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Abstract—A novel computational method is proposed to eval-
uate 1-D and 2-D summations and integrals which are relatively
difficult to compute numerically. The method is based on applying
a subspace algorithm to the samples of partial sums and approx-
imating them in terms of complex exponentials. For a convergent
summation, the residue of the exponential term with zero complex
pole of this approximation corresponds to the result of the summa-
tion. Since the procedure requires the evaluation of relatively small
number of terms, the computation time for the evaluation of the
summation is reduced significantly. In addition, by using the pro-
posed method, very accurate and convergent results are obtained
for the summations which are not even absolutely convergent. The
efficiency and accuracy of the method are verified by evaluating
some challenging 1-D and 2-D summations and integrals.

Index Terms—Acceleration techniques, cylindrically stratified
media, Green’s functions, numerical methods, periodic structures,
planar layered structures, Sommerfeld integrals.

I. INTRODUCTION

I N MANY science and engineering applications, relatively
difficult and usually infinite summations with quite com-

plicated functions need to be computed numerically. These
applications may include, in addition to many others, the
estimation of electrostatic interactions in molecular dynamics
[1], [2], and the calculations of Green’s functions, periodic
Green’s functions in free space, and layered media in elec-
tromagnetics (EM) [3]–[5]. The difficulty of the computation
usually arises from the highly oscillatory and slowly conver-
gent nature of the summations [6]. For instance in EM, which
is the concentration of this study, the analysis of cylindrical
geometries may require the computation of infinite summation
of cylindrical Hankel- and Bessel-type functions [7], summa-
tions of which converge very slowly. Similarly, the function
may contain spherical Hankel and Bessel functions together
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with the Legendre polynomials for spherical geometries [8],
[9]. To numerically simulate many structures involving these
functions, the computation time for the evaluation of infi-
nite summations/integrals is very crucial as they are usually
performed more than once.

In this study, a novel method is proposed to efficiently
and accurately compute oscillating and slowly convergent
summations and to help assess the nature of convergence or
divergence. In principle, the idea of the method is as follows:
if one takes a sufficient number of partial sums as a set of data
and approximates them as a sum of complex exponentials, the
dc term (the residue of the exponential with zero complex pole)
of this approximation would be the result of the summation of
interest. The method is quite efficient and robust because of
the fact that the partial sums of an infinite summation usually
exhibit (highly or slowly) oscillatory behavior (due to expo-
nentials related to the phase information of EM propagation),
which can be well expressed in terms of complex exponentials.
In order to approximate the data as a series of complex expo-
nentials, a subspace approach called the generalized pencil of
function (GPOF) method [10] is employed. Moreover, the pro-
posed method can also be used as a convergence/divergence test
for infinite summations. This feature stems from the fact that a
convergent series of partial sums can be represented by a sum
of complex exponentials with a zero exponent (dc term) and
exponents with negative real parts only, whereas the divergent
ones result in at least one exponent with a positive real part.

It should be noted that the proposed method is also applica-
ble to 1-D and 2-D slowly convergent integrals. Similar to the
partial sums in EM problems, since the behavior of the partial
integrals of an infinite and convergent integral has an oscillatory
and slowly convergent behavior, the dc term of this behavior
corresponds to the result of the integral. Therefore, the princi-
ple idea is also valid for integrations, and once a sufficient set of
partial integrals is obtained, the rest of the algorithm becomes
exactly the same.

The method is first applied to slowly convergent 1-D sum-
mations, and its results are compared to those obtained by the
direct summation (DS) and the Shanks transformation (ST)
[11]. Then the accuracy and robustness of the proposed method
are demonstrated on a 1-D summation, which is not abso-
lutely convergent. In addition, the method is applied to the
Sommerfeld integral tails, which are well-known 1-D integrals
with the oscillating and slowly decaying nature, and its per-
formance is compared to the ST and the generalized weighted
averages (WA) algorithm [12], [13]. Finally, as a 2-D example,
the free-space periodic Green’s function (FSPGF) for a doubly
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periodic structure is computed by the proposed method, and
its efficiency is compared to the ST and the Ewald summation
method [14].

This paper is organized as follows. The theory of the method
and the details of its implementation on 1-D and 2-D problems
are discussed in Section II. Section III provides the numerical
results and conclusion is drawn in Section IV.

II. FUNDAMENTALS OF THE METHOD

In this section, the main idea of the method is demonstrated
on 1-D summations, and its extension to 2-D summations is
discussed. For the sake of demonstration, let us consider an
infinite slowly convergent 1-D summation S for the series f
in (1). Unless an analytic solution for S exists, the limit of the
summation operation has to be truncated at a relatively large
value, say Nt, for its numerical evaluation, thus resulting in an
approximation as

S =
∞∑

n=0

f(n) � SNt
=

Nt∑
n=0

f(n). (1)

For the approximation to be correct, Nt is usually cho-
sen very large, particularly for slowly convergent summations.
Moreover, if the summation is highly oscillatory, the numerical
computation of the summation becomes very laborious and the
numerical accuracy becomes questionable for a large value of
Nt. Therefore, even with a very large Nt, S may not be obtained
accurately via the DS. The proposed method in this study is
developed to find an accurate estimate of S without having to
incorporate a large number of terms. The idea is based on the
use of the GPOF method over a set of partial sums

S =
{
S(1), S(2), . . . , S(Ns)

}
(2)

of a given summation, where the partial sums are obtained
recursively as

S(m) =

Nb+mNa−1∑
n=0

f(n) ≡ S(m− 1)

+

Nb+mNa−1∑
n=Nb+(m−1)Na

f(n), m = 1, . . . , Ns. (3)

Ns is the number of partial sums, Na is the number of new
terms added to each previous partial sum in S, and Nb is the

number of bias terms to evaluate S(0) =
Nb−1∑
n=0

f(n). The use

of the bias may improve the convergence of the method for
some summations, for which the partial sums show their con-
vergence nature beyond certain number of terms, i.e., beyond
the transient region. However, for summations/integrals with no
knowledge of their transient behaviors, Nb can be simply set to
zero.

Note that, since the partial sums can be obtained recursively,
as shown in (3), S is computed by adding only (Na ×Ns) +
Nb terms and can be considered as a function of m for constant
Na. It is worth to note that the number of terms employed by

the proposed method [(Na ×Ns) +Nb] is in general far less
than the number of terms needed by the direct sum (Nt) for the
same level of convergence. If the partial sums are used as the
samples to be input for the GPOF method, S versus m can be
approximated in terms of M complex exponentials as

S(m) ∼=
M∑
i=1

bie
sim (4)

where bis are the complex residues and sis are the complex
poles. Thus, the limiting value of S as m → ∞ yields two
possibilities:

1) If S is divergent, then at least one of the complex poles
has a positive real part, i.e., �{si} > 0 for at least one i
where i = 1, . . . ,M .

2) If S is convergent, then all except one complex poles
have negative real parts and the one pole is zero, i.e.,
�{si}i�=k < 0 for i = 1, 2, . . . , k − 1, k + 1, . . . ,M and
sk = 0. Hence, the complex residue corresponding to the
zero pole, bk, has to be the result of the summation S,
as the partial sums of a convergent summation would
eventually converge to a constant value, i.e., to the sum.

A. Slowly Oscillating Summations

It is important to note that the efficiency of the algorithm
is strongly dependent on the behavior of S versus m and thus
Na; however, the relation between the behavior of f(n) and
S(m) is not always obvious. For a general rule of thumb, it
would be better if the set of partial sums covers at least half a
period of S versus m variation. However, if S versus m varia-
tion is very slowly oscillating, a half period of S versus m curve
may require evaluation of the partial sums for a large number of
terms in (3), Na ×Ns. A possible remedy for this problem may
be to accelerate the evaluation of partial sums using the GPOF
method as follows: let the partial sums to be evaluated be avail-
able up to S(Ns) in (3), then, the partial sums for N ≥ Ns can
be written as

SN = S(Ns) +

N∑
n=Nb+NsNa

f(n). (5)

Making use of the GPOF method over a set of f(n) for the
second term in (5), f(n) can be approximated in terms of M1

complex exponentials as

f(n) �
M1∑
l=1

ble
slδ(n−Nb−NaNs); n ≥ Nb +Na ×Ns (6)

where δ is the sampling period, bls and sls are the coefficients
and the exponents of the approximation, respectively. Then,
substituting (6) into (5), changing the order of summations,
and evaluating the inner summation over n analytically, SN can
simply be expressed as

SN = S(Ns) +

M1∑
l=1

bl
1− eslδ(N−Nb−NaNs+1)

1− eslδ
. (7)

Provided that S(Ns) was calculated before, (7) can be used to
obtain the set of partial sums very efficiently.



1016 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 64, NO. 3, MARCH 2016

B. Algorithm

Based on these principles and under the assumption that no
a priori information is known about the behavior of S versus
m [as well as on f(n)], an iterative algorithm is proposed as
follows.

Step 1) Predefine your error |e|, initialize Ns, Nbig (> Na ×
Ns that will be used to decide if the S versus m
variation is fast or slowly oscillating).

Step 2) During the calculation of the partial sums, predict
the period of the S versus m variation, and in turn,
Na and Ns can be determined. Consequently, one
can decide if the S versus m variation is fast or slow,
based on comparing the predicted period with Nbig .

Step 3)
a) Fast oscillating:

i) Use (3) to form a set of partial sums.

b) Slowly oscillating:
i) Determine or provide an educated guess, if

possible, for the period of f(n).
ii) Use (5)–(7) to form a set of partial sums. Note

that because (7) is a closed-form expression for
the partial sums, any partial sum required can
be evaluated analytically.

Step 4) Use (4) to find bjk, where j denotes the number of
iteration of the algorithm.

Step 5) Check if

|bjk − bj−1
k |

|bjk|
< |e| (8)

a) If (8) is satisfied, our final sum is bjk.
b) If (8) is not satisfied, for the fast oscillating case, go

to Step 3(a) to form a new set of partial sums using
(3) starting with n = Nb + (j − 1)NsNa.

c) If (8) is not satisfied for the slowly oscillating case,
go to Step 3(b)(ii) and use (7) to form a new set of
partial sums for even larger values of N.

Note that although the algorithm proposed here works well
for all cases considered in this study, it is by no means a unique
algorithm.

C. Extension to 2-D Problems

The same idea can be directly extended to the 2-D summa-
tions because once the partial sums are obtained to be used in
the GPOF method, the rest of the procedure would be the same.
Let us consider an infinite 2-D summation as

S =
∞∑
i=0

∞∑
j=0

f(i, j) (9)

where f is a function of two variables and the partial sums can
be computed recursively as

S(m) = S(m− 1) +

Nb1+mNa1−1∑
i=Nb1+(m−1)Na1

Nb2+mNa2−1∑
j=0

f(i, j)

+

Nb1+(m−1)Na1−1∑
i=0

Nb2+mNa2−1∑
j=Nb2+(m−1)Na2

f(i, j) m = 1, . . . , Ns

(10)

starting from S(0) =
Nb1−1∑
i=0

Nb2−1∑
j=0

f(i, j), where Nb1 and Nb2

are the bias numbers, Na1 and Na2 correspond to the sam-
pling intervals for two dimensions. Once the S(m) values are
computed, they can be approximated in terms of complex expo-
nentials, and similarly, the residue of the exponential term with
zero complex pole corresponds to the result of the summation.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. 1-D Examples

1) Summations: The first example for 1-D infinite summa-
tions is related with the addition theorem of Hankel functions
[15] given by

H
(2)
0 (kρ|ρ̄− ρ̄′|) =

∞∑
n=0

κnH
(2)
n (kρρ)Jn(kρρ

′) cos(nΔφ)

(11)

which is widely used in cylindrical geometries. This particular
form given in (11) is used in the development of closed-
form Green’s function (CFGF) representations of cylindically
stratified media [7]. Its right-hand side is computed using the
proposed method and is compared with the analytical result
H

(2)
0 (kρ|ρ̄− ρ̄′|) to assess the accuracy and efficiency of the

proposed summation method. In (11), ρ′ and ρ are the radial dis-
tances of the source and observation points, respectively, from
the central axis of the cylinder and are selected to be equal to
each other (i.e., ρ = ρ′). This case is usually used in mutual
coupling problems, and its evaluation poses difficulties due to
its fast oscillating and slowly converging behavior. Besides,
in (11), Δφ = φ− φ′, |ρ̄− ρ̄′| = √

ρ2 + ρ′2 − 2ρρ′ cos(Δφ),
kρ =

√
k2 − k2z with k = 2π/λ and kz = 0. Note that kz

changes between 0 and kz∞ (which is a numerically large
kz value along the real kz axis [7]) in the course of finding
the CFGF expressions, the difficulty in the summation appears
when kρ is real. Hence kz = 0, the worst convergence is taken
into consideration. Finally, κn = 1 when n = 0, and κn = 2 for
all other n values.

Selecting ρ = ρ′ = 3λ with λ = 1m, the analytical value of
H

(2)
0 (kρ|ρ̄− ρ̄′|) is −0.16422 − j0.20284 when Δφ = 0.5, and

it becomes 0.99777 + j1.57204 when Δφ = 0.005. Denoting

SNt
=

Nt∑
n=0

κnH
(2)
n (kρρ)Jn(kρρ

′) cos(nΔφ) (12)

the imaginary parts of SNt
versus Nt are plotted for Δφ = 0.5

and Δφ = 0.005, in Figs. 1 and 2, respectively.
Note that, the oscillatory nature of the summation (with

respect to Nt) given in (12) is due to its imaginary part (the
real part does not show such a variation). Also note that larger
Δφ improves the convergence but exhibits a faster oscillatory
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Fig. 1. Imaginary part of SNt versus Nt for Δφ = 0.5.

Fig. 2. Imaginary part of SNt versus Nt for Δφ = 0.005.

TABLE I
NUMBER OF TERMS FOR THE ALGORITHMS (DS, ST, AND PA) FOR

THREE-ERROR LEVELS

For PA: Nb = 30, Na = 1, Ns = 15, Nt = Nb + nitNsNa, nit:
no. of iterations.

nature. Therefore, fast oscillating part of the algorithm must be
used for Δφ = 0.5. The algorithm is checked for three differ-
ent error levels, and the numbers of summed terms required to
satisfy these error levels for DS, ST, and the proposed algo-
rithm (PA) are summarized in Table I for Fig. 1. The significant
reduction in the required number of terms achieved by the PA
can be easily observed from Table I. In addition, the compu-
tational times of DS, ST, and PA are provided in Table II for
three-error levels. As seen in Table II, the proposed approach is
computationally more efficient than the DS and the ST.

On the other hand, in Fig. 2, although only SNt
up to

Nt = 2000 is given, the DS does not converge to the analyti-
cal result even for Nt = 100 000 when |e| = 10−3 is selected
(Nt ∼ 70 000 for ST). Consequently, Δφ = 0.005 corresponds

TABLE II
EFFICIENCY OF THE ALGORITHMS (DS, ST, AND PA)

FOR THREE-ERROR LEVELS

to a slowly oscillating case. Hence, slowly oscillating part of the
algorithm is applied for this case. After a transient part, which
contains approximately 300 terms, the algorithm uses (5)–(7) to
find the partial sums efficiently as follows: first, the argument
of the summation f(n) = κnH

(2)
n (kρρ)Jn(kρρ

′) cos(nΔφ) is
approximated in terms of M1 = 8 complex exponentials from
roughly 50 samples of f(n). Then, approximately 50 samples
of SN corresponding to very large value of N (N >> Nbig)
are obtained using (7) and are approximated in terms of 7
complex exponentials in each iteration. In 3 and 4 iterations,
the final result is achieved when |e| = 10−3 and |e| = 10−5,
respectively.

The second 1-D example is related to the surface fields of
an impedance sphere with a radius a. The Hθ(r̄) component
of a surface magnetic field, excited by a tangential magnetic
source, M̄ = x̂pmδ(r̄ − r̄′), located on the sphere (r′ = a, θ′ =
0, φ′ = 0), is given by [8]

Hφ = sinφ
k2Y0pm

4π

∞∑
n=1

[S1(n) + S2(n)] (13)

when the field point is on the surface of the sphere (i.e., r =
a, θ, φ). In (13), S1(n) and S2(n) are the problematic sum-
mations, which are not absolutely convergent, and are given
by

S1(n) =
2n+ 1

n(n+ 1)

j

(ka)2

[
−jΛ +

(n+ 1)

ka

−h
(2)
n+1(ka)

h
(2)
n (ka)

]−1
∂P 1

n(cos θ)

∂θ
(14)

S2(n) =
2n+ 1

n(n+ 1)

j

(ka)2

( −1

sin θ

)
⎡
⎢⎢⎣

(n+1)
ka − h

(2)
n+1(ka)

h
(2)
n (ka)

1 + jΛ

[
(n+1)
ka − h

(2)
n+1(ka)

h
(2)
n (ka)

]
⎤
⎥⎥⎦P 1

n(cos θ) (15)

where h
(2)
n is the spherical Hankel function, P 1

n(cos θ) =
∂
∂θPn(cos θ) with Pn being the usual Legendre function,
k = 2π/λ, Λ = Zs/Z0 is the normalized surface impedance
with Zs, Z0, and Y0 being the surface impedance, free-space
impedance, and free-space admittance, respectively. Finally, pm
represents the strength of the magnetic current.

The magnitudes and phases of Hφ component of tangential
magnetic field calculated with the proposed summation method
and with the DS for various Nt values are plotted in Fig. 3 for
a = 3λ, Λ = 0.75, φ = π/2, and θ varying from π/6 to 5π/12.



1018 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 64, NO. 3, MARCH 2016

Fig. 3. Comparison of magnitudes and phases of Hφ component of tangential
magnetic field calculated with the proposed summation method and with the
DS for various Nt values when a = 3λ, Λ = 0.75, φ = π/2, and θ varying
from π/6 to 5π/12.

Very accurate and converged result is obtained using the pro-
posed summation method by using 20 samples and 7 complex
exponentials after approximately 50 terms of transient part that
requires overall 3 iterations for |e| = 10−3. However, the results
(both magnitude and phase of Hφ) do not converge even for
Nt = 100 000 and become worse if more terms are added as
the summation is not absolutely convergent.

2) Integrals: The spatial-domain Green’s functions G for
stratified media are evaluated from their spectral-domain coun-
terparts G̃ via the Sommerfeld integral (SI)

G(ρ) =
1

2π

∫ ∞

0

G̃(kρ; z, z
′)J0(kρρ)kρdkρ (16)

where J0 is a zeroth-order Bessel function of the first kind, and
ρ is the lateral distance between the observation and the source
points with their corresponding vertical coordinates z and z′,
respectively. The problems of efficient evaluation of SIs arise
from the possible singularities and the oscillatory and slowly
decaying nature of the integrands. These two problems can be
solved independently by dividing the integration path into two
parts

G =
1

2π
(I1(0, ξ0) + I2(ξ0,∞)) (17)

where ξ0 should be properly selected to ensure that all singu-
larities lie in I1, and consequently I2, also known as the SI
tail, becomes free of singularities. Although the evaluation of
I1 is out of the scope of this study, for the sake of complete-
ness, it should be noted that I1 can be computed by subtracting
the singularities from the integrand by using Cauchy integration
formula and then numerically integrating the remaining part.
At the final step, the contribution of the singularities is added
in the spatial domain. In this paper, the SI tail examples are
evaluated by the proposed method, ST, and the WA extrapo-
lation technique, and all numerical integrations are computed
using adaptive Gauss–Kronrod quadrature in MATLAB pro-
gramming language. In order to apply these methods, the SI

Fig. 4. Comparison of the three methods on the computation of the SI (19).
Number of significant digits obtained by using 12 partial integrals.

tail is expressed as an infinite sum of partial integrals over the
finite subintervals

I2 =

∞∑
i=0

∫ ξi+1

ξi

G̃(kρ; z, z
′)J0(kρρ)kρdkρ. (18)

In this paper, the equidistant integral boundaries are selected
as π/ρ, i.e., the asymptotic half periods of Bessel function,
since much simpler and more efficient expressions can be
obtained for the generalized WA algorithm if the equidistant
break points are separated by half periods [12]. In addition,
the built-in functions in MATLAB are used for the evaluation
of the binomial coefficients to obtain the weights of the WA
algorithm.

In order to start with a controllable numerical experiment,
the tail of the Sommerfeld identity, with its known analytical
expression (19), at z = 0, which is the most slowly converging
case, has been examined first∫ ∞

0

e−jkz|z|

jkz
J0(kρρ)kρdkρ =

e−jkr

r
(19)

where kz =
√

k2 − k2ρ. The accuracy of the proposed method,

and the other methods that are used for the purpose of com-
parison, is assessed by the number of significant digits, as
computed by − log10 |relative error|, using 12 partial integrals.
It is observed that the WA algorithm and the proposed method
provide almost identical results and significantly better than the
results obtained by the ST, as depicted in Fig. 4.

To further understand the dynamics of the methods com-
pared, Fig. 5 provides information on the increase in the number
of significant digits as the number of partial sums for a given
value of ρ. It is observed that the WA algorithm achieves the
highest accuracy even with a few number of partial integrals,
while the proposed method achieves the same accuracy after
the nine partial integrals. Meanwhile, the ST requires a very
high number of partial integrals to achieve such an accuracy.
However, for the efficiency of the methods, the computation
times required for the ST and the proposed approach are not
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Fig. 5. Sommerfeld identity (19): the number of significant digits versus
number of partial integrals for k0ρ = 0.1.

Fig. 6. Sommerfeld identity (19): computation time versus number of partial
integrals for k0ρ = 0.1.

affected critically by the increase in the number of partial sums,
while the computation time of the WA algorithm seems quite
sensitive due to the computation of the binomial coefficients to
obtain the corresponding weights as seen in Fig. 6. It is also
verified that the behavior of the methods is similar for other ρ
values.

To demonstrate the algorithm on a Green’s function for a
realistic geometry, a lossy slab in free space was considered
with a source of an horizontal electric dipole (HED) operat-
ing at f = 4 GHz and located at the interface between the
upper boundary of the lossy medium and the air, as shown in
Fig. 7. The vector and scalar Green’s functions for this geome-
try were evaluated by the same three methods as the ones used
for the Sommerfeld identity, providing the results with no dis-
tinguishable differences, as shown in Fig. 8. Once the accuracy
of the methods has been verified, their comparative efficiencies
are assessed by the CPU times of the methods, as provided in
Fig. 9. In all techniques, the major time consumption occurs in
the evaluation of the partial integrals. Since all three algorithms
take the same partial integrals as their inputs, we do not include
the partial integral calculations into the time comparison of the

Fig. 7. Lossy dielectric material in air at f = 4 GHz.

Fig. 8. Magnitudes of the Green’s functions of (a) the vectoral potential and
(b) the scalar potential for the geometry in Fig. 7 at f = 4 GHz.

algorithms. As seen in Fig. 9, the proposed method is noticeably
more efficient than the WA algorithm for the same SI tail.

B. 2-D Example

To demonstrate the applicability of the proposed method
to the efficient evaluation of 2-D series, the slowly conver-
gent free-space periodic Green’s functions (FSPGF) for 3-D
problems with 2-D periodicity are examined. The efficient and
accurate computation of the periodic Green’s function plays
an important role in the method-of-moments (MoM) analysis
of periodic structures. The construction of the MoM matrix
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Fig. 9. Time comparison for the spatial domain vector Green’s function of a
lossy dielectric slab in air at f = 4 GHz.

requires repeated evaluations of the FSPGF for various val-
ues of the source and the observation points. Therefore, the
matrix fill time increases dramatically unless the slowly con-
vergent series appearing in the FSPGF expression are computed
efficiently through the use of an acceleration technique. A num-
ber of techniques have been developed in the past to accelerate
the convergence of the series, and a comparative analysis of
these acceleration techniques can be found in [16]. As discussed
in [16], the most commonly used acceleration techniques are
Kummer decomposition combined with ST [11] and Ewald’s
transformation [14]. Ewald’s transformation can be considered
as the most efficient method especially for 3-D problems with
2-D periodicity. Hence, the proposed method will be com-
pared to the Ewald’s and ST regarding the accuracy and the
computation time.

Since the proposed method is utilized in the evaluation of
the FSPGF after performing Kummer decomposition, first a
brief outline of this decomposition method will be presented.
Consider a 2-D periodic array of point sources in the x–y plane
with periods a and b and phase shifts kx0 and ky0 along the
x- and y-axes, respectively. The FSPGF corresponding to this
geometry can be written in terms of the following spatial series:

G(r) =

∞∑
m=−∞

∞∑
n=−∞

ejkt00·rmn

(
e−jkRmn

4πRmn

)
(20)

where k = 2π/λ, Rmn is the distance between the observation
point at r = (x, y, z) and the (m,n)th periodic source point at
rmn = (ma, nb, z), kt00 = (kx0, ky0, 0) is the transverse phas-
ing wave vector. By using Poisson’s formula, this spatial series
can be transformed to the following spectral series which has a
relatively rapid convergence

G(r) =
1

A

∞∑
p=−∞

∞∑
q=−∞

1

2jkzpq
e−jkzpq|z−z′|e−jktpq·r (21)

where A is the cross-sectional area of each lattice cell, ktpq =
(kx0 +

2πp
a , ky0 +

2πq
b , 0) is the transverse wavenumber, and

kzpq =
√

k2 − |ktpq|2. Since the series in (21) converges faster

than the series in (20), DS and further acceleration techniques
are usually applied to (21). The Kummer decomposition relies
on the fact that the summation in (21) can be accelerated by
subtracting the asymptotic behavior of the series as p and q tend
to infinity. By defining a parameter u such that k2pq = |ktpq|2 +
u2, the following asymptotic expression can be obtained:

lim
p,q→∞

(
1

jkzpq
e−jkzpq|z−z′|

)
=

1

kpq
e−kpq|z−z′|. (22)

By subtracting (22) from each term of the summation in
(21) and then by adding the series corresponding to the asymp-
totic expression, the series in (21) can be decomposed into two
series. Furthermore, the series corresponding to the asymptotic
expression can be transformed into a highly convergent series in
the spatial domain by applying Poisson’s formula. After apply-
ing Kummer decomposition and Poisson’s formula, the series
in (21) is decomposed into the following form [17]:

G(r)=
1

2A

∞∑
p=−∞

∞∑
q=−∞

[
e−jkzpq|z−z′|

jkzpq
− e−kpq|z−z′|

kpq

]
e−jktpq·r

+
1

4π

∞∑
m=−∞

∞∑
n=−∞

ejkt00·rmn
e−uRmn

Rmn
. (23)

The second series in (23) is rapidly converging due to the
attenuating factor u, and a few number of terms are enough to
evaluate this series accurately. Although the convergence of the
first series in (23) is accelerated by subtracting the asymptotic
term, it still needs to be accelerated. Generally, ST is used to
further accelerate this series. Here, instead of ST, the proposed
method is used to efficiently compute the first series, and their
performances are compared with the Ewald method.

When |z − z′| = 0, the summation converges only alge-
braically (not exponentially), and therefore, this worst case is
taken as the example in this study. We consider an example at
f = 1 GHz with a square lattice of dimension a = b = 0.6λ
and |z − z′| = 0. The source is assumed to be at the center
of the unit cell (x = y = 0), and the FSPGF is evaluated at
different observation points along the diagonal (x = y) of the
unit cell. First, Kummer decomposition is applied, then the ST
and the proposed method are used for the computation of the
first series in (23). In Fig. 10, the computation times of two
methods and the Ewald method that are obtained for a relative
error of 10−4, are compared. Since the analytical solution is
not available for the example, a reference result is obtained by
applying the Ewald method until machine precision is reached.
The results are then compared with the reference one. It can
be observed from Fig. 10 that the proposed method is more
efficient than the ST and Ewald method outperforms the two
others. However, it should be noted that the proposed method is
used in the computation of the FSPGF in order to demonstrate
its applicability to the evaluation of 2-D series, not to compete
with the computational efficiency of Ewald method. Moreover,
Ewald method can be used to accelerate the convergence of a
limited set of series satisfying certain properties, whereas the
proposed method is versatile.



KARABULUT et al.: NOVEL APPROACH FOR THE EFFICIENT COMPUTATION OF 1-D AND 2-D SUMMATIONS 1021

Fig. 10. Computation time comparison of three methods wrt. relative error of
10−4 for the calculation of 3-D FSPGF with 2-D periodicity evaluated on the
diagonal of the unit cell, |z − z′| = 0 and a = b = 0.6λ.

IV. CONCLUSION

In this study, we have presented a novel method to evalu-
ate 1-D and 2-D infinite, slowly converging summations and
integrals accurately and efficiently. The method is based on the
idea that the partial sums of a convergent summation have an
oscillating nature culminating in a zero frequency value, which
becomes the result of the summation. In order to acquire this
value, a series of partial sums is obtained and approximated in
terms of complex exponentials, from which the zero frequency
term corresponds to the end result. The method is applied to
some typical 1-D and 2-D examples taken from different EM
problems for the efficiency and accuracy verification.
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