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Feasibility of Conductivity Imaging Using Subject Eddy
Currents Induced by Switching of MRI Gradients

Omer Faruk Oran and Yusuf Ziya Ider*

Purpose: To investigate the feasibility of low-frequency con-
ductivity imaging based on measuring the magnetic field due

to subject eddy currents induced by switching of MRI z-
gradients.
Methods: We developed a simulation model for calculating

subject eddy currents and the magnetic fields they generate
(subject eddy fields). The inverse problem of obtaining con-

ductivity distribution from subject eddy fields was formulated
as a convection-reaction partial differential equation. For
measuring subject eddy fields, a modified spin-echo pulse

sequence was used to determine the contribution of subject
eddy fields to MR phase images.
Results: In the simulations, successful conductivity recon-

structions were obtained by solving the derived convection-
reaction equation, suggesting that the proposed reconstruction

algorithm performs well under ideal conditions. However, the
level of the calculated phase due to the subject eddy field in a
representative object indicates that this phase is below the

noise level and cannot be measured with an uncertainty suffi-
ciently low for accurate conductivity reconstruction. Further-

more, some artifacts other than random noise were observed
in the measured phases, which are discussed in relation to the
effects of system imperfections during readout.

Conclusion: Low-frequency conductivity imaging does not
seem feasible using basic pulse sequences such as spin-echo

on a clinical MRI scanner. Magn Reson Med 77:1926–1937,
2017. VC 2016 International Society for Magnetic Resonance
in Medicine

Key words: eddy currents; gradient; conductivity; low fre-

quency; image distortions; MRI

INTRODUCTION

Electrical conductivity varies among tissues and with
frequency (1,2). At low frequencies, the lipid membrane
of cells acts as an insulator and prevents currents from
entering cells, whereas at high frequencies, currents can
pass through the capacitance of the cell membrane (3).
This implies that the lower and upper frequency spectra
of conductivity convey different information about tis-
sues. High-frequency conductivity maps can be used to
obtain local specific absorption rate maps (4), whereas
low frequency conductivity maps can be used to monitor
thermal therapeutic procedures (5), electroencephalo-
gram source localization (6,7), and the planning of trans-

cranial magnetic stimulation (8–10). Furthermore, both

high- and low-frequency conductivities depend on the

pathological state of tissues; for example, conductivity

maps may be used for the detection and characterization

of tumors (11–18).
Several MRI-based techniques have been proposed for

conductivity imaging at high and low frequencies. For

high-frequency conductivity imaging, MR electrical prop-

erties tomography (MREPT) techniques constitute the

largest class. In these techniques, the inverse problem of

reconstructing the electrical properties (conductivity and

permittivity) from the measured radiofrequency (RF)

field (B1) is solved by exploiting the fact that B1 field is

perturbed by the underlying electrical properties of

imaged subjects (4,19–24). For low-frequency conductiv-

ity imaging, techniques classified as MR electrical

impedance tomography (MREIT) are the most widely

known (25–29). In these techniques, currents are injected

into imaged subjects via surface electrodes. Magnetic

fields generated by internal currents are measured, and

this information is used for reconstructing conductivity.
In MREIT, current injection causes problems such as

pain sensation and geometric distortions, which are trig-

gered by denser current density near electrodes (27). To

deal with these challenges, the induced-current MREIT

technique has been proposed, in which electrical cur-

rents are induced inside imaged subjects by means of

external coils (30). However, the use of external coils

inside an MRI scanner limits the practicality of this tech-

nique. As a remedy for this problem, it has been pro-

posed to use readily available MRI gradient coils for

inducing “subject eddy currents” inside subjects (31–39).

Subject eddy currents generate secondary magnetic

fields, which are referred to as “subject eddy fields.”

Similar to MREIT, the ultimate purpose is to reconstruct

conductivity from the measured subject eddy fields.

However, no experimental conductivity reconstruction

has been presented yet (31–39).
In this study, we investigated the feasibility of low-

frequency conductivity imaging using subject eddy cur-

rents induced by switching of the slice-selection gradi-

ent. The feasibility was investigated within the context

of two main goals. The first goal was to understand

whether conductivity reconstruction is possible, pro-

vided that subject eddy fields are measured accurately.

To attain this goal, the inverse problem of obtaining the

conductivity distribution from subject eddy fields was

formulated as a convection-reaction partial differential

equation (PDE). Successful conductivity reconstructions

were obtained by solving this equation using simulated

data. The second goal was to understand the fidelity by

which subject eddy fields must be measured for
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accurately reconstructing conductivity. For measuring

subject eddy fields, a modified spin-echo pulse sequence

was proposed by which the contribution of subject eddy

fields to MR phase images is determined. We found that
this contribution cannot be measured with an uncer-

tainty sufficiently low for accurate conductivity recon-

struction. In addition to the random noise, some biased

artifacts were observed in the phase measurements.

These artifacts were modeled by considering the effects
of undesired magnetic fields due to system imperfections

during readout.

THEORY

Definition and Properties of System and Subject Eddy
Currents

Due to switching of gradients, “system eddy currents”

are induced on the metallic system components of an

MRI scanner such as RF and gradient shields, coils, ther-

mal shields of the magnet, and the magnet itself (40).

System eddy currents generate “system eddy fields”

(Bsys) and the decay of Bsys after a gradient ramp can be

modeled by using exponential functions with different

amplitudes and time constants ranging from a few milli-

seconds to a few seconds (40). By means of the gradient

waveform pre-emphasis and actively shielded gradient

coils, Bsys is significantly lowered within the imaging

volume (41).
In addition to system eddy currents, the electric fields

(E), which are induced due to switching of gradient

fields (Bp), give rise to subject eddy currents (Jsub) in

imaged subjects which in turn generate subject eddy

fields (Bsub). The governing equations for Jsub and Bsub

are obtained using three assumptions: 1) The contribu-

tion of Bsys to E is negligible inside imaged subjects,

because Bsys is 0.05% (or less) of Bp in the imaging vol-

ume (41). 2) Bsub is significantly lower than Bp, and thus

its contribution to E is also negligible (this assumption is

validated by the levels of simulated Bsub). 3) Displace-

ment currents are negligible compared with conductive

currents because of the low-frequency nature of Bp.

Therefore, inside the imaged subject, the governing equa-

tions during switching of Bp are obtained as

r� EðtÞ ffi � @BpðtÞ
@t

[1.1]

r� BsubðtÞ ffi m0sEðtÞ ¼ m0JsubðtÞ [1.2]

where s is the conductivity distribution of the imaged

subject, and the magnetic permeability of the imaged

subject is taken as m0. Because of the assumption that

Bsub � Bp, Equations 1.1 and 1.2 become uncoupled, and

thus subject eddy currents can be assumed to be

instantly vanishing after the gradient ramp, which is in

contrast to slowly decaying system eddy currents (39).

Although the contribution of Bsys to E is negligible, Bsys

itself can cause significant phase accumulation in the

MRI phase images (40,41).

Measurement of Subject Eddy Fields Due to
Slice-Selection Gradients

A modified spin-echo pulse sequence is used for measuring

the phase accumulated by subject eddy fields due to switch-

ing of slice-selection gradients (see Fig. 1). The slice-

selection direction is taken as the z-direction. Because the

z-gradient is linearly ramped up or down with the same

slew rate at all edges, the subject eddy field is constant, and

its magnitude is equal at all edges, as is evident from Equa-

tions 1.1 and 1.2. Considering the net contributions only

(Fig. 1), the accumulated phase (wsub;z) is obtained as

wsub;z ¼ gBsub;zðtexc þ 2trfcÞ [2]

where g is the gyromagnetic ratio, Bsub;z is the z-compo-

nent of the subject eddy field due to switching of the

z-gradient, and texc and trfc are the relevant ramp times

shown in Figure 1 (Bsub;z will be hereafter referred to as

the “subject eddy field”). When Gþz and G�z are used in

two separate measurements (see Fig. 1), the acquired MR

phase images can be expressed as

wþðx; yÞ ¼ wsub;zðx; yÞ þ wRFðx; yÞ þ wsys;zðx; yÞ
þ wotherðx; yÞ

[3.1]

w�ðx; yÞ ¼ �wsub;zðx; yÞ þ wRFðx; yÞ � wsys;zðx; yÞ
þ wotherðx; yÞ [3.2]

where wRF is the phase of the RF field (transceive phase

of the B1 field), wsys;z is the phase accumulated by the z-

component of the system eddy field due to switching of

the z-gradient (Bsys;z), and wother is the phase accumu-

lated by the sum of system and subject eddy fields due

to switching of other gradients (because a spin-echo

pulse sequence is used, the main magnetic field [B0]

inhomogeneity does not have a net contribution to the

accumulated phase). If the measurements using Gþz and

G�z are also performed for a nonconductive phantom in

which wsub;z is zero, wsub;z can be obtained as

wþðx; yÞ � w�ðx; yÞ
2

� �
s6¼0

¼ wsub;z þ wsys;z [4.1]

wþðx; yÞ � w�ðx; yÞ
2

� �
s¼0

¼ wsys;z [4.2]

(
wþðx; yÞ � w�ðx; yÞ

2

)
s6¼0

�
(

wþðx; yÞ � w�ðx; yÞ
2

)
s¼0

¼ wsub;z

[4.3]

where s denotes the conductivity. Once wsub;z is meas-

ured, Equation 2 may be used with known values of texc

and trfc for obtaining Bsub;z.

Modeling Effects of System Imperfections During Readout

The z-component of the system eddy field due to switch-

ing of the z-gradient (Bsys;z) and the z-component of other

undesired magnetic fields (Bother;z), including system
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eddy fields due to switching of x- and y-gradients and
the B0 inhomogeneity, manifest themselves with geomet-
ric distortions such as shifting, scaling, or shearing in
the reconstructed image, because Bsys;z and Bother;z also
exist during readout (41,42). It can be safely assumed
that Bsys;z and Bother;z are constant in time during the
short readout window (�1–2 ms). Including the effects
of geometric distortions, the phase images in Equations
3.1 and 3.2 become (42)

wþðxþ; yÞ ¼ wþ x þ Bother;zðx; yÞ
Gx

þ Bsys;zðx; yÞ
Gx

; y

� �
[5.1]

w�ðx�; yÞ ¼ w� x þ Bother;zðx; yÞ
Gx

� Bsys;zðx; yÞ
Gx

; y

� �
[5.2]

where wþðxþ; yÞ and w�ðx�; yÞ are the phase images with
geometric distortions, the readout direction is assumed
to be the x-direction, and Gx is the readout gradient
field. Because wþðxþ; yÞ and w�ðx�; yÞ are not aligned
due to Bsys;zðx; yÞ=Gx term, their difference contains

biased artifacts. For cylindrical phantoms with uniform

conductivity, these artifacts can be modeled by consider-

ing the terms given in Equations 3.1 and 3.2. For this

purpose, similar to the approach employed by Mandija

et al. (38), wRF is approximated with a quadratic function

(43) [i.e., wRFðx; yÞ ¼ bs¼s0
1 þ bs¼s0

2 ðx2 þ y2Þ where s0 is

the conductivity of the phantom (the coefficients scale

with the conductivity of the phantom (43)]. Substituting xþ

or x� for x in wRFðx; yÞ, the difference between wþðxþ; yÞ
and w�ðx�; yÞ are expressed as

(
wþðxþ; yÞ � w�ðx�; yÞ

2

)
s¼s0

¼
wsum

sub;z

2
þ

wsum
sys;z

2
þ wdiff

other

2
þ 2bs¼s0

2 x þ Bother;z

Gx

� �
Bsys;z

Gx
[6]

where wsum
sub;z ¼ wsub;zðxþ; yÞ þ wsub;zðx�; yÞ, wsum

sys;z ¼ wsys;zðxþ;
yÞ þ wsys;zðx�; yÞ and wdiff

other ¼ wotherðxþ; yÞ � wotherðx�; yÞ.
Because of the misregistration between wþðxþ; yÞ and

w�ðx�; yÞ, additional terms appear in Equation 6 compared

with the terms in Equation 4.1.
As discussed in the previous section, wþ and w�

should also be measured for a nonconductive phantom.

However, preparing a phantom material with zero con-

ductivity may not be practical. Therefore, we assume

that a low-conductive phantom is used instead of a non-

conductive phantom. Considering Equation 6 for the

low-conductive phantom, wsum
sys;z and wdiff

other are the same as

in the conductive phantom, whereas wsum
sub;z and the last

term in Equation 6 are different because they depend on

the conductivity. Assuming that wsum
sub;z=2 ffi wsub;z (see the

Appendix for the validation), the measured phase

(wmeas), which would ideally equal wsub;z, can be

expressed as (compare with Equation 4.3)

wmeas ¼
(

wþðxþ; yÞ � w�ðx�; yÞ
2

)
s¼s0

�
(

wþðxþ; yÞ � w�ðx�; yÞ
2

)
s¼slow

ffi w
s0�slow

sub;z þ 2ðbs¼s0
2 � bs¼slow

2 Þ x þ Bother;z

Gx

� �
Bsys;z

Gx

[7]

where slow is the conductivity of the low-conductive

phantom and w
s0�slow

sub;z ¼ fwsub;zgs¼s0
� fwsub;zgs¼slow

.

Because the second term in Equation 7 is related to the

RF phase that could not be eliminated, it is referred to as

the “RF leakage” as it was in the study by Mandija et al.

(38). Note that the RF leakage scales with ðbs¼s0
2 � bs¼slow

2

Þ and thereby also scales with the phantom conductivity

difference ðs0 � slowÞ (43).

Conductivity Reconstruction from Subject Eddy Fields

A novel method for conductivity reconstruction is devel-

oped that is based on the solution of the following cen-

tral equation (for the derivation, see the Appendix):

rr � ð�Jsub;y; Jsub;xÞ þ r
r2Bsub;z

m0

¼
@Bp;zðtÞ
@t

[8]

FIG. 1. The “modified” spin-echo pulse sequence for measuring
the phase accumulated by the z-component of the subject eddy

field (Bsub;z), which is induced due to switching of the z-gradient.
The ramping times of the z-gradient field are exaggerated for a

better visualization of Bsub;z. For increasing the accumulated
phase (wsub;z), the third lobe of the z-gradient is applied in the
opposite direction of the first lobe, which is in contrast to a con-

ventional spin-echo sequence (this is why the proposed sequence
is called “modified”). Two separate measurements, one using Gþz
and one using G�z , are performed. The waveforms of Bsub;z and
wsub;z for the case of Gþz are shown at the sixth and seventh rows.
The first lobe of Bsub;z does not contribute to wsub;z since it is

before the excitation and the contribution of the third and fourth
lobes cancel each other. On the other hand, the fifth and sixth

lobes, which are opposite each other, both contribute to wsub;z

because of the refocusing RF pulse applied in between. Conse-
quently, only the second, fifth, and sixth lobes of Bsub;z have a net

contribution to wsub;z, and this contribution is determined by the
ramp times texc and trfc. The values of Gexc

z , Grfc
z , texc, and trfc are

provided in Table 1. PE, phase encoding; RF, radiofrequency field;

RO, readout; SS, slice selection.
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where r is the resistivity (r ¼ s�1), Jsub;x and Jsub;y are the
x- and y-components of the subject eddy current, and
Bsub;z and Bp;z are the z-components of the subject eddy
field and the gradient field, respectively. Equation 8 is in
the form of a convection-reaction equation and is similar
to the equation that has been derived previously for the
case of using switching of readout gradients (32). For
solving Equation 8, Jsub;x and Jsub;y must be reconstructed
beforehand. They are related to Bsub;z with the following
relation (for the derivation, see the Appendix):

r2Bsub;z

m0

¼ @Jsub;x

@y
�
@Jsub;y

@x
[9]

Equation 9 is the same as the fundamental relation used
in the MR current density imaging (MRCDI) (44), and
thus any MRCDI algorithm may be used. In this study,
the MRCDI algorithm proposed by Park et al. was used
(45), in which the following PDE is solved for b at the
imaging slice (the inner region of the slice is denoted by
V, and its boundary is denoted by @V).

r2b ¼ r
2Bsub;z

m0

in V

b ¼ 0 on @V

[10]

The x- and y-components of the reconstructed subject
eddy current (J �sub;x and J�sub;y) are obtained from

ðJ �sub;x; J �sub;yÞ ¼
@b
@y ;�

@b
@x

� �
. Because Jsub;z and some com-

ponents of Jsub;x and Jsub;y do not generate Bsub;z, they are

undetectable. Therefore, J� ¼ ðJ�sub;x; J
�
sub;y; 0Þ is only an

estimate to Jsub, and the overall error in the reconstructed

subject eddy current is proportional to jjJsub;zjj and jj@Jsub;z

@z jj
at the imaging slice (45).

On the other hand, in regions where conductivity slowly
varies, rr in Equation 8 can be neglected as done in Wen’s
MREPT formula (46), and conductivity can be directly
reconstructed using the following pointwise formula:

s ffi r2Bsub;z

m0@Bp;zðtÞ=@t
[11]

Analysis of Uncertainty in the Reconstructed Conductivity

In this analysis, for the sake of simplicity, it is assumed
that the conductivity is slowly varying within a region of
interest, and Equation 11 is modified as (for details, see
the Appendix)

s ffi
r2wsub;z

gm0z0ðGexc
z þ 2Grfc

z Þ
[12]

where wsub;z is the phase due to subject eddy fields, Gexc
z

and Grfc
z are as defined in Table 1, and z0 is the z-coordi-

nate of the imaging slice. Our goal was to identify a rela-
tionship between the uncertainties of s and wsub;z, which
are denoted by uðsÞ and u(wsub,z). It is assumed that r2

wsub;z is calculated through the convolution of wsub;z with a
5�5� 3 Savitzky-Golay Laplacian kernel. Therefore, the
r2wsub;z value in one pixel is the linear combination of the

wsub;z values within the neighborhood of that pixel, which

is defined by the size of the kernel. Assuming that the

noise distributions for each pixel of wsub;z are independent

and identically distributed (47), and using the law of error

propagation (48), it is found that

uðsÞ ¼
uðwsub;zÞ

gm0z0ðGexc
z þ 2G

rfc
z Þ

2

105Dx4
þ 2

105Dy4
þ 6

25Dz4

� 	1=2

[13]

where Dx and Dy are the voxel sizes in the x- and y-

directions, and Dz is the slice thickness. Note that the

Laplacian kernel amplifies the high-frequency noise

components, and uðwsub;zÞ is thereby increased by a fac-

tor of 2
105Dx4 þ 2

105Dy4 þ 6
25Dz4

h i1=2
. This factor is obtained

from the analytically calculated elements of the

Savitzky-Golay kernel (48). It has been shown that, when

the Savitzky-Golay Laplacian kernel is used, this factor

becomes minimum compared with any other Laplacian

kernel of the same size (48).

METHODS

Numerical Methods for Simulations and Conductivity
Reconstruction

For calculation of subject eddy currents and fields, the

‘Magnetic Fields’ module of the finite element method

Table 1
Experimental Parameters.

Parameter Setting

Field of view, mm 256�256 (224�224)
Matrix size 128�128 (32�32)

Voxel size, mm 2�2�5 (7�7�5)
Imaging slice, transverse z¼0.13 m
Echo time, ms 10

Repetition time, ms 1000
Flip angle 90	

Number of acquisitions 16
Total imaging time, min 34.1�4 (8.5�4)
Bandwidth, Hz/pixel 500

Gx readout, mT/m 5.9 (1.7)
Gexc

z excitation, mT/m 15.66a

Grfc
z refocusing, mT/m 4.8a

Slew rate of the z-gradient, T/m/s 160b

Excitation ramp time texc, ms 98

Refocusing ramp time trfc, ms 30

For the settings which were different in the first and second sets

of experiments, the parenthetical settings are for the second set.
aGiven that the slice thickness and the flip angle are kept the
same, if the z-gradient is increased, the bandwidth of the RF

pulses should be increased by applying narrower RF pulses in
time, which requires higher output voltage of the RF amplifier. For

the MRI scanner used in this study, the z-gradient values of 15.66
mT/m and 4.8 mT/m were constrained by the output voltage of the
RF amplifier rather than the maximum allowed z-gradient.
bThe slew rate is the same in every edge of the z-gradient field. Note
that if the slew rate increases, the instantaneous subject eddy field
increases while the ramp times decrease. Therefore, the phase

accumulated due to the subject eddy field remains the same,
because it is found by the time integral of subject eddy field (see Eq.

2). In other words, the accumulated phase during one ramp is deter-
mined by the end-value of the gradient field rather than its slew rate.
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package COMSOL Multiphysics 4.2a (COMSOL AB,

Stockholm, Sweden) was used (system eddy fields were

not simulated in this study). In this module, in contrast

to Equation 1.1, it is not assumed that subject eddy fields

(Bsub) are negligible compared with gradient fields (Bp).

Instead, the following time-dependent PDE was solved

for the total vector magnetic potential (A) in a large

domain that contained the z-gradient coil and the simu-

lation phantom (Fig. 2). Note that A is defined as

A ¼ Ap þAsub, where r�Ap ¼ Bp and r�Asub ¼ Bsub.

r�r�AðtÞ ¼ JcoilðtÞ � sðx; yÞ @AðtÞ
@t

[14]

In this equation, sðx; yÞ is the conductivity distribu-

tion, which is zero in regions other than the simulation

phantom, and Jcoil is the current density, which is run-

ning on the z-gradient coil and which generates the gra-

dient field. In solving Equation 14, the temporal gauge

was used, in which the scalar electric potential vanishes

(49). Therefore, the subject eddy current was obtained

from the calculated A using JsubðtÞ ¼ �sðx; yÞ @A
@t . In order

to obtain Bsub, Equation 14 was solved again with zero
phantom conductivity; therefore, r�A ¼ Bp, because
Bsub ¼ 0. This Bp field was then subtracted from the pre-
viously calculated r�A, which equals Bp þ Bsub.

We used a cylindrical simulation phantom that had a
radius of 7 cm, a height of 19 cm, and three cylindrical
conductivity anomalies (Fig. 2). The z-gradient coil was
modeled as a Maxwell pair [the radius of each of the cir-
cular coils was 30 cm, and they were separated by 30

ffiffiffi
3
p

cm (50)]. The waveform of Jcoil was assigned such that
the z-gradient field linearly ramped up with a slew rate
of 160 T/m/s, and thus @BpðtÞ=@t was constant. In the
simulations performed using a step size of 1 ns, it was
observed that Bsub ramped up or down in 10 ns (i.e.,
almost instantly) (39) and stayed constant between
ramps because of the constant @BpðtÞ=@t. Because we
were interested in Bsub during its plateau, a larger step
size of 0.1ms was used, and a few time-steps were suffi-
cient for reaching the plateau.

The computed z-component of the subject eddy field
(Bsub;z) was exported to MATLAB (MathWorks, Natick,
Massachusetts, USA) from COMSOL Multiphysics. Equa-
tions 8 and 10 were solved using the finite difference
method, which was implemented in MATLAB (24). The
Laplacian of Bsub;z was calculated using a three-
dimensional (5� 5� 3) Savitzky-Golay Laplacian kernel
(51). In solving Equation 8, the Dirichlet boundary condi-
tion was used, and the r values of the boundary were
assigned known resistivity of the background. Because
there was no diffusion term in Equation 8, its numerical
solution suffers from unwanted oscillations near interior
and boundary layers (52). As a remedy for this problem, an
artificial diffusion term (�cr2r) was added to Equation 8,
which is a well-known stabilization technique (52). The c
coefficient of 5�10�5 was chosen such that the oscilla-
tions vanished, yet no significant smoothing was intro-
duced in the reconstructed conductivity (24,28).

Experimental Methods

Three homogeneous cylindrical phantoms, each with a
radius of 7 cm and a height of 19 cm, were constructed
using agar-saline gels containing 18 g/L agar, 1.5 g/L
CuSO4, and different concentrations of NaCl (6, 9, and
0 g/L for the first, second, and third phantoms, respec-
tively). The agar-saline gels were solid enough to neglect
flow artifacts. The conductivity of the three phantoms
were measured as 1.3, 1.6, and 0.2 S/m using the phase-
based MREPT technique proposed by Voigt et al. (19).
This technique estimates the conductivity at the Larmour
frequency (123.2 MHz for our scanner). However, it has
been reported that the conductivity of agar-saline gels do
not change significantly in the range of 10–200 MHz
(53–55). Therefore, these estimates were also representa-
tive at low frequencies. Although the third phantom was
intended to be nonconductive, we obtained a conductiv-
ity of 0.2 S/m due to agar.

Two sets of experiments were performed using the
proposed pulse sequence (Fig. 1), which was imple-
mented on a 3T MRI scanner (Magnetom Trio, Siemens
Healthcare, Erlangen, Germany). For transmit and

FIG. 2. Illustration of the COMSOL Multiphysics model used for

calculating subject eddy currents and subject eddy fields. The
outermost cylinder, which has a radius of 60 cm and a height of
300 cm, is the solution domain on which the tangential component

of the vector magnetic potential is taken as zero. The z-gradient
coil is obtained with the wire model of a Maxwell pair. The simula-
tion phantom, which has a radius of 7 cm and a height of 19 cm,

is also shown. The phantom is placed along the z-direction and
its base is located at z¼�0.02 m plane. The imaging slice is cho-

sen as the z¼0.13 m plane, where the maximum subject eddy
field occurs among other transversal slices. The background con-
ductivity of the phantom is taken as 0.5 S/m and three cylindrical

regions of conductivity anomaly are assumed along the phantom
(see Fig. 3a for the assigned conductivities of these regions).
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receive, the quadrature birdcage body coil of the MRI

scanner was used. The phantoms were placed along the

z-direction (the direction of B0 was assumed as the z-

direction). The slice orientation was transverse and the

reference (center) slice was 2 cm away from the base of

the phantom. The imaging slice was chosen as the

z¼ 0.13 m plane; the other imaging parameters are sum-

marized in Table 1. By constructing a platform on the

patient table of the scanner, it was assured that the

phantoms were fixed at the same position in all measure-

ments, rendering artifacts due to phantom misalignments

negligible.
The first set of experiments was performed in order to

determine the uncertainty in the measured phase and to

understand whether this uncertainty was sufficiently low

for accurate conductivity reconstruction. In this set, the

voxel size was 2�2� 5 mm. Because wmeas is the linear

combination of four MRI phase images (see Eq. 7), its uncer-

tainty [uðwmeasÞ] can be obtained by noting the fact that the

uncertainty of an MRI phase image equals the inverse of the

signal-to-noise ratio (SNR) measured from the magnitude

image of the same measurement (47). We have

uðwmeasÞ ¼
ffiffiffi
2
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

SNRs¼s0
2
þ 1

SNRs¼0:2
2

s
[15]

where SNRs¼s0
denotes the SNR of the magnitude image

for either the first or second phantom (s0 is the conduc-

tivity of the phantom) and SNRs¼0:2 denotes the SNR of

the magnitude image for the third phantom. These SNR

values were measured using the “SNRmult” method

described by Dietrich et al. (56). Note that wmeas con-

tained the RF leakage in addition to wsub;z (see Eq. 7).

However, as is evident from Equation 15, uðwmeasÞ is not

affected by RF leakage [i.e., we would have seen the

same uðwmeasÞ if no RF leakage had existed in wmeas].

Therefore, for a desired uncertainty in the reconstructed

conductivity, uðsÞdes, the maximum allowed uncertainty

in the measured phase, uðwmeasÞmax, can be obtained by

rearranging Equation 13 as

uðwmeasÞmax ¼ uðsÞdesgm0z0ðGexc
z þ 2Grfc

z Þ
2

105Dx4
þ 2

105Dy4
þ 6

25Dz4

� 	�1=2 [16]

The second set of experiments were performed for inves-

tigating RF leakage. In this set, large voxels

(7� 7�5 mm) were used for assuring low uðwmeasÞ so

that the RF leakage was not obscured by noise in wmeas.

Specifically, using Equation 15 and the measured SNR

values (56)—which are 1960, 1421, and 2940 for the first,

second and third phantoms—uðwmeasÞ was estimated as

4.3� 10�4 rad and 5.5� 10�4 rad for the first and second

phantoms, respectively. These uncertainties were suffi-

ciently lower than the level of measured RF leakages as

will be elaborated in “Experimental Results” section.
The RF leakage in the measured phase scaled with the

ðbs¼s0
2 � bs¼0:2

2 Þ coefficient as shown by Equation 7. This

coefficient was measured by fitting a quadratic function

to the difference fwþðx; yÞgs¼s0
� fwþðx; yÞgs¼0:2 (see Eq.

3.1). Because the same z-gradient polarity was used,

there was no misregistration between the phase images,

and the terms other than wRF canceled each other in the

difference (wsub;z is negligible compared with wRF). There-

fore, this difference equaled

bs¼s0
0 � bs¼0:2

0 þ ðbs¼s0
2 � bs¼0:2

2 Þðx2 þ y2Þ. The fitted ðbs¼1:3
2

FIG. 3. Simulation results at the imaging slice (z¼0.13 m plane) of the cylindrical phantom which has three conductivity anomaly regions. (a)
Actual conductivity distribution. (b) Magnitude distribution and vector plot of the actual subject eddy current. (c) Distribution of the z-compo-

nent of the subject eddy field (Bsub;z). (d) Distribution of the Laplacian of Bsub;z. (e) Magnitude distribution and vector plot of the subject eddy
current, which is reconstructed by solving Equation 10. (f) Distribution of the conductivity, which is reconstructed by solving the convection-
reaction equation (Eq. 8). (g) Distribution of the conductivity distribution, which is reconstructed by the pointwise formula (Eq. 11).
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�bs¼0:2
2 Þ coefficient was 271 rad/m2, whereas the fitted

ðbs¼1:6
2 � bs¼0:2

2 Þ coefficient was 339 rad/m2.

RESULTS

Simulation Results

Figure 3 shows the results obtained using the simulation

phantom, which had three cylindrical anomaly regions.

Figure 3b–3d shows the distributions of the subject eddy

current magnitude (jJsubj), the subject eddy field (Bsub;z),

and r2Bsub;z at the imaging slice (z¼ 0.13 plane) when

the slew rate of the gradient field was 160 T/m/s. As

expected from Equation 8, r2Bsub;z attains high magni-

tudes at the anomaly boundaries where conductivity

changes abruptly. Because a 5� 5� 3 Savitzky-Golay ker-

nel was used in the calculation of r2Bsub;z, the high-

magnitude r2Bsub;z regions at the boundaries are 5 pixels

wide.
Figure 3e and 3f shows the distribution of the recon-

structed subject eddy current magnitude (jJ�subj) and the

reconstructed conductivity, which were obtained by

solving Equations 10 and 8. The relative L2 errors in the

reconstructed jJ�subj and in the reconstructed conductivity

were 3.1% and 6.1%, respectively. The reconstruction

errors were most pronounced in the regions near the

anomaly boundaries. This is due to the fact that the

actual conductivities jumped at these boundaries,

whereas the reconstructed ones changed more smoothly.

The smoothing was caused by the Savitzky-Golay kernel

and by the artificial diffusion term of Equation 8, both of

which have low-pass filter effects (57). The relative L2

errors in the reconstructed conductivity and jJ�subj were

less than 1% if the errors were calculated in a region

where the actual conductivity was constant. Figure 3f

shows the reconstructed conductivity when the point-

wise formula given in Equation 11 is used, in which the

spatial variation of the conductivity is neglected. As

expected, artifacts were observed at the boundaries of
the anomalies. This result suggests that the contribution
of the convective term in Equation 8 is significant, espe-
cially at the internal boundaries.

Simulations were also performed for the experimental
phantoms. The position and geometry of the gradient
coil were the same as in the previous case, and the phan-
tom was assumed at the same position. Figure 4a and 4b
shows the distributions of the subject eddy current mag-
nitude and the subject eddy field at the imaging slice
(z¼ 0.13 m plane) for the first experimental phantom
(s¼ 1.3 S/m) when a linear gradient ramp with a slew
rate of 160 T/m/s was assumed. The subject eddy field
(Bsub;z), which was constant in time during the gradient
ramp, had a maximum magnitude of 30 nT. When the
proposed pulse sequence was assumed to be used (Fig.
1), wsub;z accumulated by this Bsub;z was calculated by
using Equation 2 with the ramp times (texc and trfc) given
in Table 1. It was assumed that the slew rate of the z-gra-
dient was 160 T/m/s at all edges of the z-gradient. The
maximum magnitudes of the expected wsub;z were
1.3� 10�3 rad (0.075 	) and 1.6� 10�3 rad (0.092 	) for
the first and second phantoms, respectively.

Experimental Results

Using the proposed pulse sequence (Fig. 1) and the
experimental phantoms, two sets of experiments were
performed. In the first set, a voxel size of 2� 2� 5 mm
was used. The SNR of the MR magnitude images (when
either of the Gþz and G�z is used) were calculated as 160,
116 and 240 for the first, second, and third phantoms
respectively. Using these SNR values in Equation 15,
uðwmeasÞ was estimated as 5.3� 10�3 and 6.1� 10�3 rad
for the first and second phantoms, respectively. These
uncertainties are nearly four times the maximum magni-
tudes of the expected wsub;z, and thus wsub;z is below the
noise level. Furthermore, for achieving an uncertainty of

FIG. 4. Simulation results for the first experimental phantom (r¼1.3 S/m) at the imaging slice (z¼0.13 m plane) when a linear gradient
ramp with a slew rate of 160 T/m/s was assumed. (a) Distribution and profile of the subject eddy current magnitude. The profile is plot-

ted along the y¼0 line. (b) Distribution and profile of the z-component of the subject eddy field (Bsub;z). The profile is plotted along the
y¼0 line. The phase accumulated due to Bsub;z is calculated using Equation 2 with the ramp times (texc and trfc) given in Table 1. The

scale of this phase distribution is represented by the rightmost color bar.
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0.1 S/m in the reconstructed conductivity, the maximum

allowed uncertainty of wmeas, which is denoted by

uðwmeasÞmax, is calculated as 2.1�10�7 rad using Equa-

tion 16 with the experimental parameters given in Table

1 (0.1 S/m is assumed to be an acceptable uncertainty for

the reconstructed conductivity). Because the uðwmeasÞ val-

ues of the two phantoms are significantly larger than

uðwmeasÞmax, the conductivity reconstruction using data

from the experiments is not feasible. Even when large

voxel sizes are used (such as 7� 7�5 mm), the achieva-

ble uðwmeasÞ is still three orders of magnitude more than

uðwmeasÞmax.
The second set of experiments were performed to dem-

onstrate biased artifacts in wmeas, which are thought to be

associated with RF leakage. Figure 5a–5c shows the MR

phase images at the imaging slice (z¼0.13 m) of the

three phantoms when Gþz was used (the phase images for

G�z are not shown). For the three phantoms, Figure 5d–5f

shows half the difference between the MRI phase images

acquired using Gþz and G�z . These difference images,

which are labeled as ws¼1:3
diff , ws¼1:6

diff , and ws¼0:2
diff , may be

modeled by using Equation 6. Among the terms of Equa-

tion 6, wsum
sub;z was not observable with the scale of these

figures because it was in the order of 10�3 rad (see Fig.

4b), and the wsum
sys;z and wdiff

other terms were the same for all

the phantoms because they did not depend on conduc-

tivity. Therefore, if only the first three terms of Equation

6 were observed, we would have obtained the same

FIG. 5. Experimental results regarding the demonstration of the RF leakage at the imaging slice (z¼0.13 m plane) of the experimental

phantoms The units of the x-axis and y-axis are meters. (a–c) MR phase images of the first (r¼1.3 S/m) (a), second (r¼1.6 S/m) (b),
and third (r¼0.2 S/m) (c) phantoms when the polarity of the z-gradient was positive (see Gþz in Fig. 1). (d–f) Half of the difference

between the phase images acquired using positive and negative z-gradient polarities for the three phantoms (ws¼1:3
diff , ws¼1:6

diff , and ws¼0:2
diff ).

(g) Measured phase for the first phantom (ws¼1:3
meas ¼ ws¼1:3

diff � ws¼0:2
diff ). (h) Measured phase for the second phantom

(ws¼1:6
meas ¼ ws¼1:6

diff � ws¼0:2
diff ).
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distributions for ws¼1:3
diff , ws¼1:6

diff , and ws¼0:2
diff , but that was

not the case. It may be hypothesized that these differen-
ces are accounted for in the last term in Equation 6,
which is the RF leakage term. Figure 5g shows the differ-
ence between ws¼1:3

diff and ws¼0:2
diff , whereas Figure 5h shows

the difference between ws¼1:6
diff and ws¼0:2

diff . These differen-
ces, which were defined as wmeas, were modeled using
Equation 7. The levels of wmeas were in the order of 10�2

rad, indicating that the contribution of w
s0�slow

sub;z was not
dominant (see Fig. 4b). Therefore, we expected wmeas to
be proportional to the coefficients ðbs¼1:3

2 � bs¼0:2
2 Þ and

ðbs¼1:6
2 � bs¼0:2

2 Þ. As expected, the pattern of wmeas was
similar for two phantoms, and the ratio between their
levels was approximately 0.8, which equals the experi-
mentally calculated ratio of

ðbs¼1:3
2 �bs¼0:2

2 Þ
ðbs¼1:6

2 �bs¼0:2
2 Þ ¼

271
339 ¼ 0:8. There-

fore, we may argue that the theory of RF leakage
expressed through Equations 6 and 7 is consistent with
our observations.

DISCUSSION

This feasibility study had two goals. The first goal was to
investigate whether conductivity reconstruction is possi-
ble provided that subject eddy fields (Bsub;z) are measured
accurately. For this purpose, a novel conductivity recon-
struction method was developed by formulating a
convection-reaction type PDE which relates conductivity
to Bsub;z. The simulation results show that the proposed
method performs well both in regions of homogeneous
conductivity and in regions of high conductivity gradients
(see Fig. 3). The second goal was to understand the fidel-
ity by which wsub;z must be measured in order to accu-
rately reconstruct conductivity. It was observed that the
uncertainty of the measured phases [uðwmeasÞ] were nearly
four times the maximum magnitudes of expected wsub;z.
Furthermore, uðwmeasÞ was four orders of magnitude
higher than the maximum allowed uðwmeasÞ for an accu-
rate conductivity reconstruction. Indeed, in human
experiments, uðwmeasÞ will not be so different, because the
expected SNR is on the same order of magnitude as that
of the phantoms. This leads us to the key conclusion of
this study, which is that the low-frequency conductivity
imaging using slice-selection gradients is not feasible, at
least not for the experimental procedures we applied.

As a by-product of this study, biased artifacts observed
in wmeas were also investigated by developing a theoreti-
cal model that hypothesizes that these artifacts are
caused by the RF phase, which could not be eliminated
due to misregistration between wþðxþ; yÞ and w�ðx�; yÞ.
The developed model suggests that these artifacts, which
are referred to as RF leakage, scale with conductivity of
phantoms. Indeed, such scaling is also observed in our
experiments, which supports the validity of the model.
Therefore, even if uðwmeasÞ may be sufficiently lowered
by some innovative means, there are still nonrandom RF
leakage artifacts that must be handled in order to accu-
rately measure wsub;z and reconstruct conductivity.

The level of RF leakage depends on the extent of geo-
metric distortions, because this extent is determined by
Bsys;z=Gx and Bother;z=Gx (see Equations 5.1, 5.2, and 7).
Consider, for instance, the RF leakage for the first phan-
tom, which is on the level of 20�10�3 rad (see Fig. 5g). If

Bother;z=Gx is neglected and if Bsys;z=Gx is assumed to be
spatially constant, the RF leakage can be expressed as
2xðbs¼1:3

2 � bs¼0:2
2 Þs0, where s0 is the shift caused by con-

stant Bsys;z=Gx . The RF leakage level of 20� 10�3 rad can
be reached with s0 ffi 0.5 mm when x changes between
�7 and 7 cm (the radius of the phantom is 7 cm). There-
fore, even small geometric distortions can generate RF lea-
kages high enough to dominate wsub;z. Furthermore, the
pattern of the RF leakage indicates that these small geo-
metric distortions are not in the form of a simple shift,
but that higher-order distortions exist, which are harder
to detect. Indeed, comparing the MRI magnitude images
obtained using positive and negative z-gradient polarities
(voxel size, 2� 2�5 mm), we have not observed nor
detected any difference pointing to geometric distortions.
Because the distortions are undetectable, we have not
attempted any of the geometric distortion correction
methods proposed in the literature (41,42,58,59).

Measurement of subject eddy fields due to switching
of gradients has been investigated in other studies as
well (31–39). Mandija et al. (38) studied the measure-
ment of the subject eddy field due to switching of read-
out (x- or y-) gradients. They proposed measuring the
phase accumulated due to this subject eddy field by tak-
ing the difference of two phase images acquired using
spin-echo pulse sequences of opposite readout gradient
polarities (wþ and w�). In another recent study, Gibbs
and Liu (39) investigated the phase accumulated due to
the subject eddy field induced by the falling edge of a
gradient pulse that is applied immediately before the
excitation. In the both studies, the level of accumulated
phases is found to be below the noise level (38,39),
which is in line with our findings. Moreover, by apply-
ing subvoxel shifts to wþ and w� via spatial interpola-
tion, Mandija et al. also showed that even minor
subvoxel misregistrations in wþ and w� can lead to RF
leakages that dominate desired measurements and scale
with conductivity (38). Our experimental findings of RF
leakage are also in line with the findings of this study.

It is known that the conductivities of certain biological
tissues such as muscle or white matter are anisotropic at
low frequencies (2,60). For the reconstruction of aniso-
tropic conductivity, some methods have been developed
in the field of MREIT (61–63). In these methods, currents
are injected through different pairs of surface electrodes
so that several independent (not collinear) current
density distributions are generated inside the subject in
separate experiments, and the magnetic fields due to
each current density distribution are measured. In the
algorithm proposed by Nam et al. (62), the measured
magnetic fields are first used to reconstruct the corre-
sponding current density distributions. Starting from an
initial estimate, the anisotropic conductivity tensor is
then updated iteratively so that the solution of the for-
ward problem matches these reconstructed current den-
sities (the forward problem is defined as the calculation
of current density for a given conductivity tensor). This
methodology can potentially be adapted to the case of
subject eddy current–based conductivity imaging. For
this purpose, subject eddy currents induced by different
gradient coils may be used as independent current den-
sity distributions. The subject eddy field due to the z-
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gradient coil can first be measured using the method
described in the current study. Then, the subject eddy
fields due to the x- and y-gradient coils can be measured
separately using the method described in other studies
(31,38). Using these subject eddy fields, three independ-
ent subject eddy current distributions can be recon-

structed by the method based on the solution of
Equation 10. Finally, the anisotropic conductivity tensor
can be reconstructed iteratively by making use of the for-
ward problem formulation in Equation 14. This method
may be considered as one way of approaching aniso-
tropic conductivity reconstruction in future eddy cur-
rent–based conductivity reconstruction studies.

In conclusion, we have shown by way of simulation
that the conductivity reconstruction using Bsub;z is possi-
ble, provided that wsub;z is measured accurately. How-
ever, we have also shown that wsub;z cannot be measured

with an uncertainty sufficiently low for accurate con-
ductivity reconstruction, which indicates that the con-
ductivity imaging using switching of slice-selection
gradients is not feasible. We have come across nonran-
dom artifacts in wmeas, which are hypothesized to be
caused by RF leakage. We were able to show through
experiments that RF leakage scales with conductivity as
suggested by the developed model. On the other hand,
the pattern of RF leakage is difficult to predict, because
it requires exact knowledge of B0 inhomogeneity and
system eddy fields during readout. The complete verifi-
cation of the RF leakage hypothesis, therefore, requires

further study.

APPENDIX

Derivation of Equations 8, 9, and 12

For deriving Equation 9, the curl of both sides of Equa-
tion 1.2 is taken. Using the identity r�r� Bsub ¼ rðr
�BsubÞ � r2Bsub and noting that r � Bsub ¼ 0, we obtain
the following relation:

�r2Bsub ¼ m0ðr � JsubÞ [A.1]

The z-component of Equation A.1 can be recognized as
Equation 9. For deriving Equation 8, we use Jsub ¼ sE in
Equation A.1 to get

�r2Bsub ¼ m0ðrs� Eþ sr� EÞ [A.2]

Using Equation 1.1 and the relation E ¼ Jsub=s, the
z-component of Equation A.2 becomes

r2Bsub;z ¼
m0

s

@s

@y
Jsub;x �

@s

@x
Jsub;y

� �
þ m0s

@Bp;zðtÞ
@t

[A.3]

Substituting r ¼ s�1 with Equation A.3, Equation 8 is
obtained by some algebraic manipulation.

For deriving Equation 12, we use Equation 2 in Equa-
tion 11 and note that, when the z-gradient is linearly
ramped up or down with the same slew rate of K at all
edges, @Bp;zðtÞ=@t can be expressed at the imaging slice
as Kz0, where z0 is the z-coordinate of the imaging slice.
In this case, Equation 11 can be expressed as

s ffi
r2wsub;z

m0gðtexc þ 2trfcÞKz0
[A.4]

The ðtexc þ 2trfcÞK term in Equation A.4 can be recog-

nized as Gexc
z þ 2Grfc

z , where Gexc
z and Grfc

z are the magni-

tude of the z-gradient during excitation and refocusing,

respectively (see Table 1). Substituting Gexc
z þ 2Grfc

z for

ðtexc þ 2trfcÞK in Equation A.4, Equation 12 is obtained.

Validation of the Assumption wsum
sub;z=2 ¼ wsub;zðx; yÞ

For cylindrical phantoms with uniform conductivity,

wsub;z can be approximated with a quadratic function (see

the profile in Fig. 4b) [i.e., wsub;zðx; yÞ ¼ us¼s0
1 þ

us¼s0
2 ðx2 þ y2Þ]. Substituting xþ or x� for x, wsum

sub;z=2

can be expressed as (for definition of xþ and x�, see

Equations 5.1 and 5.2)

wsum
sub;z

2
¼ wsub;zðx; yÞ

þ us¼s0
2 2x

Bother;z

Gx
þ Bother;z

Gx

� �2

þ Bsys;z

Gx

� �2
" #

[A.5]

Because Bother;z=Gx and Bsys;z=Gx is on the order of 0.005

or less (41), ðBother;z=GxÞ2 and ðBsys;z=GxÞ2 can safely be

neglected compared with ðx2 þ y2Þ. Away from the ori-

gin, the 2xBother;z=Gx term can also be neglected com-

pared with ðx2 þ y2Þ (around the origin, the us¼s0
1 term is

dominant in wsub;z anyway). Therefore, the artifacts due

to misregistration of wsub;z are negligible compared with

wsub;z itself, and thus wsum
sub;z=2 ffi wsub;zðx; yÞ.
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