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The Reynolds equation, which describes the
lubrication effect arising through the interaction
of two physical surfaces that are separated by a
thin fluid film, is formulated with respect to a
continuously evolving third surface that is described
by a time-dependent curvilinear coordinate system.
The proposed formulation essentially addresses
lubrication mechanics at interfaces undergoing large
deformations and a priori satisfies all objectivity
requirements, neither of which are features of the
classical Reynolds equation. As such, this formulation
may be particularly suitable for non-stationary
elastohydrodynamic lubrication problems associated
with soft interfaces. The ability of the formulation to
capture finite-deformation effects and the influence of
the choice of the third surface are illustrated through
analytical examples.

1. Introduction
Since the publication of Reynolds’ seminal work [1],
the Reynolds equation has been the central, driving
formulation behind theoretical and computational lubri-
cation analysis. The mechanics of a vanishingly thin fluid
film at the interface between two moving surfaces
has been described by the Reynolds equation in a
broad range of lubrication problems with indisputable
success [2,3]. Owing to the underlying assumption of
an infinitesimal film thickness in the theoretical basis
for its derivation from the Navier–Stokes equations, the
Reynolds equation is a surface formulation. In practice,
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the interacting physical surfaces are always separated by a finite film thickness and, therefore, it
is not always immediately clear which of these surfaces should be chosen in order to formulate
the Reynolds equation, whether this choice has any impact on the results or whether choosing
one of the physical surfaces is necessary at all. Indeed, to maintain generality, it is of interest to
be able to carry out this formulation on an independent third surface, to be referred to as the
lubrication surface, that does not necessarily coincide with either of the physical surfaces—see [4]
for an early example. Moreover, the physical surfaces can significantly deform in soft interfaces
[5–9] and also dynamically evolve in non-stationary problems of impact and sliding [10],
which also necessitates the lubrication surface to evolve. The goal of this work is to formulate
the Reynolds equation with respect to such a continuously evolving surface. Overall, the
proposed formulation essentially addresses lubrication interfaces undergoing large deformations
and a priori satisfies all objectivity requirements, neither of which are features of the classical
Reynolds equation.

When the problem is stationary and the physical surfaces are curved, it is convenient to choose
the lubrication surface coincident with the geometry of one of the physical surfaces. An example
of this setting is the journal bearing. Here, either the non-moving (bearing) surface geometry may
be chosen or the geometry of the moving (shaft) surface may be employed. In either case, the
lubrication formulation is Eulerian with respect to the fluid flow at the interface. Recently, it has
been demonstrated [9] that there is a small influence of the choice of the third surface for this class
of problems in the context of soft elastohydrodynamic lubrication owing to the finiteness of the
film thickness. When the physical surfaces have a complex topography, for instance in the case
of nominally flat rough surfaces [11], it may be possible to employ an intermediate stationary
flat plane, which again leads to an Eulerian-type formulation. In this context, an independently
moving lubrication surface would lead to an arbitrary Lagrangian–Eulerian formulation [12] with
respect to an underlying time-dependent curvilinear coordinate system. When the problem is non-
stationary and involves significant changes of the interface geometry, finite-deformation effects
must additionally be taken into account, irrespective of the impact of the particular definition
of the lubrication surface. These effects are naturally addressed once the lubrication surface is
assigned independent kinematics.

Although fluid dynamics problems are routinely formulated with respect to a curvilinear
coordinate system, this system is in most cases admitted to be time independent [13]. Formulation
with respect to a time-dependent curvilinear coordinate system has been a source of discussion
until recently [14]. A similar situation exists for the theory of lubrication, except that an explicit
discussion regarding a time-dependent system does not appear to exist, despite extensive
early [15] and recent [16] relevant work on surface flows. One approach to accomplishing
the stated goal of this work is to start from the formulation of the Navier–Stokes equations
with respect to a time-dependent curvilinear coordinate system and subsequently invoke the
thin-film assumption to arrive at the desired lubrication formulation. However, this is more
easily achieved by starting from the formulation of the Reynolds problem with respect to a
stationary but generally curved lubrication surface and subsequently state the generalization to
the time-dependent case, which is the approach that will be pursued presently.

2. Interface geometry
The interface geometry is described by the two physical surfaces P (I), I = 1 or 2, which are
associated with the interacting solids, and the lubrication surface L on which the mechanics of
the thin fluid film will be described. This set-up is summarized in figure 1. It is important to note
that L is depicted intermediate to P (I) and will be enforced to satisfy this constraint, which is to be
discussed in §9. The physical surfaces are assigned position vectors x(I) and convected curvilinear
coordinates ξ (I),α , where α = 1 or 2. The position vector and the convected curvilinear coordinates
for the lubrication surface will be denoted by y and ηα , respectively. The curvilinear coordinate
systems are depicted globally although they may also be locally constructed, for instance within
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Figure 1. The interface geometry for the three-surface set-up. (Online version in colour.)

individual finite elements. Overall, the following representations hold:

x(I) = x(I)(ξ (I),1, ξ (I),2, t) and y = y(η1, η2, t). (2.1)

The outward unit normals to P (I) are denoted by n(I). The lubrication surface L is assigned a
unit normal ν, pointing in the direction from P (2) to P (1), as well as a tangential vector m that is
simultaneously an outward unit normal to ∂L which indicates the boundary of the domain within
which the Reynolds equation is solved.

Following standard differential geometry [13,17], the curvilinear coordinate systems are
employed to construct covariant basis vectors a(I)

α = ∂x(I)/∂ξ (I),α on P (I) and gα = ∂y/∂ηα on L. The
metric components on L will be denoted by gαβ = gα · gβ , the inverse of which has components
gαβ that induce the contravariant basis vectors gα = gαβgβ = ∂ηα/∂y. Note that gα · ν = 0 and

a(I)
α · n(I) = 0 by construction but, for instance, a(I)

α · ν �= 0 in general. With respect to L, any vector
z may be decomposed into its normal

zN = z · ν −→ zN = zNν (2.2)

and tangential parts

zT = z − zN = zα
Tgα . (2.3)

The surface-gradient operator will be defined with respect to the geometry of L

∇ = gα ∂

∂ηα
(2.4)

so that the surface divergence of a vector may be expressed as

∇· z = ∂z
∂ηα

· gα . (2.5)

For a tangential vector zT, it takes the specific form

∇· zT = ∂zT

∂ηα
· gα = ∂zα

T
∂ηα

+ zβ

TΓ α
βα , (2.6)

where Γ α
βγ = ∂gβ/∂ηγ · gα are the Christoffel symbols of the second kind. For a non-tangential

vector field, (2.5) may now be evaluated as

∇· z = ∇· zT + ∇· zN, (2.7)

where the normal contribution is

∇· zN = zN
∂ν

∂ηα
· gα = κzN. (2.8)

 on May 20, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160032

...................................................

(1)

(1)

(1)

(2) (2) (2)

(1)

inverse–orthogonal orthogonal slave/master

(1) (1)

(2) (2)
(2)n–

n–

n–

n–n–

n–

Figure 2. Inverse–orthogonal, orthogonal (closest point) and slave/master projection approaches for the definition of the gap
between the surfaces. (Online version in colour.)

Here, κ = −2H with H = 1
2 gαβbαβ as the mean curvature and bαβ = ∂gα/∂ηβ · ν. It is also useful to

recall the surface-divergence theorem for a continuously differentiable tangential vector field,∫
L

∇· zTda =
∫
∂L

zT · m d
. (2.9)

3. Definition of the film thickness
An incompressible fluid is assumed in this work such that the density can be assigned a unit
value without loss of generality. Hence, no distinction will be made between mass and volume.
The fluid film thickness h is a measure of the gap between the surfaces and delivers the volume∫
L h da of the fluid at the interface. In a relatively general setting, h may be decomposed into

measures of gap h(I) between each P (I) and L,

h = h(1) − h(2). (3.1)

As a particular choice, h(I) may be defined via inverse–orthogonal projections x̄(I) = x(I)(ξ̄ (I),1, ξ̄ (I),2)
onto P (I) according to the normal ν at y ∈L,

h(I) = (x̄(I) − y) · ν −→ x̄(I) − y = h(I)ν. (3.2)

Here and in the following discussion, the notation ¯(•) denotes the evaluation of a quantity at the
point of projection.

The film thickness definition based on (3.2) is depicted in figure 2 along with alternative ones.
The present definition fits together with similar continuum theories such as shells within which
a transition is made from a three-dimensional formulation to a two-dimensional one and where
the thickness of the medium is defined with respect to the normal to the surface [18]. On the
other hand, within a general computational tribology framework where contact and lubrication
problems must be handled simultaneously, notably in the mixed lubrication regime, a definition
of the gap between the interacting surfaces that is common to both aspects of the problem
may be more advantageous. In this respect, it should be noted that the definition of the gap in
computational contact mechanics is based predominantly [10,19] (but not exclusively [20]) on an
orthogonal (or closest point) projection. This alternative definition has been employed as a basis
for the numerical implementation of lubrication formulations via techniques that were originally
introduced for contact problems [21]. Following standard contact mechanics terminology where
one of the physical surfaces is referred to as the slave and the other as the master, yet another
choice is to carry out a projection directly from the slave onto the master via an orthogonal or
inverse–orthogonal projection method—see [9] for an implementation based on this definition.
The first two definitions are symmetric, in the sense that the gap is independent from the labelling
of the physical surfaces, whereas the third definition is non-symmetric. If L is chosen to coincide
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with one of the physical surfaces, then the third definition is equivalent to one of the first two,
depending on the choice of projection method.

From a mathematical point of view, the gap between microscopically flat surfaces is ideally
zero during contact, and the lubrication theory also assumes a vanishingly small gap, so that the
difference between the alternative definitions should disappear in this limit. From a numerical
point of view, on the other hand, the particular choice will make a difference, particularly at
coarse discretizations, similar to the choice of the kinematics for the lubrication surface. The core
theoretical developments of upcoming sections are independent of the gap definition. A specific
definition of the gap will be necessary only in §7, where the inverse–orthogonal projection
(3.2) will be invoked. Irrespective of the specific definition employed and whether or not the
particular choice of the lubrication surface impacts the results at all, the major issue of the
lubrication interface undergoing finite deformations requires special treatment that is delineated
in upcoming sections.

4. Kinematics at the interface
The physical surfaces P (I) are described in a finite-element setting through their respective
meshes. These meshes can significantly deform, particularly in the soft elastohydrodynamic
lubrication regime. However, they do not necessarily constitute material surfaces, because at least
one of the associated solids may, for instance, rotate at a high velocity, so that it is numerically
more effective to carry out the solid formulation of the problem within an arbitrary Lagrangian–
Eulerian setting where the meshes are assigned simplified kinematics. Presently, on the other
hand, P (I) are assumed to be material surfaces.

In upcoming discussions, the standard notation ∂/∂t will be retained for partial differentiation
with respect to time, but d/dt will be employed when the sole argument of the function is time.
The total (material) time derivative on the physical surfaces P (I) tracks their material points and
when applied to x(I) delivers their velocity distributions v(I) that may also be expressed as

v(I) = ∂

∂t
x(I)(ξ (I),1, ξ (I),2, t). (4.1)

Because L is not a material surface, the specific notation D/Dt will be employed to highlight
the total time derivative that tracks points of this surface and delivers, for instance, its velocity
distribution w,

w = Dy
Dt

= ∂

∂t
y(η1, η2, t). (4.2)

Additionally, the transformation derivative [22,23]

δ(•)
δt

= D(•)
Dt

− ∂(•)
∂ηα

wα
T (4.3)

is introduced which corresponds to the time derivative along the normal trajectory of the evolving
lubrication surface. Indeed, note that δy/δt = wN.

Finally, recalling the notation ¯(•) for evaluation at the projection point, one can define the
relative velocities

ū(I) = v̄(I) − w̄(I), (4.4)

where the projection velocities w̄(I) are defined as

w̄(I) = Dx̄(I)

Dt
�= w. (4.5)

Here, v̄(I) represents the material velocity of P (I) evaluated at the projection point x̄(I), whereas
w̄(I) essentially corresponds to the velocity of the projection image x̄(I) ∈P (I) of y ∈L which itself
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moves with velocity w. Following an established analysis in contact mechanics [10,19], going back
to the early works of [24,25], the projection velocities may be expressed as

w̄(I) = v̄(I) + Dξ̄ (I),α

Dt
ā(I)

α , (4.6)

leading to

ū(I) = −Dξ̄ (I),α

Dt
ā(I)

α . (4.7)

The evolution Dξ̄ (I),α/Dt of the projection coordinates will be addressed in §7.

5. Time-independent lubrication surface
The Reynolds equation formulated with respect to a curved stationary lubrication surface is
relatively standard. For instance, among other possibilities, this case would be encountered if one
of P (I) is stationary and L is chosen to coincide with it. The corresponding formulation is [3,6]

∂h
∂t

= −∇· qT. (5.1)

Here, the physical fluid flux qT is a purely tangential vector and hence the expression (2.6) applies
directly to its surface divergence. It has the constitutive form

qT = − h3

12μ
∇p + h

2

(
v̄(1)

T + v̄(2)
T

)
, (5.2)

where μ is the viscosity of the fluid, p is the pressure that is generated at the interface and the
surface gradient is also with respect to L, delivering the tangential vector

∇p = ∂p
∂ηα

gα . (5.3)

Upon integrating (5.1) on L and making use of the surface-divergence theorem (2.9) on
the tangential vector qT, the Reynolds equation with respect to a time-independent lubrication
surface may be expressed as a balance equation in integral form as

d
dt

∫
L

h da =
∫
∂L

f d
, (5.4)

where f = −qT · m is the boundary flux on ∂L. Note that d/dt can here be transferred into the
integral simply as ∂/∂t, because L is stationary.

6. Time-dependent lubrication surface
The Reynolds equation for a time-dependent lubrication surface which has a velocity distribution
w will now be derived from a balance equation that retains the integral form in (5.4):

d
dt

∫
L

h da︸ ︷︷ ︸
1

=
∫
∂L

f ′ d
︸ ︷︷ ︸
2

. (6.1)

The individual terms in this expression are as follows:

1. Rate of change of volume: let Lo be a time-independent reference surface that is convected
to L, where the area mapping da = J dao applies. The rate of the Jacobian J is associated
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with the surface divergence (2.7) of the non-tangential vector field w [16]:

1
J

DJ
Dt

= ∇· w = ∇· wT + κwN. (6.2)

Making use of the area mapping, the transport theorem associated with the left-hand side
may now be stated as

d
dt

∫
L

h da =
∫
L

(
Dh
Dt

+ h∇· w
)

da =
∫
L

(
Dh
Dt

+ h(∇· wT + κwN)
)

da. (6.3)

The last terms associated with ∇· w take into account the fact that, even if h is a
constant, the volume of the fluid at the interface will increase (decrease) owing to
variable tangential velocity or when a curved surface moves normal to itself, because the
area expands (or contracts) in both processes. Note that the derivation of the Reynolds
equation essentially requires negligible curvature on the physical surfaces P (I) with
respect to the thickness of the fluid film [3]. In practice, however, their ratio is small yet
finite. Moreover, together with P (I), L can undergo significant deformations such that
irrespective of the magnitude of the curvature the finite area changes associated with
normal motion need to be accounted for, which is automatically accomplished by the
curvature term.

2. Flux across the boundary: f ′ is the flux on the boundary ∂L which is associated with the
relative tangential flux q′

T that is observed with respect to the moving surface L,

q′
T = qT − h

2

(
w̄(1)

T + w̄(2)
T

)
−→ f ′ = −q′

T · m. (6.4)

q′
T may be given a form identical to the form (5.2) for qT if the v̄(I)

T therein are replaced,
making use of (4.4), by the relative tangential velocities to obtain

q′
T = − h3

12μ
∇p + h

2

(
ū(1)

T + ū(2)
T

)
. (6.5)

It is also useful to define a total tangential flux

q′′
T = q′

T + hwT −→ f ′′ = −q′′
T · m. (6.6)

Non-tangential flux vectors may also be defined by augmentation through a normal
contribution,

q = qT + hwN, q′ = q′
T + hwN and q′′ = q′′

T + hwN. (6.7)

Note that q′′ may alternatively be expressed via (6.6)1 as q′′ = q′
T + hw, which therefore

represents the total flux in the sense that it combines the tangential flux relative to L
with the flux that emanates from its motion. Because m · ν = 0, the relations f = −q · m,
f ′ = − q′ · m and f ′′ = −q′′ · m also hold although the surface-divergence theorem (2.9)
applies only to the tangential parts of the flux vectors.

The local counterpart of (6.1) which represents the Reynolds equation on a time-dependent
lubrication surface now follows from the surface-divergence theorem and significantly differs
from its time-independent counterpart (5.1):

Dh
Dt

+ h∇· w = −∇· q′
T. (6.8)

Two additional equivalent forms follow from the expansion of ∇· w,

Dh
Dt

+ h(∇· wT + κwN) = −∇· q′
T −→ Dh

Dt
+ h∇· wT = −∇· q′. (6.9)
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With small modifications, the following alternatives are also valid:

Dh
Dt

− ∇h · wT + hκwN = −∇· q′′
T −→ Dh

Dt
− ∇h · wT = −∇· q′′. (6.10)

This time-dependent formulation may also be expressed with respect to a surface which
momentarily coincides with the evolving lubrication surface and follows its instantaneous normal
trajectory. Applying (4.3) to the film thickness, one obtains

δh
δt

= Dh
Dt

− ∇h · wT, (6.11)

which, upon substitution in (6.10), delivers

δh
δt

+ hκwN = −∇· q′′
T −→ δh

δt
= −∇· q′′. (6.12)

In particular, the second expression is a compact Eulerian-type form which resembles the classical
Reynolds equation (5.1) for a time-independent lubrication surface, but here the transformation
derivative (6.11) appears as the appropriate time derivative on the left-hand side and the total
flux (6.7)3 appears as the appropriate flow rate on the right-hand side. Consequently, it is clear
that one does not obtain the form of the classical Reynolds equation even if L is chosen to coincide
with one of P (I), precisely owing to the inability of the classical formulation to properly account
for finite-deformation effects.

The numerical implementation of the time-dependent formulation (6.9) or (6.10) within a
finite-element setting may be carried out in a number of ways. Although the numerical aspects
of the problem are outside the scope of this work, the relevant weak form is shortly commented
upon. Suppose that the pressure is controlled on the Dirichlet portion of the boundary ∂LD ⊂ ∂L.
Let π be a test function that represents the variation of the pressure and therefore is non-zero only
on the Neumann boundary ∂LN = ∂L\∂LD where either the relative boundary flux f ′ or the total
one f ′′ may be prescribed to a value f̂ ′ or f̂ ′′, respectively. Multiplying the strong form (6.9)1 by π ,
integrating over L and manipulating the right-hand side using the surface-divergence theorem
(2.9) delivers the weak form

∫
L

π

(
Dh
Dt

+ h(∇· wT + κwN)
)

da =
∫
L

∇π · q′
T da +

∫
∂LN

π f̂ ′ d
. (6.13)

Alternatively, starting from the strong form (6.10)1, one obtains
∫
L

π

(
Dh
Dt

− ∇h · wT + hκwN

)
da =

∫
L

∇π · q′′
T da +

∫
∂LN

π f̂ ′′ d
. (6.14)

The curvature contribution in either form may alternatively be evaluated implicitly within the
isoparametric setting of finite elements by replacing πhκwN with one of the following equivalent
expressions:

πhκwN = πh∇· wN = π∇· (hwN) = ∇· (πhwN). (6.15)

7. Total time derivative of film thickness
The total time derivative term Dh/Dt is evaluated at a fixed point (η1, η2) of L. In order to calculate
this term, a specific measure of the gap between the surfaces is necessary. Any one of the three
choices depicted in figure 2 involves similar calculation steps. Invoking the definition (3.2) based
on an inverse–orthogonal projection as a particular choice and observing that the derivative of
ν · ν = 1 vanishes, one may write

Dh(I)

Dt
= D

Dt

{
(x̄(I) − y) · ν

}= (
w̄(I) − w

) · ν. (7.1)
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It follows via (3.1) and (4.6) that

Dh
Dt

=
(
v̄

(1)
N − v̄

(2)
N

)
+
(

Dξ̄ (1),α

Dt
ā(1)

α − Dξ̄ (2),α

Dt
ā(2)

α

)
· ν, (7.2)

which also delivers δh/δt in (6.12) via (6.11). The evolution of the projection coordinates follows
from the fact that (x̄(I) − y) · gα = 0 and hence the derivative of this equality is also zero. Explicitly,
again using (3.2) and noting Dgα/Dt = ∂w/∂ηα , one may write

0 = D
Dt

{(x̄(I) − y) · gα} =
(

v̄(I) + Dξ̄ (I),β

Dt
ā(I)

β − w

)
· gα + h(I)ν · ∂w

∂ηα
(7.3)

or, in the form of a linear system of equations based on the definition c(I)
αβ = gα · ā(I)

β ,

− c(I)
αβ

Dξ̄ (I),β

Dt
= (v̄(I) − w) · gα + h(I)ν · ∂w

∂ηα
, (7.4)

which completes the calculation of Dh/Dt. The left-hand side also corresponds to ū(I),α
T in view of

(4.7) and, therefore, (7.4) can be additionally employed in the evaluation of the relative tangential
flux (6.5). Note that the last term of (7.4) has the explicit form

ν · ∂w
∂ηα

= ∂wN

∂ηα
+ bαβwβ

T. (7.5)

In the preceding analysis, the projection velocities have been expressed in the form (4.6). For
future reference, it is instructive to express them in an alternative form by first observing from the
particular gap definition (3.2) that

x̄(I) = y + h(I)ν (7.6)

and subsequently applying the definition (4.5) to obtain

w̄(I) = w + Dh(I)

Dt
ν + h(I) Dν

Dt
, (7.7)

where the last term is a tangential vector with components

Dν

Dt
· gα = −ν · ∂w

∂ηα
. (7.8)

Hence, the normal part of w̄(I) is

w̄(I)
N =

(
wN + Dh(I)

Dt

)
ν (7.9)

while the tangential part is, making use of (7.5),

w̄(I)
T =

(
wα

T − h(I)
{

bαβwβ

T + ∂wN

∂ηα

})
gα . (7.10)

Clearly, w̄(I)
T �= wT in general. However, when the curvature or the tangential velocity of L

vanishes and its normal velocity is a constant, w̄(I)
T = wT holds. Sample scenarios which satisfy

these assumptions will be analysed in §10. In such cases, one observes from (6.4) that the relative
tangential flux takes the simplified form q′

T = qT − hwT and, as a consequence, the difference
between the total and the physical flux vectors vanishes, i.e. q′′ = q and f ′′ = f .
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8. Objectivity
The proposed time-dependent formulation satisfies objectivity requirements. To demonstrate
this, an observer is denoted by O, and the observer transformation O →O+ is invoked that is
characterized by the position vector transformations

x(I),+ = Q(t)x(I) + c(t) and y+ = Q(t)y + c(t), (8.1)

where Q is a proper orthogonal tensor. Additionally, without any loss of generality, the invariance
t+ = t as well as ξ (I),α,+ = ξ (I),α and ηα,+ = ηα will be invoked. Clearly, this observer transformation
leads to a rotation of all basis and normal vectors through Q. In particular, it is noted that

g+
α = Qgα and ν+ = Qν. (8.2)

The normal and tangential parts of a vector z+ with respect to O+ are therefore

z+
N = z+ · ν+ −→ z+

N = z+
Nν+ (8.3)

and
z+

T = z+ − z+
N = zα,+

T g+
α . (8.4)

Moreover, it follows that
∇+ = Q∇, h+ = h and κ+ = κ . (8.5)

For compactness, the notation

Q̇ = dQ
dt

and ċ = dc
dt

(8.6)

will additionally be employed.
Now, objectivity requires that the time-dependent formulation of the Reynolds equation for

O preserves its form with respect to O+. Making use of (6.8), this requirement translates into
satisfying

Dh+

Dt︸ ︷︷ ︸
1

+ h+∇+· w+︸ ︷︷ ︸
2

= −∇+· q′,+
T︸ ︷︷ ︸

3

. (8.7)

The individual terms in this expression are analysed next:

1. Projection coordinate evolutions Dξ̄ (I),α/Dt remain invariant under observer transforma-
tions which may be verified, for the particular gap definition (3.2), by revisiting the
discussion of §7. One therefore concludes from (4.6) that

w̄(I),+ = Qw̄(I) + Q̇x̄(I) + ċ. (8.8)

It follows that Dh/Dt is invariant under an observer transformation:

Dh+

Dt
= Dh

Dt
. (8.9)

Note, however, that δh/δt in (6.11) is not invariant.
2. One observes that

∇+· w+ = Q∇· (Qw + Q̇y + ċ) = ∇· w + ∇· (Ωy), (8.10)

where Ω = QTQ̇ is a skew-symmetric tensor. Recalling the expression gα = ∂ηα/∂y and
indicating the Kronecker delta with δij, the last term may be expressed via (2.5) as

∇· (Ωy) = Ω
∂y
∂ηα

· ∂ηα

∂y
= Ωij

∂yj

∂ηα

∂ηα

∂yi
= Ωijδji = Ωii = 0. (8.11)

Because h+ = h, the invariance of the second term in (8.7) follows. Note that the normal
and tangential contributions to ∇· w are not individually invariant.
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3. Material frame-indifference is invoked which, based on (6.5), delivers

q′,+
T = − (h+)3

12μ+ ∇+p+ + h+

2

(
ū(1),+

T + ū(2),+
T

)
. (8.12)

Invoking the invariance statements μ+ = μ and p+ = p, one may employ earlier
transformation rules to first observe from (4.7) that the relative velocities transform
objectively, i.e. ū(I),+

T = Qū(I)
T , and subsequently conclude the objectivity of the relative

tangential flux,

q′,+
T = − h3

12μ
Q∇p + h

2
Q
(

ū(1)
T + ū(2)

T

)
= Qq′

T. (8.13)

Therefore, the last term in (8.7) remains invariant:

− ∇+· q′,+
T = −Q∇· Qq′

T = −∇· q′
T. (8.14)

This completes the proof of objectivity of the time-dependent formulation (6.8). Note that
neither q nor q′′ transforms objectively. As a particular implication, the classical time-
independent formulation (5.1) does not satisfy objectivity requirements because, by construction,
the lubrication surface is assumed to be stationary or deform at most infinitesimally, which
precludes large rotations as well—see also §10. In this sense, the difference between the two
formulations (5.1) and (6.8) is reminiscent of the difference between small and large strain
elasticity formulations.

9. Construction of the lubrication surface
So far, an explicit description of the lubrication surface L has not been necessary. Clearly,
however, the construction of L cannot be arbitrary because it will significantly influence the
solution of the lubrication problem. In fact, even in a time-independent setting with rigid physical
surfaces, the choice of L may be non-trivial. Various scenarios with the additional simplification
of stationary surfaces (v(I) = 0) have been reviewed in [26,27], and the importance of the choice
of L has been pointed out, with certain constructions leading to a significant overestimation of
experimental measurements or numerical results based on Stokes flow. Presently, no attempt is
made to examine the effects of various possible choices or improve the predictive capability of the
Reynolds equation beyond its intended domain of applicability. Instead, a particular choice will
be made that will help to highlight the importance of finite deformations in §10.

Based on the general expression (3.1), the lubrication surface L is constructed so as to ensure
that the geometry of L is representative of the geometries of P (I) at all times. A simple construction
of L that attains this goal is to restrict L to lie intermediate to P (I) and additionally ensure that
the ratio

λ = h(1)

h
∈ [0, 1] (9.1)

is constant on L. For instance, if (3.2) is invoked as a particular definition of h(I), then the geometry
of L is described via

y = (1 − λ)x̄(1) + λx̄(2). (9.2)

Consequently, the local slope and curvature of L are directly acquired from P (I) and cannot be
arbitrary. This guarantees that the formulation of the lubrication problem on L will respect the
series of assumptions underlying the derivation of the Reynolds equation, provided that the
formulation of the problem on either of the physical surfaces satisfies them.

When λ = 1
2 , the geometry of L is reminiscent of a shell geometry [18], with L representing the

mid-plane. When λ = 0 or 1, L coincides with one of the physical surfaces. For varying λ, therefore,
L will span the interface between P (I), as proposed in [9]. Moreover, with this construction, L
has a non-zero normal velocity wN only if P (I) have relative normal velocities. In this sense, L
is completely locked on to the kinematics of P (I) in the normal direction. Note, however, that
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Figure 3. (a,b) Expanding interfaces with pure normal velocities. (Online version in colour.)
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Figure 4. (a,b) Approximation of the expanding circle with linear finite elements. (Online version in colour.)

the tangential kinematics of L is still independent, because wT is only weakly related to the
kinematics of P (I), to ensure that L continuously encompasses the potential lubrication domain.

The explicit construction of L for values of λ between 0 and 1 through the calculation of its
points y according to the constraint (9.1) may not be straightforward. This is observed in relation
(9.2) based on an inverse–orthogonal projection, because the calculation of the right-hand side
implicitly depends on the geometry of L. A similar situation holds for the orthogonal projection
method of figure 2. In this sense, the slave–master projection is a facilitating approach [9].
Alternatively, choosing L to coincide with one of the physical surfaces entirely circumvents
the need to construct a third surface. The optimal specification of L depends on the particular
problem and will not be elaborated upon further.

10. Illustrative examples
Here, a series of analytical examples will be discussed in order to illustrate the effect of finite
deformations, the choice of the lubrication surface and the influence of numerical discretization.
For compactness, the notation ¯(•) for the evaluation of a quantity at the point of projection is
dropped. It is recalled from the discussion in §7 that q′′

T = qT for the examples in figures 3 and 4.
Figure 3 depicts two simple settings that highlight the importance of curvature at finite

deformations. Here, the physical surfaces expand from their initial states at time to and the
lubrication surface with radial position r follows them, because it is constrained to lie in-between
the two by construction. In both cases, the film thickness is assumed to be constant along the
interface, the physical surfaces are assigned normal velocities only, and the curvature is a constant
κ = 1/r. Owing to the simple geometry of the surfaces, the film thickness condenses to the same
expression for alternative definitions and can be expressed as h = r(1) − r(2) in terms of the radial
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positions r(I) of the two surfaces. Likewise, its rate of change can be expressed in terms of the
normal velocities of the physical surfaces: dh/dt = v

(1)
N − v

(2)
N .

In the case of the expanding arc (figure 3a), the film thickness h(t) is constrained to remain
constant in time. Consequently, fluid will be sucked into the interface at the boundaries, leading
to a non-zero boundary flux f ′ = f ′′ and hence to non-zero flux vectors q′

T = q′′
T that will generate

a pressure distribution. Here, the film thickness satisfies a simplified version of (6.9)1 or (6.10)1,

hwN

r
= ∇· h3

12μ
∇p. (10.1)

Prescribing p = po at the two ends θ = ±θo, one obtains the quadratic distribution

p(θ ) = po + 6μ

h2 rwN(θ2 − θ2
o ). (10.2)

Clearly, unless the curvature term is present, one cannot account for the continuous influx of
fluid through the boundaries that will lead to a significant change in the volume of the interface
at large deformations and subsequently to a pressure generation. Because h is enforced to remain
constant, v

(1)
N = v

(2)
N = wN is required. Hence, the influence of the choice of L only reflects through

a linear dependence on the ratio λ from (9.1), because r = r(2) + (1 − λ)h in (10.2).
In the case of the expanding circle (figure 3b), where q′

T = q′′
T = 0, the balance equation

simplifies to
dh
dt

+ hwN

r
= 0 (10.3)

and hence the film thickness must continuously decrease to preserve the volume. Indeed, because
wN = dr/dt, this expression is equivalent to d(hr)/dt = 0. As a further specialized scenario,
suppose both physical surfaces are initially stationary and P (2) is subsequently mobilized with
a velocity v

(2)
N . For the sake of simplicity, L can be chosen to coincide with this surface so that

wN = v
(2)
N , i.e. λ = 1 in (9.1). Defining

τ = h
r(2)

� 1 (10.4)

the balance equation (10.3) then delivers

v
(1)
N = (1 − τ )v(2)

N < v
(2)
N . (10.5)

This constraint will also automatically initiate the motion of P (1). For an arbitrary choice of λ,
observing wN = (1 − λ)v(1)

N + λv
(2)
N , one obtains

v
(1)
N =

(
1 + τ (1 − 2λ)
1 + 2τ (1 − λ)

)
v

(2)
N . (10.6)

In the other extreme case of λ = 0, from (10.6) one obtains v
(1)
N = (1 + τ )/(1 + 2τ )v(2)

N . The

estimation of v
(1)
N based on this expression differs from (10.5) already by less than 2% for τ = 0.1.

Hence, the observed influence of the choice of L in this case is a finite film thickness effect and it
will vanish if the thin-film assumption τ � 1 is strictly invoked, which can easily be verified by
linearizing the expression for λ = 0 with respect to τ to obtain (10.5).

The influence of the tangential motion of L at finite deformations can be examined in the
context of a finite-element approximation of the expanding circle based on the discretization of
the surfaces {P (I),L} with linear elements (figure 4). Owing to the discretization, the surfaces will
pick velocities {ṽ(I), w̃} which differ from {v(I), w} of the preceding analysis and the film thickness
between the elements h̃ = h cos φ will also differ from h. By symmetry, it is sufficient to consider
a segment of length 
 = r sin φ that corresponds to half of an element of L, which has a constant
pressure over its length (figure 4a). The segment lengths for the physical surface elements will be
denoted by 
(I) = r(I) sin φ. The pure radial expansion of the circle is prescribed on the nodes of the
surface elements through normal velocities {v(I)

N , wN}. This translates into a velocity field w̃ on the
segment with a constant normal component w̃N = wN cos φ, which does not have an effect owing
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to zero curvature, and a tangential part w̃T with magnitude w̃T = wN sin φ on the node. Similarly,
ṽ

(I)
N = v

(I)
N cos φ and ṽ

(I)
T = v

(I)
N sin φ. Note that, in general, neither the relative boundary flux f ′ nor

the total one f ′′ vanishes on the edge of an element in this case. Now, invoking (6.10)1, one obtains
the balance statement

dh̃
dt

= − h̃
2
∇·
(

ṽ(1)
T + ṽ(2)

T

)
, (10.7)

where dh̃/dt = ṽ
(1)
N − ṽ

(2)
N again holds and, in view of the linear variation of ṽ

(I)
T on P (I), ∇· v(I)

T =
ṽ

(I)
T /
(I). Again, as a specialized scenario, suppose that the nodes on P (2) are mobilized with a

velocity v
(2)
N . The balance statement then delivers normal velocities for the nodes on P (1)

v
(1)
N =

(
1 − h/2r(2)

1 + h/2r(1)

)
v

(2)
N =

(
(2 − τ )(1 + τ )

(2 + 3τ )

)
v

(2)
N < v

(2)
N , (10.8)

where the definition (10.4) has been employed. This result is independent of the choice of L and
also independent from the number of elements, i.e. from φ. The estimations of v

(1)
N based on (10.8)

and (10.5) differ by less than 10% for τ = 0.3 and already by less than 1% for τ = 0.1. Hence, the
observed difference is again a finite film thickness effect. Indeed, the linearization of (10.8) with
respect to τ delivers (10.5). Overall, this example also demonstrates that the improper resolution
of curvature in standard finite-element discretizations will be accounted for by the initiation of
tangential motion.

A simpler analysis for demonstrating the influence of surface expansion and the related
tangential motion at finite deformations may be carried out by considering the modified set-up in
figure 4b where parallel segments of equal length 
(I) = 
 elongate with a pure tangential velocity
of magnitude v

(I)
T = wT at the top and zero at the bottom. Additionally, invoking zero relative flux

boundary conditions f ′ = 0, one concludes that the pressure must remain constant at the interface.
Consequently, q′

T vanishes in this case, so that it is convenient to employ (6.9)1, which leads to

dh
dt

+ h∇· wT = 0. (10.9)

Observing that ∇· wT = (1/
)(d
/dt), this result is equivalent to d(h
)/dt = 0, which is the
statement of volume conservation. This constraint will force the physical surfaces to approach
each other in the normal direction. Note that if L expanded as above but the physical surfaces
did not have tangential velocities and zero total flux boundary conditions f ′′ = 0 were applied
then the pressure should trivially remain constant. In this case, q′′

T would vanish, so that it is more
convenient to invoke (6.10)1, which would directly imply dh/dt = 0 as required, irrespective of
the tangential motion of L.

In all of these examples, rigid body translations or rotations of the interfaces as a whole should
not lead to non-physical outcomes. This is guaranteed by the objectivity of the formulation.
As a specific scenario, consider the circular interface geometry of figure 3b, further simplified by
omitting expansion. Subsequently, the circle as a whole (P (I) and L) is subjected to a rigid body
rotation with a prescribed angular velocity Ω , which induces a physical tangential flux qT owing

to the resulting physical tangential velocities v(I)
T with magnitude Ωr(I). Consequently, the time-

independent formulation (5.1) would make the incorrect prediction of a time-varying gap. On the
other hand, because the projection coordinates are not altered by rotation, the relative tangential
flux q′

T vanishes and the time-dependent formulation (6.8) correctly predicts the trivial solution
of a stationary gap, the second contribution vanishing automatically in view of (8.11).

11. Conclusion
Elastohydrodynamic lubrication at dynamically evolving soft interfaces requires the ability
to formulate and solve the Reynolds equation with respect to a time-dependent curvilinear
coordinate system. Such a formulation which satisfies objectivity requirements has been
presented and discussed in this work. Several equivalent forms of the Reynolds equation with
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respect to a time-dependent lubrication surface have been derived and various finite-deformation
effects have been illustrated through analytical examples. The numerical implementation
of this time-dependent formulation within a computational tribology framework that can
simultaneously address contact and lubrication, which has been carried out in a time-independent
setting for both hard [4,21] and soft [6,9] interfaces, constitutes a subject of future interest.

Authors’ contributions. The authors have contributed equally.
Competing interests. The authors have no competing interests.
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