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We consider the following problem: a principal has a good to allocate among a collection of agents who
attach a private value to receiving the good. The principal, instead of using monetary transfers (i.e. charg-
ing the agents) to allocate the good, can check the truthfulness of the agents’ value declaration at a cost.
Under the assumption that the agents’ valuations are drawn from a discrete set of values at random, we
characterize the class of optimal Bayesian mechanisms which are symmetric, direct and maximizing the
expected value of assigning the good to the principal minus the cost of verification using such standard
finite-dimensional optimization tools as linear programming and submodular functions, thus extending
the work of [R.V. Vohra, Optimization and mechanism design, Math. Program. 134 (2012), pp. 283–303].
Our results are discrete-type analogs of those of [E. Ben-Porath, E. Dekel, and B.L. LipmanBen-Porath,
Optimal allocation with costly verification, Amer. Econ. Rev. 104 (2014), pp. 3779–3813]. When the
distribution of valuations is not known but can be one of a set of distributions (the case referred to as
ambiguity), we compute a robust allocation mechanism by maximizing the worst-case expected value of
the principal in two cases amenable to solution with two suitable assumptions on the set of distributions.

Keywords: optimal allocation; costly inspection; ambiguity; linear programming; submodular functions;
implementation

1. Introduction

The goal of the present paper is to contribute to the closed-form solution of an important prob-
lem at the core of mathematical economics, game theory and microeconomics using well-known
tools of mathematical programming, namely linear programming and submodular functions, a
line of research essentially initiated by Vohra [17]. To appreciate the problem in a stylized sce-
nario, we consider the following application from [1]. Imagine the dilemma faced by the head
of an organization with different kinds of departments. A typical example is the dean of a fac-
ulty/school facing the decision to allocate a job slot to one of the departments. He/she naturally
wants to allocate the resource to the department which can put it to the best use in order to profit
the entire organization. All departments privately know that they can derive some profit from
the resource, and they all desire to claim the resource to be credited for the profit that would
ensue from the allocation. It is not logical to use monetary transfers in this problem since any
payment from departments lowers the profit that they can achieve for the organization. Therefore
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as Ben-Porath et al. [1] propose, he/she is given another tool, inspection of the claims made by
the departments. We can describe the usage of this tool in a game structure as follows: he/she
first asks departments to report the contribution that they can make if they claim the resource.
Then, according to the allocation rule of the game, he/she chooses the winner, and according
to the inspection rule he/she inspects the accuracy of its report. Inspection is error free but it
carries some cost. Therefore, he/she would be better off if he/she skipped the inspection in some
cases. The objective is to find the optimal mechanism consisting of the allocation and inspection
rules to maximize the organization’s total welfare. In other words, one wants to make an efficient
allocation and minimize the inspection cost at the same time.

The purpose of the present paper is to derive the optimal allocation/inspection mechanism
under discrete valuations and when the distribution of valuations is not known exactly but can
be one of a finite set of distributions. As is common in the literature on decision theory (see
e.g. the expected maxmin utility preferences of Gilboa and Schmeidler [10] or the more recent
smooth ambiguity model of Klibanoff et al. [12]) we shall refer to this situation as ambiguity.
While the main contribution of the present paper lies in the exploration of ambiguity aversion
for optimal allocation with costly inspection, we shall look first into the problem under discrete
valuations without ambiguity in Section 2 since the results derived in this section will be useful
in the subsequent section incorporating ambiguity. We shall treat the case where agents are sym-
metric as in [17]. Our work is different from [17] in two ways: (1) we work on a model different
from that of Vohra [17], (2) we give the exact optimal mechanism. Hence, our (more modest)
contribution in the first part of the paper is to make precise the earlier results of Vohra [17],
and derive using finite space optimization tools the recent results of Ben-Porath et al. [1]. An
earlier version of the paper also contained the solution for agents with different costs of inspec-
tion. In the interest of keeping the paper at a reasonable length, and since we are only using
the case of symmetric agents in the second part of the paper, we leave out the non-symmetric
case.1 In the second and main part of the paper in Section 4, we shall focus on dealing with
ambiguity in the problem, namely instead of assuming the type distribution is known exactly to
the head of the organization, we shall assume it can be any one of a finite number of distribu-
tions and look for a worst-case (max–min) optimal allocation/inspection mechanism. While we
are not aware of a worst-case-oriented study directly on the optimal allocation without monetary
transfers, robust mechanism and auction design is a subject treated in several papers; see, e.g.
[4–6,8,14]. Our departure point is the growing literature on robust optimization that started with
the pioneering papers of Ben-Tal and Nemirovski [2,3] where the constraints or the objective
function of a linear/convex optimization problem were affected by uncertainty, and a robust,
worst-case solution was sought while remaining in the domain of tractable convex optimization.
Against this background, we investigate the structure of the optimal allocation/inspection mech-
anism in the face of multiple (potential) distributions faced by the principal about the valuations
of the agents. Even in the simplest case of a finite number of distributions, it is challenging to
reveal the form of the optimal policy. However, under a suitable assumption of stochastic dom-
inance, we can infer the optimal policy. In the absence of the stochastic dominance assumption,
we give an algorithm whose output is, for some specified cases, optimal. For other cases it is
a close approximation that is easier to implement compared to the optimal solution. We give
a numerical example illustrating the performance of the algorithm, and compare the resulting
mechanism with the true optimal mechanism. The example shows that the optimal mechanism
in the relatively simpler case when an ambiguity averse principal is facing two possible dis-
tributions may violate some desirable monotonicity properties, and hence would be difficult to
implement. Our algorithm gives a simpler mechanism very close to the optimal and preserving
such properties.

A brief review of the literature pertaining to the problem treated in the present paper can be
found in [1]; see, e.g. the contributions in [7,9,11,15,16]. Since our paper focuses on the solution
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technique for the discrete valuations rather than the economic theory insights, we direct the
reader interested in the related literature to the references in [1].

2. Model

We assume a risk-neutral principal with a single good and n risk-neutral agents that have non-
negative private valuation for the good. These private valuations will be addressed as agents’
types and valuation of the principal is assumed to be 0. Define T = {1, 2, . . . , m} as the type
space whose discrete form will allow us to use linear programming. We have the common prior
assumption which means that the types of agents are independent draws from a commonly known
probability mass function f satisfying fi > 0 for all i ∈ T . We invoke the Revelation Principle
through which we focus on direct mechanisms only.

In the proposed model, we define the decision variable a(i, t−1) to be probability that agent
1 receives the good when he reports i and other agents report t−1 and s(i, t−1) to be probability
that agent 1 receives the good without inspection when he reports i and other agents report t−1.
Since we assume that all agents are symmetric, it is enough to consider only one agent. We
will also use the notation ai(t) and si(t) as allocation and inspection skipping probability for
agents who reported i in the profile t. Let π(t−1) denote the probability that agents other than
1 report types giving rise to profile t−1 and let ni(t) denote the number of type is in the profile
t. Non-negative variables A(i) and S(i) represent the expected allocation to type i and expected
inspection skipping variable for type i, respectively:

A(i) =
∑

t−1∈Tn−1

ai(i, t−1)π(t−1),

S(i) =
∑

t−1∈Tn−1

si(i, t−1)π(t−1).

The objective of the problem is to maximize expected utility from the allocation with inspection
in addition to the savings from not inspecting:

max
S,A,s,a

∑
i∈T

fi(i− K)A(i)+ K
∑
i∈T

fiS(i) (1)

s.t. iA(i) ≥ iS(j) ∀i, j ∈ T , (2)

A(i) =
∑

t−1∈Tn−1

ai(i, t−1)π(t−1) ∀i ∈ T , (3)

S(i) =
∑

t−1∈Tn−1

si(i, t−1)π(t−1) ∀i ∈ T , (4)

ai(t) ≥ si(t) ∀i ∈ T ∀t ∈ Tn, (5)∑
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ Tn, (6)

ai(t) ≥ 0 ∀i ∈ T ∀t ∈ Tn, (7)

si(t) ≥ 0 ∀i ∈ T ∀t ∈ Tn. (8)

We do not allow a negative amount of allocation in (7), and we only have one good to allocate
in (6). By constraints (5) and (8), it is obvious that the probability of getting the object without
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any inspection should be between 0 and the actual allocation value. Constraints (3) and (4) simply
ensure that expectation variables are consistent with the underlying mechanism.

Constraint (2) is the incentive compatibility constraint in which the left-hand side is the utility
of agent if he reports his type truthfully. There is no effect of inspection since he will keep his
object if we find out that he was truthful. However, on the right-hand side the utility of lying
is affected by the inspection. The principal will reclaim the good if the type was misreported.
Therefore, an agent can expect some utility from lying only if the principal chooses to skip
inspection.

2.1 Structure of the optimal solution

We first simplify the formulation. We ignore the si(i, t−1) variables for the time being, and focus
on the expected skipping variable. In this manner we can leave out the constraints (4), (5) and (8).
Besides, notice that in the constraint (2), multiplier i cancels out. We now apply Border’s theorem
to constraints (3), (6) and (7) to obtain

max
S,A

∑
i∈T

fi(i− K)A(i)+ K
∑
i∈T

fiS(i)

s.t. A(i) ≥ S(j) ∀i, j ∈ T ,

n
∑
i∈S

fiA(i) ≤ 1−
⎛
⎝∑

i�∈S
fi

⎞
⎠

n

∀S ⊆ T .

We conclude that the incentive compatibility constraint is satisfied if we have mink∈T A(k) ≥
S(j) for all j in T. Since there is no other constraint on S(j), and it has a positive coefficient in the
objective, we set it to its upper bound, mink∈T A(k) = S(j). In the optimal solution, we should
have either A∗(i) > mink∈T A∗(k) or A∗(i) = mink∈T A∗(k) for any i ∈ T . Therefore we will have
a partition for our type set such as

L =
{

i ∈ T | A∗(i) = min
k∈T

A∗(k)

}
,

U =
{

i ∈ T | A∗(i) > min
k∈T

A∗(k)

}
.

Now, we can make the following arrangements in the formulation. We set mink∈T A(k) = S(j)
for all j in T, which is the optimal solution. Besides, for all i in L, denote A(i) by mink∈T A(k)

which are equal in the optimal solution. This gives the problem:

max
A

∑
i∈U

fi(i− K)A(i)+
∑
i∈L

fi(i− K) min
k∈T

A(k)+ K min
k∈T

A(k)

s.t. n
∑
i∈S

fiA(i) ≤ 1−
⎛
⎝∑

i�∈S
fi

⎞
⎠

n

∀S ⊆ T .

As a final arrangement, set zi = fiA(i) for all i in U and set zl = mink∈T A(k)
∑

i∈L fi. Also define
f ′i = fi when i in U and f ′l =

∑
i∈L fi. Since we have a submodular function in our constraint,

we can find the optimal solution by the Greedy Algorithm. We start from the variable with the
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highest coefficient and set it to its tightest upper bound:

max
z

∑
i∈U

(i− K)zi +
(∑

i∈L fii+ (1−∑i∈L fi)K∑
i∈L fi

)
zl OPTi

s.t. n
∑
i∈S

zi ≤ 1−
⎛
⎝∑

i�∈S

f ′i

⎞
⎠

n

∀S ⊆ U ∪ {l}.

Proposition 1 In an optimal solution, one has mink∈T A(k) = A(1).

Proof Assume to the contrary that A∗(1) > mink∈T A∗(k). Then, there exists l ∈ T \ {1} such
that mink∈T A∗(k) = A∗(l). Then we should have 1 ∈ U . This means that in OPTi, coefficient of
z1 should be greater than coefficient of zl:

1− K > E[i | i ∈ L]+ (1−∑i∈L fi)K∑
i∈L fi

. (9)

This is obviously not possible since 1 < E[i | i ∈ L]. This is a contradiction. �

In order to explain the reasoning behind the use of sets U and L, let us consider the Greedy
Algorithm. Our formulation had incentive compatibility constraints, (IC), which prevent us from
utilizing the characteristic of submodular functions. We know that any optimization problem
constrained by submodular functions can be optimally solved by the Greedy Algorithm. There-
fore we assume that sets U and L optimally partition the type set so that when we apply the
Greedy Algorithm, IC constraints are automatically satisfied.

Now, we can describe more precisely the optimal solution by extending the result of Propo-
sition 1. In order to decide optimally whether a type belongs to set U or set L, we compare its
coefficients in both cases. The membership of a given type in L and U is decided according to
the amount of profit derived from this membership by the Greedy Algorithm. Let us consider the
following case for any type j ∈ T :

j− K >

(∑j
i=1 fii+ (1−∑j

i=1 fi)K∑j
i=1 fi

)
.

From the above inequality one infers that coefficient of type j when it is in set U is bigger
than its coefficient when it is in set L. Then it is more profitable to put it in set U. Since we
have a maximization problem, optimal solution should have j ∈ U . We define a function Q(i) :
T \ {1} → R in order to optimally partition the type set:

Q(i) = i− E[j | j ≤ i]− K∑
j≤i fj
= i−

(∑
j≤i fjj+ K∑

j≤i fj

)
.

We do not need to define function Q for type 1 since we know that type 1 is always in set L.
Notice that any type i is in the set U if Q(i) is strictly positive and it is in the set L otherwise. We
now show that the optimal cut-off which separates sets U and L can be deduced from function Q.

Proposition 2 Either function Q(i) is non-positive for all types or there is a unique i∗ > K
such that the function Q(i) is strictly positive when i ≥ i∗ and non-positive otherwise.
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Proof

Q(i+ 1) = i+ 1−
(∑

j≤i+1 fjj+ K

F(i+ 1)

)
= i+ 1−

(∑
j≤i fjj+ fi+1(i+ 1)+ K

F(i+ 1)

)

= i+ 1−
(

fi+1(i+ 1)

F(i+ 1)
+
∑

j≤i fjj+ K

F(i+ 1)

)
= F(i)(i+ 1)

F(i+ 1)
− F(i)(i− Q(i))

F(i+ 1)

= F(i)(1+ Q(i))

F(i+ 1)
.

In the end, we have:

Q(i+ 1) = F(i)(1+ Q(i))

F(i+ 1)
, Q(i) = F(i+ 1)Q(i+ 1)

F(i)
− 1.

This means that if there exists i such that Q(i) ≥ 0, then Q(i+ 1) is also positive. If Q(i+ 1) <

0, then Q(i) is also negative. Therefore, if we have a type i∗ ∈ T \ {1} where Q(i∗) ≥ 0 and
Q(i∗ − 1) < 0, then it is unique since for the types above i∗, Q(i) is positive, and it is negative
otherwise. Note that Q(i) is not necessarily monotone.

It is easy to see that cut-off i∗ is greater than K:

Q(i∗) = i∗ −
(∑

j<i∗ fjj+ K∑
j<i∗ fj

)
> 0

i∗ >

(∑
j<i∗ fjj+ K∑

j<i∗ fj

)
>

K∑
j<i∗ fj

> K.

Note that for large inspection cost K, it is possible to have negative Q(i) for all i in T. �

In order to find the optimal cut-off for the continuous-type space, we should find the type
where Q(i) = 0. This result is consistent with the results from [1].

We now use the Greedy Algorithm to find the optimal interim allocations of the formulation
OPTi. Obviously, above the cut-off, coefficient i−K is monotone. Setting variable zi to its tight-
est constraint will give the optimal solution as optimal interim allocations. Recall that we will
treat the variables that are under the cut-off as one variable, zl. Since type 1 is the minimum, let
us denote the variable which represents set L as z1. Consider the constraint when S=T which is
the tightest constraint on z1 in order to find the optimal solution:

z1 +
m∑

i=i∗

F(i)n − F(i− 1)n

n
≤ 1

n
⇒ z1 ≤ 1

n
− 1− F(i∗ − 1)n

n
= F(i∗ − 1)n

n
.

Therefore, we can give the optimal solution for the interim allocations whose monotonicity is
easy to prove:

A(i) =

⎧⎪⎪⎨
⎪⎪⎩

F(i)n − F(i− 1)n

fin
if i ≥ i∗

F(i∗ − 1)n−1

n
otherwise.

This solution is unique if we have Q(i∗) strictly positive. If it is equal to zero, then we are
indifferent between whether or not inspecting the type i∗. This case yields infinitely many optimal
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solutions where ϕ ∈ [F(i∗ − 1)n−1/n, F(i∗)n−1/n]:

A(i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F(i)n − F(i− 1)n

fin
if i > i∗,

F(i)n − nϕF(i− 1)

fin
if i = i∗,

ϕ otherwise.

Since the first introduced expected allocations are optimal for both cases, and Q(i∗) is less likely
to be exactly zero, we will consider the previous solution for the rest of the paper.

We know that allocating the good to the highest bidder is an allocation rule consistent with this
solution when the maximum bid is over the cut-off. Otherwise it is optimal to equally distribute
the good to all agents, or in other words, choose the winner with a lottery where all agents have
1/n winning probability:

A(1) = 1

n
· P(other agents bid under the cut-off) = F(i∗ − 1)n−1

n
.

In order to completely characterize an optimal mechanism, we should also define an opti-
mal inspection skipping rule. We know that A(1) = S(j) for all j in T, which allows us to set
ai(1, t−1) = si(j, t−1) for all j in T and t−1 in Tn−1. It means that we can skip allocation with
probability 1/n if all other agents bid under the cut-off. Note that optimal inspection skipping
rule is only dependent on the profile of other agents:

a∗i (i, t−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ni(t)
if i ≥ maxk∈t−1 k and i ≥ i∗,

1

n
if maxk∈t−1 k < i∗and i < i∗,

0 otherwise,

s∗i (i, t−1) =
⎧⎨
⎩

1

n
if maxk∈t−1 k < i∗,

0 otherwise.

In this mechanism, we allocate the good to the maximum bid if it is above the cut-off and we
randomize the allocation if everyone bid under the cut-off. The inspection certainly takes place
if there is more than one bid over the cut-off. If there was one bid over the cut-off, then we skip
the inspection with probability 1/n. If there is no bid above the cut-off, we allocate everyone 1/n
and skip the inspection for all with probability 1/n. Since there is no inspection skipping when
there is no allocation, conditional probability says: do not inspect at all.

With the above derivations we gave the exact structure of the optimal mechanism. In [17], it
is stated that there exists a cut-off, above which we award the object to the highest bidder and
inspect with positive probability. Under the cut-off, randomize the object and do not inspect.
However, Vohra [17] does not give the optimal cut-off nor the optimal inspection probability
while our description is complete.

Our result is consistent with the results of Ben-Porath et al. [1]. They do not assume symmetric
agents so that as the optimal mechanism, they have a favoured-agent mechanism which we also
derive but omit here since in this paper we focus on the symmetric case. One can generalize the
results of this section by introducing allocation and inspection skipping variables for all agents,
and then use the Greedy Algorithm. In favoured-agent mechanism, there is a favourite agent
who gets the good whenever no agent bids over the cut-off. The choice of favourite agent is
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dependent on a function which has distribution f and inspection cost K as its inputs. Note that
this function is the continuous version of Q(i) from Proposition 2. Since we assume that these
inputs are identical for all agents, it is optimal to choose any of them as favourite agent or to
allocate them equally.

3. Optimal mechanism under ambiguity

In optimal auction mechanism literature, it is a common assumption that bidders’ valuations are
independently drawn from a unique distribution. We now relax this common priors assumption
and investigate the form of optimal allocation/inspection mechanism for an ambiguity averse
principal who believes that valuation distribution is a random outcome from a discrete set of
distributions P . The principle is given the information that there are n ambiguity neutral agents
of whom each has a unique prior from the same distribution set P . Here we study the problem
from the previous section but this time the principle needs to design a mechanism that is incentive
compatible with respect to all distributions in P and maximizing the worst-case expected profit
over all distributions in P . We will continue to make use of linear programming and submodular
optimization.

As in the previous section, we assume symmetry among the agents so that they have the same
inspection cost. Again we focus on direct mechanisms as in [8]. Let us consider the formulation
where our objective is to maximize the worst-case social welfare:

max
S,A,s,a

{
min
f ∈P

∑
i∈T

fi(i− K)Af (i)+ K
∑
i∈T

fiSf (i)

}

s.t. Af (i) ≥ Sf (j) ∀i, j ∈ T , ∀f ∈ P
Af (i) =

∑
t−1∈Tn−1

ai(i, t−1)πf (t
−1) ∀i ∈ T , ∀f ∈ P

Sf (i) =
∑

t−1∈Tn−1

si(i, t−1)πf (t
−1) ∀i ∈ T , ∀f ∈ P

ai(t) ≥ si(t) ∀i ∈ T ∀t ∈ Tn∑
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ Tn

ai(t) ≥ 0 ∀i ∈ T ∀t ∈ Tn

si(t) ≥ 0 ∀i ∈ T ∀t ∈ Tn.

We drop the si(t) variables and introduce a variable y in order to linearize the formulation:

max
S,A,a,y

y OPTa (10)

s.t. y ≤
∑
i∈T

fi(i− K)Af (i)+ K
∑
i∈T

fiSf (i) ∀f ∈ P (11)

Af (i) ≥ Sf (j) ∀i, j ∈ T , ∀f ∈ P (12)

Af (i) =
∑

t−1∈Tn−1

ai(i, t−1)πf (t
−1) ∀i ∈ T , ∀f ∈ P (13)
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∑
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ Tn (14)

ai(t) ≥ 0 ∀i ∈ T , ∀t ∈ Tn. (15)

3.1 The solution approach

It is obvious that if the optimal mechanism for an f ∈ P , when it is the common prior, has the
same cut-off as all other distributions in P , then the same mechanism is optimal for the ambiguity
averse principal. Again consider the optimal mechanism for f when it is the common prior. If
distribution f attains worst case when constraint (11) is checked, then this solution is optimal.
Since these results were proved in a previous paper [13] for the robust auction design problem,
we omit them here.

Regarding the effect of the ambiguity aversion on the likelihood of inspection, one can say that
it may increase the likelihood of inspection with respect to one distribution in P and decrease it
with respect to another. This is because the optimal mechanism of an ambiguity averse decision-
maker should have a threshold that is between the thresholds of the distributions in P . Besides,
optimal mechanism may have expected allocation variables violating monotonicity for some
prior.

We will now show that if there is a distribution in P which is first-order stochastically dom-
inated by all other distributions, we can solve the problem considering only that dominated
distribution. Recall that f first-order stochastically dominates g if and only if we have F(i) ≤ G(i)
for all i and with a strict inequality at some i. This means that the probability distribution for f is
more concentrated on the highest types.

Theorem 1 If g ∈ P is first-order stochastically dominated by all f ∈ P \ {g}, then the
following is the optimal mechanism where t∗g is the optimal cut-off for distribution g:

a∗i (i, t−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ni(t)
if i ≥ max

k∈t−1
k and i ≥ t∗g ,

1

n
if max

k∈t−1
k < t∗g and i < t∗g ,

0 otherwise,

s∗i (i, t−1) =
⎧⎨
⎩

1

n
if max

k∈t−1
k < t∗g ,

0 otherwise.

Proof Firstly, this mechanism is feasible for all f ∈ P . Note that it is the optimal solution if
we have g as the unique prior. Therefore, if we show that g ∈ P is the worst case then we
complete the proof because the given mechanism yields the maximum utility for g and it cannot
be improved.

Let us consider the constraint (11) with expected allocations obtained from this mechanism.
This is for all f in P:

y ≤
m∑

i=t∗g

(i− K)
F(i)n − F(i− 1)n

n
+

t∗g−1∑
i=1

fi(i− K)
F(t∗g − 1)n−1

n
+ K

F(t∗g − 1)n−1

n
.

We define a parameter ν i
f =

∑i−1
j=1 fjj+ K/F(i− 1) which can be described as a valuation for the

set of types that are strictly below i if they were not to be inspected when the distribution is f.
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Then we rearrange the right-hand side:

m∑
i=t∗g

(i− K)
F(i)n − F(i− 1)n

n
+

t∗g−1∑
i=1

fii
F(t∗g − 1)n−1

n
+ (1− F(t∗g − 1))K

F(t∗g − 1)n−1

n

=
m∑

i=t∗g

(i− K)
F(i)n − F(i− 1)n

n
+ (ν

t∗g
f − K)

F(t∗g − 1)n

n

= (m− K)
1n − F(m− 1)n

n
+ · · · (t∗g − K)

F(t∗g)
n − F(t∗g − 1)n

n
+ (ν

t∗g
f − K)

F(t∗g − 1)n

n

= (m− K)

n
−

m−1∑
i=t∗g

F(i)n

n
− (t∗g − ν

t∗g
f )

F(t∗g − 1)n

n
. (16)

Now we can compare this value for g and any f that first-order stochastically dominates g. If we

have ν
t∗g
f ≥ ν

t∗g
g then the following is obvious since we have F(i) ≤ G(i) for all i in T and F(j) <

G(j) for some j in T. The right-hand side of constraint (11) for f is bigger than the right-hand
side of constraint (11) for g:

−
m−1∑
i=t∗g

G(i)n

n
− (t∗g − ν

t∗g
g )

G(t∗g − 1)n

n
< −

m−1∑
i=t∗g

F(i)n

n
− (t∗g − ν

t∗g
f )

F(t∗g − 1)n

n
. (17)

When ν
t∗g
f < ν

t∗g
g , we distinguish two cases. The first one is if F(t∗g − 1) = G(t∗g − 1). Now, check

the ν values:

∑t∗g−1
i=1 fii+ K

F(t∗g − 1)
<

∑t∗g−1
i=1 gii+ K

G(t∗g − 1)
⇒

∑t∗g−1
i=1 fii

F(t∗g − 1)
<

∑t∗g−1
i=1 gii

G(t∗g − 1)
,

t∗g−1∑
i=1

fi
F(t∗g − 1)

i <

t∗g−1∑
i=1

gi

G(t∗g − 1)
i.

Define fi/F(t∗g − 1) as a new distribution which will also dominate gi/G(t∗g − 1) or they will
be exactly the same. In both cases, this expectation violates the assumption that f first-order

stochastically dominates g. We cannot have ν
t∗g
f < ν

t∗g
g and F(t∗g − 1) = G(t∗g − 1) at the same

time.
Consider the case when ν

t∗g
f < ν

t∗g
g and F(t∗g − 1) < G(t∗g − 1). Again inspect the ν values:

∑t∗g−1
i=1 fii+ K

F(t∗g − 1)
<

∑t∗g−1
i=1 gii+ K

G(t∗g − 1)
.

For this to be true the following inequality should hold:

K <
F(t∗g − 1)

∑t∗g−1
i=1 gii− G(t∗g − 1)

∑t∗g−1
i=1 fii

G(t∗g − 1)− F(t∗g − 1)
. (18)
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We will use this inequality in comparing constraints (11) of distributions. We wanted to show the
following where denominator n is cancelled out from inequality (17):

−
m−1∑
i=t∗g

G(i)n − (t∗g − ν
t∗g
g )G(t∗g − 1)n < −

m−1∑
i=t∗g

F(i)n − (t∗g − ν
t∗g
f )F(t∗g − 1)n,

ν
t∗g
g G(t∗g − 1)n − ν

t∗g
f F(t∗g − 1)n − t∗g(G(t∗g − 1)n − F(t∗g − 1)n) <

m−1∑
i=t∗g

G(i)n − F(i)n.

We know that the right-hand side is non-negative. Consider the left-hand side which is equal to

following if we replace ν
t∗g
f with

∑t∗g−1
i=1 fii+ K/F(t∗g − 1) and ν

t∗g
g with its respective value:

G(t∗g − 1)n−1

t∗g−1∑
i=1

gii− F(t∗g − 1)n−1

t∗g−1∑
i=1

fii+ (G(t∗g − 1)n−1 − F(t∗g − 1)n−1)K

− t∗g(G(t∗g − 1)n − F(t∗g − 1)n).

Since we know that K is bounded from inequality (18), the expression above is less than the
following: (this follows by using the bound on K and making some simplifications)

(G(t∗g − 1)n − F(t∗g − 1)n)

∑t∗g−1
i=1 (gi − fi)(i− t∗g)

G(t∗g − 1)− F(t∗g − 1)
.

Recall that we are studying the case where F(t∗g − 1) < G(t∗g − 1). Therefore, G(t∗g − 1)n −
F(t∗g − 1)n and G(t∗g − 1)− F(t∗g − 1) are positive. Let us consider

∑t∗g−1
i=1 (gi − fi)(i− t∗g):

t∗g−1∑
i=1

(gi − fi)(i− t∗g) = (G(1)− F(1))(1− t∗g)+ (G(2)− F(2)− (G(1)− F(1)))(2− t∗g)+ · · ·

+ (G(t∗g)− F(t∗g)− (G(t∗g − 1)− F(t∗g − 1)))(t∗g − 1− t∗g),

= −
t∗g−1∑
i=1

G(i)− F(i) < 0.

This bound turns out to be negative. Therefore, the left-hand side we investigated is definitely
less than the non-negative right-hand side

∑m−1
i=t∗g

G(i)n − F(i)n. It means that inequality (17) is
satisfied for this case as well. There is no other case so we proved that the dominated distribution
g is the worst case and the given mechanism is optimal. �

When stochastic dominance does not hold, we shall see below on a numerical example that
the optimal mechanism may not resemble any well-known mechanism. A critical issue is that
the optimal mechanism may violate monotonicity. As a partial remedy, we propose an algorithm
below for the case P = {h, g} where an approximately optimal (in the sense that we bound
the error in the objective function), and monotonicity preserving mechanism is calculated. The
algorithm works as follows. Since we can easily deduce the optimal cut-offs for each distribu-
tion by Proposition 2, Algorithm 1 starts with the optimal mechanism for the distribution with
the maximum cut-off. Then it calculates the corresponding utilities for each distribution, and
finds the worst case. Then it improves the worst case by increasing the allocation to types that
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are above the optimal cut-off for the worst-case distribution. If the algorithm stops at the first if
clause, it means that it increased the worst case to its optimal value and arrived at the optimal
cut-off of the worst-case distribution, which means that worst-case utility cannot be improved
further. Otherwise, it defines a mechanism in the second if clause so that the expected utilities
for both distributions are equal to each other.

Before moving forward, recall the definition of the notation ν i
f which is a valuation for the set

of types that are strictly below i if they were not to be inspected when the distribution is f. We

also define ν∗f = ν
t∗f
f where t∗f is the optimal cut-off for the common prior f.

ν i
f =

∑i−1
j=1 fjj+ K

F(i− 1)
. (19)

In order to clarify the meaning of this valuation, we can consider its relation with the function
Q(i) from Proposition 2:

Q(i) = i−
(∑

j<i fjj+ K∑
j<i fj

)
> 0 iff i− ν i

f > 0. (20)

Theorem 2 When P = {h, g}, Algorithm 1 gives the optimal solution if it stops at the first if
clause. It gives an approximate solution with value not less than (1− 1/(minf ∈P

∑m
j=1 fjj)) times

the optimal value if it stops at the second if clause.

Proof If the algorithm stopped at the first if clause where ν∗ = ν∗f , then we have a mechanism
which is the optimal solution to the worst-case distribution. Therefore, the given mechanism is
optimal for maximizing the worst-case utility.

The plan for the rest of proof is as follows: we will first show that the allocation rule from the
second if clause is feasible. Then we will prove that it gives an approximate solution.

For the second if clause, without getting into the while clause it is not possible to satisfy
ν∗ < ν∗f . In the while clause, ν∗ at least gets the value of ν∗f which gives the optimum cut-
off of the minimum objective at that time, and then the mechanism changes, which means that
the condition ν∗ < ν∗f is satisfied only if the minimum objf also changes after the change of
mechanism. Then we can assume that the last update on ν∗ changes the worst case from g to h
or vice versa. Therefore, using the rearranged version of constraint (11) in (16), the following
holds. Without loss of generality assume that objh is the worst case for the allocation with cut-off
i∗:

−
m−1∑

i=i∗+1

H(i)n

n
− (i∗ + 1− ν i∗+1

h )
H(i∗)n

n
> −

m−1∑
i=i∗+1

G(i)n

n
− (i∗ + 1− ν i∗+1

g )
G(i∗)n

n
, (21)

−
m−1∑
i=i∗

H(i)n

n
− (i∗ − ν i∗

h )
H(i∗ − 1)n

n
< −

m−1∑
i=i∗

G(i)n

n
− (i∗ − ν i∗

g )
G(i∗ − 1)n

n
.

The first inequality is the relation between constraint (11)’s value for each distribution when
allocation with cut-off i∗ + 1 is undertaken. Since our algorithm did not give this mechanism
as a solution then the distribution g achieving the worst case can be improved. In other words,
ν∗ > ν∗f is satisfied. Since g attains the worst case we have ν∗f = ν∗g . After an update in while
clause, we have ν∗ ≤ i∗ and ν∗ is not less than ν∗g . Since the algorithm goes through with second
‘if’ condition, our worst-case objective is not g anymore but h. The second inequality above
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Algorithm 1 An approximate mechanism when P = {h, g}
1: Initialize:

ν∗ ← max
k∈P
{ν∗k }

ν∗f ← 1

2: while ν∗ > ν∗f do
3:

ν∗ =
{

ν∗ if ν∗f = 1

max {ν∗ − 1, ν∗f } otherwise

4:

Af (i) =

⎧⎪⎪⎨
⎪⎪⎩

F(i)n − F(i− 1)n

fin
if i ≥ ν∗

F(i∗ − 1)n−1

n
where i∗ = min

j∈T ,j≥ν∗
j

5:

objh ←
∑
i∈T

hi(i− K)Ah(i)+ KAh(1)

objg ←
∑
i∈T

gi(i− K)Ag(i)+ KAg(1)

6:

ν∗f =
{

ν∗h if objh = min
k∈P

objk

ν∗g otherwise

7: end while
8: if ν∗ = ν∗f then
9: Stop at the current solution

10: else
11: if ν∗ < ν∗f then
12: i∗ ← min

j∈T ,j≥ν∗
j

13: x← n(objh−objg)

G(i∗−1)(G(i∗)n−1−G(i∗−1)n−1)(ν i∗
g −i∗)−H(i∗−1)(H(i∗)n−1−H(i∗−1)n−1)(ν i∗

h −i∗)
14:

ai(i, t−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ni(t)
if i ≥ maxk∈t−1 k and i > i∗

(1− n− ni(t)

n
x)/ni(t) if i = max

k∈t
k = i∗

x

n
if i < maxk∈t−1 k = i∗

1

n
if max

k∈t
k < i∗

0 otherwise

15: Stop at the current solution
16: end if
17: end if
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shows this relation when we have allocation with cut-off i∗. Note that ν i∗+1
g and ν i∗

h values are
given by Equation (19).

The first inequality above can be achieved by the algorithm’s allocation when x= 1 and the
second inequality is given by the same allocation when x= 0. Next we will show that the value
given to x by Algorithm 1 results in obj∗h = obj∗g. Since these functions are linear, we can say that
0 ≤ x ≤ 1 and the given allocation rule is feasible. Let

A∗g(i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(i)n − G(i− 1)n

ngi
if i ≥ i∗ + 1,

G(i∗)n − G(i∗ − 1)n

ngi∗
− G(i∗)n−1G(i∗ − 1)− G(i∗ − 1)n

ngi∗
x if i = i∗,

G(i∗ − 1)n−1

n
+ G(i∗)n−1 − G(i∗ − 1)n−1

n
x otherwise.

This interim allocation is consistent with the allocation given by the algorithm. In order to check,
set x=1 and x= 0 to get the values G(i∗)n−1/n and G(i∗)n − G(i∗ − 1)n/ngi∗ for A∗g(i

∗), respec-
tively. Let us consider the obj∗g that resulted from the algorithm’s allocation: (We will also use
the last given values to objg and objh from the algorithm.)

obj∗g =
(m− K)

n
−

m−1∑
i=i∗+1

G(i)n

n
− (i∗ + 1− K)

G(i∗)n

n

+ gi∗(i
∗ − K)

(
G(i∗)n − G(i∗ − 1)n

ngi∗
− G(i∗)n−1G(i∗ − 1)− G(i∗ − 1)n

ngi∗
x

)

+ G(i∗ − 1)(ν i∗
g − K)

(
G(i∗ − 1)n−1

n
+ G(i∗)n−1 − G(i∗ − 1)n−1

n
x

)

= (m− K)

n
−

m−1∑
i=i∗+1

G(i)n

n
− (i∗ + 1− K)

G(i∗)n

n
+ gi∗(i

∗ − K)
G(i∗)n − G(i∗ − 1)n

ngi∗

+ (ν i∗
g − K)

G(i∗ − 1)n

n
+ x

(
G(i∗ − 1)

G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)
)

= (m− K)

n
−

m−1∑
i=i∗

G(i)n

n
− (i∗ − ν i∗

g )
G(i∗ − 1)n

n

+ x

(
G(i∗ − 1)

G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)
)

= objg + x

(
G(i∗ − 1)

G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)
)

.

This equality is also true for obj∗h. Let us find the value of x when obj∗g = obj∗h:

objg + x

(
G(i∗ − 1)

G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)
)

= objh + x

(
H(i∗ − 1)

H(i∗)n−1 − H(i∗ − 1)n−1

n
(ν i∗

h − i∗)
)

,
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x

(
G(i∗ − 1)

G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)− H(i∗ − 1)

× H(i∗)n−1 − H(i∗ − 1)n−1

n
(ν i∗

h − i∗)
)
= objh − objg,

x = n(objh − objg)

G(i∗ − 1)(G(i∗)n−1 − G(i∗ − 1)n−1)(ν i∗
g − i∗)

−H(i∗ − 1)(H(i∗)n−1 − H(i∗ − 1)n−1)(ν i∗
h − i∗)

.

This is the exact value given to x. Therefore, we have a feasible allocation and obj∗h = obj∗g.
In order to prove the performance of the mechanism given in the second if clause, we will

show some upper bounds on the optimal solution. Without loss of generality assume that ν∗h =
maxf ∈P{ν∗f } and recall the arguments regarding the inequalities in (21).

Claim 1 Optimal solution of the OPTa in (10) has the following upper bound:

y∗ ≤ max

{
objh +

(
H(i∗ − 1)

H(i∗)n−1 − H(i∗ − 1)n−1

n
(ν i∗

h − i∗)
)

, objg

}
.

Proof We can rewrite the inequalities in (21) as:

objh +
(

H(i∗ − 1)
H(i∗)n−1 − H(i∗ − 1)n−1

n
(ν i∗

h − i∗)
)

> objg

+
(

G(i∗ − 1)
G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)
)

,

objh < objg.

First inequality gives the relation between expected utilities for h and g when we allocate accord-
ing to cut-off i∗ + 1 and the second inequality is similarly calculated with respect to cut-off i∗. In
order to get these values one can also set x to 1 and 0, respectively. Now we compare the alloca-
tion rule that gives the second inequality and the optimal allocation rule when h is the common
prior:

ai(i, t−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ni(t)
if i ≥ max

k∈t
k ≥ i∗,

1

n
if i ≤ max

k∈t
k < i∗,

0 otherwise,

a∗hi (i, t−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ni(t)
if i ≥ max

k∈t
k ≥ t∗h ,

1

n
if i ≤ max

k∈t
k < t∗h ,

0 otherwise.

Recall our assumption, ν∗h = maxf ∈P{ν∗f }, and the definition of i∗ from Algorithm 1, i∗ ≤ ν∗h .
Notice that above allocations have the same values for i ≥ maxk∈t k ≥ t∗h and i ≤ maxk∈t k < i∗.
Therefore, it is not possible to improve the worst case, objh, by changing these variables. This is
because of the fact that when we consider only distribution h, objective becomes additively sep-
arable in allocation rule variables. Then objh can be improved only by altering ai(i, t−1) variables
where t∗h > i ≥ maxk∈t k ≥ i∗. However, these variables have the same values as the in optimal
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allocation for common prior g since i∗ ≥ ν∗g holds by definition:

a∗gi (i, t−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ni(t)
if i ≥ max

k∈t
k = t∗g ,

1

n
max

k∈t
k < t∗g ,

0 otherwise,

which means that improving the worst case will decrease objg. Now suppose that we switched to
allocation rule with cut-off i∗ + 1 which will result in the first inequality above. Then using the
same reasoning worst case for prior g cannot be improved without decreasing the utility for h.
Therefore, we conclude that

y∗ ≤ max

{
objg, objh +

(
H(i∗ − 1)

H(i∗)n−1 − H(i∗ − 1)n−1

n
(ν i∗

h − i∗)
)}

. �

Now we can prove the performance of the mechanism given by Algorithm 1 in the second if
clause. We know that the following inequalities hold:

objg + x

(
G(i∗ − 1)

G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)
)

> objg

+
(

G(i∗ − 1)
G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)
)

,

objh + x

(
H(i∗ − 1)

H(i∗)n−1 − H(i∗ − 1)n−1

n
(ν i∗

h − i∗)
)

> objh,

y∗ ≤ max

{
objg, objh +

(
H(i∗ − 1)

H(i∗)n−1 − H(i∗ − 1)n−1

n
(ν i∗

h − i∗)
)}

.

Let X denote the left-hand side of the first two inequalities, i.e. utility of mechanism given by the
second if clause of the algorithm. Then the following is also true:

X > max

{
objg +

(
G(i∗ − 1)

G(i∗)n−1 − G(i∗ − 1)n−1

n
(ν i∗

g − i∗)
)

, objh

}
.

If we divide the left-hand side of this inequality by y∗ and divide the right-hand side with the
upper bound of y∗, direction of the inequality would be the same:

X

y∗
>

max
{

objg +
(

G(i∗ − 1)G(i∗)n−1−G(i∗−1)n−1

n (ν i∗
g − i∗)

)
, objh

}
max

{
objg, objh +

(
H(i∗ − 1)H(i∗)n−1−H(i∗−1)n−1

n (ν i∗
h − i∗)

)} ,

X > min{Y , Z}y∗, where,

Y =
objg +

(
G(i∗ − 1)G(i∗)n−1−G(i∗−1)n−1

n (ν i∗
g − i∗)

)
objg

,

Z = objh

objh +
(

H(i∗ − 1)H(i∗)n−1−H(i∗−1)n−1

n (ν i∗
h − i∗)

) .
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Recall our assumption ν∗h ≥ i∗ ≥ ν∗g which also refers to t∗h ≥ i∗ ≥ t∗g . Then we can say ν i∗
h ≥

i∗ ≥ ν i∗
g because of the property of function Q(i) explained in Proposition 2. Therefore both Y

and Z are less than 1. Now we will simplify the approximation ratio. Y and Z can be interpreted
as the ratio of the utility for one agent to his improved utility when the strategy for one type is
changed. If we consider the highest possible change, i.e. from no allocation to full allocation to
some type i, it is easy to see that expected improvement to one agent’s expected utility can be at
most 1/n: (illustrating with Y )

Y =
objg +

(
G(i∗ − 1)G(i∗)n−1−G(i∗−1)n−1

n (ν i∗
g − i∗)

)
objg

>
objg − 1/n

objg
.

Besides objg value, expected utility for one agent cannot be worst than utility given by a
randomized mechanism: objg ≥ (

∑m
j=1 gjj)/n. Therefore the following holds:

Y >
objg − 1/n

objg
> 1− 1/

⎛
⎝ m∑

j=1

gjj

⎞
⎠ .

Using the same method on Z, one can deduce that the given mechanism has value at least (1−
1/(minf ∈P

∑m
j=1 fjj)) times the optimal value. �

In the second mechanism, the algorithm allocates the good to the highest bid if it is strictly
above cut-off i∗. If the highest bid is exactly i∗, then we decide the allocation after a lottery
where the highest bidder has a bigger chance of winning. Under the cut-off, we allocate the good
randomly.

Both mechanisms offered by Algorithm 1 give simple, applicable mechanisms with monotone
interim allocations. Algorithm 1 computes the cut-off and the allocation probabilities. We again
deduce the inspection skipping rule from the equality ai(1, t−1) = si(j, t−1) for all j in T and t−1

in Tn−1, which returns expected inspection skipping rules equal to Af (1) for all f ∈ P .
We now consider a numerical example to illustrate the performance of the second mechanism.

Example 1 We have two agents and P = {h, g}. Inspection cost is K= 0.1, type set is T =
{1, 2, . . . , 10} and density functions are as follows:

hi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.1001 if i = 1

0.0001 if i = 2

0.0001 if i = 3

0.0001 if i = 4

0.0001 if i = 5

0.0001 if i = 6

0.4001 if i = 7

0.4991 if i = 8

0.0001 if i = 9

0.0001 if i = 10,

gi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.005 if i = 1

0.005 if i = 2

0.005 if i = 3

0.005 if i = 4

0.005 if i = 5

0.33 if i = 6

0.27 if i = 7

0.27 if i = 8

0.1 if i = 9

0.005 if i = 10.

If we solve for distributions separately, we get optimal cut-offs t∗h = 2 and t∗g = 7. Recall that
optimal mechanism allocates the good to the highest type if it is above the cut-off, otherwise it
will randomize. Optimal inspection policy is to skip inspection if all types fall below the cut-off
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and with probability 1/n skip inspection if there is only one type above the cut-off. Inspection
takes place for all other cases.

Returning to the ambiguity averse principal’s problem with two distributions, the optimal solu-
tion for interim allocation variables (obtained by solving numerically the linear program) are
given below:

Ah(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(i)2 − H(i− 1)2

2hi
if i ≥ 7,

0.058 if i = 6,

0.1 if i = 5,

0.1 if i = 4,

0.1 if i = 3,

0.05 if i = 2,

0.05 if i = 1,

Ag(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(i)2 − G(i− 1)2

2gi
if i ≥ 7,

0.18 if i = 6,

0.144 if i = 5,

0.144 if i = 4,

0.144 if i = 3,

0.144 if i = 2,

0.144 if i = 1.

Optimal values of expected inspection skipping variables are

Sh(i) = 0.05 ∀i ∈ T , Sg(i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.144 if i ≥ 6 or i = 1,

0.141 if i = 5,

0.136 if i = 4,

0.131 if i = 3,

0.129 if i = 2.

The optimal objective value for the worst-case utility is 3.799727. First of all, optimal inspec-
tion skipping for g is not always equal to Ag(1). Secondly, underlying allocation rule is designed
in a way that expected allocation for type 6 breaks the monotonicity for distribution f but not
for g. We can conclude that implementing the underlying allocation and inspection policy is not
easy.

For this example, Algorithm 1 cannot find the optimal solution but promises a mechanism
whose objective value is not less than 0.85502 times the optimal solution. However, its actual
performance is much better. Below we give the algorithm’s allocation and the inspection skipping
rules whose actual value is 3.799698, i.e. 0.999992 multiple of the optimal objective:

a∗i (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i > j and i ≥ 7,
1
2 if i = j and i ≥ 7,

0.815 if i = 6 > j,
1
2 if i = j = 6,

0.185 if i < j = 6,
1
2 if i < 6 and j < 6,

0 otherwise,

s∗i (i, j) =

⎧⎪⎨
⎪⎩

0.185 if j = 6,
1
2 if j < 6,

0 otherwise.

For ease of notation, the value given to x=0.392234 by Algorithm 1 is changed to 0.39. In
order to understand the allocation rule above, consider a mechanism with cut-off equal to 6.
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Algorithm 1 only changes the way type 6 is allocated so that the worst case is increased. In this
example, for profile with a maximum type equal to 6, allocation to 6 is decided by a lottery with
probability 0.815 so that the inspection skipping rule for those profiles and the utility for g is
increased. Recall that optimal cut-offs were t∗h = 2 and t∗g = 7.

4. Concluding remarks

In this paper, we considered the problem of optimal allocation under costly inspection (without
monetary transfers) of an ambiguity averse principal facing a number of potential distributions
that may govern the agents’ discrete valuations. We first formulated the problem without ambi-
guity in the valuation distribution, and derived the optimal mechanism for the case where the
inspection cost is identical for all agents. Then, we investigated the optimal mechanism when
ambiguity in the valuation distribution is present, and the principal maximizes his/her worst-case
expected utility. Under a stochastic dominance condition, we are able to give the optimal mecha-
nism for an arbitrary number of potential distributions. When the stochastic dominance condition
does not hold, we gave an algorithm for an arbitrary number of agents, but two potential distri-
butions. The algorithm either gives the optimal mechanism or a very close approximation with
desirable monotonicity properties. The approximation ratio depends on the distributions in the
prior set. Therefore, we consider providing a constant approximation ratio as a future work as
well as extending the results (Theorem 2) of the present paper to an arbitrary number of dis-
tributions, allowing ambiguity averse agents and other ambiguity models such as the smooth
ambiguity model of [12].
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