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Abstract— Energy efficient mobility management is an impor-
tant problem in modern wireless networks with heteroge-
neous cell sizes and increased nodes densities. We show
that optimization-based mobility protocols cannot achieve long-
term optimal energy consumption, particularly for ultra-dense
networks (UDNs). To address the complex dynamics of UDN,
we propose a non-stochastic online-learning approach, which
does not make any assumption on the statistical behavior of
the small base station (SBS) activities. In addition, we introduce
handover cost to the overall energy consumption, which forces
the resulting solution to explicitly minimize frequent handovers.
The proposed batched randomization with exponential weight-
ing (BREW) algorithm relies on batching to explore in bulk, and
hence reduces unnecessary handovers. We prove that the regret
of BREW is sublinear in time, thus guaranteeing its convergence
to the optimal SBS selection. We further study the robustness of
the BREW algorithm to delayed or missing feedback. Moreover,
we study the setting where SBSs can be dynamically turned
ON and OFF. We prove that sublinear regret is impossible with
respect to arbitrary SBS ON/OFF, and then develop a novel
learning strategy, called ranking expert (RE), that simultaneously
takes into account the handover cost and the availability of SBS.
To address the high complexity of RE, we propose a contextual
ranking expert (CRE) algorithm that only assigns experts in
a given context. Rigorous regret bounds are proved for both
RE and CRE with respect to the best expert. Simulations show
that not only do the proposed mobility algorithms greatly reduce
the system energy consumption, but they are also robust to
various dynamics which are common in practical ultra-dense
wireless networks.

Index Terms— Energy efficient mobility management, ultra-
dense networks (UDN), frequent handover (FHO), non-stochastic
learning.

I. INTRODUCTION

THE ultra-dense deployment of small base stations
(SBS) [1] introduces new challenges to the wireless net-

work design. Among these challenges, mobility management
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has become one of the key bottlenecks to the overall
system performance. Traditionally, mobility management was
designed for large cell sizes and infrequent handovers, which
works well with the RF-planned macro cellular networks. The
industry protocol is simple to implement and offers reliable
handover performance [2]. However, introducing SBSs into the
network drastically complicates the problem due to the irreg-
ular cell sizes, unplanned deployment, and unbalanced load
distributions [3]. Furthermore, ultra-dense deployment makes
the problem even harder, as user equipments (UE) in ultra-
dense networks (UDN) can have many possible serving cells,
and mobile UEs may trigger very frequent handovers even
without much physical movement. Simply applying existing
macro solutions leads to a poor SBS mobility performance.
In particular, total energy consumption can be significant when
the mobility management mechanism is not well designed [4].

To address these challenges, research on mobility man-
agement has recently attracted a lot of attention from both
academia and industry [3]. The research has mainly been based
on optimization theory, i.e., given the various UE and BS
information, the design aims at maximizing certain system
utility by finding the best UE-BS pairing. The problem is
generally non-convex and optimal or suboptimal solutions
have been proposed. In [5], a utility maximization problem
is formulated for the optimal user association which accounts
for both user’s RF conditions and the load situation at the BS.
For energy efficient user association, [6] aims at maximizing
the ratio between the total data rate of all users and the total
energy consumption for downlink heterogeneous networks.
Althunibat et al. [7] propose a handover policy in which low
energy efficiency from the serving BS triggers a handover, and
the design objective is to maximize the achievable energy effi-
ciency under proportionally fair access. Another optimization
criterion of minimizing the total power consumption, while
satisfying the user’s traffic demand for UDN is considered
in [8].

These existing solutions have been proved effective
for less-densified heterogeneous networks, but they may
perform poorly when the network density becomes high.
Examples include the so-called frequent handover (FHO),
Ping-Pong (PP), and other handover failures (HOF) problems,
which commonly occur when the UE is surrounded by many
candidate BSs [9]. In this scenario, a UE may select its
serving SBS based on some optimization criterion, e.g., best
biased signal strength as in 3GPP, or other system metric
as in [5]–[8]. However, system dynamics such as very small
movement of the UE or its surrounding objects can quickly
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render the solution sub-optimal, triggering user handover
procedure in a frequent manner. Probably more important
than the loss of throughput, the FHO and PP problems
significantly increase the system energy consumption, as
much energy is wasted on unnecessary handovers.

These new problems have motivated us to adopt an
online learning approach, rather than an optimization one,
to mobility management. The rationale is that the goal
of mobility should not be to maximize the immediate
performance at the time of handover, as most of the existing
handover protocols do. Rather, mobility should build a UE-BS
association that maximizes the long-term performance. In
fact, one can argue that the optimization approach with
immediate performance maximization inevitably results in
some of the UDN mobility problems such as FHO and PP.
This is because the optimization-based solutions depend on
the system information, and once the system configuration or
the context information evolves, either the previously optimal
solution no longer offers optimal performance,1 or a new
optimization needs to run which can lead to increased energy
consumption when the optimality criterion is frequently
broken. Furthermore, optimization-based solutions rely on
the accurate knowledge of various system information, which
may not be available a priori but must be learned over time.

The key challenge for efficient mobility management is the
unavailability of accurate information of the candidate SBSs in
an uncertain environment. Had the UE known a priori which
SBS offers the best long-term performance, it would have
chosen this SBS from the beginning and stuck to it throughout,
thus avoiding the frequent handovers which lead to energy
inefficiency while achieving optimal energy consumption for
service. Without this omniscient knowledge, however, the UE
has to balance immediate gains (choosing the current best BS)
and long-term performance (evaluating other candidate BSs).
Multi-armed bandit (MAB) can be applied to address such
exploration and exploitation tradeoff that arises in the mobil-
ity learning problem, and there are a few works applying
the stochastic bandit algorithms [10], [11] to address this
challenge. Mobility management in a heterogeneous network
with high-velocity users is considered in [10], where the
solution uses stochastic MAB theory to learn the optimal
cell range expansion parameter. In [11], the authors propose
a stochastic MAB-based interference management algorithm,
which improves the handover performance by reducing the
effective interference.

There are three major issues in applying a stochastic
bandit approach to the considered mobility management
problem. Firstly, one must be able to assume that there exists
a well-behaved stochastic process that guides the generation
of the reward sequence for each SBS. In practice, however,
it is difficult to unravel such statistical model for the reward
distributions at SBS. Practical wireless networks with a
moderate number of nodes or users are already complex
enough that simple stochastic models, as often used in

1The industrial intuition is that good performance at the time of handover
should carry over for the near future until the next handover is triggered.
However, this is no longer valid with UDN, in which RF and load conditions
can change dynamically and FHO/PP needs to be avoided.

stochastic bandit algorithms, cannot accurately characterize
their behavior. Another problem is that the time duration
within which a particular statistical model may be adequate
is short due to high UDN system dynamics. As a result, there
may not exist enough time to learn which statistical model
to adopt, let alone utilize it to achieve optimal performance.
Furthermore, in a practical system, there may be multiple UEs
being served by one SBS, and the energy consumption depends
not only on the SBS activity but also on the activities of other
UEs, including their time-varying mobility decisions, traffic
load, service requirement, etc. As a result, an uncontrolled
stochastic process cannot adequately capture practical
interactions between the UEs and the SBSs, and probabilistic
modelling may not accurately match the real-world UDN
energy behavior. Second, the majority of the stochastic MAB
literature considers reward sequences that are generated
by either an independent and identically distributed (i.i.d.)
process [12], [13], or a Markov process [14]. These restrictions
may not accurately capture the SBS/UE behavior, resulting in
a mismatch to the real-world performance. Lastly, the existing
solutions cannot solve the FHO problem, because they do not
consider the additional loss incurred when the UE performs
handover from one SBS to another. In fact, most of the
stochastic bandit solutions incur fairly frequent “exploration”
operations, which directly lead to the FHO problem.

Due to the aforementioned challenges that cannot be easily
addressed by a stochastic approach, we opt out from using
the stochastic MAB formulation. In this work, we solve the
UDN mobility problem with the objective of minimizing
long-term energy consumption, by using a non-stochastic
model. Specifically, we do not make any assumption on the
statistical behavior of the SBS activities. Instead, the energy
consumption of any SBS is allowed to vary arbitrarily. This is a
fundamental deviation from the previous stochastic solutions.
A comparison of this work to the existing literature is provided
in Table I. Note that the non-stochastic MAB problem is
significantly harder than the stochastic counterpart due to the
adversarial nature of the loss sequence generation. We develop
a new set of algorithms for loss sequences with switching
penalties, delayed or missing feedback, and dynamic on/off
behavior, and proved their effectiveness with both rigorous
regret analysis and comprehensive numerical simulations.

The main contributions of this paper are summarized below.
• We propose a non-stochastic energy consumption frame-

work for mobility management. To the best of the
authors’ knowledge, this is the first work that applies the
non-stochastic bandit theory to address mobility manage-
ment in wireless networks.

• We explicitly add the handover cost to the utility function
to model the additional energy consumptions due to han-
dovers, and thus force the optimal solution to minimize
frequent handovers.

• We present a Batched Randomization with Exponential
Weighting (BREW) algorithm that addresses the fre-
quent handover problem and achieves low system energy
consumption. The performance of BREW is rigorously
analyzed and a finite-time upper bound for performance
loss due to learning is proved. We further study the
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TABLE I

COMPARISON OF OUR WORK WITH EXISTING SOLUTIONS

effect of delayed or missing feedback and analyze the
performance impact.

• We analyze the dynamic SBS on/off model and prove that
sublinear regret is impossible for arbitrary SBS on/off.
To solve this challenging problem, we create a novel
strategy set, called ranking expert, that is used in conjunc-
tion with a BREW-type solution with respect to expert
advice. The novelty of the expert construction is that it
simultaneously takes into account both the handover cost
and the availability of SBS. The regret upper bound with
respect to the best expert advice is proved.

The rest of the paper is organized as follows. The system
model is presented in Section II. Section III discusses the
non-stochastic learning approach for mobility management,
including the BREW algorithm in Section III-B, regret analysis
in III-C, robustness in Section III-D, and performance analysis
of the industry solutions in Section III-E. Dynamic SBS pres-
ence is studied in Section IV. Simulation results are presented
in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Model

An ultra-dense cellular network with N small base sta-
tions (SBS) and M user equipments (UE) is considered in
this work. We denote the SBS set as N SBS = {1, · · · , N}.
We are mostly concerned with stationary or slow moving UEs,
which represents a typical indoor scenario where about 80%
of the total network traffic occurs [15]. A representative UE
in UDN may have multiple SBSs as the potential serving
cell, but needs to choose only one serving SBS. In other
words, advanced technologies that allow for multiple serving
cells are not considered. One exemplary system is illustrated
in Fig. 1, where UE 1 may discover up to 6 candidate SBSs
in its neighborhood, possibly with very similar signal strength
or load conditions. The mobility management system makes
decisions on which UE is idly camped on (idle mode mobility)
or actively served by (connected mode mobility) which SBS
at any given time.

The mobility decision is traditionally made at the SBS
(e.g., X2 handover in LTE) or Evolved Packet Core
(e.g., S1 handover at the Mobility Management Entity
in LTE). Recently, there has been an emerging trend of
designing user-centric mobility management, particularly
for the future 5G standard [16]. In this work, we consider
user-centric mobility management and let the UE make
mobility decisions. We assume that mobility management is

Fig. 1. An illustration of mobility management in UDN.

Fig. 2. The mobility management operation for UE i in time slot t .

operated in a synchronous time-slotted fashion. It is worth
noting that we do not make any assumption on whether the
candidate SBSs are operating in the same channel or different
channels, as our work applies to both of these deployments.

The sequence of operations within each slot can be illus-
trated in Fig 2. Specifically, at the beginning of a slot, the
UE chooses its serving SBS and starts a downlink data
transmission with the paired SBS. Upon the completion of
the time slot, the UE can observe the total energy consumed
over this slot, and the operation repeats in the next slot.

B. Non-Stochastic Energy Consumption Model

We study the mobility problem with minimizing long-term
energy consumption as the system design objective, and adopt
a non-stochastic modelling of the energy consumption of
each SBS. Specifically, SBS n, 1 ≤ n ≤ N incurs a total
energy consumption Et (i, n) if it serves UE i at time slot t ,
1 ≤ t ≤ T . It is assumed that Et (i, n) ∈ [Emin, Emax].
In this work, we make no statistical assumptions about the
nature of the process that generates Et (i, n). In fact, we allow
{Et (i, n)} to be any arbitrary sequence for any n and any i .
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This is a fundamental difference to the stochastic MAB based
mobility solutions [10], [11]. Note that Et (i, n) may include
additional energy consumptions if the UE decides to switch
from one SBS to another. The set of energy consumptions
{Et (i, n), n = 1, · · · , N; t = 1, · · · , T } is unknown to
UE i . We are interested in finding a SBS selection sequence
{ai,t , t = 1, · · · , T } for UE i that minimizes the total energy
consumption over T slots:

∑T
t=1 Et (i, ai,t ).

III. BREW: A NON-STOCHASTIC MOBILITY

MANAGEMENT ALGORITHM

A. Problem Formulation With Handover Cost

We take a representative UE and drop the UE index i from
the notation. In the non-stochastic multi-armed bandit model,
each arm n corresponds to a SBS for which there exists an
arbitrary sequence of energy consumptions up to time T if
the UE is served by this SBS. Let at denote the SBS selected
by the UE at time t . It is assumed that after time slot t , the
UE only knows the energy consumptions E1(a1), · · · , Et (at )
of the previously selected SBS a1, · · · , at . In other words,
the UE does not gain any knowledge about the SBSs which
it does not choose. Thus, the UE’s mobility algorithm can
be stated as selecting a sequence a1, · · · , aT where at is a
mapping from the previous actions2 and the corresponding
observed energy consumptions from time 1 to t − 1 to the
selection of a SBS at t . Note that the knowledge of past
SBS activities can be practically enabled by leveraging the
“UE History Information” element in the 3GPP LTE
specs [17].

At each time slot t = 1, 2, · · · , T , the UE chooses SBS at

from N SBS, and then observes an energy consumption Et (at )
for data transmission, which is sent to the UE as feedback from
the SBS. For an arbitrary sequence of energy consumptions
{Et (at )} and for any T > 0, we denote

Ea,T ,1
.=

T∑

t=1

Et (at ) (1)

as the total energy consumption without considering any han-
dover cost, at time T of policy a. Note that Ea,T ,1 captures the
total energy consumption up to T , corresponding to the service
the UE receives from its (possibly varying) serving SBS.
Clearly, Ea,T ,1 depends on the arbitrary energy consumption
sequences at each SBS as well as the UE actions. We refer to
Ea,T ,1 as the total service energy consumption.

In practice, switching from one SBS to another incurs
additional cost, and frequent switching incurs large energy
consumption that is not captured by the service energy con-
sumption Ea,T ,1. To address this issue, we explicitly add
additional energy consumption whenever a handover occurs,
and thus force the optimal solution to minimize frequent
handovers. For simplicity, we assume that a homogeneous
energy consumption Es ≥ 0 is incurred whenever a UE is
handed over from one SBS to another. This cost includes
all energy consumptions that are associated with handovers,
such as sending additional overhead signals and forwarding

2An SBS selection is also referred to as an action.

UE packets. The total handover energy consumption can be
computed as

Ea,T ,2 = Es

N∑

n=1

T∑

t=2

1{at=n,at−1 �=n} (2)

where 1A is the indicator function for event A. As opposed
to the service energy consumption, the handover energy con-
sumption only depends on the UE action a.

Finally, the total energy consumption over T slots with
handover cost can be written as

Ea,T = Ea,T ,1 + Ea,T ,2, (3)

and we are interested in finding a mobility management policy
that minimizes E[Ea,T ]. It is worth noting that by including
the handover cost (2) in the total energy consumption (3),
a good handover algorithm not only has to balance the
tradeoff between exploitation and exploration, but also needs
to minimize the number of occurrences that the UE changes
SBS associations. Hence, the FHO problem is implicitly
solved when the UE total energy consumption is minimized.

B. The BREW Algorithm

To simplify the analysis, we assume without loss of gener-
ality that Emin = 0, and both Emax and Es are normalized
as Emax + Es = 1. Thus, if we re-write the total energy
consumption of selecting SBS a at time slot t as Ẽt (a) :=
Et (a) + Es1{at �=at−1,t>1}, we have Ẽa(t) ∈ [0, 1]. We also
assume that the energy consumption for SBS a is arbitrary
but oblivious. In practice, this assumption is valid when the
service energy consumption Et (a) of UE selecting SBS a
at time t only depends on the current state of SBS a, such
as its user load and traffic load, minimum transmit power to
satisfy UE’s QoS, etc. In other words, we do not consider the
case that the SBS intelligently manipulates its service energy
consumption to counter the UE mobility policy it learns from
the past.

The proposed Batched Randomization with Exponential
Weighting (BREW) solution is given in Algorithm 1. As the
name suggests, it is a batched extension of the exponential
weighting algorithm such as the celebrated EXP3 [18]. Note
that in Algorithm 1, the EXP3 component is an adaptation of
the algorithm originally proposed in [18], which uses a slightly
different weighing scheme and works with loss functions
instead of reward functions [19] to get rid of the uniform
mixture term in the probabilistic decision rule of the EXP3
in [18]. We highlight several key design considerations. Firstly,
because the energy consumption of each SBS can be generated
arbitrarily, it is easy to show that for any deterministic mobility
solution, there exist sequences of energy consumption that
make the solution highly sub-optimal. In other words, no fixed
algorithm can guarantee a small performance degradation
against all possible energy consumption sequences. Hence,
for the non-stochastic mobility problem, we introduce
randomization in the proposed algorithm to avoid being stuck
in a worst-case energy consumption. This is done by selecting
SBS based on a probability distribution over N SBSs.
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Algorithm 1 The BREW Mobility Management Algorithm
Input : A non-increasing sequence {γl}l∈N, τ ∈ N+
Initialize: pa(l) = 1/N and L̂0(a) = 0 for all a ∈ NSBS
while l ≥ 1 do

Select SBS a(l) randomly according to the
probabilities {pa(l)}, a ∈ NSBS
Keep UE on SBS a(l) for the next τ time slots:
(l − 1)τ + 1, . . . , lτ
Observe total energy consumption
{Ẽt (a(l))}lτ

t=(l−1)τ+1, possibly including a one-time
handover energy consumption Es at (l − 1)τ + 1
Calculate the average energy consumption incurred in
batch l:

Ēt (a(l)) = 1

τ

lτ∑

t=(l−1)τ+1

Ẽt (at ) (4)

Calculate the estimated energy consumption of each
a ∈ NSBS in the batch

Êl(a) = Ēt (a(l))

pa(l)
1{a=a(l)} (5)

Update the cumulative estimated energy consumption
of each a ∈ NSBS

L̂l(a) = L̂l−1(a) + Êl(a) (6)

For a ∈ NSBS set

pa(l + 1) = exp(−γl L̂l(a))
∑

a′∈NSBS
exp(−γl L̂l(a′))

(7)

l = l + 1
end

Subsequently, a natural question is what type of randomiza-
tion one should introduce to achieve good energy consumption
performance. We note that our mobility management prob-
lem can be viewed as a special case of optimal sequential
decision for individual sequences [20], for which exponential
weighting is a fundamental tool. The proposed algorithm uses
exponential weighting to construct and update the probability
for choosing SBS, as shown in (7).

Finally, in order to address the FHO problem and avoid
incurring large accumulated handover energy consumption,
we need to “explore in bulk”. This is done by grouping
time slots into batches and not switching within each batch.
What separates the operations within a batch from outside is
that the UE does not observe energy consumption on a per-
slot basis and does not need to update the internal state. In
general, BREW works as if the UE is unaware that a batch has
happened as opposed to one time slot. At the end of the batch,
though, the UE can receive a one-time energy consumption
feedback, which is the average energy during the batch as
shown in equation (4). The choice of the batch length plays
a critical role in the overall performance – if it is too large,
one may get the benefit of having little loss from the handover
energy consumption, but also may stuck at a sub-optimal SBS

for a long time, and vice versa. The BREW algorithm uses a
parameter τ that determines the batch length.

C. Finite-Time Performance Analysis

To evaluate the performance of the proposed BREW mobil-
ity solution, we adopt a regret formulation that is commonly
used in multi-armed bandit theory [21]. Specifically, we
compare the energy consumption of the BREW algorithm
with a “genie-aided” solution where UE chooses the SBS
which has the minimum total energy consumption over T
slots, i.e., chooses the best SBS with the minimum Ea,T ,1 up
to time T and incurs no handover cost Ea,T ,2 = 0. Our goal
is to characterize the energy consumption regret for any finite
time T . The smaller this regret is, the better the solution.

Formally, we define

Ebest
.= min

n∈NSBS

T∑

t=1

Et (n) (8)

as the energy consumption of the single best SBS at time T .
Then, the performance of any UE mobility solution a can
be measured against the genie-aided optimal policy (8) in
expectation. We formally define the regret of a UE mobility
solution a as:

Ra(T ) :=
T∑

t=1

E
[
Et (at) + Es1{at �=at−1,t>1}

] − Ebest, (9)

which is the difference between the total energy consumption
of the learning algorithm and the total energy consumption of
the best fixed action by time T . Here at denotes the action
chosen by the UE at time slot t and the expectation is taken
over the randomization of the UE’s algorithm.

Note that Ra(T ) is a non-decreasing function of T . For
any mobility algorithm to be able to learn effectively, Ra(T )
has to grow sublinearly with T . In this way, one has
limT →∞ Ra(T )/T = 0, indicating that asymptotically the
algorithm has no performance loss against the genie-aided
solution. For the BREW mobility solution, we have the
following theorem that upper bounds its regret for any finite
time T .

Theorem 1: For a given time horizon T , when BREW
(Algorithm 1) runs with γl = √

(2 log N)/(l N) and batch size
τ = 	BN T 1/3
, where BN = (4.5N log N)−1/3, its regret is
bounded by

Ra(T ) ≤ 2B−1
N T 2/3 +

(
BN + B−2

N

)
T 1/3 + 1. (10)

Proof: See Appendix A. �
Theorem 1 provides a sublinear regret bound for BREW

that guarantees the long-term optimal performance. Moreover,
the bound in Theorem 1 applies to any finite time T , and can
be used to characterize how fast the algorithm converges to
the optimal action. Specifically, the total energy consumption
of the UE that uses the BREW algorithm will approach, on
average, the total energy consumption of the best fixed action
a ∈ NSBS at a rate no slower than O(T −1/3). Although
the BREW algorithm works for any non-increasing sequence
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of γl , the particular choice of γl = √
(2 log N)/(l N) gives a

guaranteed upper bound of the regret in (10).
Another important remark is that the choice of τ given

in Theorem 1 is optimal in terms of the time order of the
regret, which is O(T 2/3). It is shown in [22] that for any
learning algorithm, there exists a loss sequence under which
that learning algorithm suffers �̃(T 2/3) regret. Hence, our
choice of τ in Theorem 1 results in a regret upper bound that
matches the lower bound of O(T 2/3), proving its optimality
in terms of the time order. A smaller value for τ will make
BREW incur a higher cost due to over-switching, while a
larger value for τ will make the algorithm incur a higher cost
due to staying too long on a suboptimal action.

D. Robustness Analysis

The development of BREW for energy-efficient mobility
management captures the basic characteristics of the user
mobility model in UDN, particularly with the inclusion of
handover cost as well as the non-stochastic nature of the
approach. However, in a real-world deployment, robustness
issues often arise, such as delayed or missing feedback of
the energy consumption. Whether the BREW algorithm can
handle these problems and its impact on the total energy
consumption is essential for its practical deployment.

1) Delayed Feedback: Delayed feedback constantly hap-
pens in practice. For example, in most cellular standards,
sending the feedback to UE may be delayed because it has
to wait for the frames that are dedicated to sending control
and signalling packets.

The next theorem provides a regret bound when the UE
receives the information about the energy consumption with a
delay of d time slots.

Theorem 2: Consider the UE-SBS mobility operation
in Fig. 2 where a feedback at time slot t is d-delayed energy
consumption Et−d+1(i, n), d ≥ 1. For a given time horizon T ,
when BREW (Algorithm 1) runs with γl = √

(2 log N)/(l N)
and batch size τ = 	BN T 1/3
, where BN = (4.5N log N)−1/3,
its regret is bounded by

Ra(T ) ≤ (d + 1)B−1
N T 2/3 +

(
BN + B−2

N

)
T 1/3 + 1. (11)

Proof: See Appendix B. �
The importance of Theorem 2 is that it preserves the order-

optimality of the BREW algorithm in the presence of delayed
feedback. In fact, comparing (11) to (10), we can see that only
the coefficient before T 2/3 is increased due to the delayed
feedback. Moreover, Theorem 2 holds when d < BN T 1/3,
implying that as long as the delay is sublinear in time with
a small enough time exponent, the regret can be guaranteed
to be sublinear in time. Finally, we note that in practice, the
delay of feedback may be time-varying, and Theorem 2 can be
applied to varying delays where d is chosen as the maximum
feedback delay.

2) Missing Feedback: Another practical issue with respect
to UE observing the energy consumption is that such feedback
from the SBS to UE may be entirely missing. This can happen
when the downlink transmission that carriers the feedback
information is not correctly received at the UE.

Algorithm 2 The Modified BREW Algorithm for Missing
Energy Consumption Feedback With Probability p

Input : A non-increasing sequence {γl}l∈N, τ ∈ N+;
probability p that feedback will be missing in
each time slot.

Initialize: pa(1) = 1/N and L̂0(a) = 0 for all a ∈ NSBS
while l ≥ 1 do

Select SBS a(l) randomly according to the
probabilities {pa(l)}, a ∈ NSBS
Keep UE on SBS a(l) for the next τ time slots:
(l − 1)τ + 1, . . . , lτ
Let O(l) be the set of time slots in
{(l − 1)τ + 1, . . . , lτ } for which the feedback is
observed
Observe total energy consumption {Ẽt (a(l))}t∈O(l),
possibly including a one-time handover energy
consumption Es at (l − 1)τ + 1
Calculate the average energy consumption incurred in
batch l:

Ēl = 1

|O(l)|
∑

t∈O(l)

Ẽt (a(l)) (12)

Calculate the estimated energy consumption of each
a ∈ NSBS in the batch

Êl(a) = Ēl

pa(l)
(τ
ζ

)
(1 − p)ζ pτ−ζ

1{a=a(l)}1{|O(l)|=ζ }(13)

Update the cumulative estimated energy consumption
of each a ∈ NSBS

L̂l(a) = L̂l−1(a) + Êl(a) (14)

For a ∈ NSBS set

pa(l + 1) = exp(−γl L̂l (a))
∑

a′∈NSBS
exp(−γl L̂l(a′))

(15)

l = l + 1
end

We take a probabilistic approach when considering the
missing feedback problem. Specifically, we assume that at
each time slot t , the energy consumption feedback may be
missing with probability p, which can be set, e.g., as the packet
loss rate for the transmission.

Algorithm 2 is the modified BREW that can handle the
missing feedback. The idea behind Algorithm 2 is to make the
estimated energy consumption Êl(a) an unbiased estimate of
the actual average energy consumption in batch l. Therefore,
we normalize this quantity by dividing it with the probability
that ζ feedbacks are observed in batch l. With this approach,
the contribution of rare events (unlikely feedback sequences)
to the cumulative estimated energy consumption is magnified.
This idea is widely used in the design of exponential weighing
algorithms and their variants [20].

Unfortunately, we are not able to prove a regret bound that
grows sublinearly in time with respect to the best fixed action.
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Intuitively, for large T there will be approximately pT time
slots where no feedback is received. Since we are dealing
with the non-stochastic bandit problem, the worst-case loss
for these slots can be linear with T even when T is large.
This is a significant difference to the stochastic case where
when T is large, the concentration property can guarantee a
sublinear loss in time.

E. Analyze the 3GPP Mobility Protocols Under
the Online Learning Framework

The proposed BREW mobility algorithm and its variations
are developed under an online learning framework. In this
section, we put the existing industry mobility mechanism
under the same framework and characterize its regret perfor-
mance through the lens of MAB.

The handover mechanism defined in 3GPP centers on the
UE measuring the signal quality from candidate SBSs. Such
measurements are generally filtered at the UE to rule out
outliers. The original 3GPP handover protocol chooses the
SBS with the highest signal quality to serve the UE, and sticks
with the choice until some performance metric (such as RSRP
or RSRQ when LTE is used [2]) drops below a threshold, at
which time the UE measures all candidate SBSs again and
hands over to the best neighbor.

The original protocol is optimization-based and has
no restrictions on how frequent handovers can happen.
Recognizing that FHO can happen when the network den-
sity is high, there have been some proposals in 3GPP to
modify the handover parameters when frequent handovers are
observed. The general principle is to first determine whether a
FHO problem has happened, typically by counting the number
of handovers within a sliding time window. If it is determined
that there are too many handovers, mobility parameters such
as hysteresis margin and time-to-trigger are modified to “slow
down” future handovers, thus avoiding FHO and making the
current serving SBS more “sticky”.

The original handover mechanism and its variation can be
viewed as a myopic rule that is both greedy (always select
the SBS that is immediately the best) and conservative (only
take actions when the selected SBS becomes bad enough).
The following proposition shows the sub-optimality of these
approaches.

Proposition 1: Under both stochastic and non-stochastic
MAB models for SBS energy consumption, the original and
enhanced 3GPP handover protocols describe above achieve
an asymptotic regret of O(T ).

Proof: See Appendix C. �
Proposition 1 proves a linear regret with respect to time T

for the 3GPP handover solutions. Two important remarks are
in place. Firstly, Proposition 1 is a strong result in the sense
that it is proved for both stochastic and non-stochastic energy
consumption, meaning that linear regret is inevitable regardless
of the adopted model. Secondly, the sub-optimality is shown
without considering the handover cost. In other words, existing
industry mechanisms cannot converge to the best SBS even
when Es = 0. A non-zero Es will further deteriorate the regret
performance. Detailed numerical comparisons will be made
in Section V.

IV. DYNAMIC SBS PRESENCE

In this section we consider energy efficient mobility
management for SBSs with dynamic presence. Notably, this
is a new problem that arises with the increase of user-deployed
SBSs. For both enterprise and residential small cell deploy-
ment, SBSs can be turned on and off by users, thus creating
problems for mobility management. In particular, such on/off
behaivor would disrupt the learning process. To capture this
uncontrolled user behavior, we consider the following generic
SBS on/off model. At each time slot t , a subset of SBSs,
chosen arbitrarily, can be turned off and hence cannot
serve the UE. As we will see, this problem is significantly
harder. There are known results in the literature of stochastic
multi-armed bandits with appearing and disappearing
arms [23], [24], but the theoretical structure of these solutions
are very different from the non-stochastic problem in this
paper. Consequently, we have to develop new results in
the non-stochastic bandit theory and design robust mobility
management solutions.

The set of SBSs available at time slot t is denoted by
Nt ⊂ NSBS. An SBS in Nt is called an active SBS, while
an SBS in NSBS − Nt := {n : n ∈ NSBS, n /∈ Nt } is called an
inactive SBS. We require that the UE only selects from the
active SBS set Nt at time slot t .

We first give an impossibility result regarding achieving the
optimal performance asymptotically. Theorem 3 shows that
in general it is impossible to obtain sublinear regret when
Nt changes in an arbitrary way.

Theorem 3: Assume that {Nt }T
t=1 is generated by an adap-

tive adversary which selects Nt based on the action chosen
by the learning algorithm at time slot t − 1, and {Et }T

t=1 is
generated by an oblivious adversary. Then, for Es ≥ Emax +
1/(N − 1), no learning algorithm can guarantee sublinear
regret in time.

Proof: See Appendix D. �
In light of the impossibility result in Theorem 3, the pursue

of good energy consumption performance in the presence of
dynamic SBS on/off is only viable when the generation of Nt

is constrained. In the following discussion, we will focus on
an i.i.d. SBS activity model, where SBS a is present at time
slot t with probability pa independently from other time slots
and other SBSs. We emphasize that the i.i.d. activity model
generally represents a case that is worse than practice, where
the SBS on/off introduced by end-users has some memory.
The correlation over time can be exploited by a learning
algorithm to achieve better mobility. We focus on the i.i.d.
activity model because it presents a more challenging SBS
dynamic, and the resulting algorithms and regret analysis can
serve as a guideline to the real-world SBS on/off performance.
The proposed algorithms for the i.i.d. model can be applied
to other SBS activity models, such as the Markov model.
Furthermore, note that both i.i.d. and Markov models are
widely used in stochastic multi-armed bandit, but in our paper
they are used for modelling the SBS on/off activities, not the
reward distribution.

In order to address the SBS dynamics, we follow the general
principle of prediction with expert advice [25]. In this setting,
we assume that there is a set of experts which recommend
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Algorithm 3 The Ranking Expert (RE) Mobility Manage-
ment Algorithm

Input: A non-increasing sequence {γt }t∈N; Ẽ = E ∪ Unif
(see Definition 2)

Initialize: qe(1) = 1/|Ẽ| and L̂0(e) = 0 for all e ∈ Ẽ,
a0 = Rand(NSBS)

while t ≥ 1 do
Observe at−1 and At

Get ranking expert advices {δe(t)}e∈Ẽ
Set

pa(t) =
∑

e∈Ẽ

qe(t)δ
e
a(t) (16)

Select at randomly according to the probabilities
pa(t), a ∈ NSBS

Observe energy consumption Ẽt (at ) ∈ [0, 1]
Set

X̂t (a) =
{

Ẽt (a)/pa(t) if a = at

0 otherwise
, for a ∈ NSBS(17)

Update the cumulative estimated energy consumption
of each ranking expert e ∈ Ẽ

L̂t (e) = L̂t−1(e) + X̂t (at )δ
e
at

(t) (18)

For a ∈ NSBS set

qe(t + 1) = exp(−γt L̂ t (e))
∑

e′∈Ẽ exp(−γt L̂ t (e′))
(19)

t = t + 1
end

the SBS for the UE to select, based on the past sequence
of selections and energy consumption feedback to the UE.
There is no assumption on the way these experts compute
their predictions, and the only information UE receives from
these experts is the advice. Then, we will bound the regret of
the UE with respect to the best of these experts.

A. Ranking Expert

The first proposed algorithm utilizes a concept called
“ranking expert” [26] and the algorithm consists of two key
elements. Firstly, we will need an efficient expert selection
procedure that chooses the action based on all expert advices.
In order to achieve low regret, a modified EXP4 procedure
from [18] is used to select the expert at each time slot.
The second component is how to construct expert advice,
where we use ranking to sort the possible actions at each
expert. The overall Ranking Expert (RE) algorithm is given
in Algorithm 3.

Let δe = (δe
1, . . . , δ

e
N ) denote the action choice vector

of expert e, where δe
a = 1 denotes the event that expert

e recommends SBS a, and δe
a = 0 denotes the event that

expert e does not recommend SBS a. It is assumed that each
expert recommends only one SBS in NSBS. Since we have
both handover cost and dynamic SBS activity, we consider
experts whose recommendation strategy at time t depends on

both at−1 and Nt . This is a critical step, because otherwise
the handover energy consumption will not be considered by
the pool of experts. We specifically focus on ranking experts
whose preference over the set of SBSs is given by a previous
action-dependent ranking.

Definition 1: An expert is called a ranking expert if for each
previous action a ∈ NSBS, expert e has a ranking over NSBS

given by σe,a. Let E denote the set of all possible ranking
experts, with size NE := |E|.

One benefit of considering ranking experts is that the
ranking can be performed on the entire set of SBS NSBS,
but the recommendation can take into account of the SBSs
that are turned off, by removing them from the ordered set.
Specifically, given Nt , expert e ∈ E recommends the action
with the highest rank in Nt , which is denoted by σe,a(Nt ).

Different from the definition of regret in (9), which is with
respect to the best fixed action, we define the regret of the UE
in this section with respect to the best fixed expert. For expert
e ∈ E, let ae

t denote the action recommended at time t , and at

denote the random variable that represents the action chosen
by the UE at time t . Since e is a ranking expert, ae

t depends
on Nt and ae

t−1. We define the regret with respect to the best
expert from a pool of experts E as

Ra(E, T ) :=
T∑

t=1

E
[
Et (at ) + Es1{at �=at−1}

]

− E

[

min
e∈E

T∑

t=1

[
Et (a

e
t ) + Es1{ae

t �=ae
t−1}

]
]

(20)

Due to a technicality, we need to introduce a uniform expert
(denoted by Unif) in order to bound the regret [18]. It is
defined as the following.

Definition 2: An expert is called a uniform expert (’Unif’)
if it recommends action a ∈ NSBS with probability 1/N,
regardless of whether a ∈ Nt .

We denote the extended pool of experts which includes all
the experts in E and the uniform expert as Ẽ. Instead of having
a deterministic SBS selection rule like the other experts, the
uniform expert selects its action at time slot t according to the
uniform distribution on NSBS independently from past action
and Nt . Hence the uniform expert can recommend actions that
are not in Nt , which is now allowed. To address this issue, we
assume that the UE randomly selects one of the actions in Nt

if Algorithm 3 recommends an action that is not in Nt .
The theorem below gives a regret bound with respect to the

best expert from the pool of experts defined above.
Theorem 4: Assume that the UE uses the RE algorithm with

the pool of ranking experts E defined in Definition 1 with

γt =
√

log(1+NE )
t N . We have

Ra(E, T ) ≤ 2N
√

T N log N . (21)
Proof: See Appendix E. �

We have the following two remarks regarding the RE
algorithm and its regret analysis for dynamic SBS on/off.
Firstly, when the SBS can be turned on and off, the definition
of the regret with respect to the best fixed SBS is no longer a
strong definition, as any fixed SBS can be off for some slots.
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This is what motivated the regret definition with respect to
the best fixed expert. Second, the ranking expert approach can
simultaneously take care of handover cost (by letting the expert
consider the previous action) and SBS on/off (by letting the
expert recommend ranked SBS that is not off).

B. Contextual Ranking Expert

Although the RE algorithm defined in Algorithm 3 achieves
sublinear regret with respect to T and the regret bound given in
Theorem 4 depends logarithmically on the number of ranking
experts, one significant drawback is that maximum number of
experts equals NE = (N !)N , which makes practical implemen-
tations computationally challenging since the algorithm needs
to keep a probability distribution over the set of experts, which
is very large even for moderate N .

To address this practical issue, we re-visit the definition of
ranking expert and reduce the number of experts by defining
ranking experts in the context of previous actions. Consider
the following contextual experts problem. Let X denote the
context space. For a sequence of contexts x1, x2, . . . , xT ,
let τx ⊂ {1, . . . , T } denote the set of time slots for which
the context is x ∈ X . For the mobility management problem,
we take the context at time t to be the last action selected
by the learning algorithm, i.e., xt = at−1.3 Based on this, the
contextual regret of the learning algorithm that works on a set
of experts E is defined as

RC(E, T ) :=
∑

b∈NSBS

E

[ ∑

t∈τb

[
Et (at ) + Es1{at �=b}

]

− min
e∈E

∑

t∈τb

[
Et (a

e
t (b)) + Es1{ae

t (b) �=b}
]]

(22)

where ae
t (b) denotes the action chosen by expert e at time t

based on context b and the set of available actions Nt , and the
expectation is taken with respect to the randomization of the
learning algorithm.

With the introduction of contextual experts, we can reduce
the number of ranking experts exponentially by using a variant
of the RE algorithm. Formally, we define the set of contextual
ranking experts, which in contrast to the set of experts given
in Definition 1, do not take into account the previous action
when ranking the actions.

Definition 3: An expert e is called a basic ranking expert if
it has a ranking over NSBS given by σe. Let E denote the set
of all possible basic ranking experts.

We are now in the position to propose a Contextual Ranking
Expert (CRE) algorithm, which is given in Algorithm 4. The
CRE algorithm uses the last action as the context and learns
the best expert independently for each context. CRE runs a
different instance of ranking experts for each context. It keeps
a different probability vector over the set of experts and actions
for each x ∈ X , and updates these probability vectors only
when the corresponding context is observed. The parameter
κ(x) counts the number of times context x has occurred up
to the current time. Instead of t , κ(x) is used to adjust the

3Note that in this definition the context is endogenously defined, i.e., it
depends on the actions selected by the learning algorithm.

Algorithm 4 The Contextual Ranking Expert (CRE)
Mobility Management Algorithm

Input: A non-increasing sequence {γt}t∈N; Ẽ = E ∪ Unif
Initialize: qe,x(1) = 1/|Ẽ|, κ(x) = 1 and L̂0,x(e) = 0

for all e ∈ Ẽ, x ∈ NSBS, a0 = Rand(NSBS)
while t ≥ 1 do

Observe xt = at−1 and At

Get ranking expert advices {δe(t)}e∈Ẽ
Set

pa(t) =
∑

e∈Ẽ

qe,xt (κ(xt ))δ
e
a(t) (23)

Select at randomly according to the probabilities
pa(t), a ∈ NSBS

Observe energy consumption Ẽt (at ) ∈ [0, 1]
Set

X̂t (a) =
{

Ẽt (a)/pa(t) if a = at

0 otherwise
, for a ∈ NSBS(24)

Update the cumulative estimated energy consumption
of each ranking expert e ∈ E for context xt

L̂κ(xt ),xt (e) = L̂κ(xt )−1,xt (e) + X̂t (at )δ
e
at

(t) (25)

For a ∈ NSBS set

qe,xt (κ(xt) + 1) = exp(−γκ(xt ) L̂κ(xt ),xt (e))
∑

e′∈E exp(−γκ(xt ) L̂κ(xt ),xt (e
′))

(26)

Set κ(xt ) = κ(xt ) + 1
t = t + 1

end

learning rate of each ranking expert that runs for different
contexts. This way, each RE algorithm is guaranteed to achieve
sublinear regret with respect to the best expert for its context.

The following theorem bounds the contextual regret of
Algorithm 4.

Theorem 5: Assume that the UE uses the CRE algorithm
with the pool of ranking experts E given in Definition 3 with

γt =
√

log(N !+1)
t N . Then we have

Ra(E, T ) ≤ 2N2
√

T log N . (27)
Proof: See Appendix F. �

V. SIMULATION RESULTS

In order to verify the proposed mobility management design,
we resort to numerical simulations. In particular, a system-
level simulator is developed in which the geometry of UE/SBS
and the UE movement are explicitly modelled. Our simulator
adopts the general urban deployment model in [27]. The
simulation setting is created to highlight the FHO problem
for stationary or slow-moving user, which is the focus of our
paper. Specifically, we assume that there is a house of size
14×14 square meters in the middle of the simulated area, and
N SBSs are symmetrically placed around the room. Note that
the symmetrical layout is made to speed up the simulations
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TABLE II

SIMULATION PARAMETERS

as well as to create a more severe FHO environment. The
distance from each SBS to the center of the house is 80 meters.
SBSs are transmitting at a fixed power of 15dBm. On average,
there are M UEs in the room, and we adopt a simple random
waypoint mobility model [28] with low speed to address
user mobility. In particular, we trace the slow movement
of one particular UE (the UE of interest), while allowing
other UEs to randomly leave or enter the network, and move
around with different serving SBSs. As a result, the UE of
interest will see dynamic energy consumption from its varying
serving SBSs. The total energy consumption is normalized.
We consider the 3GPP pathloss model that is recommended for
system simulations of small cells and heterogeneous networks.
Particularly, we consider the pathloss model suggested in [27]:

P L(d)[d B] = 15.3 + 37.6 × log10(d) + Low, d > d0. (28)

Some other system simulation parameters are summarized
in Table II.

We first study the energy consumption performance of the
proposed BREW algorithm and compare with the existing
3GPP solutions described in Section III-E. In particular,
we include both the original threshold-based handover rule
and the enhanced FHO-aware policy, labeled as 3GPP-macro
and 3GPP-FHO, respectively, in the plots. The SINR threshold
for 3GPP-macro is set such that the corresponding normalized
average energy consumption is above 10%, with no additional
offset. The enhanced FHO-aware solution adopts a freezing
period that is of the same length as the BREW batch length
for fair comparison. Furthermore, the threshold is set to be
4 handovers over the past 20 slots.

The performance comparison is reported in Figure 3 for
N = 6 and Figure 4 for N = 12, respectively, where the
latter represents an extreme UDN deployment. In particular,
the total energy consumption of each algorithm is compared
against the genie-aided solution where the UE selects the best
SBS with the minimum energy consumption from the very
beginning. The regret of each algorithm is normalized by time.
A few important observations can be made from this system
level simulation. First of all, we can see that 3GPP-FHO
outperforms 3GPP-macro in terms of energy consumption, but
both solutions do not exhibit a decaying per-slot regret, con-
firming the regret analysis in Section III-E. As a result, these
solutions cannot converge to the optimal SBS asymptotically.
The proposed BREW algorithm, however, has a diminishing
per-slot regret and will converge to the best SBS, supporting
the regret analysis in Section III-C. Second, the performance
of existing solutions degrade significantly once the handover

Fig. 3. Comparison of the per-time-slot energy consumption loss versus time
for BREW, 3GPP-macro and 3GPP-FHO. N = 6.

Fig. 4. Comparison of the per-time-slot energy consumption loss versus time
for BREW, 3GPP-macro and 3GPP-FHO. N = 12.

cost is explicitly taken into account, and such degradation
remains constant over time. The increased handover cost
also impacts the energy consumption of the proposed BREW
algorithm, but thanks to the batched nature and the built-
in exploration-exploitation tradeoff, the amount of handovers
will gradually reduce over time, mitigating the effect of the
increased handover cost. For the considered system simula-
tions, the proposed BREW solution can achieve 20% − 30%
less energy consumption (depending on the parameter setting)
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Fig. 5. Impact of delayed feedback to the regret for BREW, 3GPP-macro and 3GPP-FHO.

with a moderate time duration, and more than 60% gain
asymptotically, over the existing solutions. Finally, the effect
of batch size τ can be analyzed from the figures, which
reveals the inherent tradeoff between quick exploration (and
hence finding the optimal SBS faster) and the handover cost
associated with such exploration. As we can see, for both
N = 6 and N = 12, there exists an initial period where
a large batch size results in less energy consumption. This
is because in the initial time slots, a small batch size would
lead to more frequent handovers for exploration, which results
in both more handover costs and selecting sub-optimal SBSs
more. However, as time goes by, the speed of exploration slows
down, and we will enter a separate region where a large batch
size leads to more time spent on sub-optimal SBSs, which
increases the energy consumption.

Figure 5 studies the impact of delayed feedback on the
performance of the three algorithms. We can see that additional
delays of sending the energy consumption feedback increases
the regret for all algorithms, and larger delay leads to more
severe regret increase. However, an important observation from

Figure 5 is that the impact of delayed feedback on BREW is
mild when the batch size is moderate or the handover cost is
large. This is due to the fact that when the batch size is not
very small, the handover decision will be slightly postponed
due to the delayed feedback, and the UE of interest stays
on the same SBS while waiting for feedback. Because the
accumulated feedback comes from a batch, a slight offset
will not significantly alter the averaged feedback of the batch,
which provides robustness against information obsolete. Addi-
tionally, the larger handover cost will further penalize myopic
protocols, where the handover decisions are based on outdated
information. The simulation results show the robustness of the
BREW algorithm against delayed feedback.

Similarly, Figure 6 reports the simulation results when
each time slot, the feedback energy consumption may be
missing following an i.i.d. Bernoulli model with missing
probability Pm . The BREW algorithm used in the simulation
is the extended version as in Algorithm 2 that considers Pm .
It can be concluded that missing feedback impact all three
algorithms in terms of the regret performance, but with
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Fig. 6. Impact of missing feedback to the regret for BREW, 3GPP-macro and 3GPP-FHO.

Fig. 7. Impact of dynamic SBS on/off to the per-time-slot energy consumption versus time for CRE and 3GPP-macro.

different behavior. For the two 3GPP solutions, the regret
quickly converges and there exists an almost constant gap
asymptotically. For the extended BREW algorithm, however,

there exists a rather large gap during the initial period. This is
due to the lack of accurate information and hence missing
feedback have a bigger impact to the regret. As the algorithm
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gradually learns the loss information, the impact of missing
feedback diminishes, as shown by the very small gap between
different Pm values for large t .

Finally, we study the impact of dynamic SBS on/off to the
mobility algorithms. We assume that the N neighboring SBSs
are installed by end-users and they can be turned on and off at
the users’ discretion. To model the dynamic SBS presence, we
assume that at each time slot, all N SBSs may independently
be turned on or off following an identical Bernoulli distribution
with off-probability Poff. It is worth noting that this model
presents a much bigger challenge than models where SBS
dynamics have patterns. As has been discussed, the CRE
algorithm presented in Section IV achieves a good tradeoff
between complexity (number of experts) and performance.
We compare the average per-slot energy consumption of CRE
to 3GPP, which at each slot selects the best SBS that is
not turned off. For a fair comparison, we also assume that
the 3GPP metric takes into account the potential handover
cost Es , which is not considered in the standard 3GPP-macro
algorithm. Figure 7 presents the numerical comparison of these
two algorithms with different Poff values. Clearly, dynamic
SBS affects both algorithms, but CRE quickly outperforms
the extended 3GPP-macro algorithm and the per-slot energy
consumption decreases as time goes by. This is due to the
gradual convergence to the best expert in the expert pool.

VI. CONCLUSIONS

Emerging wireless networks have become more heteroge-
neous and the network density has increased significantly,
both of which pose significant challenges to energy efficient
mobility management. Existing solutions, mostly based on
optimizing immediate system objectives, fail to achieve long-
term minimum energy consumption in highly dynamic and
complex wireless networks. To address this problem, we have
made two novel contributions. The first is that we adopt a
non-stochastic online-learning approach to model the UDN
mobility management. The key benefit of this approach, as
its name suggests, is that we do not need any assumption on
the statistical behavior of the SBS activities. This is extremely
desirable for UDN. The other novelty is that we explicitly
add the handover cost to the utility function, which forces the
resulting solution to minimize frequent handovers.

Built upon these two key ideas, we have proposed the
BREW algorithm which relies on batching to explore in bulk,
thus reducing the handovers that are typically required for
exploration. A sublinear regret upper bound for BREW is
proved. We then study how the BREW algorithm can be
adjusted to deal with various system imperfections, including
delayed or missing feedback. Most importantly, we have
studied the impact of dynamic SBS on/off, which often arises
in user-deployed small cell networks. We first prove an impos-
sibility result with respect to any arbitrary SBS on/off. Then,
a novel strategy, called ranking expert (RE), is proposed to
simultaneously address the handover cost and the availability
of SBS. The complete RE algorithm results in a large number
of experts, which incurs significant complexity. We further
propose a contextual ranking expert (CRE) algorithm that
reduces the number of experts significantly. Regret bound

is proved for both RE and CRE with respect to the best
expert. Simulation results show a significant improvement to
the overall system energy consumption. More importantly, the
gain is robust against various system dynamics.

There are some interesting problems that have not been fully
addressed in this work, which are the subjects of potential
future work. For example, the regret upper bounds developed
in this work are mostly for a given set of algorithm parameters,
for which sublinear regret is rigorously proven. It is of
interest to study the performance bound variation and tightness
with respect to the algorithm parameters. Another important
question is how to further enhance the ranking expert solutions
in Algorithm 3 and 4, in terms of the algorithm complexity
and the corresponding regret bound.

APPENDIX A
PROOF OF THEOREM 1

We cite two known results in non-stochastic bandit theory
that will be used in the proof. These results are modified to
fit into the problem setting of Theorem 1.

Proposition 2 (Part of [19, Th. 2.1]): The standard pseudo-
regret bound for the any-time EXP3 algorithm [19], where
the parameter γt does not depend on the time horizon T ,
is given by

R(T ) ≤ √
4.5T N log N , (29)

for γt = √
(2 log N)/(t N), t ∈ N+.

Proposition 3 (Part of [29, Th. 2]): When τ > 1, the
regret R′(T ) of an algorithm with respect to the con-
stant actions when the reward sequence is generated by an
m-memory-bounded adaptive adversary is bounded by

R′(T ) ≤ τ R(
T

τ
) + T m

τ
+ τ (30)

where R(T ) denotes an upper bound on the standard pseudo-
regret of the algorithm.4

The proof of Theorem 1 then follows by recognizing that
the adversarial bandit problem with switching costs is a special
case of a m = 1 memory bounded adversary. With τ =
	BN T 1/3
, we have

R

(
T

τ

)

≤
√

T B−3
N

	BN T 1/3
 ≤ T 1/3 B−2
N , (31)

and thus

Ra(T ) ≤ τT 1/3 B−2
N + T

τ
+ τ

≤ 2B−1
N T 2/3 +

(
BN + B−2

N

)
T 1/3 + 1. (32)

APPENDIX B
PROOF OF THEOREM 2

In [29] a d-memory-bounded adversary is defined as an
adversary which is restricted to choose a loss function that
depends on the d + 1 most recent actions of the learner.

4Definitions of m-memory-bounded adaptive adversary and standard
pseudo-regret can be found in [29].
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Hence, the loss of the learner generated by a d-memory-
bounded adversary at time slot t can be written as
ft (at−d, . . . , at ). Now consider our setting in which the energy
cost of choosing an SBS at time t only depends on the state
of the network at time t . This cost is given by the function
{Et (a)}a∈NSBS. When the feedback is received by the learner
with a delay of d time slots, we can model the cost incurred by
the learner as cost assigned by a d-memory-bounded adversary
whose loss function is

ft (at−d, . . . , at ) = Et−d(at−d) + Es1{at−1 �=at } (33)

The result then follows the same steps as Appendix A.

APPENDIX C
PROOF OF PROPOSITION 1

We separately prove the linear regret in T for stochastic
and non-stochastic energy consumption models. For a sto-
chastic model, we denote the average RSRP or RSRQ of
each SBS as rn = E[Rt (n)], and the probability that the
metric of SBS n falls below the pre-determined threshold θ as
σn = P(Rt (n) < θ). Without loss of generality and to avoid
trivial conditions, we assume that r1 > r2 > · · · > rN .

A regret lower bound for the 3GPP handover protocols
described in Section III-E can be achieved by a genie-aided
policy where switching only happens between SBS 1 and 2.
In other words, whenever the performance metric of the best
SBS falls below θ , the user only switches to the second-
best SBS; when the performance metric of the second-best
SBS falls below θ , it comes back to the best SBS. This policy
can be modelled as a two-state Markov process where each
state n has a transition probability σn . We denote the steady-
state distribution for the sub-optimal SBS 2 as ρ2, and it can
be shown ρ2 > 0 for non-trivial cases. Thus, the genie-aided
policy achieves a linear regret ρ2(r1 − r2)T asymptotically.

For a non-stochastic model, we prove the linear regret in
T by constructing a specific sequence of metrics {Rt (n)}. For
simplicity, we only give one example for N = 2. Consider
R1(1) > R1(2) so that at time slot 1 the best SBS is selected.
Then we let R2(1) < θ < R2(2) so that the UE switches to
the sub-optimal SBS. We then fix Rt (1) > Rt (2) > θ for all
t > 2. In this example, the UE will be stuck with the sub-
optimal SBS 2 from time slot 2 to T , thus achieving a linear
regret in T .

APPENDIX D
PROOF OF THEOREM 3

The adversary defined in Theorem 3 generates Nt+1 based
on at . Consider the worst-case scenario where it simply lets
Nt+1 = NSBS − {at }. This forces the UE to switch at every
time slot. Hence it incurs a handover loss of Es T . As a result,
the loss of the learning algorithm is at least Es T .

Since only one SBS is inactive in each time slot, there exists
at least one SBS which is active in at least T (1 − 1/N) time
slots. Let ã denote such an SBS. SBS ã will be inactive in
at most T/N time slots, which means that any policy that
selects SBS ã when it is available needs to switch at most
T/N times. Thus, the cost of such a policy is bounded above

by T (1 − 1/N)Emax + T/N , where the first term denotes the
worst-case energy consumption from ã at time slots when it
is active and the second term denotes the worst-case energy
consumption plus handover cost due to the slots in which ã is
inactive.5 As a result, we have that the cost of ã is bounded
above by T (1 − 1/N)Emax + T/N .

Let ã∗ denote the best SBS (the one whose cumulative
loss is minimum). Then, the loss of ã∗ is upper bounded
by T (1 − 1/N)Emax + T/N .

Hence, the difference between the loss of the learning
algorithm and the loss of ã∗ is at least

Es T − T (1 − 1

N
)Emax − T

N
(34)

= T

N
(N Es − (N − 1)Emax − 1) (35)

≥ T Emax

N
(36)

where the inequality follows from Es ≥ Emax + 1/(N − 1).
This proves that the regret is linear in T .

APPENDIX E
PROOF OF THEOREM 4

Note that the SBS activity evolves independently of the
actions of the UE. Hence, the adversary is only able to modify
the current reward of the UE based on its current action.
Hence, the adversary is oblivious to the actions of the UE.
Therefore, we can use [21, Th. 4.2] to bound the regret. The
number of experts including the uniform expert is (N !)N + 1.
We obtain the result by observing that

log((N !)N + 1) ≤ log((N ! + 1)N ) = N log(N ! + 1)

≤ N2 log N, (37)

where the last inequality comes from log(N ! + 1) ≤ N log N .

APPENDIX F
PROOF OF THEOREM 5

We have that {τb}b∈NSBS is a random variable which depends
on the randomization and the history of actions selected
by CRE. Our regret bound will hold for any realization of
{τb}b∈NSBS . Consider the loss function

Et (at) + Es1{at �=b}.

By the definition of contextual regret and because Et is
generated by an oblivious adversary, for any b ∈ NSBS we
have

∑

t∈τb

E
[
Et (at ) + Es1{at �=b}

]

− min
e∈E

∑

t∈τb

[
Et (a

e
t (b)) + Es1{ae

t (b) �=b}
]

≤ 2
√|τb|N log(N ! + 1) (38)

≤ 2
√

|τb|N2 log(N) (39)

≤ 2
√

T N2 log(N) (40)

5Recall that the normalized energy consumption in a time slot is upper
bounded by 1.
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where (38) comes from the standard regret bound of EXP4,
and the expectation is taken with respect to the randomization
of CRE when the context is b. Although {τb}b∈NSBS depends
on the randomization of CRE, since the bound derived in (40)
is independent of the randomization of CRE, we get the final
result by summing (40) over all b ∈ NSBS.
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