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ABSTRACT: a-Tocopherol (a-TC) and a-TC/cyclodextrin (CD)–inclusion complex (IC) incorporated electrospun poly(lactic acid)

(PLA) nanofibers (NF) were developed via electrospinning (PLA/a-TC–NF and PLA/a-TC/g-CD–IC–NF). The release of a-TC into

95% ethanol (fatty food simulant) was much greater from PLA/a-TC/g-CD–IC–NF than from PLA/a-TC–NF because of the solubili-

ty increase in a-TC; this was confirmed by a phase-solubility diagram. 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging assay shows

that PLA/a-TC–NF and PLA/a-TC/g-CD–IC–NF had 97% antioxidant activities; this value was expected to be high enough to inhibit

lipid oxidation. PLA/a-TC–NF and PLA/a-TC/g-CD–IC–NF were tested directly on beef with the thiobarbituric acid reactive sub-

stance (TBARS) method, and the nanofibers displayed a lower TBARS content than the unpackaged meat sample. Thus, active pack-

aging significantly enhanced the oxidative stability of the meat samples at 4 8C. In conclusion, PLA/a-TC/g-CD–IC–NF was shown to

be promising as an active food-packaging material for prolonging the shelf life of foods. VC 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.

2017, 134, 44858.
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INTRODUCTION

Oxidative reactions are a great problem for both natural and

processed food products containing lipids.1 Once the food is

deteriorated by oxidation, its quality is reduced because of the

release of off-odors and off-flavors, color and texture changes,

and nutrition losses, and also, the food shelf life is reduced.1,2

Therefore, antioxidant (AO) agents have been used to prevent

lipid oxidation in food products.1,2 One of the most innovative

strategies for this is the incorporation of AO agents into pack-

aging materials because of the sustained release ability of AO

agents during storage as well.1,2

a-Tocopherol [a-TC; Figure 1(a)] is the main component of

vitamin E, and it finds broad application in drug delivery and

wound dressings.3,4 The main limitation of a-TC is its poor sol-

ubility in water, and it is also sensitive to oxygen, light, alkali

pH, and traces of transition-metal ions.5 Cyclodextrins (CDs)

are cyclic oligosaccharides composed of glucopyranose units,

and the most widely used CD types are a-CD, b-CD, and g-CD

with six, seven, and eight glucopyranose units, respectively.6,7

The size of g-CD [Figure 1(b,c)] is bigger, its solubility is

higher, and its bioavailability is more pronounced than those of

two other native CDs (a-CD and b-CD). It was declared that it

has no side effects on the absorption of nutrients in food prod-

ucts and nutraceutical applications.8 CDs have attracted much

interest recently in the elimination of the drawbacks of a-TC by

complexation. Therefore, CD-inclusion complexes (ICs) of a-

TC were used to enhance the solubility9,10 and protect food

products against oxidation.11 Moreover, CD–ICs of a-TC were

incorporated into polymeric films to reduce the diffusion rate

of a-TC,12 retard the oxidation of packaged food during the

storage period,13 and prolong the shelf life of food products.14

Poly(lactic acid) (PLA) is a type of aliphatic polyester that is

widely used in biological applications because of its biocompati-

ble and biodegradable nature.15,16 In addition to these advan-

tages, its carbon dioxide, oxygen, and water permeability and

light-barrier properties make it an ideal candidate for packaging

VC 2017 Wiley Periodicals, Inc.

WWW.MATERIALSVIEWS.COM J. APPL. POLYM. SCI. 2017, DOI: 10.1002/APP.4485844858 (1 of 9)

http://www.materialsviews.com/


applications.17 Furthermore, it has also some other advantages,

including the possibility of being produced by a renewable

source (corn),18 its consumption of high amounts of carbon

dioxide during production, and its recyclability.17 Electrospin-

ning is a commonly used method for producing nanofibers

mostly from polymers. Electrospun nanofibers are advantageous

in terms of their high surface-to-volume ratio and porous

structure.19

In this study, an IC of a-TC and g-CD was synthesized [a-TC/

g-CD–IC; Figure 1(d)] and then added to a PLA solution to

produce nanofibers (NF) by electrospinning [PLA/a-TC/g-CD–

IC–NF; Figure 1(e)]. The phase-solubility diagram showed that

the solubility of a-TC was improved after its encapsulation

within g-CD. The characterization of a-TC/g-CD–IC was done

by X-ray diffraction (XRD), thermogravimetric analysis (TGA),

and 1H-NMR techniques. The morphological characterization

of PLA/a-TC–NF, which was produced as a reference sample,

and PLA/a-TC/g-CD–IC–NF were performed by scanning elec-

tron microscopy (SEM). The in vitro release of a-TC from PLA/

a-TC–NF and PLA/a-TC/g-CD–IC–NF was determined in 95%

ethanol by high-performance liquid chromatography (HPLC).

The AO activities of PLA/a-TC–NF and PLA/a-TC/g-CD–IC–

NF were determined with the 2,2-diphenyl-1-picrylhydrazyl

(DPPH) radical-scavenging method. Finally, PLA/a-TC–NF and

PLA/a-TC/g-CD–IC–NF were applied to raw beef samples to

investigate their prevention of lipid oxidation via a thiobarbitu-

ric acid reactive substance (TBARS) assay.

EXPERIMENTAL

Materials

PLA, a commercial polylactide resin identified as an Ingeo bio-

polymer, was donated by NatureWorks, LLC, Co. [poly (DL-

lactic acid), PDLLA, product code 6252D]. a-TC (�96%; Sig-

ma-Aldrich), g-CD (Wacker Chemie AG, Germany), thiobarbi-

turic acid (�98%, Sigma-Aldrich), methanol (extrapure, Sigma-

Aldrich), ethanol (99.8%, Sigma-Aldrich), dichloromethane

(DCM; extrapure; Sigma-Aldrich), N,N-dimethylformamide

(DMF,� 99%, Sigma-Aldrich), trichloroacetic acid (99.5%,

VWR), deuterated dimethyl sulfoxide (minimum deuteration

degree5 99.8% for NMR spectroscopy, Merck), and DPPH

(Sigma-Aldrich) were purchased and used as received without

any further purification. Distilled deionized water was supplied

by Millipore Milli-Q ultrapure water system.

Preparation of the IC

The formation of solid a-TC/g-CD–IC at a 1:1 molar ratio was

done according to a freeze-drying method. Initially, g-CD was

dissolved in an aqueous solution; then, a-TC was added to this

solution while the solution was stirred. After the solution was

mixed overnight, it was frozen at 280 8C for 24 h. Afterward,

the mixture was kept in lyophilizer for 48 h.

Preparation of the Solutions

a-TC and a-TC/g-CD–IC-encapsulated PLA nanofibers were

obtained through electrospinning (PLA/a-TC–NF and PLA/a-

TC/g-CD–IC–NF). a-TC (5% w/w with respect to the polymer)

was dissolved in a DCM–DMF (7:3) solvent system at room

temperature (RT). Then, 10% w/v PLA was added, and the

solution was stirred for 2 h before the electrospinning process.

To produce PLA/a-TC/g-CD–IC–NF, a-TC/g-CD–IC (5% a-TC

w/w with respect to the polymer) was dispersed in DCM–DMF

(7:3) at RT. Then, 10% w/v PLA was added to the a-TC/g-CD–

IC solution (PLA/a-TC/g-CD–IC), and the resulting solution

was stirred for 2 h before electrospinning. The vials were cov-

ered with aluminum foil during the stirring period to prevent

Figure 1. Chemical structures of (a) a-TC and (b) g-CD, schematic representations of (c) g-CD and (d) a-TC/g-CD–IC, and (e) electrospinning of

nanofibers from a PLA/a-TC/g-CD–IC solution. [Color figure can be viewed at wileyonlinelibrary.com]
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degradation by light. As another reference sample, we also elec-

trospun a 10% w/v PLA solution in DCM–DMF (7:3). Table I

summarizes the compositions of the PLA, PLA/a-TC, and PLA/

a-TC/g-CD–IC solutions.

Electrospinning

The PLA, PLA/a-TC, and PLA/a-TC/g-CD–IC solutions in

3-mL plastic syringes (needle i.d.5 0.8mm) were loaded hori-

zontally on the syringe pump (KD Scientific, KDS101), and the

solutions were fed through the collector at a 1mL/h rate. A

voltage of 15 kV was applied from a high-voltage power supply

(AU Series, Matsusada Precision, Inc.). Metal covered with a

piece of aluminum foil was used as a collector. The distance

between the needle tip and the collector was 10 cm. The experi-

ments were performed at 25 8C and 18% relative humidity

Characterization and Measurements

A phase-solubility study was carried out in an aqueous solution

according to a method previously reported by Higuchi and

Connors.20 Excess amounts of a-TC were added to 10-mL

aqueous solutions containing increasing amounts of g-CD

(ranging from 0 to 30mM). When equilibrium was achieved

after 12 h of stirring at RT, the suspensions were filtered

through a 0.45-mm membrane filter. The a-TC concentration

was determined spectrophotometrically at 292 nm (Varian, Cary

100). The experiments were performed in triplicate.

The crystalline structure of the powder of g-CD and a-TC/g-

CD–IC were determined by XRD (PANalytical X’Pert powder

diffractometer) with the application of Cu Ka radiation in a 2u

range of 5–308. Because a-TC is a liquid compound at RT,

XRD analysis was not run for the pure a-TC.

The thermal stabilities of a-TC, g-CD, and a-TC/g-CD–IC was

investigated via TGA (TA Q500). The measurements were per-

formed under a nitrogen atmosphere, and the samples were

heated up to 500 8C at a constant heating rate of 20 8C/min.

The 1H-NMR spectra were recorded on a Bruker DPX-400 at

400 MHz. To determine the molar ratio of a-TC/g-CD–IC,

20mg/mL of a-TC, g-CD, and a-TC/g-CD–IC were dissolved

in deuterated dimethyl sulfoxide. The integration of the chemi-

cal shifts (ds) given in parts per million was calculated with

Mestrenova software.

The viscosity of the PLA, PLA/a-TC, and PLA/a-TC/g-CD–IC

solutions were analyzed at RT via an Anton Paar Physica MCR

301 rheometer equipped with a cone–plate accessory (spindle

type CP40-2) at a constant shear rate of 100 1/s, and the

conductivity of the solutions was measured with an Inolab 720-

WTW at RT.

The morphological characterization of PLA–NF, PLA/a-TC–NF,

and PLA/a-TC/g-CD–IC–NF was performed with SEM (FEI-

Quanta 200 FEG). The samples were stuck on metal stubs with

double-sided adhesive copper tape and then coated with 5-nm

Au/Pd (PECS-682). The calculation of the average fiber diame-

ter (AFD) of each nanofiber was made from the SEM micro-

graphs taken. The diameters of at least 100 fibers were

measured for each sample, and the average and standard devia-

tion values were reported.

To determine the a-TC release from PLA/a-TC–NF and PLA/

a-TC/g-CD–IC–NF, 20mg of the nanofibers were individually

immersed in 30mL of 95% ethanol, and the solutions were

stirred at RT for 6 h. A volume of 0.5mL of sample solution

was withdrawn at specified time intervals, and was refilled

with an equal amount of fresh medium. Then, the amount of

a-TC was decided by HPLC (Agilent, 1200 series) equipped

with a Variable Wavelength Detector (VWD) UV detector. A

C18 column (Agilent, column dimensions5 4.63 150mm,

particle size5 5 mm.) operating at 1mL/min with a 98:2 v/v

methanol–water eluent was used for separation. The detection

was accomplished at 292 nm. The calibration curve was

obtained to convert area values to concentration. The experi-

ments were performed in triplicate, and the results are given

as the average plus or minus the standard deviation.

AO tests for PLA–NF, PLA/a-TC–NF, and PLA/a-TC/g-CD–IC–

NF were performed according to a DPPH radical-scavenging

assay. For this purpose, PLA–NF; PLA/a-TC–NF, and PLA/a-

TC/g-CD–IC–NF with equivalent amounts of a-TC were

immersed in 3mL of a 1024 M DPPH solution prepared in

methanol, and then, the mixtures were kept in the dark at RT

for 15min. Last, the absorbance of the solutions was measured

by ultraviolet–visible spectroscopy (Varian, Cary 100) at

517 nm. To calculate the AO activity (%), the absorbance of

DPPH was defined as 100%, and the AO activity (%) was calcu-

lated on the basis of the following equation:

Antioxidant activity ð%Þ5ðAcontrol2AsampleÞ
.

Acontrol

3100 (1)

where Acontrol and Asample are the absorbance values of the con-

trol DPPH solution and DPPH solution with nanofibers,

respectively. The experiments were carried out in triplicate, and

the results are given as average plus or minus standard devia-

tion values.

Table I. Properties of the Solutions Used for Electrospinning and the Morphological Characteristics of the Resulting Nanofibers

Solution

PLA

(% w/v)a
g-CD

(% w/w)b
a-TC

(% w/w)b
Viscosity

(Pa s)

Conductivity

(lS/cm) AFD (nm)

PLA 10 — — 1.42 1.6 3956120

PLA/a-TC 10 — 5 0.17 1.1 5556205

PLA/a-TC/g-CD–IC 10 15 5 0.06 1.1 4306170

aWith respect to the solvent (7:3 DCM/DMF).
bWith respect to the polymer (PLA).
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The oxidative stability was evaluated by changes in the

TBARSs. Lipid oxidation was analyzed in raw beef samples

(control), which were purchased from the local market, and

raw beef samples packaged with PLA/a-TC–NF and PLA/a-

TC/g-CD–IC–NF were put into polyethylene zip bags and

subjected to refrigerated storage at 4 8C for 4, 7, 10, and 21

days. At certain time intervals, the meat samples were taken

out, and TBARS were calculated on the basis of the method

of UNisa et al.21 The procedure was as follows: 5 g of the

meat sample was homogenized in 35mL of 7.5% trichloroace-

tic acid. The homogenized sample was centrifuged (3000g,

2min), and 5mL of the supernatant was mixed with 5mL of

20mM thiobarbituric acid. Finally, the solution was mixed

and kept in the dark for 20 h at 24 8C. The pink color that

formed was measured spectrophotometrically (UV spectro-

photometer, Shimadzu, Japan) at 532 nm. The results were

expressed as milligrams of malonaldehyde (MDA) per kilo-

gram of the sample. TBARS determinations for each sample

were performed in triplicate. A Student’s t test was applied for

data comparison. Statistical analyses were done with Minitab

Version 13.2 software (Minitab, Inc.) at a 0.05 level of

probability.

RESULTS AND DISCUSSION

Phase-Solubility Studies

The phase-solubility profile of the a-TC/g-CD system is given

in Figure 2. As shown in the diagram, the solubility of a-TC

increased from 0 to 30mM of g-CD. The linear increment in

the a-TC solubility in water with increasing g-CD concentra-

tion showed that the a-TC/g-CD system possessed an AL (line-

ar)-type character. The AL-type diagram also suggested the

formation of a 1:1 complex between a-TC and g-CD.

Crystalline Structure of the IC

XRD patterns of g-CD and a-TC/g-CD–IC are shown in Figure

3. Because a-TC had a liquid nature at RT, we could not run

XRD for this molecule. It is a known fact that the cage-type

crystal packing structure of native CDs turns into a channel-

type structure once an IC is formed with a guest molecule.22 As

shown in the graph, the cage-type crystalline peaks of g-CD dis-

appeared in a-TC/g-CD–IC, and a characteristic major peak

(2u5 68) of hexagonal channel-type packing of g-CD was

observed. Therefore, the formation of the IC between a-TC and

g-CD was successfully achieved.

Figure 2. Phase-solubility diagram of the a-TC/g-CD system in water.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. XRD patterns of g-CD and a-TC/g-CD–IC. [Color figure can

be viewed at wileyonlinelibrary.com]

Figure 4. TGA curves of a-TC, g-CD, and a-TC/g-CD–IC. [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 5. 1H-NMR spectrum of a-TC/g-CD–IC. [Color figure can be

viewed at wileyonlinelibrary.com]
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Thermal Analysis of the IC

The thermal stability of a-TC/g-CD–IC was further investigated

by TGA (Figure 4). TGA measurements of a-TC, g-CD, and the

reference were taken. The thermal degradation of a-TC started

around 200 8C and continued up to 385 8C. The weight loss of

g-CD occurred in two steps, the first was weight loss, which

was below 100 8C and corresponded to water loss, and the sec-

ond one was above 275 8C and was attributed to the main

decomposition of CD. a-TC/g-CD–IC exhibited three steps of

weight losses. These weight losses were ascribed to water loss

and the thermal degradations of a-TC and g-CD, respectively.

As shown in the graph, the thermal stability of a-TC did not

change by complexation.16 The amount of a-TC in a-TC/g-

CD–IC, which was determined from the TGA data, was found

to be 21.0%, and it was quite close to the theoretical amount

used initially (24.9%).

Molar Ratio of the IC

The molar ratio of a-TC/g-CD–IC was calculated by 1H-NMR,

and the spectrum is given in Figure 5. First, 1H-NMR spectra

Figure 6. SEM images and fiber diameter distributions with the AFDs of the electrospun nanofibers obtained from solutions of (a) PLA, (b) PLA/a-TC,

and (c) PLA/a-TC/g-CD–IC.
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were recorded for the a-TC and g-CD molecules to determine

the peaks of the each proton. Then, while we calculated the

molar ratio, the integration of the peaks at 2.0 and 4.9 ppm

were used for a-TC and g-CD, respectively. As a result, the

molar ratio of a-TC to g-CD was determined to be 0.9:1.0

from the 1H-NMR calculations.

Morphological Analysis of the Nanofibers

The morphologies of PLA–NF, PLA/a-TC–NF, and PLA/a-TC/

g-CD–IC–NF were investigated by SEM. SEM images and the

fiber diameter distributions of the nanofibers are shown in Fig-

ure 6. As shown in the images, bead-free nanofibers were suc-

cessfully obtained at a 10% w/v PLA concentration. The

diameters of PLA–NF, PLA/a-TC–NF, and PLA/a-TC/g-CD–

IC–NF were calculated to be 3956 120, 5556 205, and 4306

170 nm, respectively. The slight difference in the AFDs of the

nanofibers might have been related to the viscosities and con-

ductivities of the solutions.23 The solution properties of PLA,

PLA/a-TC, and PLA/a-TC/g-CD–IC and the resulting electro-

spun nanofibers are shown in Table I. The viscosity and con-

ductivity had reverse effects on the fiber diameter. Both the

viscosity and conductivity of the PLA/a-TC solution were lower

than those of the PLA solution; so, the AFDs of PLA–NF and

PLA/a-TC–NF were not much different from each other. The

PLA/a-TC/g-CD–IC solution exhibited a lower viscosity and

conductivity compared to the PLA solution; however, because

the viscosity reduction was not as sharp as that in the PLA/a-

TC solution, the conductivity reduction was much more domi-

nant, and the AFD of PLA/a-TC/g-CD–IC–NF was higher than

that in PLA–NF.

In Vitro Release Study

The release studies of a-TC from PLA/a-TC–NF and PLA/a-

TC/g-CD–IC–NF into 95% ethanol (a fatty food simulant) at

RT were performed for 6 h, and the amount of a-TC released

was evaluated by HPLC [Figure 7(a)]. The release of a-TC from

the electrospun nanofibers into different media, including simu-

lated gastric fluid (pH 2), water (pH 6), phosphate buffer, and

acetate buffer have been reported previously.3,24–26 Chen et al.27

and Koontz et al.14 evaluated the release of tocopherol from

polymeric films into 95% ethanol and coconut oil. PLA/a-TC/

g-CD–IC–NF released much more a-TC in total than PLA/a-

TC–NF; this was probably due to the increment in the solubili-

ty, which was shown in the phase-solubility study. However,

Koontz et al. suggested that much more a-TC was released

from a-TC-encapsulated linear low-density polyethylene

(LLDPE) films than from a-TC/b-CD–IC films containing

LLDPE.14 The variance in the release of a-TC from our system

compared to that in the system of Koontz et al. could have

been due to the difference in the structure of the materials.

Thus, the high surface-area-to-volume ratio of the nanofibers

might have differed in relation to their AFDs. Here, the higher

AFD of PLA/a-TC/g-CD–IC–NF might have led to a higher

surface-area-to-volume ratio compared to that in PLA/a-TC–

NF, and therefore, PLA/a-TC/g-CD–IC–NF released a much

greater amount of a-TC. Furthermore, the hydrophobicity and

stability difference between the polymers and a-TC/CD–ICs

may have resulted in differences in the release behavior.

AO Activity

The DPPH method is usually used to determine the AO activity

of a-TC-encapsulated polymeric films28–30 and electrospun

Figure 7. (a) Cumulative release of a-TC from PLA/a-TC–NF and PLA/a-TC/g-CD–IC–NF into 95% ethanol (n5 3). The error bars in the figure repre-

sent the standard deviations. (b) Photographs of the DPPH solutions in which (i) PLA–NF, (ii) PLA/a-TC–NF, and (iii) PLA/a-TC/g-CD–IC–NF were

immersed (after 15min of reaction). [Color figure can be viewed at wileyonlinelibrary.com]

Table II. TBARS Values for the Unpackaged Meat Samples and Meat Samples Packaged with Nanofibers

Sample

TBARS (mg of MDA/kg of Meat)

Day 4 Day 7 Day 10 Day 21

Control (meat) 0.3860.07 0.5760.22 0.8160.62 1.5561.04

PLA/a-TC–NF 0.3860.16 0.5960.19 0.6760.39 0.7860.45

PLA/a-TC/g-CD–IC–NF 0.2860.08 0.5360.25 0.4060.33 0.7860.51
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nanofibers.26,31 It is an indirect method for determining the

ability of compounds to scavenge free radicals from complex

food systems. The AO activity was determined according to the

DPPH radical-scavenging assay, and the absorbance of the solu-

tions were measured via UV–visible spectroscopy. The AO activ-

ities of PLA–NF, PLA/a-TC–NF, and PLA/a-TC/g-CD–IC–NF

were 46 0.2, 976 0.2, and 976 0.1%, respectively. However, in

the absence of a-TC, PLA–NF exhibited an AO activity because

of the high surface area of nanofibers providing more contact

with the solution. Despite the high voltage applied during elec-

trospinning process, a quite high AO activity was observed in

the a-TC including PLA nanofibers. Additionally, the AO activi-

ties of the nanofibers were almost the same. The similar AO

activities of the nanofibers could have been due to the high sol-

ubility of a-TC in methanol, which favored the release a-TC

quickly from the CD cavity and PLA nanofibers. Photographs

of PLA–NF, PLA/a-TC–NF, and PLA/a-TC/g-CD–IC–NF

immersed in the DPPH solution at the end of the reaction are

shown in Figure 7(b). The color of the solution in which PLA–

NF was immersed was light purple, whereas the color of the sol-

utions in which PLA/a-TC–NF and PLA/a-TC/g-CD–IC–NF

were immersed was yellow. So, we deduced that PLA/a-TC–NF

Figure 8. Photographs of the unpackaged meat samples and meat samples packaged with PLA/a-TC–NF or PLA/a-TC/g-CD–IC–NF during 21 days of

storage. [Color figure can be viewed at wileyonlinelibrary.com]
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and PLA/a-TC/g-CD–IC–NF would be efficient in preventing

lipid oxidation.

Lipid Oxidation Analysis (TBARS)

Tocopherols are known to be quite effective compounds for the

inhibition of lipid oxidation. Barbosa-Pereira et al.29 reported

that an low-density polyethylene (LDPE) film incorporated with

a product containing 90% tocopherol homologues (containing

15.5% a-TC) was the most effective film at long-term storage for

salmon conservation. Turkey meat stored in packages containing

a PE/a-TC film displayed the lowest TBARS values in the study

of Pettersen et al.32

TBARSs are produced through second-stage oxidation, during

which peroxides are oxidized to aldehydes and ketones (e.g.,

MDA). These oxidative reactions are known to be the primary

causes of quality loss; they ultimately affect the color, flavor,

and nutritional value of foods during storage. The TBARS

method has been widely used to determine lipid oxidation in

meat products in previous studies.29,32,33

The results and photographs of the meat samples are given in

Table II and Figure 8, respectively. After 4 days of storage, the

TBARS values of the control (unpackaged meat) and PLA/a-

TC–NF and PLA/a-TC/g-CD–IC–NF packaged meat were

0.386 0.07, 0.386 0.16, and 0.286 0.08mg of MDA/kg of

meat, respectively. Although both of the nanofibers significantly

inhibited lipid oxidation, PLA/a-TC/g-CD–IC–NF displayed a

large inhibition of TBARS formation over 10 days of storage

compared to PLA/a-TC–NF. The TBARS value of the control

reached 1.556 1.04mg of MDA/kg of meat in 21 days, whereas

PLA/a-TC–NF and PLA/a-TC/g-CD–IC–NF showed TBARS

values of only 0.786 0.45 and 0.786 0.51mg of MDA/kg of

meat, respectively, even after 21 days of storage. So, the control

sample suffered a more rapid and intense oxidation than the

samples packaged with the nanofibers. Statistical analyses

revealed that there was no statistically significant difference

between the unpackaged and the meat samples packaged with

nanofibers (p> 0.05). The short shelf life of the packaged meat

was extended with PLA/a-TC–NF and PLA/a-TC/g-CD–IC–NF

through the retardation of its oxidation. Moreover, slime forma-

tion was clearly observed in the control sample at the end of 21

days. Although the release of a-TC from PLA/a-TC/g-CD–IC–

NF was greater, as depicted in Figure 7(a), PLA/a-TC–NF and

PLA/a-TC/g-CD–IC–NF exhibited almost the same TBARS val-

ues, and this could have been related to the complexity of the

food systems. However, the release of a-TC was great enough to

inhibit lipid oxidation in both PLA/a-TC–NF and PLA/a-TC/g-

CD–IC–NF. However, in the study of Chen et al.,27 the release

of tocopherol was investigated from electrospun ethylene vinyl

alcohol (EVOH) and LDPE films into 95% ethanol, and they

deduced that the release rate of tocopherol was not acceptable

for long-term lipid oxidation inhibition.

CONCLUSIONS

An IC of a-TC and g-CD was prepared at a 1:1 molar ratio

(a-TC/g-CD–IC). Then, free a-TC and a-TC/g-CD–IC were

encapsulated into a PLA solution to obtain nanofibers by

electrospinning (PLA/a-TC–NF and PLA/a-TC/g-CD–IC–NF).

SEM images showed a bead-free and homogeneous morphology

in the nanofibers. The characterization of the complex was

done by XRD, TGA, and 1H-NMR. The release of a-TC into

95% ethanol (a fatty food simulant) from the nanofibers was

measured via HPLC. Owing to the solubility enhancement

shown in the phase-solubility diagram, the released amount of

a-TC was much greater from PLA/a-TC/g-CD–IC–NF when

compared to PLA/a-TC–NF. The AO activity of the nanofibers,

which was investigated by a DPPH radical-scavenging method,

was determined to be 97%. A quite high AO activity of nanofib-

ers is an indication of the potential of nanofibers in the inhibi-

tion of lipid oxidation. The TBARS method was used as a

direct method to test the potential of the nanofibers as an AO

packaging material. PLA/a-TC–NF and PLA/a-TC/g-CD–IC–

NF had lower TBARS values than the unpackaged meat sample.

Therefore, PLA/a-TC/g-CD–IC–NF could be used to prolong

the shelf life of meat samples in the food industry.
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