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Abstract
The objective of this contribution is to formulate generalized interfaces in a variationally consistent manner within a
finite deformation continuum mechanics setting. The general interface model is a zero-thickness model that represents
the finite thickness “interphase” between different constituents in a heterogeneous material. The interphase may be the
transition zone between inclusion and matrix in composites or the grain boundaries in polycrystalline solids. The term
“general” indicates that the interface model here accounts for both jumps of the deformation as well as the traction
across the interface. Both the cohesive zone model and elastic interface model can be understood as two limits of the
current interface model. Furthermore, some aspects of material modeling of generalized interfaces are elaborated and a
consistent model is proposed. Finally, the proposed theory is elucidated via a series of numerical examples.
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1. Introduction
Almost all materials at a certain scale of observation possess heterogeneous micro-structures. Homogenization
pioneered by Hill [1, 2] and Ogden [3] has proven to be a powerful tool to link the overall material response at
the macro-scale to the behavior of its constituents at the micro-scale. Computational homogenization is a mature
field and has been thoroughly reviewed in [4–8]. In a heterogeneous micro-structure, the interphases between
various constituents play a crucial role in the overall material response and cannot be neglected. The finite
thickness interphase can be sufficiently approximated by a zero-thickness interface model. The main objective
of this contribution is to formulate generalized interfaces in a variationally consistent manner. Note that the
idea behind this contribution relies heavily on the seminal work of Hashin [9] where he distinguishes between
perfect and imperfect interface models. Furthermore, McBride et al. [10] show that classical interface models
cannot capture the response of heterogeneous material layers; see Figure 1. However, a distinct feature here is to
formulate the general interface model from a variational perspective within a finite deformation setting and also
to elucidate the theory using computational simulations. Undoubtedly, emerging applications of nano-materials
will require better understanding of interfaces since the influence of lower-dimensional media on the overall
material response increases with decreasing size. See Figure 2 for an illustration of a size effect due to the
presence of interfaces.
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Figure 1. Motivation for the need for a general interface model. Homogenization of heterogeneous material layers explains why
even the simplest elastic response requires a generalized interface model to be properly captured [10]. The zero-thickness interface
model (left) is representative of a finite thickness interphase (right).

Figure 2. Illustration of the interplay between the micro-structure dimension � and physical dimension d. Decreasing the micro-
structure dimension leads to an increase of the interface/bulk ratio and, hence, the interface effect on the overall material response.
The ratio of the energy densities depends solely on the material, but the area-to-volume ratio is proportional to the inverse of the
problem dimension. Note that an interface is a two-dimensional manifold in the three-dimensional embedding space. It is assumed
that the (inclusion/matrix) volume ratio is identical in all three cases. In the absence of interfaces, all three cases result in the same
effective material response.

1.1. Literature review

Interfaces can be categorized into four models according to the continuity of the displacement or traction field
across the interface as shown in Figure 3. The perfect interface model, also referred to as free singular sur-
faces [11], does not allow for displacement jumps or traction jumps across the interface. The elastic interface
model, also referred to as thermodynamic singular surfaces [11], is imperfect in the sense that the traction
across the interface is not continuous, unlike the displacement field. The traction jump across the interface
results from the divergence of the stress along the interface and follows the generalized Young–Laplace equa-
tion (see [12, 13] among others). Interface elasticity theory [11,14–17] has its roots in the surface elasticity
theory of Gurtin and Murdoch [18], which has been further investigated and extended in [19–34] among others.
The cohesive interface model accounts for the displacement jump across the interface but the traction remains
continuous and thus the cohesive interface model is only kinematically imperfect. The cohesive interface model
is a mature field and dates back to the seminal works of Barenblatt [35, 36] and Dugdale [37] which have
been extensively studied in [38–52] with various applications to decohesion, peeling and fracture from both
theoretical and computational aspects. Obviously, the perfect interface model is the intersection of the two
(semi-perfect) elastic and cohesive interface models; see Figure 3. The general imperfect interface model uni-
fies all various types of interfaces and allows for jumps in both the displacement and the traction as shown in
Figure 3. Unlike the cohesive and elastic interface models, the general interface model is not well-established
to date with the exception of a few works dealing with analytical aspects of such interfaces [53–61] limited to
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Figure 3. An overview of the interface models: coherent interface models (left) and non-coherent interface models (right). From the
viewpoint of continuum mechanics, interfaces can be divided into four categories depending on the continuity of the displacement or
traction across the interface. The elastic interface model does not allow for the displacement jump, but the traction may suffer a jump
across the interface. The cohesive interface model on the contrary allows for the displacement jump but continuous traction. The
intersection of the elastic and cohesive interface models is the perfect interface model for which both traction9 and displacements
across the interface are continuous. This contribution formulates the general interface model which encompasses all other interface
types.

small strains and derived from simplified asymptotic limits of thin interphases. From the perspective of deriving
interface models as asymptotic limits of thin interphases, the cohesive interface model is derived as the limit
case of soft interphases and is termed the spring interface model. In contrast, the elastic interface model is
obtained as the limit case of stiff interphases and is termed the stress interface model.

The importance of the in-plane response of the interface can be realized via homogenization of heteroge-
neous material layers [10]. Related works on micro-to-macro transition of material layers, however, with no
particular attention to the in-plane stretch of the interface, include [62–67]. Interface models can be related
to the phase field approach through a thermodynamically consistent procedure [68]; see also [69–71] among
others. For the kinetics of phase boundaries with edges and junctions, see [72, 73]. Note that the proposed
interface formulation here is variationally consistent which guarantees the thermodynamic consistency a priori.
For a discussion on the thermodynamic consistency of cohesive models, see [74] and the references therein.
Steinmann and Häsner [75] and Esmaeili et al. [76] formulated interfaces accounting for both displacement and
traction jumps with extension to finite deformations and degradation. The main objective of this contribution is
to formulate general imperfect interfaces at finite deformations in a variationally consistent manner.

1.2. Organization of the manuscript

This manuscript is organized as follows. Notation and definitions are briefly introduced and key features are
highlighted. Section 2 elaborates on the variational formulation of general imperfect interfaces. The kinematics
of the general interface model at finite deformation is formulated in Section 2.1 and the governing equations
are derived in Section 2.2. Section 2.3 addresses the constitutive modeling and provides a specific interface free
energy. Section 3 illustrates the influence of general interfaces on the material response via a series of numerical
examples. Section 4 concludes this work and discusses its applications.

1.3. Notation and definitions

Quantities defined on the interface are distinguished from those in the bulk by a bar placed above the quan-
tity. That is, {•} refers to an interface variable with its bulk counterpart being {•}. Throughout the manuscript,
surface, interface and curve quantities are denoted as {̂•}, {•} and {̃•}, respectively, and are therefore distin-
guished from the bulk quantity {•} by an accent on top of the quantity. Instead of the term “general imperfect
interface model” its shorter variant “general interface model” is used occasionally. The term “traction jump”
corresponds to the jump of the tractions across the interface at the reference configuration. The traction jump
is the stress jump contracted with the interface normal and thereby both the stress and the normal are their
respective values at the reference configuration. Direct notation is adopted throughout. The notation {•} := {◦},
instead of an equality sign, is used occasionally to emphasize that the left-hand side {•} is defined by the
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Figure 4. Motion of a continuum body including an interface under finite deformations. The illustration is made in two dimensions
for clarity. The two sides of the body in the material configuration intersect at the interface I0. The interface is only a zero-thickness
layer initially with [[X]] = 0, dividing the bulk into two sides B−

0 and B+
0 . Through the motion ϕ the interface opens resulting in the

displacement jump [[x]] �= 0 across the interface.

expression on the right-hand side {◦}. The average and jump of a quantity {•} over the interface are defined by
{{{•}}} := 1

2 [{•}+ + {•}−] and [[{•}]] = {•}+ − {•}−, respectively. The average and jump operators show the
property [[{•} · {◦}]] := [[{•}]] · {{{◦}}} + {{{•}}} · [[{◦}]].

1.4. Key aspects and contributions

The general interface model in this contribution reduces to the elastic interface model and the cohesive interface
model at its two limits. While both elastic interfaces and cohesive interfaces are commonly accepted today,
the general interface model at finite deformation remains elusive and poorly understood. To establish a unified
variationally consistent framework to formulate the general interface model at finite deformation elasticity is the
main contribution of this manuscript. A specific free energy is proposed that furnishes the constitutive response
of the general interface model. Obviously, the proposed free energy recovers both the interface elasticity and
cohesive zone models. The nature of the interface material parameters are elucidated via numerical examples.
Note that the current framework can be readily simplified to capture the surface elasticity theory. That is, this
manuscript renders a variationally consistent surface elasticity at finite deformation as well. It is accepted that
the size effect due to surface elasticity in nano-porous materials is physically interpretable and agrees well with
available data and experiments (see [77] among others).

2. Generalized interfaces at finite deformations
The purpose of this section is to formulate the theory of general imperfect interfaces in the context of mechanical
problems at finite deformations. A key feature of the current formulation is that the governing equations are
obtained in a variationally consistent framework. Detailed expositions on non-linear continuum mechanics can
be found in [78–80] among others. Necessary concepts and terminologies corresponding to the differential
geometry of interfaces are briefly reviewed in Appendix 1.

2.1. Problem definition

Let B denote a continuum body that takes the material configuration B0 at time t = 0 and the spatial config-
uration Bt at any time t > 0, as depicted in Figure 4. For the sake of simplicity, the analysis here is limited
to quasi-static conditions and thus, the time parameter t is merely a history parameter to order the sequence
of events. The interface I0 splits the material configuration B0 into two disjoint subdomains B−

0
and B+

0
. The

interface I0 is precisely a two-sided surface whose intersection with the boundaries ∂B−
0

and ∂B+
0

gives I−
0

and
I+

0
, respectively. Figure 5 illustrates the motion and the evolution of its interface due to the motion. The three

surfaces I0, I−
0

and I+
0

coincide in the material configuration, but are distanced from each other due to the
motion ϕ or, more precisely, the jump of the motion at the interface [[ϕ]]. In the spatial configuration, the two
sides of the interface I−

t and I+
t are well-defined and exactly follow the motion of B−

t and B+
t , respectively.

However, the interface It can be defined arbitrarily. An intuitive, yet arguably meaningful, choice for the motion
of the interface ϕ is to define the (fictitious) interface It as the mid-surface between the two sides I−

t and I+
t

and hence, ϕ := {{ϕ}}.1
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Figure 5. Material and spatial configurations of a continuum body embedding an interface. The interface I0 is identical to its two
sides I−

0 and I+
0 in the material configuration. Due to the motion ϕ, the two sides of the interface are distanced from each other

resulting in the gap [[x]] �= 0 across the interface.

The placement of particles in the material configuration B0 is denoted X corresponding to particles in both
B−

0
and B+

0
. Particles on the interface assume the placement X in the material configuration. Particles on I−

0
and

I+
0

are denoted X− and X+, respectively. Obviously, the placements X− and X+ in the material configuration
coincide geometrically with X . The motion ϕ maps the placements of particles from the material configuration
B0 to the spatial configuration Bt according to x = ϕ(X) where x denotes the placement of particles in the spatial
configuration Bt. The non-linear deformation map ϕ applies to the boundaries of the bulk, too. Therefore, the
placements of particles on I−

0
and I+

0
are mapped onto their spatial counterparts x− and x+ in I−

t and I+
t ,

respectively, according to x− = ϕ−(X) and x+ = ϕ+(X). The motion of the interface ϕ maps the placement
of particles on the interface from the material configuration I0 to the spatial configuration It according to
x = ϕ(X); see Figure 5. The jump of the motion across the interface [[ϕ]] results in the jump [[x]]. Henceforth,
the motion jump across the interface is denoted as f := [[ϕ]] and the resultant displacement jump is denoted
y := [[x]] to indicate its nature as an interface quantity independent of x. This notation furnishes the dual
relations

x = ϕ(X) and y = f (X) with ϕ := {{ϕ}} and f := [[ϕ]]. (1)

The surface S0 in the material configuration is composed of the boundary ∂B0 on both sides of the interface,
but excluding the interface itself as S0 = [∂B−

0
∪ ∂B+

0
] \ I0. The boundary of the interface I0 in the material

configuration is a curve defined as C0 := ∂I0. The bulk, surface, interface and curve in the spatial configuration
are denoted Bt, St, It and Ct, respectively. The outward unit normal to the surface S0 is denoted N̂ . The unit
normal to the interface in the material configuration is denoted N and is oriented such that it points from the
minus side to the plus side of the interface. The outward unit normal to the boundary of the interface C0 but
tangential to the interface I0 is denoted Ñ , shown in Figure 5. It is crucial in the derivations of the governing
equations that neither the normal nor the bi-normal to the curve C0 in the sense of Freńet–Serret formula is the
same as Ñ and special care should be taken when computing Ñ . Furthermore, note Ñ is not necessarily normal
to the surface S0 as depicted in Figure 4. The unit normals in the spatial configuration are denoted n̂, n and ñ on
St, It and Ct, respectively.

The linear deformation maps associated with the non-linear deformation maps ϕ and ϕ are denoted F and
F, respectively, and relate the infinitesimal line elements dX and dX in the material configuration to their spatial
counterparts dx and dx, respectively. The deformation gradient F is related to the non-linear deformation map ϕ

via the relation F = Gradϕ based on the Taylor expansion of first order. Let I = I −N ⊗N denote the interface
identity tensor that is also a projection to the interface. The interface deformation gradient F is the projection of
the deformation gradient Gradϕ onto the interface as F = Gradϕ·I . Alternatively, and preferably, one can define
the interface deformation gradient F using the interface gradient operator as F = Gradϕ according to 1. It is
of particular importance that the interface deformation gradient F is superficial by definition. That is, F holds
the property F · N = 0 which is clear from the relation I · N = 0. Let dV and dv denote the volume elements
of the bulk in the material and spatial configurations, respectively. Analogously, let dA and da denote the area
elements of the interface in the material and spatial configurations, respectively. Equation (2) summarizes the
important relations on kinematics of a continuum body with an interface as

x = ϕ(X), dx = F · dX , dv = J dV , J := Det F in B0,

x = ϕ(X), dx = F · dX , da = J dA, J := Det F on I0.
(2)
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Finally, Nanson’s formula on the interface da = J F-t · dA relates the vectorial area element dA := dA N in
the material configuration to its spatial counterpart da := da n. Nanson’s formula on the surface S0 is formally
identical to the one on the interface I0, but the area elements are dA := dA N̂ and da := da n̂. The line element
dL tangential to the interface and normal to the boundary of the interface in the material configuration maps to
its spatial counterpart via the interface normal map Cof F = J F-t as d1 = Cof F · dL in which dL := dL Ñ and
d1 := dl ñ.

2.2. Governing equations

The objective of this section is to derive the governing equations of a continuum body accounting for the
general interface in a variationally consistent framework. The choice of a variational structure is particularly
helpful since it reveals the admissible form of external forces and tractions without prior knowledge or assump-
tions. This advantage is less significant for first-order continua as compared to higher-gradient theories; see for
instance [81–90]. For first-order continua, the somewhat intuitive Cauchy cut process gives the same result as
the variational framework. Nonetheless, the nature of tractions and the form of Cauchy postulate changes dra-
matically as soon as we are dealing with higher-gradient theories. The variational framework here paves the way
to extending the proposed framework to higher-gradient continua. Also, the variational approach furnishes the
weak form with no extra effort or derivations. The weak form is central to the numerical simulations using the
finite element method. Another advantage of the variational framework is that the derivations are substantially
less burdensome compared to the approaches based on Cauchy postulates. It is possible to derive the governing
equations starting from working [91] and then imposing the invariance with respect to superposed rigid body
motions. The derivations here are shorter and somewhat more elegant especially when dealing with general
interfaces. Finally, deriving the balance equations via a variational framework provides a suitable platform for
constructing a variationally consistent homogenization framework.

In order to obtain the governing equations, the total energy functional is minimized. The total energy func-
tional � tot consists of the internal and external contributions denoted � tot

int
and � tot

ext
, respectively. To minimize

� tot its first variation is set to zero as

� tot = � tot

int
+� tot

ext
and δ� tot .= 0 ⇒ δ� tot

int
+ δ� tot

ext

.= 0. (3)

Sections 2.2.1 and 2.2.2 elaborate on the contributions from the internal and external energies, respectively.
Section 2.2.3 combines the findings of Sections 2.2.1 and 2.2.2 and provides the strong (local) form of the
balance equations.

2.2.1. Internal energy. The total internal energy � tot
int

consists of the internal energies in the bulk and on the
interface

� tot

int
= �int +�int , (4)

in which �int and �int denote the bulk and the interface internal energies, respectively. Let ψint and ψint denote
the internal energy densities in the bulk and on the interface, respectively. The internal energies in the bulk and
on the interface are the integrals of their corresponding internal energy densities over their associated domains
as

�int =
∫
B0

ψint dV and �int =
∫
I0

ψint dA. (5)

The first variation of the total internal energy consists of the contributions from the bulk and interface as

δ� tot

int
= δ�int + δ�int . (6)

The internal energy density of the bulk ψ is exactly the well-established free energy and is a function of
the deformation gradient F. This contribution focuses on (hyper-)elasticity and thus no dissipation is associ-
ated with the deformation process. Similar to the bulk, the arguments of the interface energy are the interface
deformation gradient F and the motion jump across the interface f . The bulk and the interface energy densities
read

ψint = ψint (F) and ψint = ψint (F, f ). (7)
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Dependence of the interface energy on F for vanishing f captures the interface elasticity theory. On the other
hand, the cohesive interface model is recovered for F = I .
Bulk. The first variation of the bulk internal energy δ�int reads

δ�int = δ

∫
B0

ψint dV =
∫
B0

∂ψint

∂F
: δF dV =

∫
B0

P : δF dV with P := ∂ψint

∂F
, (8)

where P is the Piola stress tensor.2 Considering that δF = Gradδϕ and using the identity

P : Gradδϕ = Div(δϕ · P) − δϕ · DivP, (9)

the variation of the bulk internal energy reads

δ�int =
∫
∂B0

δϕ · [P · N̂] dA −
∫
B0

δϕ · DivP dV . (10)

Interface. The first variation of the interface internal energy δ�int reads

δ�int = δ

∫
I0

ψint dA =
∫
I0

∂ψint

∂F
: δF + ∂ψint

∂f
: δf dA. (11)

Let P denote the interface superficial stress tensor and t denote the interface traction defined by

P := ∂ψint

∂F
and t := ∂ψint

∂f
. (12)

The variation of the interface internal energy can be written as

δ�int =
∫
I0

P : Gradδϕ + t · δf dA =
∫
I0

Div(δϕ · P) − δϕ · Div P + t · δf dA. (13)

Next, the result of the interface divergence theorem∫
I0

Div(δϕ · P) dA =
∫
C0

δϕ · [P · Ñ] dL −
∫
I0

K δϕ · P · N dA, (14)

is inserted in equation (13) whereby the term containing the interface curvature K vanishes due to the superfi-
ciality property P · N = 0 associated with the interface stress. Therefore, the variation of the interface internal
energy reads

δ�int =
∫
C0

δϕ · [P · Ñ] dL −
∫
I0

δϕ · Div P − t · δf dA. (15)

Bulk and interface combined. Next, the variation of the bulk internal energy (10) and the variation of the
interface internal energy (15) are replaced in the total internal energy variation (6) as

δ� tot

int
=

∫
∂B0

δϕ · [P · N̂] dA −
∫
B0

δϕ · DivP dV +
∫
C0

δϕ · [P · Ñ] dL −
∫
I0

δϕ · Div P − t · δf dA. (16)

The first integral over ∂B0 shall be further simplified. Since ∂B0 = ∂B−
0

∪ ∂B+
0

= S0 ∪ I−
0

∪ I+
0

, the integral
over ∂B0 decomposes into three integrals as∫

∂B0

δϕ · [P · N̂] dA =
∫
S0

δϕ · [P · N̂] dA +
∫
I−

0

δϕ · [P · N̂] dA +
∫
I+

0

δϕ · [P · N̂] dA. (17)

The outward surface unit normal N̂ on the minus side of the interface I−
0

coincides with the interface unit
normal N as N̂ |I−

0
= N . In contrast, on the plus side of the interface I+

0
the surface unit normal N̂ is opposite
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the interface unit normal N and thus N̂ |I+
0

= −N . Therefore, the integral over ∂B0 results in one term on the
external surface S0 and a jump term on the interface I0 as∫

∂B0

δϕ · [P · N̂] dA =
∫
S0

δϕ · [P · N̂] dA −
∫
I0

[[δϕ · P]] · N dA. (18)

Inserting equation (18) into equation (16) yields

δ� tot

int
= −

∫
B0

δϕ · DivP dV +
∫
S0

δϕ · [P · N̂] dA

−
∫
I0

δϕ · Div P − t · δf + [[δϕ · P]] · N dA +
∫
C0

δϕ · [P · Ñ] dL.
(19)

To proceed, the identity

[[δϕ · P]] · N = [[δϕ]] · {{P}} · N + {{δϕ}} · [[P]] · N = δf · {{P}} · N + δϕ · [[P]] · N (20)

is employed in equation (19). After some mathematical steps, the variation of the total internal energy � tot
int

is
recast into the integrals over the body B0, surface S0, interface I0 and curve C0 as

δ� tot

int
= −

∫
B0

δϕ · DivP dV +
∫
S0

δϕ · [P · N̂] dA

−
∫
I0

δϕ ·
[
Div P + [[P]] · N

]
dA +

∫
I0

δf · [
t − {{P}} · N

]
dA +

∫
C0

δϕ · [P · Ñ] dL.
(21)

Obviously, the internal energy of the interface varies due to two independent families of deformations. The first
interface integral indicates that [Div P + [[P]] · N] is energetically conjugate to the interface motion ϕ. Recall,
the interface (average) motion ϕ is independent of the interface motion jump f . Furthermore, the contribution
[t−{{P}}·N] is energetically conjugate to the interface motion jump f . In view of equation (21), it is of particular
interest to note that the variation of the total internal energy � tot

int
is formally composed of five distinguishable

integrals

δ� tot

int
=

∫
B0

δϕ · {•} dV +
∫
S0

δϕ · {•} dA +
∫
I0

δϕ · {•} dA +
∫
I0

δf · {•} dA +
∫
C0

δϕ · {•} dL. (22)

2.2.2. External energy. The total external energy functional � tot
ext

in its most general form can consist of the con-
tributions from externally prescribed forces in the bulk B0 and also on the surface S0, interface I0 and curve C0.
Without loss of generality, � tot

ext
reads

� tot
ext

=
∫
B0

ψext dV +
∫
S0

ψ̂ext dA +
∫
I0

ψext dA +
∫
C0

ψ̃ext dL, (23)

in which ψext , ψ̂ext , ψext and ψ̃ext denote the external energy densities of the bulk B0, surface S0, interface I0 and
curve C0, respectively. Since the variation of the total energy (3) must vanish, and motivated by the format of the
variation of the total internal energy (22), the first variation of the total external energy functional δ� tot

ext
should

be of the form

δ� tot
ext

= −
∫
B0

δϕ · b0 dV −
∫
S0

δϕ · b̂0 dA −
∫
I0

δϕ · b0 dA −
∫
I0

δf · b0
∗ dA −

∫
C0

δϕ · b̃0 dL. (24)

The term b0 denotes the body force density in the material configuration. Analogously, b̂0 denotes the surface
force per unit area, often referred to as traction. The interface force densities are denoted b0 and b0

∗ as the
work (external energy) conjugates to the interface motion ϕ and the interface motion jump f , respectively. The
external force density along the curve per unit length in the material configuration is denoted b̃0.
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2.2.3. Balance equations. In order to derive the balance equations, the total energy δ� tot and the first variation of
the total energy δ� tot must vanish. Clearly, the variation of the total energy δ� tot corresponds to all admissible
spatial variations of the motion δϕ and consequently δϕ and δf . Recall, both ϕ and f are functions of the motion
ϕ. Substituting the variations of the total internal energy (21) and the total external energy (24) into the variation
of the total energy (3) furnishes the global balance equation

−
∫
B0

δϕ · [DivP + b0] dV +
∫
S0

δϕ · [P · N̂ − b̂0] dA −
∫
I0

δϕ · [Div P + [[P]] · N + b0] dA

+
∫
I0

δf · [t − {{P}} · N − b0
∗] dA +

∫
C0

δϕ · [P · Ñ − b̃0] dL = 0,
(25)

from which the local balance equations can be obtained due to arbitrariness of the spatial variations δϕ as

DivP + b0 = 0 in B0,

P · N̂ − b̂0 = 0 on S0,

Div P + [[P]] · N + b0 = 0 on I0 (along),

t − {{P}} · N − b0
◦ = 0 on I0 (across),

P · Ñ − b̃0 = 0 on C0.

(26)

Note that the balance equation in the bulk is the well-established balance of linear momentum in a geometrically
non-linear continuum mechanics setting. The balance equation on the surface exactly resembles the Cauchy
relation between external traction and stress in the material. The generalized Young–Laplace equation can be
identified as the balance equation along the interface. Appendix 2 provides details on how the balance equation
along the interface (26)3 reduces to the classical Young–Laplace equation. The relation between the interface
traction and the average stress along the interface is the balance equation across the interface. The balance
equation on the curve shall be understood as a Cauchy-type relation to link external traction on the curve and
the stress on the interface.

In passing, it shall be noted that the interface force densities b0 and b0
◦ for a purely mechanical problem

seem irrelevant and impossible to be imposed externally. However, they are inseparable elements of the balance
equations and are included for the sake of completeness. Furthermore, one can imagine certain scenarios in
multi-physics where the interface force densities can be applied externally. For instance, imagine coated parti-
cles in a matrix where the coating is sensitive to external magnetic or electric fields inducing various reactions
leading to a force density. In the absence of the interface force densities b0 and b0

◦, the interface balance equations
read

Div P + [[P]] · N = 0 on I0 (along) and t − {{P}} · N = 0 on I0 (across). (27)

Obviously, for vanishing elastic resistance along the interface, that is, P = 0, the interface balance equations
simplify to

[[P]] · N = 0 on I0 (along) and t = {{P}} · N on I0 (across), (28)

which are the well-established governing equations of the cohesive interface model. In particular, [[P]] · N = 0
states explicitly that the traction jump across the interface must vanish.

2.3. Material modeling

In order to proceed, the internal free energy densities ψint and ψint for the bulk and interface respectively shall
be specified. Constitutive responses of the bulk and interface are then derived through the definitions

P := ∂ψint

∂F
in B0 and P := ∂ψint

∂F
, t := ∂ψint

∂f
on I0. (29)

For the material response of the bulk, an isotropic hyperelastic neo-Hookean energy density in the material
configuration

ψint (F) = 1
2 μ [ J−2/3F : F − 3 ] + κ [ 1

4 J2 − 1
2 ln J − 1

4 ] with J := DetF (30)



1312 Mathematics and Mechanics of Solids 23(9)

is chosen withμ being the (first) Lamé constant and κ , the bulk modulus. This choice for the bulk energy density
is suitable for rubber-like materials and benefits from the original ideas of Ogden [94] to capture the macro-
scopic behavior of nearly incompressible soft polymers. In general, it is possible to develop physically motivated
material models through fundamental reasoning. Material modeling is a mature field and further discussions on
the choice of the bulk material is outside the scope of this manuscript. From a variational perspective, it is of
crucial importance that the energy density ψint satisfies the material frame indifference in the sense that

ψint (F) = ψint (Q · F) ∀Q ∈ SO(3), (31)

in which Q denotes an arbitrary proper orthogonal tensor with the properties Qt = Q-1 and DetQ = 1. It can
be readily shown (see e.g. [78]) that the energy density ψint is frame-indifferent if the deformation gradient F
enters the energy through the right Cauchy–Green tensor C as

ψ = ψ(F)
material frame indifference==============⇒ ψ = ψ(C) with C := Ft · F. (32)

The bulk energy density (30) is indeed frame-indifferent since it can be expressed in terms of C instead of F as

ψint (C) = 1
2 μ [ J−2/3C : I − 3 ] + κ [ 1

4 J2 − 1
2 ln J − 1

4 ] with J :=
√

DetC. (33)

For the given bulk energy density (30), the Piola stress P reads

P := ∂ψint

∂F
= μ J−2/3 [ F − 1

3 F : F F-t ] + 1
2 κ [ J2 − 1 ] F-t. (34)

For the material response of the interface, the interface energy density ψint = ψint (F, f ) is additively
decomposed into its portion along the interface ψint

‖ and the portion across the interface ψint
⊥ as

ψint (F, f ) = ψint
‖(F) + ψint

⊥(f ) with F := Grad{{ϕ}}, f := [[ϕ]]. (35)

Clearly, this choice is made for convenience and motivated by the fact that the general interface model here
should recover both elastic interface and cohesive interface models in its limits. Similar to the bulk, the interface
energy density ψint must satisfy the material frame indifference in the sense that

ψint (F, f ) = ψint (Q · F, Q · f ) ∀Q ∈ SO(3). (36)

The interface energy density ψint is frame-indifferent if and only if it can be represented as

ψint (C, c) = ψint
‖(C) + ψint

⊥(c) with C := Ft · F, c := f · f , (37)

in which C denotes the interface right Cauchy–Green tensor and c is the square of the norm of the displacement
jump across the interface.

A basic model to capture the behavior of the interface is the isotropic interface model for the in-plane
response ψint

‖ and a cohesive-type model for the orthogonal response ψint
⊥. A physically sound interface model

must (i) satisfy the invariance with respect to rigid body motions and (ii) fulfill certain (poly)convexity condi-
tions. Following the representation theorem for isotropic functions [95, 96] and in compliance with equation
(37), the interface energy ψint is chosen to be a function of invariants of C and c. Clearly, the interface right

Cauchy–Green tensor C captures the in-plane response of the interface while c recovers the orthogonal response.
Thus, the interface behavior is expressed in the general form

ψint = ψint (I1, I2, I3) with I1 := C : I , I2 := Det C, I3 :=
√

c, (38)

where I1, I2 and I3 are the invariants of C and c, respectively. An interesting consequence of the isotropic
interface response is that the interface stress and traction, without loss of generality, simplify to

P := ∂ψint

∂F
= 2

∂ψint

∂I1
F + 2

∂ψint

∂I2
I2 F-t and t := ∂ψint

∂f
= 1

I3

∂ψint

∂I3
f . (39)
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Next, the isotropic frame-indifferent interface energy (38) is decomposed into its in-plane and orthogonal
contributions ψint

‖ and ψint
⊥, respectively, as

ψint (F, f ) = ψint
‖(F) + ψint

⊥(f )
material frame indifference + isotropy==================⇒ ψint (I1, I2, I3) = ψint

‖(I1, I2) + ψint
⊥(I3).

(40)

In order to a priori satisfy the (poly)convexity conditions for the interface and to fulfill the corresponding
growth conditions on the interface, the specific interface energy density

ψint (I1, I2, I3) = 1
2 μ

[
I1 − 2 − 2 ln

√
I2

]
+ 1

2 λ

[
1
2 [I2 − 1] − ln

√
I2

]
+ 1

2 α I3
2 (41)

is chosen in which μ, λ and α are the interface material parameters. The interface energy density (41) can be
written as a function of the interface deformation gradient F and the interface displacement jump f as

ψint (F, f ) = 1
2 μ [ F : F − 2 − 2 ln J ] + 1

2 λ [ 1
2 [J2 − 1] − ln J ] + 1

2 α f · f with J = Det F. (42)

For the given interface energy density (42), the interface stress P and the interface traction t read

P := ∂ψint

∂F
= μ [ F − F-t ] + 1

2 λ [ J
2 − 1 ] F-t and t := ∂ψint

∂f
= α f . (43)

The interface material parameters μ, λ and α describe distinctive behavior of an interface. Both μ and λ corre-
spond to the in-plane interface response while α determines the orthogonal stiffness of an interface. The in-plane
parameters μ and λ have the unit N/m and shall be understood as interface Lamé parameters. The orthogonal
stiffness α with the unit N/m3 indicates the resistance of the interface to opening and shall be understood as
the isotropic cohesive parameter. In the limit of vanishing α, the general interface model exhibits no resistance
to opening. Increasing α strengthens the interface resistance to opening. In the limit of α → ∞, the interface
opening ultimately vanishes and, thus, the general interface model behaves in a geometrically coherent manner.
The numerical examples in the next section are devised to clearly illustrate the role of the interface parameters.
The computational aspects of the general interface model using the finite element method with application to
homogenization are discussed in [97, 98].

3. Illustration of the theory
The main goal of this section is to elucidate the nature of interface parameters via numerical examples. The
numerical examples are limited to two-dimensional illustrations corresponding to plane strain for the sake of
simplicity. Consider the unit square shown in Figure 6. The domain is partitioned into two disjoint subdomains
B−

0
and B+

0
by the interface I0. The specimen is stretched by applying prescribed displacements on its edges.

Lateral deformations are prevented and, hence, the width of the specimen cannot change. The example is devised
such that it clearly demonstrates both in-plane and orthogonal interface responses. For the given boundary
conditions, a straight interface could only capture either the in-plane or the orthogonal response. Thus, the
interface here is assumed to be curved.

The material parameters are chosen to amplify the impact of interfaces such that the influences of different
interface models are distinctly noticeable. The purpose of the examples here is to better describe the general
interface model and the essence of its parameters without introducing too much complexity. That is, the exam-
ples here deliver only parametric studies and are purely computational. To link such numerical observations to
the physics of materials, one certainly needs more information about the micro-structure itself and its consti-
tutive response. For the two-dimensional problem of interest here, both in-plane parameters μ and λ serve the
same purpose and resist the change of length of the interface. Therefore, without loss of generality, the interface
parameter λ is set to zero and μ remains the only parameter to capture the elastic resistance along the interface.
The material parameters are chosen as μ = 10 N/mm2, κ = 50 N/mm2, μ = 100 N/mm and α = 100 N/mm3.
Of course, the numerical observations here hold qualitatively for any set of material parameters.
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Figure 6. Unit square with interface. Geometry (left), boundary conditions (center) and discretization (right). The domain is extended
via prescribed displacements at the edges. Lateral deformations are prevented in the sense that the width of the domain cannot vary
throughout the deformation process.

Figure 7. Illustration of the influence of various interface types on the overall material response. The graph shows the total force
on the edges versus the prescribed stretch on the specimen. The results on the right display the Piola stress distribution within the
bulk at 50% stretch. It can be clearly seen that the traction jump across the interface vanishes for both perfect and cohesive interface
models, but not across the elastic and general interfaces.

Figure 7 gathers the results of several numerical simulations corresponding to different types of interface
behavior. The graph shows the overall force required to stretch the specimen versus stretch. Neither a perfect nor
an elastic interface allows for the jump of the displacement across the interface and, hence, there is no opening.
The perfect interface model does not cause a traction jump across the interface and, therefore, a uniform stress
pattern is observed. The elastic interface model shows in-plane resistance along the interface. Due to the curved
topology of the interface, the stress along the interface leads to a stress jump across the interface. Furthermore,
due to additional resistance along the interface, the overall force required to apply the stretch is higher than
that for the perfect interface model. The cohesive interface model allows for the displacement jump across the
interface, but has no in-plane resistance along the interface. As a consequence, the stress distribution is not
uniform for this model and, overall, less force is required on the edges to prescribe the same stretch compared
to other interface types. Note that the normal stress jump across the interface vanishes for the cohesive interface
model. The general interface model allows for opening, but also shows resistance along the interface leading
to a rather complex overall response. The stress jump across the interface is clearly noticeable for the general
interface model. The next example clarifies the role of the interface material parameters in the general interface
model.

In order to better understand the influence of the interface material parameters, consider Figure 6 where the
interface type is general imperfect and 50% stretch is prescribed on the domain. Obviously, for vanishing μ the
interface shows no in-plane resistance at all. The orthogonal stiffness α varies from zero to infinity. At the limit
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Figure 8. Illustration of the influence of the interface material parameters. A general interface model coincides with the cohesive
interface model in the absence of the interface in-plane resistance. In the limit of infinitely large orthogonal resistance, the general
interface model converges to the elastic interface model. The perfect interface model can be understood as the intersection of
cohesive and elastic interface models.

of α = 0, the prescribed deformations require no force on the edges. Increasing α leads to larger forces on the
edges. In the limit of α → ∞ the interface opening vanishes and the general interface model asymptotically
converges to the elastic interface model; see Figure 8. The elastic interface model with μ = 0 matches precisely
with the perfect interface model though and, thus, the cohesive interface model at the limit of α → ∞ converges
to the perfect interface model.

4. Summary
Commonly accepted strategies to capture interface behavior fall into the two categories of elastic or cohesive
interfaces. It is shown that both the elastic and cohesive interface models can be unified as the limit cases of a
broader model, namely the general interface model. The general interface model at finite deformation elasticity
is formulated in a variationally consistent manner. Typical applications of the model include nano-materials
due to the increasing area-to-volume ratio at smaller dimensions. In summary, this manuscript presents an
attempt to shed light on generalized interfaces. This generic framework is broadly applicable to improving the
understanding of the size-dependent behavior of continua with a large variety of applications in nano-materials
and polycrystalline solids.
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Notes

1. Obviously, it is possible to define the interface motion ϕ differently from the motion of the mid-surface. A different choice would
require more complicated notation without providing any further insight. Strictly speaking, any other choice for the interface
motion would result in governing equations slightly different from the ones in this contribution. Nevertheless, the procedure to
derive the governing equations is formally identical to what is carried out in Section 2.2. Without having more information about
the specific interphase of interest, any other choice is equally justifiable.

2. The term “Piola stress” is adopted instead of the more commonly used “first Piola–Kirchhoff stress”. Nonetheless, it seems
that Piola stress is a more appropriate choice for this stress measure. Recall, P is essentially the Piola transform of the Cauchy
stress and ties perfectly to the Piola identity. Also, historically, Kirchhoff (1824–1877) employed this stress measure after Piola
(1794–1850); see also the discussion in [92]. For further details on the works of Piola, see [93] and the references therein.

3. There are various conventions to define the mean curvature in the literature. For instance, in [78] the term “mean curvature”
refers to the sum of the principal curvatures or the trace of the curvature tensor. Here, another more intuitive definition of the
mean curvature is adopted as the arithmetic mean of the principal curvatures and, thus, K denotes twice the mean curvature.
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Appendix 1 Geometry of interfaces
Basic terminologies and concepts on the differential geometry of interfaces in the sense of two-dimensional
manifolds in three-dimensional space are briefly reviewed here; see for example [99–102] for further details.
The notation and definitions here correspond to the material configuration keeping in mind that their spatial
counterparts are formally identical. A two-dimensional (smooth) interface I0 in the three-dimensional embed-
ding Euclidean space E3 with coordinates X can be parameterized by two coordinates ηα with α = 1, 2 as
X = X(η1, η2). The corresponding tangent vectors Gα ∈ TI0 to the interface coordinate lines ηα, that is, the
co-variant (natural) interface basis vectors, are given by Gα = ∂ηαX as shown in Figure 9. The associated
contra-variant interface basis vectors Gα are defined by the Kronecker property δαβ = Gα · Gβ and are explicitly

related to the co-variant interface basis vectors Gα by the co- and contra-variant interface metric coefficients
Gαβ (first fundamental form of the interface) and Gαβ , respectively, as

Gα = GαβGβ with Gαβ = Gα · Gβ = [Gαβ]−1 and Gα = GαβGβ with Gαβ = Gα · Gβ = [Gαβ]−1.
(44)

Figure 9. The key differential geometry concepts of the interface as a two-dimensional manifold in three-dimensional embedding
Euclidean space E3. Coordinates X can be parameterized by two coordinates η1 and η2 as X = X(η1, η2). The covariance interface
tangent vectors are denoted G1 and G2. The unit normal to the interface is denoted N. The outward unit normal to the boundary of
the interface and tangential to the interface is denoted Ñ.

The base vectors G3 and G3, normal to TI0, are defined by G3 := G1 × G2 and G3 := [G33]−1G3 so
that G3 · G3 = 1. Thereby, the corresponding contra- and co-variant metric coefficients, respectively, [G33]
and [G33], follow as [G33] = |G1 × G2|2 = Det[Gαβ] = [Det[Gαβ]]−1 = [G33]−1. Thus, the interface area
element dA and the interface normal N are computed as dA = |G1 × G2|dη1 dη2 = [G33]1/2dη1 dη2 with
N = [G33]1/2G3 = [G33]1/2G3. Moreover, with I denoting the ordinary mixed-variant unit tensor of the three-
dimensional embedding Euclidean space, the mixed-variant interface unit tensor I is defined as

I := δαβGα ⊗ Gβ = Gα ⊗ Gα = I − G3 ⊗ G3 = I − N ⊗ N . (45)

The interface gradient and interface divergence of a vector field {•} are defined by

Grad{•} := ∂ηα {•} ⊗ Gα, Div{•} := ∂ηα {•} · Gα. (46)

As a consequence, observe that Grad{•}·N = 0 holds by definition. For fields that are smooth in a neighborhood
of the interface, the interface gradient and interface divergence operators are alternatively defined as

Grad{•} := Grad{•} · I , Div{•} := Grad{•} : I = Grad{•} : I . (47)

The interface determinant of a second-order tensor field {•} is defined by

Det{•} :=
∣∣[{•} · G1] × [{•} · G2]

∣∣∣∣G1 × G2

∣∣ . (48)
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Finally, the derivatives of the co- and contra-variant interface basis vectors read

∂ηβGα = �
γ

αβGγ + KαβN , ∂ηβGα = −�αβγGγ + K
α

βN , (49)

where �γαβ = ∂ηβGα · Gγ denote the interface Christoffel symbols and Kαβ are the coefficients of the curvature

tensor. The curvature tensor K = KαβGα ⊗ Gβ and twice the mean3 curvature K = K
α

α of the interface I0 are
defined as the negative interface gradient and interface divergence of the interface normal N , respectively:

K := −Grad N = −∂ηβN ⊗ Gβ , K := −Div N = −∂ηβN · Gβ . (50)

The co-variant coefficients of the curvature tensor (second fundamental form of the interface) are computed by
Kαβ = Gα · K · Gβ = −Gα · ∂ηβN .

For an arbitrary vector field ξ tangential to the interface, that is, ξ = ξ · I , the interface divergence theorem
reads ∫

∂I0

ξ · Ñ dL =
∫
I0

Div ξ dA with ξ = [ξ ]α Gα, α ∈ {1, 2}, (51)

in which Ñ is the unit outward normal to the boundary of the interface but tangential to the interface. The
interface divergence theorem (51) is formally identical to the classic divergence theorem in the bulk since it
is assumed a priori that the vector field ξ is tangential to the interface. Nevertheless, it is possible to establish
a general format of the interface divergence theorem for an arbitrary vector field ξ not necessarily tangential
to the interface. In doing so, the vector ξ is first decomposed into its tangential and orthogonal contributions
according to

ξ = ξ · I + ξ · [N ⊗ N], (52)

and secondly, applying the interface divergence operator gives

Div ξ = Div (ξ · I) + Grad ξ : [N ⊗ N] + ξ · Grad N · N + Div N ξ · N , (53)

in which the second and third terms on the right-hand side vanish due to the property Grad{•} ·N = 0 that holds
by definition. Furthermore, Div N is minus twice the mean curvature and, therefore,

Div ξ = Div (ξ · I) − K ξ · N . (54)

Next, integrating the identity (54) over the interface furnishes∫
I0

Div ξ dA =
∫
I0

Div (ξ · I) dA −
∫
I0

K ξ · N dA. (55)

Since ξ · I is tangential to the interface, one can apply the interface divergence theorem (51) to the first integral
on the right-hand side and that gives∫

I0

Div ξ dA =
∫
∂I0

[ξ · I] · Ñ dL −
∫
I0

K ξ · N dA. (56)

Note that, without loss of generality, the relation [ξ · I] · Ñ = ξ · Ñ holds. Therefore, the interface divergence
theorem for an arbitrary vector field ξ not necessarily tangential to the interface reads∫

∂I0

ξ · Ñ dL =
∫
I0

Div ξ dA +
∫
I0

K ξ · N dA with ξ = [ξ ]a Ga, a ∈ {1, 2, 3}. (57)



Javili 1321

Figure 10. Illustration of an interface between two inviscid fluids satisfying the Young–Laplace equation. The term �p = pin − pout

is the pressure difference across the interface.

In a near-identical fashion, the interface divergence theorem for an arbitrary second-order tensor field � not
necessarily tangential to the interface reads∫

∂I0

� · Ñ dL =
∫
I0

Div � dA +
∫
I0

K � · N dA with � = [�]ab Ga ⊗ Gb, a, b ∈ {1, 2, 3}. (58)

From the format of equation (58), it is clear that the integral containing the curvature vanishes if the second-
order tensor field � is tangential to the interface only with respect to its second index. This particular family of
second-order tensors plays an important role in this contribution and they are frequently referred to as superficial
tensors [18].

The contents of this section so far correspond to the material configuration. Recall that the quantities and
operators in the spatial configuration are distinguished from those in the material configuration using small
letters. For instance, the interface identity I = I − N ⊗ N in the material configuration is the counterpart of
i = i − n ⊗ n in the spatial configuration. The full identity tensors I = i are invariant with respect to the
configuration, however, this is not the case for the interface identities I �= i. The interface curvature in the
spatial configuration k = −div n is the counterpart of the curvature in the material configuration K = −Div N
whereby div{•} = grad{•} : i.

Appendix 2 Generalized Young–Laplace equation
The balance equation along the interface (26)3 can be understood as a generalized Young–Laplace equation
since it reduces to the classical Young–Laplace equation. In order to further clarify the balance equation (26)3,
the classical example of the Young–Laplace equation is investigated here. The Young–Laplace equation states
that the balance equation on the interface between two static fluids reads

�p = γ

[
1

r1
+ 1

r2

]
, (59)

where�p = pin − pout is the pressure difference across the fluid interface and r1 and r2 are the principal radii of
curvature. The spatial format of the balance equation along the interface (26)3 in the absence of interface force
density b0 reads

div σ + [[σ ]] · n = 0, (60)

in which σ and σ denote the bulk and interface Cauchy stresses, respectively, associated with the spatial config-
uration. Considering that [[σ ]] = σ out − σ in, and employing the relation between the hydrostatic pressure p and
Cauchy stress σ for inviscid fluids σ = −p i, results in [[σ ]] = �p i. Thus, the interface balance (60) reads

div σ +�p i · n = 0 ⇒ �p n = −div σ . (61)

The interface tension γ represents a constant energy per unit area in the spatial configuration. Therefore, the
internal interface energy density per unit area in the material configuration, corresponding to the interface
tension γ , reads ψint = J γ from which the interface stress (12)1 derives as

P = ∂ψint

∂F
= γ J F-t ⇒ σ = J -1 P · Ft = γ i, (62)
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where the interface Piola transform P = σ · Cof F is utilized. Inserting σ = γ i into the interface balance (61)
yields

�p n = −div ( γ i ) = −γ div i = −γ k n ⇒ �p = −γ k, (63)

in which the identity div i = −[div n] n = k n is used. To obtain the Young–Laplace equation in its classical
format, the geometrical definition of the interface curvature

k = −
[

1

r1
+ 1

r2

]
(64)

is required, in which the negative sign arises from the convention that the curvature is negative if the interface
curves away from its normal, and that the radii of curvatures are always positive; see Figure 10. This example
explains how the curvature is embedded within the interface divergence operator.


