404, 1.5868778228759766, 0.9013731479644775, walking
...
A01, 020-000-033-111, 633790227969271197, 27.05.2009 14:06:36:927, 3.2222139835357666, 1.994187593460083, 1.0909717082977295, walking
A01, 020-000-032-221, 633790227969541489, 27.05.2009 14:06:36:953, 3.3250277042388916, 2.288264036178589, 1.0457459688186646, walking
A01, 010-000-024-033, 633790227969811780, 27.05.2009 14:06:36:980, 3.237037420272827, 2.085507392883301, 0.31236138939857483, walking
A01, 010-000-030-096, 633790227970082071, 27.05.2009 14:06:37:007, 2.991684675216675, 1.9473466873168945, -0.052446186542510986, walking
A01, 020-000-033-111, 633790227970352368, 27.05.2009 14:06:37:037, 3.2356183528900146, 2.0799317359924316, 1.1940621137619019, walking
A02, 010-000-024-033, 633790230241677177, 27.05.2009 14:10:24:167, 3.8436150550842285, 2.038317918777466, 0.4496184289455414, walking
A02, 010-000-030-096, 633790230241947475, 27.05.2009 14:10:24:193, 3.288137435913086, 1.7760037183761597, 0.2172906994819641, walking
A02, 020-000-033-111, 633790230242217774, 27.05.2009 14:10:24:223, 3.7905502319335938, 2.10894513130188, 1.2178658246994019, walking
A02, 020-000-032-221, 633790230242488064, 27.05.2009 14:10:24:250, 4.826080322265625, 3.061596393585205, 2.016235589981079, walking
A02, 010-000-024-033, 633790230242758363, 27.05.2009 14:10:24:277, 3.889177083969116, 1.9832324981689453, 0.34168723225593567, walking
A02, 010-000-024-033, 633790230243839526, 27.05.2009 14:10:24:383, 3.8668057918548584, 2.037929058074951, 0.4540541470050812, walking
A02, 010-000-030-096, 633790230244109820, 27.05.2009 14:10:24:410, 3.724804401397705, 2.37532639503479, 0.43077021837234497, walking
A02, 020-000-033-111, 633790230244380118, 27.05.2009 14:10:24:437, 3.798861265182495, 2.0785067081451416, 1.1724120378494263, walking
A02, 020-000-032-221, 633790230244650412, 27.05.2009 14:10:24:467, 4.824059009552002, 3.062581777572632, 2.010768413543701, walking
A02, 010-000-024-033, 633790230244920703, 27.05.2009 14:10:24:493, 3.889165163040161, 2.053361177444458, 0.3612026274204254, walking
A02, 020-000-033-111, 633790230245461287, 27.05.2009 14:10:24:547, 3.8123855590820312, 1.9204648733139038, 1.1589833498001099, walking
...

Figure 4. Sample rows of the original dataset.
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columns, respectively, contain the relative x, y, and z positions of the tag;
and the eighth column stores the event name, corresponding to one of the 11
activities performed. We modified the dataset such that each activity type is
represented by its number for simplicity without loss of information.
Similarly, the unique IDs of the tags in the raw data are converted to tag
numbers 1–4 for the sake of simplicity and without loss of information. Note
that a measurement corresponding to one row of the dataset simply defines
the relative position of a particular tag at a particular time instant (as well as
the true activity type) and is acquired by multiple antennas. The data for
each experiment are just a subset of the rows in the raw data array.
Therefore, the sequence of activities and their durations can be extracted
from the dataset. As an example, in Figure 5 we show the positions of tags 1
and 3 in the first experiment of the first subject as 3D curves in time, with
the gray level of the curve changing from light gray to black as time passes.

An important problem in activity recognition is detecting activity
durations and transition times in a continuous data stream (Junker
et al. 2008; Guenterberg et al. 2009; Bicocchi, Mamei, and Zambonelli
2010; Mannini and Sabatini 2010). In the dataset, activities 2, 3, 5, 7, 10,
and 11 actually correspond to transitions between two activities, and their
duration is much shorter than the others. For example, class 5 (sitting
down) stands for the change from the state of walking to the state of
sitting on a chair. In the original dataset, these transition activities are
assigned to ordinary activity classes so that there is a total of 11 activities.
In addition to the classification problem with 11 classes, we consider a
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Figure 5. The positions of (a) tag 1 and (b) tag 3 in the first experiment of the first subject as 3D
curves whose gray level changes from light gray to black over time.
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simplified (reduced) case with five classes (corresponding to activities 1, 4,
6, 8, and 9) by omitting the transition classes.

Preprocessing of the data

Curve fitting

Because tag positions are acquired asynchronously and nonuniformly,
feature extraction and classification based on the raw data would be very
difficult. Thus, we first propose to fit a curve to the position data of each
axis of each tag (a total of 3 × 4 = 12 axes) in each experiment and then
resample the fitted curves uniformly at exactly the same time instant.
Provided that the new, constant sampling rate is considerably higher
than the average data acquisition rate, the curve-fitting and resampling
process does not cause much loss of information. We assume that the
sample values on the fitted curves (especially those that are far from the
actual measurement points) represent the true positions of the tags
because the tag positions do not change very rapidly. In general, tag
positions on arms and legs tend to change faster than on chest and
waist.

Three curve-fitting methods are considered in this work:

(1) In shape-preserving interpolation, the fitted curve passes through the
measurement points, around which it is curvy and smooth but in
between looks almost like straight lines. Hence, this method is very
similar to linear (or first-order) interpolation, except that the curve is
differentiable everywhere. The fitted curve has a high curvature, espe-
cially around the peaks.

(2) The second method is cubic-spline interpolation. The curve in this
method also passes through the measurement points but overall is
much smoother. The fitted curve might oscillate unnecessarily between
the measurement points and may go far beyond the peaks of the
measurements, in which case, it might not resemble (one axis of) the
actual position curve of the tag.

(3) The smoothing spline is the third method, having a single parameter
adjustable between 0 and 1. It is observed that this method resembles a
shape-preserving interpolant when the parameter is chosen to be
about 0.5 and resembles a cubic-spline interpolant when it is approxi-
mately 1. The parameter value should be chosen to be proportionately
large with the complexity of the data, i.e., the number of available
position measurements. In this study, we used a parameter value of
1–10−6 for smoothing spline interpolation.
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Although the third method seems to provide better results than the others,
it is not feasible for long data (as in this study) because its computational
complexity is much higher. Therefore, for its simplicity, we preferred to use
the shape-preserving interpolation. Sample curves fitted to synthetic position
data using the three methods are plotted in Figure 6. In addition, in Figure 7,
we plot the x position of tag 4 in the fifth experiment of the fifth subject. Once
the 12 different curves are fitted to the 12 axes of each experiment indepen-
dently, the curves are resampled uniformly at exactly the same time instants.

Segmentation

After the curve fitting and uniform resampling stages, the modified dataset
now consists of 5 × 5 = 25 2D arrays (each corresponding to an experiment),
with each line containing the time instant, position values along the 12 axes
(three axes per tag) at that instant, and the activity being performed at that
time. Note that the number of rows is not the same for all experiments
because the duration of the experiment and, hence, the number of equally
spaced samples, might differ slightly.

The 2D array of each experiment is first divided into intervals containing
samples corresponding to exactly one activity type. Then, each interval is
divided into time segments of equal length, typically about one second. To
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Simple example created to compare curve−fitting types (not to scale)

data
shape−preserving interpolation
cubic−spline interpolation
smoothing−spline interpolation

Figure 6. The three curve-fitting methods applied to synthetic position data.
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prevent a segment from containing more than one activity, the following
segmentation rule is used: For each experiment, progressing vertically along
the 2D array, a new segment is started only if the desired segment length is
reached or a different activity is encountered. Naturally, the segments imme-
diately before the transition points between activities and the very last
segment may be shorter in length.

We classify each segment independently. When testing the classifiers and
implementing the system in real time, the system needs to know where a new
activity starts (i.e., the activity transition times). Since various techniques for
modeling activity durations and detecting activity transition times are available
(Junker et al. 2008; Duong et al. 2005), we performed segmentation based on
the information on the true transition times so that each segment is associated
with only a single activity. If it is not possible to use a constant segment
duration throughout, some of the segments may be associated with more than
one activity. One can assign the longest activity contained in that segment as
the true class, but this would unfairly decrease the classification accuracy.

Feature extraction and reduction

Feature extraction

As stated, each segment consists of many position samples in the correspond-
ing time interval: Each row of the dataset comprises 13 values (one time
instant and 12 position values) and the true activity class. Thus, it would
take a lot of time for a classifier to be trained and evaluated using the whole
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position of tag 4 along x−axis in experiment 5 of subject 5
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Figure 7. The x position of tag 4 in the fifth experiment of the fifth subject. (a) The whole curve
and (b) the zoomed-in version.
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data. As an alternative, we use features extracted from the time segments for
classification.

The features extracted for each of the 12 axes are the minimum, maximum,
mean, variance, skewness, and kurtosis values, the first few coefficients of the
autocorrelation sequence, and the magnitudes of five or fewer Fast Fourier
Transform (FFT) peaks2. Therefore, there are (12 axes × [11 + ceil(N/2)]
coefficients per axis) = 132 + 12 × ceil(N/2) coefficients in the feature vector,
N being the maximum number of samples in a segment (N = 5 in this study).
Note that the size of the feature vector increases with the maximum number of
samples in a segment, which, in turn, is the product of the sampling frequency
(in Hz) and the segment duration (in s).

Feature reduction

Because of the large number of features (about 150–200) associated with each
segment, we expect feature reduction to be very useful in this scheme. The size
of the feature vector is reduced by mapping the original high-dimensional
feature space to a lower-dimensional one using principal component analysis
(PCA) (Alfaro et al. 2014) and linear discriminant analysis (LDA) (Duda, Hart,
and Stork 2001). PCA is a transformation that finds the optimal linear
combination of the features, representing the data with the highest variance
in a feature subspace without separately considering intraclass and interclass
variances. It seeks a projection that best represents the data in a least-squares
sense. On the other hand, LDA seeks a projection that best separates the data
in the same sense and maximizes class separability (Duda, Hart, and Stork
2001). Whereas PCA seeks rotational transformations that are efficient for
representation, LDA seeks those that are efficient for discrimination. The
best projection in LDA makes the difference between the class means as
large as possible relative to the variance.

Classification

Following are the ten classifiers used in this study, with their corresponding
PRTools (Duin et al. 2007) functions:

(1) ldc: Gaussian classifier with the same arbitrary covariance matrix for
each class

(2) qdc: Gaussian classifier with different arbitrary covariance matrices
for each class

2If there are fewer than five time samples in a given segment, the number of FFT peaks is as many as the number
of time samples.
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(3) udc: Gaussian classifier with different diagonal covariance matrices
for each class

(4) mogc: mixture of Gaussian classifiers (with two mixtures)
(5) naivebc: naïve Bayes classifier
(6) knnc: k-nearest neighbor (k-NN) classifier
(7) kernelc: dissimilarity-based classifier
(8) fisherc: minimum least-squares linear classifier
(9) nmc: nearest mean classifier
(10) nmsc: scaled nearest mean classifier

Detailed descriptions of these classifiers can be found in (Duda, Hart, and
Stork 2001).

Performance evaluation through cross validation

Because each of the five subjects repeats the same sequence of activities five
times, the procedures used for training and testing affect the classification
accuracy. For this reason, we use two cross-validation techniques for evalu-
ating the classifiers: P-fold and subject-based L1O (Duda, Hart, and Stork
2001).

In P-fold cross validation (P = 5 in this article), the whole set of feature
vectors is divided into P partitions, where the feature vectors in each
partition are selected randomly, regardless of the subject or the class
they belong to. One of the P partitions is retained as the validation set
for testing, and the remaining P − 1 partitions are used for training. The
cross-validation process is then repeated P times (the folds), so that each
of the P partitions is used exactly once for validation. The P results from
the folds are then averaged to produce a single estimate of the overall
classification accuracy.

In subject-based L1O cross validation, partitioning of the dataset is done
subject-wise instead of randomly. The feature vectors of four of the
subjects are used for training and the feature vectors of the remaining
subject are used for validation. This is repeated five times such that the
feature vector set of each subject is used once as the validation data. The
five correct classification rates are averaged to produce a single estimate.
This is same as P-fold cross validation with P being equal to the number of
subjects (P = 5) and all the feature vectors in the same partition being
associated with the same subject. We have selected P to be the same as the
number of subjects in P-fold cross validation to use the same number of
training vectors in the two cross-validation techniques; hence, to allow a
fair comparison between them.

Although these two cross-validation methods use all the data equally in
training and testing the classifiers, there are two factors that affect the results
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obtained based on the same data. The first is the random partitioning of the
data in the P-fold cross-validation technique, which slightly affects the classi-
fication accuracy. Second, classifier 7 (the dissimilarity-based classifier) includes
randomness in its nature. Therefore, both cross-validation methods are
repeated five times and the average classification accuracy and its standard
deviation are calculated over the five executions. In this way, we can assess the
repeatability of the results and estimate how well the system will perform over
newly acquired data from unfamiliar subjects.

Experimental results

The following are the adjustable parameters or factors that might affect
classification accuracy, with their default values written in square brackets:

(1) fs: sampling frequency of the fitted curves in forming the modified
data (in Hz) [default: 10 Hz]

(2) frm_dur: maximum segment duration (in seconds) [default: 0.5 s]
(3) curve_fit_type: the curve-fitting algorithm

(1: shape-preserving interpolation, 2: cubic-spline interpolation,
3: smoothing-spline interpolation) [default: 1]

(4) pri: prior probabilities of the 11 classes (i.e., activities)
(0: equal priors for each class, 1: priors calculated based on class
frequencies) [default: 1]

(5) reduc: the feature reduction type if used and the dimension of the
reduced feature space (0: no feature reduction; + nj j: PCA with reduced
dimension n; − nj j: LDA with reduced dimension n) [default: 0]

All classifiers are trained and tested using different combinations of the
parameters described above by sampling the parameter space uniformly. Then,
for each classifier, the set of parameters that results in the lowest average
classification error is determined. This process is repeated for both cases (the
complete and simplified classification problems with 11 and 5 classes, respec-
tively) and both cross-validation methods (5-fold and subject-based L1O).
Average classification errors of the classifiers over the five executions and their
standard deviations are given in Table 1. It is observed that the k-NN classifier
(classifier 6, with k = 5) is the best among the ten classifiers compared in this
study; it outperforms the other classifiers in all cases. For the complete classifica-
tion problem with 11 classes, the k-NN classifier has an average classification
error of 8.67% and 21.30% for 5-fold and subject-based L1O cross validation,
respectively, whereas, for the reduced case with five classes, the corresponding
numbers are 1.12% and 6.52%. Note that because the partitions are fixed in
subject-based L1O cross validation, this technique gives the same result if the
complete cycle over the subject-based partitions is repeated. Therefore, its
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standard deviation is zero, except for classifier 7, which includes randomness.
For the k-NN classifier, the cumulative confusion matrices obtained by sum-
ming up the confusion matrices of each run in all five executions are presented
in Tables 2 and 3 for the 11-class and 5-class problems, respectively, using the
two cross-validation techniques.

The parameters listed above significantly affect classification accuracy.
Therefore, for each parameter, the tests are run by varying that parameter
while keeping the remaining ones constant at their default values. The
variation of the average classification error with each of these parameters is
shown in Figures 8–12 for the two cross-validation methods and for the

Table 3. Cumulative confusion matrices for classifier 6 (k-NN) for the 5-class problem. The
confusion matrices are summed up for the five executions of the 5-fold (left) and subject-
based L1O (right) cross validation.
Cumulative Confusion Matrices of Classifier 6 (k-NN)
(fs = 10, frm_dur = 0.2, curve_fit_type = 1, pri = 1, reduc = 0)

True
Labels

5-Fold
(Average Classification Error: 1.12%)

Subject-Based L1O
(Average Classification Error: 6.52%)

Estimated Labels

Total

Estimated Labels

Total1 4 6 8 9 1 4 6 8 9

1 27,041 10 226 7 6 27,290 26,850 15 350 50 50 27,290
4 39 45,051 15 206 4 45,315 405 42,905 470 1,040 495 45,315
6 145 3 22,296 10 11 22,465 1,050 25 21,030 285 75 22,465
8 59 361 74 3,885 1 4,380 270 735 795 2,540 40 4,380
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Figure 8. Effect of sampling frequency on the average classification error of the k-NN classifier
(classifier 6).

170 A. YURTMAN AND B. BARSHAN



0.2 0.3 0.4 0.5 0.7 1
0

5

10

15

20

25

30

35

40

45

50

segment duration (s)

av
er

ag
e 

cl
as

si
fic

at
io

n 
er

ro
r 

(%
)

11 classes, 5−fold
11 classes, L1O
5 classes, 5−fold
5 classes, L1O

Figure 9. Effect of segment duration on the average classification error of the k-NN classifier
(classifier 6).
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Figure 10. Effect of curve-fitting method on the average classification error of the k-NN classifier
(classifier 6).
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Figure 11. Effect of prior probabilities on the average classification error of the k-NN classifier
(classifier 6).
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Figure 12. Effect of feature reduction with (a) PCA and (b) LDA on the average classification error
of the k-NN classifier (classifier 6).
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complete and simplified classification problems (a total of four cases). All the
error percentage values presented in these figures are the average values over
the five executions. Because the k-NN classifier outperforms all the other
classifiers, the average classification error of only this classifier is shown in
the figures. As expected, the 11-class classification problem results in larger
errors compared to the 5-class problem. From the results, it can be observed
that in all cases, 5-fold cross validation provides better results than subject-
based L1O. This is because in the first case, the system is trained and tested
with a random mixture of different subjects’ data, whereas in the second, it is
trained with four subjects’ data and tested with the data of the remaining
subject, who is totally new to the system.

Effect of sampling frequency (fs)

When the sampling frequency is set quite low, in particular, between 2–6 Hz,
classification accuracy is acceptable. This occurs because people move rela-
tively slowly and classification performance does not degrade much when the
high-frequency components are removed.

The average classification error increases slightly with an increasing sam-
pling rate (Figure 8). For instance, with fs = 100 Hz, noting that the dimen-
sion of the feature space also increases with the number of samples in a
segment, the data become so complicated that it misleads most of the
classifiers. This is because the position measurements are quite noisy;
hence, selecting a high sampling rate might cause overfitting, which degrades
classification accuracy. We determine 10 Hz to be a suitable value for fs and
set it as the default value.

Effect of segment duration (frm_dur)

Because a single event or activity is associated with each segment, the
segment duration is another parameter that affects accuracy. Results for
segment duration values between 0.2 s and 1 s are shown in Figure 9.
Although the smallest segment duration usually gives slightly better
results, the system must make a decision five times per second with
this duration, which increases complexity. In fact, even a segment con-
sisting of a single position measurement (one row of the dataset) is
sufficient to obtain body posture information because it directly provides
the 3D positions of the tags on different body parts at that instant.
Compromising between complexity and accuracy, we select a segment
duration of 0.5 s as the default value without much loss in classification
accuracy in any of the four cases.
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Effect of curve-fitting algorithm

From Figure 10, we observe that the shape-preserving and cubic-spline
interpolations provide very similar results. Smoothing-spline interpolation
performs the best among the three for 5-fold cross validation with 11 classes,
whereas it performs the worst in the other three cases. Thus, the shape-
preserving interpolation is chosen as the default curve-fitting method.

Effect of prior probabilities

Classification errors for individual classes can be obtained from the confu-
sion matrices provided in Tables 2 and 3. The average probability of error is
calculated by weighting the classification error of each class with its prior
probability. In this study, we chose prior class probabilities in two different
ways. In the first, prior probabilities are taken equally for each class, whereas
in the second, prior probabilities are set equal to the actual occurrence of the
classes in the data. Figure 11 illustrates the effect of prior probabilities on the
average classification error; the error for the case with equal priors is larger
because transition classes (“Segmentation”) rarely occur in the dataset, thus
their probability of occurrence is extremely low. However, the classification
errors for these classes are larger because when a weighted average is
calculated using the actual class probabilities, terms with large classification
errors contribute relatively less to the total average error.

Effect of feature reduction

Because there is a large number of features (determined from the sampling
frequency and the segment duration), two common methods (PCA and
LDA) are used for feature reduction. All the results up to this point, includ-
ing Figures 8–12, are obtained without feature reduction.

Figure 12(a) shows the average classification error when PCA is used with
different reduced dimensionalities (from 1 to 100) as well without feature
reduction (168). We observe that the intrinsic dimensionality of the feature
vectors is about 10, which is much smaller than the actual dimension.

Figure 12(b) corresponds to the cases where LDA is used with reduced
dimension from 1 to 10 for 11 classes and from 1 to 4 for 5 classes (note that
reduced dimension must be lower than the number of classes in LDA). For
the complete classification problem with 11 classes, LDA with dimension 10
outperforms all other cases, including those without feature reduction vali-
dated by subject-based L1O. Including a large number of features not only
increases the computational complexity of the system significantly, but also
confuses the classifiers, leading to a less accurate system (this is well-known
as “the curse of dimensionality”).
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For the 11-class problem, LDA with dimension 10 performs better than
PCA when L1O is used and worse when 5-fold cross validation is employed.
For the simplified problem with 5 classes, the results change similarly with
feature reduction. With subject-based L1O, LDA with dimension 4 outper-
forms PCA with higher dimensions as well as the case without feature reduc-
tion. When 5-fold cross validation is used, PCA with dimension 20 is the best.
Hence, LDA with dimension 4 is preferable because its performance seems to
be less dependent on the subject performing the activities. Therefore, it can be
stated that LDA is more reliable if the system is going to be used with subjects
who are not involved in the training process. On the other hand, if the system
is going to be trained for each subject separately, PCA results in a more
accurate classifier, even at the same dimensionality as LDA.

Summary and conclusions

In this study, we present a novel approach to human activity recognition
using a tag-based RF localization system. Accurate activity recognition is
achieved without needing to consider the subject’s interaction with objects in
his/her environment. In this scheme, subjects wear four RF tags whose
positions are measured via multiple antennas (readers) fixed to the
environment.

The most important issue in the scheme is the asynchronous and
nonuniform acquisition of position data. The system records measure-
ments whenever it detects a tag, and detection frequency is affected by the
SNR and interference in the environment. The asynchronous nature of the
data acquired introduces some additional problems to be tackled; for
example, only one tag can be detected at a given time instant. Hence,
the measurements of different tags are acquired at different time instants
in a random manner. We solved this problem by first fitting a suitable
curve to each measurement axis along time, and then resampling the
fitted curves uniformly at a higher sampling rate at exactly the same
time instants.

After the uniformly sampled curves are obtained, they are partitioned into
segments of maximum duration of one second each, such that each segment
is associated with only one activity. Then, various features are extracted from
the segments for the classification process. The number of features is reduced
using two feature reduction techniques.

We investigate ten different classifiers and calculate their average classifi-
cation errors for various curve-fitting and feature reduction techniques and
system parameters. We use two cross-validation methods, namely P-fold with
P = 5, and subject-based L1O. Omitting the transition classes, the complete
pattern recognition problem with 11 classes is reduced to a problem with five
classes and the whole process is repeated. Finally, for each problem and for
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each cross-validation method, we present the set of parameters and the
classifier with the best result.

For the complete problem with 11 classes, the proposed system has an
average classification error of 8.67% and 21.30% for the 5-fold and subject-
based L1O cross-validation techniques, respectively. This relatively large
error is caused by transition activities, which, with their shorter duration
and fewer samples, are more difficult to recognize. When these activities are
discarded, the reduced system with five classes has an average probability of
error of 1.12% and 6.52% with 5-fold and subject-based L1O cross validation,
respectively. Hence, performance significantly improves when transition
activities are removed, as expected. The system proposed here demonstrates
acceptable performance for most practical applications.

In future work, activity recognition by tracking body movement can be
explored using asynchronously and nonuniformly acquired RFID data in
raw form. Features can be directly calculated from the nonuniformly
acquired samples with special techniques and then classified. HMMs can
be used for accurately spotting activities and detecting the transition
instants. Variable segment durations that are truncated at activity transi-
tion points can then be considered. The set of activities can be broadened
and activity and location information can be combined to provide more
accurate results.
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