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Analysis of Slotted Sectoral Waveguide Arrays With
Multilayered Radomes

Mert Kalfa and Vakur B. Ertürk

Abstract—A method of moments/Green’s function (MoM/GF) tech-
nique in the space domain is used for the rigorous and fast analysis of
cylindrically conformal slotted sectoral waveguide arrays (SSWGAs) in
the presence of multilayered cylindrical dielectric radomes. Representing
the slots by fictitious magnetic currents via the equivalence principle, the
geometry is divided into two regions and separate GF representations for
each region are developed to be used in conjunction with the MoM proce-
dure. Particularly, in the region that constitutes the cylindrically stratified
medium, the newly developed closed-form GF representations for mag-
netic currents are valid for all source and observation points, including the
source region (where source and observation points are on the top of each
other). Basic performance metrics of an SSWGA such as equivalent slot
currents, S-parameters, radiation patterns in the presence of a multilay-
ered cylindrical radome are presented to assess the accuracy and efficiency
of the proposed technique.

Index Terms—Closed-form Green’s functions (GF), conformal
antennas, method of moments (MoM), slotted sectoral waveguide arrays.

I. INTRODUCTION

Slotted sectoral waveguide arrays [SSWGAs, cylindrical
counterparts of planar slotted waveguide arrays (SWGAs)] offer
great potential as conformal phased array antennas in military and
commercial applications for the platforms that can be locally mod-
eled in cylindrical shapes such as the fuselage of an airplane or a
missile, where stringent aerodynamic constraints, radar cross-section
(RCS), and efficient use of real estate are of utmost importance.
Unfortunately, their design and analysis are challenging, reported
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studies for the analysis of them [1]–[5] are very few with significant
limitations from a full-wave analysis point of view, and the available
methods for planar SWGAs [6]–[8] become insufficient in terms of
both design and analysis as the curvature affects the behavior of fields
significantly. Moreover, an air platform imposes strict requirements
for the radome of the installed SSWGA, and most of the time many
layers of composite materials are required to be placed over the
slots (e.g., sandwich radomes) resulting in further complications
in the design/analysis of the overall structure, which has not been
reported to the best of our knowledge. Hence, the main motivation
and the contribution of this communication is to present a method of
moments/Green’s function (MoM/GF) technique for the rigorous and
fast analysis of SSWGAs in the presence of multilayered cylindrical
dielectric radomes. Briefly, by invoking Schelkunoff’s surface equiva-
lence theorem, slots are represented by fictitious tangential magnetic
currents and the overall geometry is divided into two regions. Interior
of the sectoral waveguide forms Region I, where the GF representation
reported in [4] is used and all the integrals in the associated mutual
admittance matrix entries are obtained analytically, which greatly
enhances the computation efficiency. The cylindrically stratified
medium that models the multilayered cylindrical dielectric radome
together with free-space as the outermost layer forms Region II, for
which new closed-form GF (CFGF) representations are developed for
tangential magnetic currents. Note that although several studies on
CFGF representations for cylindrically stratified media have already
been reported to be used in conjunction with MoM for the design and
analysis of microstrip and slot/aperture antennas and arrays [9]–[18],
they are not valid within the source region (where two current modes
can partially or fully overlap during the MoM procedure). Recently,
reported CFGF representations for tangential electric current modes
in [19] are valid and very accurate within the source region. However,
the counterpart of [19] for magnetic current modes is not available
other than some preliminary works presented in [20]–[22]. Hence,
another contribution of this communication is to provide new CFGF
representations for tangential magnetic current modes that are valid
and accurate everywhere including the source region. Finally, it
should be mentioned that because of its efficiency (in particular when
compared with available commercial full wave solvers), the proposed
method can be combined with available optimization algorithms for
the design of SSWGAs as well.

In Section II, the geometry and the formulation of the problem
are presented. Section III briefly provides the evaluation of basic
antenna parameters such as the radiation pattern, S-parameters, etc.
Finally, numerical results for an SSWGA with a multilayered cylin-
drical radome are presented in Section IV to assess the accuracy and
efficiency of the proposed method. An ejωt time convention, where
ω = 2πf and f is the operating frequency, is assumed and suppressed
throughout this communication.

II. FORMULATION

A. Geometry

The geometry of a cylindrically conformal SSWGA in the presence
of multilayered cylindrical dielectric radome is illustrated in Fig. 1
together with its cross-sectional view. The geometry is divided into two
regions. Region I is formed from the sectoral waveguides (SWGs) with
an inner and outer radii, a0 and a1, respectively, while the angular span
of each SWG is Φ0 (see the cross-sectional view of Fig. 1). Each SWG
is filled with a material whose constitutive parameters are ε1 and μ1.
Finally, thin longitudinal (z-directed) shunt slots are introduced on the
broad wall of each SWG to constitute the SSWGA as shown in Fig. 1.
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Fig. 1. Slotted sectoral waveguide array with multilayered radome.

Cylindrically stratified medium that models the multilayered cylindri-
cal dielectric radome forms Region II as seen in Fig. 1. The innermost
part of this region is assumed to be a perfect electric conductor (PEC)
that forms the outer radius (a1) of the SWG(s) with thin longitudinal
shunt slots residing on it, and the outermost layer is assumed to be
free-space (εr = 1, μr = 1). In between, an arbitrary number of mate-
rial layers surrounds the PEC part coaxially. Each layer is defined by
its permittivity, permeability, outer radius, and thickness denoted by
εi, μi, ai and ai − ai−1 with i = 2, 3, 4, . . ., respectively. Note that
the overall geometry is assumed to be infinitely long along the z-axis,
and the wall thickness of waveguides is neglected.

B. Integral Equation and GFs

Replacing the thin, longitudinal slots by equivalent z-directed ficti-
tious magnetic currents (on the inner and outer surfaces of the slots)
via the surface equivalence principle and enforcing the continuity of
total tangential fields over the slots, the magnetic field integral equation
(MFIE) is constructed as

Nm∑
n=1

∫∫
Sn

GHM(I)
zz M (I)

n ds′ −

∑

m
Nm∑

n=1

∫∫
Sn

GHM(II)
zz M (II)

n ds′

= −H(I)
zinc,n

(1)

where �M
(I)
n and �M

(II)
n represent the unknown currents for the nth slot

in Regions I and II, respectively (with �M
(II)
n = − �M

(I)
n ), and G

HM(.)
zz

is the kernel of the MFIE which relates z-directed magnetic currents to
z-directed magnetic fields in Regions I and II, depending on its super-
script index. For both regions, two very accurate GF representations
are used that are valid for arbitrary source and observation points, and
their fast evaluation significantly improves the efficiency of the over-
all method. Finally, H(I)

zinc,n in (1) is the incident tangential magnetic
field on Sn due to the TE11 excitation of the waveguide. Note that

because the slots are electrically very narrow in the transverse direc-
tion of SWGs, equivalent magnetic currents on them are assumed to
have a variation only along the z-direction and have only z compo-
nents. Thus, the vector notation is omitted for simplicity purposes.
Also note that since all slots are replaced with PEC surfaces (due to
surface equivalence), the tangential magnetic field in Region I is found
from the superposition of magnetic fields due all slot currents in the
same SWG. Thus, the first summation in (1) is performed only over
the slots on the same SWG, with Nm being the total number of slots
in the mth SWG. However, regarding Region II, the second summa-
tion in (1) is performed over all the slot currents on all SWGs, as the
tangential magnetic field in Region II (on the outer surface of a slot on
an SWG) is found from the superposition of magnetic fields due to all
slot currents in all SWGs.

Following a similar derivation to that of [4], GHM(I)
zz is derived

and simplified for the case where both ends of the sectoral waveguide
are perfectly matched (i.e., traveling wave configuration), and the final
expression is given by

GHM(I)
zz = jωε

∞∑
p=0

∞∑
q=1

Bpq cos(υp φ) cos(υp φ′)

×
[
δ(z − z′)− k2

cpq

2jkzpq
e−jkzpq |z−z′|

]
(2)

where υp = pπ/Φ0, p = 0, 1, . . . with Φ0 being the total angular
span of each sectoral waveguide in the φ-direction as shown in Fig. 1,
and k2

zpq = k2 − k2
cpq with kcpq representing the cutoff wavenumbers

of the SWG. They are found by solving for the qth root of the following
equation for each cylindrical eigenmode index, p:

Y ′
υp
(kcpq a1) J

′
υp
(kcpq a0)− Y ′

υp
(kcpq a0) J

′
υp
(kcpq a1) = 0

q = 1, 2, . . . (3)

where Jυ(·) and Yυ(·) are the first and second kind of Bessel func-
tions, respectively, with ′ denoting the derivative with respect to the
argument. The other expressions in (2) are defined as follows:

Bpq =
2

1 + δ0,p

Bυp(kcpq ρ)Bυp(kcpq ρ′)
k2NpqΦ0

(4)

with δ0,p being the Kronecker delta function

Bυp(kcpq ρ) = J ′
υp
(kcpq a0)Yυp(kcpq ρ)

− Y ′
υp
(kcpq a0) Jυp (kcpq ρ) (5)

and

Npq =

{
1

2
ρ2

[(
1− υ2

p

k2
cpqρ

2

)
B2

υp
(kcpq ρ)

]}∣∣∣∣
a1

a0

. (6)

Regarding the cylindrically stratified medium, G
HM(II)
zz is the

required component of the newly developed CFGF representations for
tangential magnetic current modes that are valid and accurate every-
where including the source region. Following a similar procedure
given in [19], GHM(II)

uv in space domain is expressed as

GHM(II)
uv =

(
k2
j − ∂2

∂z∂z′

)q (
j
∂

∂z

)m

×
(
−j

∂

∂φ

)t1
(
j

∂

∂φ′

)t2

G
HM(II)
uv2 (7)
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where the final form of GHM(II)
uv2 is given by

G
HM(II)
uv2 = F−1

{
− 1

4ω

∞∑
n=−∞

H(2)
n (kρjρ)Jn(kρjρ

′)

×
[
fM
uv(n, kz)− CM

uv(kz)
]
ejn(φ−φ′)

}

+F−1

{
− 1

4ω

[
CM

uv(kz)−CM
uv(kz∞)

]

×
(
S1 −

[
−j

2

π
log

(∣∣β − β′∣∣)])}

− j
2

π
log

(∣∣β − β′∣∣)
×F−1

{
− 1

4ω

[
CM

uv(kz)−CM
uv(kz∞)

]}

− j

4πω
CM

uv(kz∞)
(
Ising − I ′sing

)
− j

4πω
CM

uv(kz∞)I ′sing. (8)

In (7), t1 = t2 = 0 for the uv = zz, t1 = 0, t2 = 1 for the uv = zφ
(= φz due to reciprocity), t1 = t2 = 1 for uv = φφ cases, whereas
in (8), F−1{·} denotes the inverse Fourier transform (IFT), n is the
cylindrical eigenmode, β = ρφ and β′ = ρ′φ′, k2

ρj
= k2

j − k2
z with

kj being the wavenumber of the jth medium, S1 = H2
0 (kρj |ρ̄− ρ̄′|),

Ising = e
−jki

∣
∣
∣r̄−r̄

′ ∣∣
∣
/
∣∣∣r̄ − r̄

′ ∣∣∣ is the same function denoted as I1

in [19], and I ′sing is its problematic part (I ′1 in [19]). Finally,
CM

uv(kz) is the limiting value of fM
uv(n, kz) (its explicit form is

provided in [14]), when n → ∞, and CM
uv(kz∞) in the same equa-

tion is the value of CM
uv(kz) when kz → ∞. In the final expression

of the G
HM(II)
uv2 the first, second, and the fourth terms are cal-

culated in closed-form via generalized pencil of function (GPOF)
method [23] on a deformed path (as done in [14]) since they do not
have any singularity, whereas the third (axial line singularity related
term) and the fifth (space domain singularity related term) terms
are calculated analytically during the mutual admittance calculations.
Although, (8) is obtained for every u and v, in this work we only use
uv = zz case.

C. MoM Formulation and Efficient Calculation of Mutual Admittance
Matrix Entries

In (1), expanding M
(.)
n on each slot at ρ′ = a1 with a finite

set of 2za × 2βa sized z-directed piecewise sinusoidal (PWS) basis
functions and using a Galerkin MoM solution, the following matrix
equation is obtained:

[
Y

(I)
ij + Y

(II)
ij

] ⎡
⎢⎣

α1

...
αN

⎤
⎥⎦ =

⎡
⎢⎣

I1
...
IN

⎤
⎥⎦ (9)

where αj is the unknown amplitude of the PWS current mode Kj ;
Y

(I)
ij and Y

(II)
ij denote the mutual admittance matrix entries for

Regions I and II, respectively, and are given by

Y
(I)
ij =

⎧⎨
⎩
∫∫
Si

∫∫
Sj

G
HM(I)
zz KiKjdsds

′, Ki,Kj ∈ same WG

0, otherwise

(10)

Y
(II)
ij =

∫∫
Si

∫∫
Sj

GHM(II)
zz KiKj dsds

′ (11)

and finally, I
(I)
i represents the entries of the excitation vector

given by

I
(I)
i = −

∫∫
Si

H(I)
zinc,i

Ki ds. (12)

In addition to the efficient calculation of the GF representations for
both regions, the efficiency of the proposed method is further improved
by evaluating all integration parts of the mutual admittance entries for
Region I, given by (10), as well as the excitation vector entries, given
by (12), analytically. Briefly, because G

HM(I)
zz given in (2) is formed

from two terms, Y (I)
ij in (10) is rewritten as

Y
(I)
ij =

{
Y

(I)
ij,A + Y

(I)
ij,B, Ki,Kj ∈ same WG

0, otherwise
(13)

where the final form of each term in (13) is given by

Y
(I)
ij,A = −

∞∑
p=0

∞∑
q=1

jωεBpq

k2
cpq

2jkzpq
IβIz,A (14)

Y
(I)
ij,B =

∞∑
p=0

∞∑
q=1

jωεBpqIβIz,B (15)

with

Iβ =
4a2

1

υ2
p

cos

(
υp

a1
βi

)
cos

(
υp

a1
βj

)
sin2

(
υp

a1
βa

)
. (16)

Regarding the evaluation of Iz,A and Iz,B , the following three dif-
ferent cases are considered based on the relative positions of zi and
zj (center coordinates of the ith and jth current modes along the
z-direction, respectively).

1) zi ≤ zj − 2za case: Iz,B = 0 leading to Y
(I)
ij,B = 0 and

Y
(I)
ij = Y

(I)
ij,A. Thus, calculating Iz,A in closed-form, the final expres-

sion for Y (I)
ij becomes

Y
(I)
ij =−

∞∑
p=0

∞∑
q=1

ωεBpq

k2
cpq

kzpq

e jkzpq (zi−zj)

β2
a sin

2 (ka za)

Iβ
2

×
[

ka
k2
zpq − k2

a

(
cos(ka za)− cos(kzpq za)

)]2
. (17)

2) zi = zj case: This is the case where two current modes are
fully overlapped, and the final forms of Iz,A and Iz,B are obtained in
closed form as

Iz,A =
1

2β2
a sin

2(kaza)

{
I2− +

2

k2
zpq − k2

a

×
[
−kae

−jkzpqzaI+ +
1

4
(1− cos(2kaza))

+
jkzpq
4

(
sin(2kaza)

ka
− 2za

)]}
(18)

Iz,B =
1

4β2
a sin

2 (ka za)

[
za − sin(2kaza)

2ka

]
. (19)

3) zi = zj − za case: This is the case where two current modes
are partially overlapped along the z-axis, and the final forms of Iz,A
and Iz,B are obtained in closed form as
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Iz,A =
1

4β2
a sin

2 (ka za)

{
e−jkzpq za

(
I2− + 2I−I+

)
+

1

k2
zpq − k2

a

[
− kaI− + e−jkzpqzaI+ (ka cos(ka za)

+ jkzpq sin(ka za)
)
+ jkzpqza cos(ka za)

− jkzpq
ka

sin(ka za)

]}
(20)

Iz,B =
1

8β2
a sin

2 (ka za)

(
sin(kaza)

ka
− za cos(kaza)

)
(21)

where

I± =
ka cos(ka za)± jkzpq sin(ka za)− kae

−jkzpq za

k2
zpq − k2

a

. (22)

Regarding the evaluation of (11) for uv = zz, the procedure outlined
in [19] is used.

D. Excitation Vector Entries

Only the fundamental TE11 mode is assumed to be excited inside
the SWG (although an arbitrary number of modes could be incorpo-
rated in the analysis). Hence, using the z-component of the magnetic
field, Hz , due to the TE11 excitation given in [3], the final closed-from
expression of I(I)i is obtained for p = q = 1 as

I
(I)
i = − a1k

2
c11Bυ1(kc11ρ)e

−jkz11zi

jωμυ1βaJ ′
υ1
(kc11 a0) sin (ka za)

× cos

(
υ1

a1
βi

)
sin

(
υ1

a1
βa

)
(I− + I+) (23)

where I± is defined in (22).

III. EVALUATION OF BASIC ANTENNA PARAMETERS

The equivalent currents obtained from the solution of (9) are used
to evaluate basic antenna parameters such as far-zone copolarized
radiation patterns, realized gain, and S-parameters in the presence of
multilayered cylindrical dielectric radomes.

The far-zone copolarized (φ-directed) electric fields are calculated
from the z-directed equivalent magnetic currents in Region II using
G

EM(II)
φz in the cylindrically stratified medium, where the source is at

ρ′ = a1 and the fields are calculated at the observation point (ρ) when
ρ → ∞. Briefly, starting with the spectral domain representation of
G

EM(II)
φz given in [9] and using the large argument approximation of

the Hankel function due to ρ → ∞, and then transforming it to the
space domain by using the stationary phase method (for the IFT part),
the final form of the GF for the far-zone copolarized electric field is
obtained as

G
EM(II)
φzFF

(ξ, φ) =
ejπ/4

√
2π

1

k0 sin θ
G̃0(ξ, φ) (24)

where

G̃0(ξ, φ) =− ej
π
4√
2π

(k2
2 − ξ2)

μM

μ2

×
∞∑

n=0

1

1 + δ0n
cos(nφ) ejn

π
2 F0(2, 2) (25)

with ξ being k0 cos θ that corresponds to the stationary phase point
along kz , and F0 is a 2× 2 matrix defined as

F0 = T̃2,MM̃2+

[
Jn(kρ2ρ

′)I+H(2)
n (kρ2ρ

′)R̃2,1

]
. (26)

All terms in (26) are explicitly defined in [9]. Note that in (24)–(26),
the subscript M indicates the outermost air layer index (i.e., εM = ε0,
μM = μ0), and the subscript 2 denotes the source layer index, where
the source is at the PEC-first dielectric interface. Also note that the
e−jkr/r term is neglected to normalize the distance to 1 m in SI units.
Finally, the total radiation from an SSWGA is found by integrating
(24) over the surface where all equivalent currents in Region II exist,
and the resultant expression can be used to calculate the realized gain.
A similar approach can be followed to obtain cross-polarized far-zone
electric fields, which would provide further information on the antenna
performance.

S-parameters are calculated by decomposing the magnetic field,
Hz, due to the equivalent magnetic currents in Region I of an SSWGA
into forward and backward scattered waves, which contribute to the
reflection and transmission coefficients in their respective waveguides.
Assuming the fundamental TE11 mode is the only propagating mode
in the waveguide and making use of (2), Hz is calculated at the pre-
defined reference planes (such as excitation ports or loads), which are
located sufficiently far enough from the slots to ensure that only the
TE11 mode waves exist on the reference planes, and all other higher
order modes are highly attenuated due to being evanescent modes. As a
result, a backward or forward scattered TE11 field coefficient is defined
as the ratio of (2) evaluated at z �= z′ for (p, q) = (1, 1), and a unit
amplitude TE11 excitation given in [3], and is given by

C11 = −j
J ′
υ1
(kc11a0)Bυ1(kc11a1)

N11Φ0kz11
cos(υ1 φ′). (27)

Finally, the total backward and/or forward scattered waves at the ref-
erence planes are found by integrating (27) over the surface where
all equivalent currents in Region I exist. The whole S-matrix of the
SSWGA can be calculated by repeating this process for each individual
waveguide excitation.

IV. NUMERICAL RESULTS

An SSWGA formed from three identical air-filled (ε1 = ε0, μ1 =
μ0) SWGs together with an A-type sandwich radome (skin-core-skin),
which is placed 5 mm away from the SSWGA, is analyzed with the
proposed MoM/GF technique and the numerical results are compared
to the results obtained from HFSSTM simulations to assess the accuracy
and efficiency of the method. The geometrical details of the analyzed
SSWGA are as follows: a0 = 20 mm, a1 = 30.16 mm, Φ0 = 52◦,
SWGs are placed 55◦ apart from each other, and both ends of the
SWGs are perfectly matched (traveling-wave case). Also, there are
8 identical slots on each SWG (total of 24 slots in the array), each
slot has a size of (14 mm, 0.5 mm) and 9 overlapping PWS current
modes are used to expand the current on each slot. Besides, the slots
are placed 20 mm apart along z-axis, and reference planes are located
100 mm from the nearest slot center. Finally, the radome skins are
0.83 mm thick with εr = 4.3, which represent a stack of glass fiber
fabrics and the core is 8 mm thick with εr = 1.09, which represents a
foam or honeycomb material with electrical properties close to air. The
resulting geometry, together with the enumeration of the waveguide
ports, is shown in Fig. 2.

100 p-modes and 100 q-modes are taken into account to calcu-
late GHM(I)

zz in (2), whereas N1 = 150, N2 = 150, N3 = 50 spectral
domain samples on the deformed path defined by T1 = 0.1, T2 = 20,
T3 = 22 are approximated by M1 = 5, M2 = 5, M3 = 1 complex
exponentials to obtain the CFGF representations for GHM(II)

zz2 . Finally,
only the first 200 cylindrical eigenmodes (n) are taken. It should
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Fig. 2. HFSS model of the SSWGA with an A-sandwich radome.

Fig. 3. Equivalent slot magnetic current magnitudes for SWG-1 under 1W
excitation at 10 GHz.

Fig. 4. S-parameters.

Fig. 5. Active array realized gain at boresight (θ = 90◦, φ = 0◦).

be noted that 200 cylindrical eigenmodes (as well as 100 p- and
100 q-modes) are actually larger than what is necessary for the con-
vergence of the summations (including the self-terms) but chosen as
are to leave a safety margin.

Numerical results in the form of equivalent magnetic current ampli-
tudes, S-parameters, realized gain, and radiation patterns and their
comparison with those obtained from HFSSTM simulations are shown
in Figs. 3–6. The magnetic current amplitudes given in Fig. 3 belong
to the first and last slots of the first SWG, while only the first SWG is
excited with a power of 1 W at 10 GHz. On the other hand, the real-
ized gain and radiation patterns are calculated when all three SWGs are
excited uniformly. The realized gain in Fig. 5 is given at the antenna
boresight (θ = 90◦, φ = 0◦).

Fig. 6. Copolarized (φ-directed) normalized E-plane (azimuth) and H-plane
(elevation) radiation patterns.

Results obtained from the proposed MoM/GF technique agree very
well with that of HFSSTM, which demonstrates the accuracy of the
proposed method. The only discrepancy is observed in the radiation
patterns when the observation angle is close to the axis of the cylin-
der due to the fact that the proposed method assumes the geometry is
infinitely long along the axis of the cylinder (i.e., z-direction), whereas
in HFSSTM the geometry must be finite and is 660-mm long along
the same direction. However, if the first and final slots are sufficiently
far away from the ends of the cylinder along the axis of the cylin-
der, this discrepancy becomes less visible. Regarding the efficiency,
the proposed method offers a much faster solution with significant
reduction in required computer resources. HFSSTM simulations are
performed in a high performance computer (HPC), with 512-cores and
4 TBs of RAM.128 cores and 140 GB RAM are used and it takes 110
min/frequency when available acceleration algorithms such as domain
decomposition and parallel processing are utilized to increase the effi-
ciency of the simulations. On the other hand, using MATLAB, the
proposed method is implemented in a modest desktop computer with
a Core2Duo processor and 2 GBs of RAM. It uses only 0.8 GB RAM
and lasts less than 3 min/frequency.

V. CONCLUSION

A fast and accurate MoM/GF technique in the space domain
is presented for the rigorous analysis of SSWGAs with multilay-
ered radomes (modeled as cylindrically stratified media). Numerical
results due to an SSWGA with a sandwich type radome confirm
both accuracy and efficiency of the technique. Thus, when compared
with available commercial full wave solvers, it can be combined
with available optimization algorithms for the design of SSWGAs as
well.
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A Wide-Angle Scanning and Low Sidelobe Level
Microstrip Phased Array Based on Genetic

Algorithm Optimization

Ya-Qing Wen, Bing-Zhong Wang, and Xiao Ding

Abstract—In order to obtain a wide-angle scanning and low sidelobe
level (SLL) microstrip phased array with a finite metal ground, a novel
microstrip phased array based on microstrip magnetic dipole is presented
in this communication. Microstrip magnetic dipoles are employed as the
driven elements in the phased array. Meanwhile, coupling patches are
embedded between the adjacent driven elements, and coupling energy is
transferred between driven elements by the coupling patches. Strong cou-
pling has been constructed between elements as the driven element spacing
is only about 0.35 λ . With the influence of adjacent elements, the 3-dB
beamwidth (BW) of each active element can reach over ±80◦ in the ele-
vation plane. From simulation and measurement, the main lobe scanning
ranges of an 8-element and a 16-element phased arrays can both extend
over ±80◦ in the elevation plane with a gain fluctuation less than 3 dB.
Furthermore, in order to keep the SLL low in the scanning, especially at
the low elevation angles, genetic algorithm (GA) has been used, and the
SLL has been decreased to the value of −9 dB in the full scanning range
of ±77◦ for the eight-element array.

Index Terms—Genetic algorithm (GA), low sidelobe level (SLL),
microstrip magnetic dipole, phased array, wide-angle scanning.

I. INTRODUCTION

Phased array has been widely used in military radars and civilian
satellite communications, to name a few, because of its unique charac-
teristics of scanning without inertia [1], [2]. In recent years, researchers
pay more attention on the method of extending phased array’s scanning
range and beamforming of radiation pattern while scanning. Normally,
there are two effective methods to obtain large scanning range. First, a
phased array with wide 3-dB beamwidth (BW) elements can achieve a
large scanning range. Wide-angle scanning phased array with pattern
reconfigurable elements is one of typical examples [3]–[5]. In [5], the
whole scanning area was divided into several subareas according to the
reconfigurable elements’ different reconfigurable modes. The results
showed that the corresponding phased array with reconfigurable ele-
ments can extend the scanning range of the main lobe over ±70◦ with
a gain fluctuation less than 3 dB. Besides, mutual coupling between
elements is another important factor for scanning. With the produc-
tion of coupling energy, radiation performance, such as gain, sidelobe
level (SLL), and efficiency, will worsen, especially at low elevation
angles. Therefore, many researchers choose the way of suppressing
mutual couple effects to achieve better scanning. However, the mutual
coupling energy can be utilized in the phased array to enhance the
scanning performance [6]. The authors setup a three-patch subarray,
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