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Abstract We show that the maximal number of (real) lines in a (real) nonsingular
spatial quartic surface is 64 (respectively, 56). We also give a complete projective
classification of all quartics containing more than 52 lines: all such quartics are pro-
jectively rigid. Any value not exceeding 52 can appear as the number of lines of an
appropriate quartic.
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1 Introduction

1.1 Principal results

Throughout the paper, all algebraic varieties are defined over C. Given an algebraic
surface X ⊂ P

3, we denote by Fn(X) the set of projective lines contained in X . If X
is real (see definition below), FnR(X) stands for the set of real lines contained in X .

Theorem 1.1 (see Sect. 8.3) Let X ⊂ P
3 be a nonsingular quartic, and assume that

|Fn(X)| > 52. Then X is projectively equivalent to either

– Schur’s quartic X64, see Sect. 9.1, or
– one of the three quartics X ′

60, X ′′
60, X̄ ′′

60 described in Sect. 9.4.1, or
– the quartic Y56, see Sect. 9.2, or quartics X56, X̄56, Q56 described in Sect. 9.4.1, or
– one of the two quartics X54, Q54 described in Sect. 9.4.

In particular, one has |Fn(X)| = 64, 60, 56, or 54, respectively.

Corollary 1.2 (see Segre [27] and Rams, Schütt [22]) Any nonsingular quartic in P
3

contains at most 64 lines.

Note that the field of definition C is essential for all statements. For example, over
F9, the quartic given by the equation z0z3

3 + z1z3
2 + z3

1z2 + z3
0z3 = 0 contains 112

lines. According to Rams, Schütt [21,22], the bound |Fn(X)| � 64 holds over any
field of characteristic other than 3.

As was observed by Shioda, X56 and X̄56 are alternative projective models of the
Fermat quartic: this fact follows from the description of their transcendental lattice,
see Lemma 6.14. Shimada has recently found an explicit defining equation of these
surfaces. Other similar examples are discussed in Remark 9.9.

Recall that a real variety is a complex algebraic variety X equipped with a real
structure, i.e., an anti-holomorphic involution conj : X → X . The real part of X is the
fixed point set XR := Fix conj. A subvariety (e.g., a line) Y ⊂ X is called real if it is
conj-invariant. When speaking about a real quartic X ⊂ P

3, we assume that the real
structure on X is the restriction of the standard coordinatewise complex conjugation
z �→ z̄ on P

3.

Corollary 1.3 (see Sect. 8.4) Let X ⊂ P
3 be a nonsingular (over C) real quartic, and

assume that |FnR(X)| > 52. Then X is projectively equivalent (over R) to the quartic
Y56 given by (9.3). In particular, one has |FnR(X)| = 56, and this is the maximal
number of real lines that can be contained in a nonsingular real quartic.

Addendum 1.4 (see Sect. 8.5) For any number

n ∈ {0, 1, . . . , 51, 52, 54, 56, 60, 64},

there exists a nonsingular quartic X ⊂ P
3 such that |Fn(X)| = n. For any number

m ∈ {0, 1, . . . , 47, 48, 52, 56},

there exists a nonsingular real quartic X ⊂ P
3 such that |FnR(X)| = m.
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Lines on quartic surfaces 755

Thus, for the moment we are not certain about the values |FnR(X)| = 49, 50, 51.
We know three families of real quartics with 52 real lines; for a list of currently known
large configurations of lines, see Table 1 in Sect. 6.2.

The quartic Y56 can be defined over Q; however, some of the lines are still defined
only over Q(

√
2) (see Remark 9.6). The question on the maximal number of lines

defined over Q in a quartic defined over Q is discussed briefly in Sect. 9.4.3.
Another open question is the maximal number of lines contained in a triangle free

configuration, see Theorem 7.6 and Remark 7.7.

1.2 Strategy of the proof

It is a common understanding that, thanks to the global Torelli theorem [20] and
surjectivity of the period map [14], any reasonable geometric question about K 3-
surfaces (in particular, smooth quartics) can be treated arithmetically, by a thorough
study of the Picard lattice of the surface. It is this approach that we employ in the
paper (see Sect. 3 for the precise statements); its principal advantage over the clas-
sical purely geometric treatment is the fact that, once we have a collection of lines
spanning a lattice of the maximal possible rank, we gain full control over the whole
configuration of lines contained in the surface: homologically, all lines are linear com-
binations of those already found. To solve the corresponding arithmetical problem,
we use an arithmetical version of the geometric concept of pencil of planes passing
through a fixed line (equivalently, the collection of lines intersecting a fixed one, see
Sect. 5): this construction lets us start with a sufficiently large standard lattice, so
that adding a few missing lines becomes computationally feasible (see Sect. 6). Then,
in Sect. 8, we use simple combinatorial arguments to show that any large configura-
tion of lines does indeed contain a pair of large pencils and, thus, is covered by our
computation.

1.3 Contents of the paper

In Sect. 2, we start with a brief introduction to the history of the subject. In Sect. 3, we
recall basic notions and facts related to integral lattices and K 3-surfaces and use the
theory of K 3-surfaces to reduce the original geometric problem to a purely arithmetical
question about configurations; the main results of this section are stated in Sect. 3.4.
The simplest properties of configurations, not related directly to quartic surfaces, are
treated in Sect. 4, whereas Sect. 5 deals with the more subtle arithmetic properties of
the main technical tool of the paper, the so-called pencils. The technical part is Sect. 6:
we outline the algorithm used for counting lines in a pair of obverse pencils and state
the counts obtained in the output. Table 1 lists most known large configurations of
lines. In Sect. 7, we digress to the so-called triangle free configurations, for which one
can obtain a stronger bound on the number of lines, see Theorem 7.6. The principal
results of the paper stated in Sect. 1.1 are proved in Sect. 8. Finally, in Sect. 9, we
discuss the properties of quartics with many lines (in particular, Sect. 9.2 contains an
explicit equation of Y56) and make a few concluding remarks.
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2 History of the subject

The fact that there are exactly twenty seven lines on every smooth cubic surface in the
complex projective space P

3 naturally leads to inquiries about higher degree surfaces
in P

3. The situation however seems to be more involved for higher degree surfaces
since it follows immediately from a standard dimension count that a generic surface
in P

3 of degree four or higher does not contain any lines at all, whereas each Fermat
surface of the form

zd
0 + zd

1 + zd
2 + zd

3 = 0,

where [z0 : z1 : z2 : z3] are homogeneous coordinates of P
3, contains exactly 3d2

lines, for all d � 3. This prompts the more relevant question about how many lines a
smooth surface of degree d � 4 can have. In particular, given d � 4, is there an upper
bound for the number of lines that a smooth surface of degree d can contain?

At this point, it is worth calling attention to the difference between the counting of
rational curves on a surface and the counting of lines. While a generic quartic does not
contain a line, it is shown by Mori and Mukai [18] that every projective K 3-surface, in
particular every smooth quartic in P

3, contains at least one rational curve. Moreover,
whereas the number of lines on a smooth quartic is expected to be bounded, there is
a large number of special classes of K 3-surfaces containing infinitely many rational
curves, see, e.g., [4,5]. Furthermore, Xi Chen showed in [9] that, for a generic quartic
in P

3, every linear system O(n), for any n > 0, contains a nodal rational curve. In
fact, Yau and Zaslow [28], inspired by string theory, counted those rational curves for
the n = 1 case. The existence of smooth irrational curves on quartic surfaces in P

3 is
also relatively well understood, see Mori [17].

On the other hand, the problem of counting lines on smooth surfaces in P
3 is a

totally different game. The first work that we could trace is Schur’s article [25], where
he exhibits a quartic surface which contains 64 lines. This surface, now known as
Schur’s quartic, is given by the equation

z0(z
3
0 − z3

1) = z2(z
3
2 − z3

3).

In Sect. 9.1 we give an account of the 64 lines on this quartic.
Apparently, no progress was made on this result for about half a century until 1943

when B. Segre published some articles on the arithmetic and geometry of surfaces in
P

3. In one of these articles, in [27], he claimed that the number of lines which can lie
on a smooth quartic surface cannot exceed 64. Since Schur’s quartic already contains
64 lines, this result of Segre would have closed the question for quartics had it not
been for a flaw in his arguments which was only recently detected and corrected by
Rams and Schütt [22]. Rams and Schütt showed that the theorem is correct but the
proof needs some modifications using techniques which were not available to Segre
at that time.

Segre’s article [27] contains an upper bound for the number of lines which can lie
on a smooth surface of degree d � 4. His upper bound, which is not affected by his
erroneous argument about quartics, is (d − 2)(11d − 6). This bound is not expected
to be sharp. For quartics it predicts 76, larger than the actual bound 64.
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There is one curious fact about Segre’s work of 1943. Most of the techniques he
uses were already in Salmon’s book [24] which was originally published in 1862. It
would be reasonable to expect that a work similar to Segre’s be published much earlier
than 1943. We learn from a footnote in [27] that the problem was mentioned by Meyer
in an encyclopedia article [15] as early as 1908, but even that was not enough to spur
interest in the subject at the time.

After Segre’s work there was again a period of long silence on the problem of lines
on surfaces. In 1983 Barth mentioned this problem in [2]. There he also noted that,
since a smooth quartic in P

3 is a K 3-surface, all results of Segre on quartics should
probably be reproducible in the lattice language. This teaser was one of the challenges
which prompted us to work on this problem.

In 1995, Caporaso, Harris and Mazur [8], while investigating the number of rational
points on a curve over an algebraic number field, attacked the problem of finding a
lower bound for the maximal number Nd of lines lying on a surface of the form
ϕ(z0, z1) = ϕ(z2, z3), where ϕ is a homogeneous form of degree d. Their arguments
being purely geometric, the results obtained make sense in the complex domain as
well. They found that, in general, Nd � 3d2, but

N4 � 64, N6 � 180, N8 � 256, N12 � 864, N20 � 1600.

In 2006, Boissière and Sarti [6] attacked a similar problem using group actions. They
studied the maximal number of lines on slightly more general surfaces in P

3 given by
equations of the form

ϕ(z0, z1) = ψ(z2, z3),

where ϕ and ψ are homogeneous forms of degree d; below, we call such surfaces sym-
metric. This approach may seem restrictive; nonetheless, it is reasonable since Schur’s
surface, which contains the maximal possible number of lines that a smooth quartic
surface can contain, is of this form. Boissière and Sarti showed that the inequalities
for Nd obtained by Caporaso, Harris and Mazur are actually equalities and, moreover,
the same upper bounds hold for symmetric surfaces. This increased the hope that sym-
metric surfaces are good candidates to carry the maximal number of lines among other
surfaces of the same degree. However, Boissière and Sarti showed in the same work
that this expectation fails. They showed that the non-symmetric surface given by

z8
0 + z8

1 + z8
2 + z8

3 + 168z2
0z2

1z2
2z2

3 + 14(z4
0z4

1 + z4
0z4

2

+ z4
0z4

3 + z4
1z4

2 + z4
1z4

3 + z4
2z4

3) = 0

contains 352 lines, which is far greater than N8 = 256. (Notice that Segre’s upper
bound for this degree is 492.)

Finally, almost thirty years after Barth’s teaser, two teams started to work on this
problem, unaware of each other, using two different sets of techniques. While we con-
centrated on the K 3-theoretical approach and aimed at transliterating Segre’s results
into the lattice language, Rams and Schütt [22] re-attacked the problem by using the
elliptic fibration techniques. They suggested a proof that works in any algebraically
closed field of characteristic p �= 2, 3. (Schur’s quartic becomes singular when p = 2,
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still containing 64 lines; when p = 3, it is shown in [22] that the surface contains 112
lines.) Contrary to this, our proof works over C (or R) only, but our results are finer as
they include a partial classification of quartics and configurations of lines (see Sect.
1.1).

3 The reduction

Throughout the paper, we consider various abelian groups A equipped with bilinear
and/or quadratic forms. Whenever the form is fixed, we use the abbreviation x · y
(respectively, x2) for the value of the bilinear form on x ⊗ y (respectively, the quadratic
form on x). Given a subset B ⊂ A, its orthogonal complement is

B⊥ = {
x ∈ A

∣∣ x · y = 0 for all y ∈ B
}
.

3.1 Integral lattices

An (integral) lattice is a finitely generated free abelian group S supplied with a sym-
metric bilinear form b : S ⊗ S → Z. A lattice S is even if x2 = 0 mod 2 for all x ∈ S.
As the transition matrix between two integral bases has determinant ±1, the determi-
nant det S ∈ Z (i.e., the determinant of the Gram matrix of b in any basis of S) is well
defined. A lattice S is called nondegenerate if det S �= 0; it is called unimodular if
det S = ±1. Alternatively, S is nondegenerate if and only if its kernel ker S := S⊥
is trivial. An isometry ψ : S → S′ between two lattices is a group homomorphism
respecting the bilinear forms; obviously, one always has Ker ψ ⊂ ker S. The group
of auto-isometries of a nondegenerate lattice S is denoted by O(S). Given a collection
of subsets/elements A1, . . . in S, we use the notation O(S, A1, . . .) for the subgroup
of O(S) preserving each Ai as a set.

Given a lattice S, the bilinear form extends to S ⊗Q by linearity. The inertia indices
σ±S, σ0S and the signature σ S of S are defined as those of S ⊗ Q. The orthogonal
projection establishes a linear isomorphism between any two maximal positive definite
subspaces of S ⊗ Q, thus providing a way for comparing their orientations. A coherent
choice of orientations of all maximal positive definite subspaces is called a positive
sign structure. Assuming S nondegenerate, we denote by O+(S) ⊂ O(S) the subgroup
formed by the auto-isometries preserving a positive sign structure.

A d-polarized lattice is a lattice S with a distinguished vector h ∈ S, referred to
as the polarization, such that h2 = d. We use the abbreviation Oh(S, A1, . . .) for
O(S, h, A1, . . .); a similar convention applies for O+.

If S is nondegenerate, the dual group S∨ = Hom(S, Z) can be identified with the
subgroup

{
x ∈ S ⊗ Q

∣∣ x · y ∈ Z for all y ∈ S
}
.

In particular, S ⊂ S∨ and the quotient S∨/S is a finite group; it is called the discriminant
group of S and is denoted by discr S or S. The discriminant group S inherits from
S ⊗ Q a symmetric bilinear form S ⊗ S → Q/Z, called the discriminant form,
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and, if S is even, a quadratic extension S → Q/2Z of this form. When speaking
about the discriminant groups, their (anti-)isomorphisms, etc., we always assume that
the discriminant form (and its quadratic extension if the lattice is even) is taken into
account. The number of elements in S is equal to |det S|; in particular, S = 0 if and
only if S is unimodular.

Given a prime number p, we denote by Sp or discr p S the p-primary part of
S = discr S. The form S is called even if there is no order 2 element α ∈ S2 with
α2 = ± 1

2 mod 2Z. We use the notation �(S) for the minimal number of generators
of S, and we put �p(S) = �(Sp). The quadratic form on S can be described by means
of an analog (εi j ) of the Gram matrix: assuming that d1 | d2 | · · · | d� are the invariant
factors of S, we pick a basis α1, α2, . . . , α� ∈ S so that the order of αi is di , and let
εi j = αi · α j mod Z for i �= j and εi i = α2

i mod 2Z. A similar construction applies
to Sp. Furthermore, according to Miranda and Morrison [16], unless p = 2 and S2
is odd, the determinant of the resulting matrix is a unit in Zp well defined modulo
(Z∗

p)
2; this determinant is denoted by det p S ∈ Z

∗
p/(Z

∗
p)

2.
Two nondegenerate lattices are said to have the same genus if their localizations at

all primes and at infinity are isomorphic. The genus of an even lattice is determined by
its signature and the isomorphism class of the quadratic extension of the discriminant
form, see [19].

In what follows, we denote by [s] the rank one lattice Zw, w2 = s. The notation
U stands for the hyperbolic plane, i.e., the lattice generated by a pair of vectors u, v

(referred to as a standard basis for U) with u2 = v2 = 0 and u · v = 1. Furthermore,
given a lattice S, we denote by nS, n ∈ N, the orthogonal direct sum of n copies
of S, and by S(q), q ∈ Q, the lattice obtained from S by multiplying the form by q
(assuming that the result is still an integral lattice). The notation nS is also used for
the orthogonal sum of n copies of a discriminant group S.

A root in an even lattice S is a vector r ∈ S of square −2. A root system is
an even negative definite lattice generated by its roots. Recall that each root system
splits (uniquely up to order of the summands) into orthogonal sum of indecomposable
root systems, the latter being those of types An , n � 1, Dn , n � 4, E6, E7, or E8,
see [7].

From now on, we fix an even unimodular lattice L of rank 22 and signature −16.
All such lattices are isomorphic to 2E8 ⊕ 3U. It can easily be shown that, up to the
action O+(L), this lattice has a unique 4-polarization h; thus, L is always considered
equipped with a distinguished 4-polarization h and a positive sign structure.

We also fix the notation for certain discriminant forms. Given coprime integers m,
n such that one of them is even, 〈m

n 〉 is the quadratic form 1 �→ m
n mod 2Z on Z/n.

Given a positive integer k, consider the group Z/2k × Z/2k generated by α = (1, 0)

and β = (0, 1); denote by U2k (respectively, V2k ) the quadratic form on the above
group such that α ·β = 1

2k mod Z and α2 = β2 = 0 mod 2Z (respectively, α2 = β2 =
1

2k−1 mod 2Z).
An extension of a nondegenerate lattice S is another lattice M containing S. An

isomorphism between two extensions M ′, M ′′ ⊃ S is a bijective isometry M ′ → M ′′
identical on S. More generally, given a subgroup G ⊂ O(S), a G-isomorphism is a
bijective isometry M ′ → M ′′ whose restriction to S is an element of G.
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The two extreme cases are those of finite index extensions (where S has finite index
in M) and primitive ones (where M/S is torsion free). The general case M ⊃ S splits
into the finite index extension S̃ ⊃ S and primitive extension M ⊃ S̃, where

S̃ = {
x ∈ M

∣∣ nx ∈ S for some n ∈ Z
}

is the primitive hull of S in M .
If S is nondegenerate and M ⊃ S is a finite index extension, we have a chain of

inclusions

S ⊂ M ⊂ M∨ ⊂ S∨,

and, hence, a subgroup K = M/S ⊂ S; this subgroup is called the pivot of M ⊃
S. The pivot K is b-isotropic, that is, the restriction to K of the discriminant form
S ⊗ S → Q/Z is trivial. Furthermore, the lattice M is even if and only if S is even
and K is isotropic, that is, the restriction to K of the quadratic extension S → Q/2Z

of the discriminant form is trivial.

Theorem 3.1 (Nikulin [19]) Given a nondegenerate lattice S, the map sending M ⊃ S
to the pivotK = M/S ⊂ S establishes a one-to-one correspondence between the set of
isomorphism classes of finite index extensions of S and the set of b-isotropic subgroups
of S. Under this correspondence, one has discr M = K⊥/K and M = {

x ∈ S∨ ∣∣
x mod S ∈ K}

.

In the other extreme case, we confine ourselves to primitive extensions M ⊃ S
to an even unimodular lattice M . Assuming S nondegenerate, these are equivalent to
appropriate finite index extensions of S ⊕ S⊥, the pivot of the latter giving rise to an
anti-isomorphism S → discr S⊥ and thus determining the genus of S⊥. It follows
that, given a subgroup G ⊂ O(S) and the signature of M , a G-isomorphism class of
even unimodular primitive extensions M ⊃ S is determined by a choice of

– an even lattice T such that discr T ∼= −S and σ±T = σ±M − σ±S, and
– a bi-coset in G\Aut discr T/O(T ).

For details see [19]. The following theorem is a combination of the above observation
and Nikulin’s existence theorem [19] applied to the genus of S⊥.

Theorem 3.2 (Nikulin [19]) A nondegenerate even lattice S admits a primitive exten-
sion to the lattice L if and only if the following conditions are satisfied:

(1) σ+S � 3, σ−S � 19, and rk S + �(S) � 22;
(2) (−1)σ+S−1|S| = det p S mod(Z∗

p)
2 for all odd prime numbers p such that rk S +

�p(S) = 22;
(3) either rk S + �2(S) < 22, or S2 is odd, or |S| = ± det2 S mod(Z∗

2)
2.

3.2 K3-surfaces

Let X ⊂ P
3 be a nonsingular quartic. It is a minimal K 3-surface. Introduce the

following objects:
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– L X = H2(X) = H2(X), regarded as a lattice via the intersection form (we always
identify homology and cohomology via Poincaré duality);

– h X ∈ L X , the class of a generic plane section of X ;
– F(X) ⊂ H2(X; Z), the primitive sublattice spanned over Q by h X and the classes

of lines l ⊂ X (the Fano configuration of X );
– ωX ⊂ L X ⊗ R, the oriented 2-subspace spanned by the real and imaginary parts

of the class of a holomorphic 2-form on X (the period of X ).

Note that ωX is positive definite and orthogonal to h X ; furthermore, the Picard group
Pic X equals ω⊥

X ∩ L X .
The following statement is an immediate consequence of the above description of

Pic X and the Riemann–Roch theorem.

Lemma 3.3 A vector a ∈ L X is realized by a line l ⊂ X if and only if a · ωX = 0,
a2 = −2, and a · h X = 1. Distinct lines represent distinct classes in L X .

In view of the uniqueness part of this statement, we identify lines in X and their
classes in L X .

As is well known, the lattice L X is isomorphic to L; a marking of X is a choice of
a particular isomorphism ψ : L X → L such that ψ(h X ) = h ∈ L and the maximal
positive definite subspace ψ(Rh X ⊕ ωX ) is positively oriented. Consider a period ω,
i.e., an oriented positive definite 2-subspace ω ⊂ L⊗R orthogonal to h. The following
statement provides a criterion for the realizability of the triple (L, h, ω) by a quartic,
i.e., the existence of a marked nonsingular quartic (X, ψ) such that ψ takes ωX to
ω. It is a combination of the surjectivity of the period map for K 3-surfaces (see Vik.
Kulikov [14]) and Saint-Donat’s description [23] of projective models of K 3-surfaces.

Proposition 3.4 A triple (L, h, ω) is realizable by a quartic X ⊂ P
3 if and only if L

contains no vector e such that e · ω = 0 and either

(1) e2 = −2 and e · h = 0, or
(2) e2 = 0 and e · h = 2.

Denote by Ω the space of oriented positive definite 2-subspaces ω ⊂ L ⊗ R

orthogonal to h and such that Rh ⊕ ω is positively oriented. By Proposition 3.4,
the image of the period map (X, ψ) �→ ψ(ωX ) is the subset Ω◦ ⊂ Ω obtained by
removing the locally finite collection of codimension two subspaces

Ωe = {ω ∈ Ω | ω · e = 0}, (3.1)

where e ∈ L runs over all vectors as in Proposition 3.4(1) or (2). Restricting to
Ω◦ Beauville’s universal family [3] of marked polarized K 3-surfaces, we obtain the
following statement on marked quartics.

Proposition 3.5 The subset Ω◦ ⊂ Ω is a fine moduli space of marked nonsingular
quartics in P

3.

Now, let X ⊂ P
3 be a real nonsingular quartic. The complex conjugation induces

an involutive isometry cX : L X → L X taking h X to −h X , preserving ωX as a subspace
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and reversing its orientation. In particular, it follows that the positive inertia index of
the skew-invariant eigenlattice of cX equals 2.

Consider an involutive isometry c : L → L and denote by L±c its (±1)-eigen-
lattices. The involution c is called geometric if h ∈ L−c and σ+L−c = 2. As explained
above, a marking of a nonsingular real quartic X ⊂ P

3 takes cX to a geometric
involution on L. This involution is called the homological type of X ; it is determined
by X up to the action of O+

h (L). Conversely, according to Nikulin [19, Theorems
3.10.1, 3.10.4], any geometric involution c : L → L is the homological type of a
marked nonsingular real quartic, and the periods of such quartics constitute the whole
space

Ω◦ ∩ {Rω+ ⊕ Rω− | ω± ∈ L±c ⊗ R}. (3.2)

3.3 Configurations

Motivated by Lemma 3.3, we define a line in a 4-polarized lattice S as a vector a ∈ S
such that a2 = −2 and a · h = 1. The set of all lines in S is denoted by Fn(S).

Definition 3.6 A pre-configuration is a 4-polarized lattice S generated over Q by
its polarization h and all lines a ∈ S. A pre-configuration S is called hyperbolic if
σ+(S) = 1. A configuration is a nondegenerate hyperbolic pre-configuration S that
contains no vector e such that either

(1) e2 = −2 and e · h = 0, or
(2) e2 = 0 and e · h = 2

(cf. Proposition 3.4). For a pre-configuration (S, h) and a subset A ⊂ Fn(S), the
notation spanh(A) stands for the pre-configuration S′ ⊂ S generated (over Z) by A
and h.

Remark 3.7 Let S be a nondegenerate hyperbolic pre-configuration. Then

– S contains finitely many lines, and
– any pre-configuration S′ ⊂ S is also nondegenerate and hyperbolic.

In particular, if S is a configuration, then so is S′.

Let L ⊂ L be a nondegenerate primitive polarized sublattice. An L-configuration
is a configuration S ⊂ L primitive in L . Two L-configurations S′, S′′ ⊂ L are said to
be isomorphic, or strictly isomorphic, if there exists an element of the group O+

h (L, L)

sending S′ to S′′. An L-realization of a pre-configuration S is a polarized isometry
ψ : S → L such that the image Im ψ is non-degenerate, i.e., Ker ψ = ker S. If the
primitive hull (Im(ψ) ⊗ Q) ∩ L is an L-configuration, the realization ψ is called
geometric. A configuration admitting a primitive geometric L-realization is called
L-geometric (or just geometric if L = L).

Note that there is a subtle difference between L-configurations and geometric ones:
typically, the former are considered up to the action of O+

h (L), whereas the latter, up
to abstract automorphisms of polarized lattices (cf. Lemma 6.14).

To simplify the classification of configurations, we introduce also the notion of
weak isomorphism. Namely, two L-configurations are said to be weakly isomorphic
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if they are taken to each other by an element of the group Oh(L); in other words, we
disregard the positive sign structure on L. Respectively, an L-configuration S ⊂ L
is called symmetric if it is preserved by an element a ∈ Oh(L)�O+

h (L); if such an
element a can be chosen involutive (respectively, involutive and identical on S), the
configuration S is called reflexive (respectively, totally reflexive). Putting c = −a,
one concludes that S is totally reflexive if and only if S ⊂ L−c for some geometric
involution c. It is also clear that each weak isomorphism class consists of one or two
strict isomorphism classes, depending on whether the configurations are symmetric
or not, respectively.

Lemma 3.8 An L-configuration S is totally reflexive if and only if the orthogonal
complement S⊥ contains either [2] or U(2).

Proof We use the classification of geometric involutions found in [19]. On the one
hand, any sublattice isomorphic to [2] or U(2) in h⊥ ⊂ L is of the form L+c for
some geometric involution c. On the other hand, for any geometric involution c the
sublattice L−c is totally reflexive. �

3.4 The arithmetical reduction

Let X ⊂ P
3 be a nonsingular quartic surface. Choosing a marking ψ : L X → L, we

obtain an L-configuration ψ(F(X)) (see Proposition 3.4). Since any two markings
differ by an element of O+

h (L), the surface X gives rise to a well-defined isomorphism
class [F(X)] of L-configurations.

Two nonsingular quartics X0 and X1 in P
3 are said to be equilinear deformation

equivalent if there exists a path Xt , t ∈ [0, 1], in the space of nonsingular quartics
such that the number of lines in Xt remains constant.

Theorem 3.9 The map X �→ [F(X)] establishes a bijection between the set of equi-
linear deformation classes of nonsingular quartics in P

3 and that of strict isomorphism
classes of L-configurations.

Proof For the surjectivity, we choose a period ω ∈ Ω◦ so that ω⊥ ∩ L represents the
chosen class of L-configurations and apply Proposition 3.4 and Lemma 3.3. For the
injectivity, we prove a stronger statement, viz. the connectedness of the space Ω ′(S)

of marked nonsingular quartics whose lines are taken by the marking to the lines of a
fixed L-configuration S ⊂ L. To this end, consider the spaces

Ω(S) = {ω ∈ Ω | S ⊂ ω⊥}, Ω◦(S) = Ω(S) ∩ Ω◦.

By Proposition 3.5, the latter is a fine moduli space of marked nonsingular quartics
(X, ψ) such that ψ(Pic X) ⊃ S; hence, by Lemma 3.3, the space Ω ′(S) is obtained
from Ω◦(S) by removing the union of the subspaces Ωe, see (3.1), where

(3) e ∈ L�S is such that e2 = −2 and e · h = 1.

In other words, Ω ′(S) is obtained from a connected (in a sense, convex) manifold
Ω(S) by removing the codimension 2 subspaces Ωe with e as in Proposition 3.4(1),
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(2) or as in (3) above. This family of subspaces is obviously locally finite, and this fact
implies the connectedness of the complement. �
Proposition 3.10 Let S be an L-configuration, and denote by X the equilinear defor-
mation class corresponding to S under the bijection of Theorem 3.9. Then:

– X is invariant under the complex conjugation if and only if S is symmetric;
– X contains a real quartic if and only if S is reflexive.

Proof Since ωX̄ is ωX with the orientation reversed, the statement follows from the
description of the moduli space Ω ′(S) given in the proof of Theorem 3.9. �

A nonsingular quartic X ⊂ P
3 is called F-maximal if rk F(X) = 20.

Addendum 3.11 The map X �→ [F(X)] establishes a bijection between the set of
projective equivalence classes of F-maximal quartics in P

3 and that of isomorphism
classes of L-configurations of rank 20.

Proof Such quartics have maximal Picard rank, and for S ⊂ L of rank 20, the moduli
space Ω ′(S)/PGL(4, C) (cf. the proof of Theorem 3.9) is discrete. �

Now, consider a nonsingular real quartic X ⊂ P
3 of a certain homological type

c : L → L. The real structure on X reverses the orientation of any real algebraic curve
C ⊂ X , thus reversing the class [C] ∈ L X . Hence, as above, considering real lines
only, we can define the real Fano configuration FR(X) and the isomorphism class
[FR(X)] of L−c-configurations.

The following statements are straightforward, cf. (3.2).

Theorem 3.12 The real Fano configuration of a nonsingular real quartic X ⊂ P
3 of

homological type c : L → L is L−c-geometric. Conversely, any isomorphism class of
L−c-configurations is of the form [FR(X)] for some nonsingular real quartic X ⊂ P

3

of homological type c.

Corollary 3.13 An L-configuration S is in the class [FR(X)] for some nonsingular
real quartic X ⊂ P

3 if and only if S is totally reflexive.

A nonsingular real quartic X is calledFR-maximal if rk FR(X) = 20. Even though
we do not study equivariant equilinear deformations of real quartics, in the case of the
maximal Picard rank, where the moduli spaces are discrete, we still have projective
equivalence; the precise statement is as follows.

Addendum 3.14 The map X �→ [FR(X)] establishes a bijection between the set
of real projective equivalence classes of FR-maximal real quartics in P

3 of a given
homological type c : L → L and that of isomorphism classes of L−c-configurations
of rank 20.

4 Geometry of configurations

In this section, we study the simplest properties of configurations, viz. those with a
simple geometric interpretation. Most statements hold without the assumption that the
configuration should be geometric.
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4.1 Planes

Fix a configuration S and denote by h ∈ S its polarization.

Lemma 4.1 For any two distinct lines a1, a2 ∈ S one has a1 · a2 = 0 or 1.

Proof Let a1 · a2 = x , and consider the subconfiguration S′ := spanh(a1, a2) (see
Remark 3.7). From det S′ � 0, one has −2 � x � 2. If x = −2, then a1 = a2 (see
Remark 3.7 again); if x = −1, then a1 − a2 is as in Definition 3.6(1); if x = 2, then
a1 + a2 is as in Definition 3.6(2). �

Two distinct lines a1, a2 ∈ S are said to intersect (respectively, to be disjoint, or
skew) if a1 · a2 = 1 (respectively, a1 · a2 = 0). We regard the set of lines Fn(S) as a
graph, with a pair of lines (regarded as vertices) connected by an edge if and only if
the lines intersect. A subgraph of Fn(S) is always assumed induced.

A plane in a configuration S is a collection {a1, a2, a3, a4} ⊂ S of four pairwise
intersecting lines.

Lemma 4.2 For any plane {a1, a2, a3, a4} ⊂ S one has a1 + a2 + a3 + a4 = h.

Proof The difference h − (a1 +a2 +a3 +a4) is in the kernel of spanh(a1, a2, a3, a4);
hence, this difference is zero, see Remark 3.7. �

Corollary 4.3 (of Lemmas 4.1 and 4.2) Let α = {a1, a2, a3, a4} ⊂ S be a plane and
b ∈ S a line not contained in α. Then b intersects exactly one line of α.

The valency val l of a line l ∈ S is the number of lines in S that intersect l.

Corollary 4.4 (of Corollary 4.3) For any plane α = {a1, a2, a3, a4} ⊂ S, one has

|Fn(S)| = val a1 + val a2 + val a3 + val a4 − 8.

Lemma 4.5 Let a1, a2 ∈ S be two intersecting lines, and assume that there is a line
b1 ∈ S that intersects both a1 and a2. Then, there exists exactly one other line b2 ∈ S
intersecting a1 and a2. Furthermore, the lines a1, a2, b1, b2 form a plane.

As a consequence, if two planes α1, α2 ⊂ S share two lines, then α1 = α2.

Proof For the existence, let b2 = h − (a1 + a2 + b1) (cf. Lemma 4.2). For the
uniqueness, consider a line c as in the statement. If b1 · c = 0, then the difference
h − (a1 + a2 + b1 + c) is as in Definition 3.6(1). Otherwise, one has b1 · c = 1 by
Lemma 4.1, and {a1, a2, b1, c} is a plane. Hence, c = b2 by Lemma 4.2. �

If two distinct lines lie in a (unique) plane α ⊂ S, they are said to span α.

4.2 Skew lines

We keep the notation (S, h) from the previous section. The next lemma states some
properties of skew lines.
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Lemma 4.6 Consider a number of lines a1, . . . , am, b1, . . . , bn ∈ S such that all ai

are pairwise disjoint, all b j are pairwise distinct, and ai ·b j = 1 for all i = 1, . . . , m,
j = 1, . . . , n. Then the following holds:

(1) if m � 2, then all lines b j are pairwise disjoint;
(2) if m = 2, then n � 10; if n = 9, then there exists a unique other line b10 such

that ai · b10 = 1 for i = 1, 2; cf. also Corollary 5.38 below;
(3) if m = 4, then n � 4; if n = 3, then there exists a unique other line b4 such that

ai · b4 = 1 for i = 1, 2, 3; for this line, also a4 · b4 = 1;
(4) if m = n = 4, then any other line c ∈ S intersects exactly two of the given lines

a1, . . . , a4, b1, . . . , b4;
(5) if m � 3, then n � 4; if m � 5, then n � 2.

Proof Item (1) is a partial restatement of Lemma 4.5. The next two statements are
proved similarly, with

b10 = 4h − 3(a1 + a2) − (b1 + · · · + b9)

in item (2) and

b4 = 2h − (a1 + · · · + a4 + b1 + b2 + b3)

in item (3). In the latter case, if a4 · b4 were 0, the vector a1 + · · · + b4 − 2h would
be as in Definition 3.6(1). The expression for b4 proves also item (4), and item (5) is
a simple consequence of item (3). �

Recall that our ultimate goal is the study of the configuration S of lines in a non-
singular quartic surface X . From this perspective, as the name suggests, a plane is
the subconfiguration cut on X by a plane in P

3, provided that the intersection splits
completely into components of degree one. A collection a1, . . . , a4, b1, . . . , b4 as in
Lemma 4.6(3) and (4) can similarly be interpreted as the intersection of X with a
quadric (the lines ai and b j lying in the two distinct families of generatrices), and a
subconfiguration as in Lemma 4.6(2) is (probably, a special case of) the intersection
of X with another quartic. The following lemma, not used in the paper, is in the same
spirit: it describes the intersection of X with a cubic. For the statement, define a double
sextuple as a collection of lines a1, . . . , a6, b1, . . . , b6 in a configuration S intersecting
as follows:

ai · b j = 1 − δi j (4.1)

(where δi j is the Kronecker symbol).

Lemma 4.7 Let A′ := {a1, . . . , a6, b1, . . . , b5} ⊂ S be a collection of lines which
satisfy (4.1). Then there is a unique line b6 ∈ S completing A′ to a double sextuple A.
Furthermore, all elements of A are pairwise distinct, the lines ai are pairwise disjoint,
the lines b j are pairwise disjoint, and any other line c ∈ S intersects exactly three
elements of A.
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Proof The twelfth line is

b6 = 3h − (a1 + · · · + a6 + b1 + · · · + b5),

and the other statements are immediate, cf. the proof of Lemma 4.6. �

4.3 Pencils

Let X ⊂ P
3 be a nonsingular quartic such that rk F(X) � 2. Fix a line l ⊂ X . The

pencil of planes through l gives rise to an elliptic pencil X → P
1. Each fiber containing

a line is reducible: it splits either into three lines or a line and a conic; in the former
case, the three lines and l form a plane in F(X). Clearly, the lines in X contained in
the fibers of the pencil defined by l are precisely those intersecting l. Motivated by this
observation, we define a pencil P in a configuration (S, h) as a set of lines satisfying
the following properties:

– all lines in P intersect a given line l, called the axis of P;
– if a1, a2 ∈ P and a1 · a2 = 1, then h − l − a1 − a2 ∈ P (cf. Lemma 4.2).

Lemma 4.5 implies that

a ∼ b if a = b or a · b = 1

is an equivalence relation on P . The equivalence classes are called the fibers of P .
The number m of lines in a fiber may take values 3 or 1; a fiber consisting of m lines
is called an m-fiber, and the number of such fibers is denoted by #m(P). By Corollary
4.3, P has a unique axis whenever #3(P) � 1 and #3(P) + #1(P) � 2.

Each line l ∈ S gives rise to a well-defined pencil

P(l) := {a ∈ Fn S | a · l = 1};

such a pencil is called maximal. Any line a ∈ S disjoint from l is called a section
of P(l) or any subpencil thereof. The set of sections of P depends on the ambient
(pre-)configuration S; it is denoted by S(P). By definition,

S(P) = {a ∈ Fn(S) | a · l = 0}.

Clearly, for any line l ∈ S, one has

val l = |P(l)| = 3#3(P(l)) + #1(P(l)).

The number mult l := #3(P(l)) is called the multiplicity of l. Alternatively, mult l is
the number of distinct planes containing l.

Two pencils P1, P2 are called obverse if their axes are disjoint; otherwise, the
pencils are called adjacent. The following lemma is an immediate consequence of
Lemmas 4.5 and 4.6(2).
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Lemma 4.8 Let P1 �= P2 be two pencils. Then

(1) |P1 ∩ P2| � 10 if P1, P2 are obverse, and
(2) |P1 ∩ P2| � 2 if P1, P2 are adjacent.

4.4 Combinatorial invariants

A pencil P is often said to be of type (p, q), where p := #3(P) and q := #1(P).
If an L-realization ψ is fixed, the pencil is called primitive or imprimitive if so is
the sublattice spanh ψ(P) ⊂ L. In this case, the type is further refined to (p, q)• and
(p, q)◦, respectively. A geometric configuration containing a maximal pencilP of type
(p, q)∗ is called a (p, q)∗-configuration, and the pair (S,P) is called a (p, q)∗-pair.
The multiset

ps(S) := {
type ofP(l)

∣∣ l ∈ Fn(S)
}

is called the pencil structure of a configuration S. We usually represent ps(S) in the
partition notation (see, e.g., Sect. 6.2 below): a “factor” (p, q)a means that S has a
pencils of type (p, q).

The linking type lk(P1,P2) of a pair of obverse pencils is the pair (μ1, μ3), where
μ1 := |P1 ∩P2| and μ3 is the number of lines in P1 ∩P2 that belong to a 3-fiber both
in P1 and P2. If Pi = P(li ), i = 1, 2, we also use the notation lk(l1, l2). The multiset

ls(S) := {
lk(l1, l2)

∣∣ l1, l2 ∈ Fn(S), l1 · l2 = 0
}

is called the linking structure of S.
Clearly, both ps(S) and ls(S) are invariant under isomorphisms.

5 The arithmetics of pencils

In this section, we study the more subtle properties of geometric configurations related
to their primitive embeddings to L.

5.1 Notation and setup

Throughout this section, we consider a pencil P of a certain type (p, q). Thus, we
have the sets fb3 P = {1, . . . , p} and fb1 P = {1, . . . , q} of the 3- and 1-fibers of P ,
respectively, and the full set fbP := fb3 P � fb1 P of fibers is their disjoint union. We
regard P as a pencil in the “minimal” configuration P := Pp,q , which is generated
over Z by P itself, the axis l, and the polarization h. We also keep in mind a geometric
realization ψ : P → L, identifying P and P with their images in L and denoting by P̃
the primitive hull (P ⊗ Q) ∩ L.

When speaking about sections of P , we assume P embedded to a configuration S,
which is usually not specified. (One can consider the minimal configuration generated
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by P and the sections in question.) However, we always assume that the realization
of P extends to a geometric realization S → L.

The group of symmetries of P is obviously

Gp,q := (S
p
3 � Sp) × Sq .

In addition to h and l, consider the following classes in Pp,q :

– mi, j , i ∈ fb3 P , j ∈ Z/3, the lines in the 3-fibers;
– nk , k ∈ fb1 P , the lines in the 1-fibers.

Then Pp,q is the hyperbolic lattice freely generated by h, l, mi, j , i ∈ fb3 P , j = ±1,
and nk , k ∈ fb1 P . For the lines mi,±1, we will also use the shortcut mi.±.

Observation 5.1 One has det Pp,q = −3p+2(−2)q . The 3-primary part discr3 Pp,q

contains the classes represented by the following mutually orthogonal vectors:

– λ := 1
3 (l − h): one has λ2 = 0 and λ · h = λ · l = −1;

– μi = μi,0 := 1
3 (mi,+ − mi,−), i ∈ fb3 P: one has μ2

i = − 2
3 and μi · h = 0.

If r := p + q − 1 �= 0 mod 3, then discr3 Pp,q is generated by μi , i ∈ fb3 P , and the
order 9 class of the vector

– υ := 1
3

(
l − rλ + ∑p

i=1(mi,+ + mi,−) − ∑q
k=1 nk

)
;

note that 3υ = −rλ �= 0 mod P. Hence, in this case the subgroup of elements of
order 3 is generated by λ and μi . If p + q = 1 mod 3, then discr3 Pp,q is generated
by λ, μi , and the order 3 class of

– ω := 1
3

(
l + ∑p

i=1(mi,+ + mi,−) − ∑q
k=1 nk

)
.

The 2-primary part discr2 Pp,q is generated by the classes of 3νk , where

– νk := n∗
k = − 1

2 (λ + nk), k ∈ fb1 P: one has ν2
k = − 1

2 and νk · h = 0.

The class μi ∈ discr Pp,q is also represented by the vector μ̄+
i := 1

3 (mi,++2mi,−), so
that one has μ̄2

i = − 2
3 and μ̄i ·h = 1. The class −μi ∈ discr Pp,q is also represented

by μ̄−
i := 1

3 (2mi,+ + mi,−). For any line a ∈ P , the class λ is represented by the
vector λ + a ∈ h⊥, so that one has (λ + a)2 = −2.

The following two statements are immediate.

Lemma 5.2 For any triple of distinct indices i, j, k ∈ fb3 P and any u ∈ Z/3, the
classes ±λ and uλ ± μi ± μ j ± μk are represented by vectors of square (−2) in
h⊥ ⊂ Pp,q . Hence, these classes cannot belong to the pivot P̃/P.

Lemma 5.3 The sum of any four distinct elements of the form 3νk , k ∈ fb1 P , is
represented by a vector of square (−2) in h⊥ ⊂ Pp,q . Hence, the class of such a sum
cannot belong to the pivot P̃/P.
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5.2 Euler’s bound

We start with eliminating very large pencils.

Proposition 5.4 The type (p, q) of a pencil contained in a geometric configuration
satisfies the inequalities

3p + 2q � 24 and 3p + q � 20.

Corollary 5.5 (cf. Rams, Schütt [22]) The valency of any line l in a geometric con-
figuration S does not exceed 20.

In the real case, there is an additional restriction to the types of pencils.

Proposition 5.6 A pencil P contained in a totally reflexive geometric configuration
cannot be of type (6, 0)• or (5, q), q � 2.

Proof of Propositions 5.4 and 5.6. Assume that (p, q) = (7, 0). By Observation 5.1,
the isotropic elements in discr3 P7,0 are:

(1) the classes mentioned in Lemma 5.2;
(2) classes of the form uλ + ∑

i∈I ±μi , where u ∈ Z/3 and I ⊂ fb3 P , |I | = 6; all
these classes form a single orbit of G7,0;

(3) classes of the form (up to sign) ω + uλ − ∑
i∈I ±μi , where I ⊂ fb3 P is any

subset and u = (5 − |I |)mod3.

Each class as in item 3 is represented by a vector of square (−2) orthogonal to h, viz.
ω + (5 − |I |)λ − ∑

i∈I μ̄±
i . Hence, neither (1) nor (3) can belong to the pivot P̃/P .

On the other hand, by Theorem 3.2, one has �3(P̃/P) � 2 and P̃/P must contain
two distinct nontrivial orthogonal vectors β1, β2 as in (2). On the other hand, if both
vectors are as in (2), then at least one of their linear combinations is as in (1), cf. [11].

Similar arguments apply to the other border cases: by Theorem 3.2, one has

– �3(P̃/P) � 1 if (p, q) = (5, 4) (use Lemma 5.2),
– �2(P̃/P) � 1 if (p, q) = (3, 8),
– �2(P̃/P) � 2 if (p, q) = (1, 11) (use Lemma 5.3), and
– �2(P̃/P) � 3 if (p, q) = (0, 13) (use Lemma 5.3).

In the case (p, q) = (3, 8), the only isotropic element allowed by Lemma 5.3 is the
characteristic element ν := ∑8

k=1 νk . The discriminant form ν⊥/ν is even, and the
new lattice does not embed to L by Theorem 3.2.

For Proposition 5.6, one uses Observation 5.1 and Theorem 3.2; the latter should
be applied to either P ⊕ [2] or an appropriate finite index extension of P ⊕ [2] or
P ⊕ U(2), see Lemma 3.8. �

The conclusion of Proposition 5.4 can be recast as follows: for any line l in a
geometric configuration S, one has val l � 20 and mult l � 6; furthermore,

if mult l � 0, 1, 2, 3, 4, 5, 6 = max,

then val l � 12, 13, 15, 16, 18, 18, 20 = max, respectively.
(5.1)
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It follows from (5.1) that max{val l | l ∈ Fn(S)} � 18 if and only if S does not contain
a pencil of type (6, q), q � 1.

Remark 5.7 Interpreting pencil geometrically as in Sect. 4.3, one can easily see that
the first inequality 3p + 2q � 24 in Proposition 5.4 is nothing but the well-known
bound on the number and types of singular fibers in an elliptic pencil.

5.3 Coordinates

Consider a section s of a pencil P . By Corollary 4.3, for each index i ∈ fb3 P , the
section s intersects exactly one of the three lines mi, j , j ∈ Z/3; the corresponding
index εi := j ∈ Z/3 is called the i th 3-coordinate of s. Introduce also the kth 1-
coordinate as the residue �k := (s · nk)mod 2 ∈ Z/2, k ∈ fb1 P .

We will treat the coordinate space Cp,q := (Z/3)p × (Z/2)q as an abelian group,
even though only few linear combinations of coordinate vectors have invariant mean-
ing. To avoid confusion with the operations in lattices, we will use ⊕ and � for the
addition and subtraction in Cp,q , respectively.

Convention 5.8 Given sections s, s1, s2, . . . of P and u = 1, 3, we will use the fol-
lowing notation:

– εi := εi (s) and �k := �k(s) are, respectively, the 3- and 1-coordinates of s;
– [s] or s̄ := [ε1, . . . , εp; �1, . . . , �q ] is the sequence of all coordinates of s;
– |s|u is the number of non-vanishing u-coordinates of s;
– |s1 � s2|u is the number of positions where the u-coordinates of s1, s2 differ;
– {s1 ∗ s2 ∗ · · ·}3 := {i ∈ fb3 P | εi (s1) = εi (s2) = · · · };
– {s1 ∗ s2 ∗ · · ·}1 := {k ∈ fb1 P | �k(s1) = �k(s2) = · · · = 1};
– {· · ·} := {· · ·}3 � {· · ·}1 (regarded as a set of fibers of P);
– |. . .|∗ is the cardinality of the set {. . .}∗ for ∗ = 1, 3, or empty;
– I := Ip,q = [0, . . . , 0; 1, . . . , 1] ∈ Cp,q .

The same notation applies if all or some of s, s1, s2 are elements of the coordinate
space Cp,q . The 3-coordinates εi (s), numbers |s|3, and element I ∈ C depend on the
indexing of the lines in the 3-fibers; however, the sets {. . .}3, numbers |s1 � s2|3, and
expressions of the form

I ⊕ s̄, s̄1 ⊕ s̄2 ⊕ s̄3 = I, or s̄3 = I � s̄1 � s̄2

have invariant meaning. Note also the difference between the definitions of {. . .}3 and
{. . .}1: in the former case, we count all equal coordinates, whereas in the latter, only
the non-vanishing ones.

The following statements are immediate consequences of Lemmas 4.5 and 4.6.

Lemma 5.9 Let s1, s2 be two sections of P and s1 · s2 = 1. Then |s1 ∗ s2| � 1. If
|s1 ∗ s2| = 1, then there is a section s satisfying s̄ ⊕ s̄1 ⊕ s̄2 = I; the sections s, s1, s2
and the only line a ∈ P intersecting all three of them constitute a plane.
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Lemma 5.10 Let s1, s2, s3 be distinct sections of P . Then:

(1) one has |s1 ∗ s2| � 4;
(2) if |s1 ∗ s2| = 4, there is a unique section s such that s̄ ⊕ s̄1 ⊕ s̄2 = I;
(3) if |s1 ∗ s2 ∗ s3| = 3, the pencil P is not maximal.

Remark 5.11 In Lemmas 5.9 and 5.10, as well as in the other similar places below,
the existence statement means that s is a certain (explicit, but not specified) integral
linear combination of the other sections involved and generators of P̃ .

Corollary 5.12 If p � 5, then, for any configuration S ⊃ P, the coordinate map
c : S(P) → Cp,q , s �→ [s], is injective.

The injectivity of c for types (4, ∗) and (3, 7) is discussed in Sect. 5.7 below.
The next corollary deals with an obverse pencil in a configuration S ⊃ P .

Corollary 5.13 Given a section s0 ∈ S(P), consider s, s1, s2 ∈ P(s0) ∩ Sk(P) and
assume that s1 · s2 = 1. Then:

(1) one has |s ∗ s0| � 1;
(2) {s0 ∗ s1} = {s0 ∗ s2} = {s1 ∗ s2} = {s0 ∗ s1 ∗ s2};
(3) if P is maximal, then |s1 ∗ s2| = 1;
(4) if P is maximal, then s is in a 1-fiber of P(s0) if and only if |s ∗ s0| = 0.

Proof Statement (1) is a paraphrase of Lemma 5.9. For (2) and (3), just observe that
s0, s1, s2 span a plane, and the forth line a of this plane must intersect l, see Corollary
4.3; hence, either a ∈ P or P is not maximal. Finally, Statement (4) is a paraphrase
of (3). �

Denote D := 2p + 1
2 q − 2 and, given a collection of sections s1, . . . , sk , let

ri j := (s1 · s2) + 1
9 D + 1

2 |s1 ∗ s2|1 − 1
6 (|s1|1 + |s2|1) − 1

3 |s1 � s2|3, 1 � i, j � k,

and define the determinant

det(s1, . . . , sk) := det[−ri j ]1�i, j�k .

The following lemma is a simple sufficient condition for the existence of a collection
of sections in terms of their coordinates and pairwise intersections: the orthogonal
complement P⊥ in any configuration S ⊃ P must be negative definite.

Lemma 5.14 For any collection s1, . . . , sk of sections one has det(s1, . . . , sk) � 0.
If det(s1, . . . , sk) = 0, then the sections are linearly dependent.

5.4 Combinatorial rigidity

The group Gp,q acts on the coordinate space Cp,q . Furthermore, given two config-
urations S, S′ ⊃ P , any isometry (S,P) → (S′,P) induces an injection S̄ ↪→ S̄′,
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which is the restriction of an element of Gp,q . (Here, S̄ and S̄′ are the images of
S(P) and S′(P), respectively, under the coordinate map.) A configuration S ⊃ P or,
more precisely, pair (S,P) is called (combinatorially) rigid if, for any configuration
S′ ⊃ P , any bijection g(S̄) = S̄′ restricted from an element g ∈ Gp,q is induced by
an isometry (S,P) → (S′,P).

We say that S or (S,P) is generated by a subset Ā ⊂ S̄ if S = (
P̃ +∑

s̄∈ Ā Zs
)
/ker;

if Ā = S̄, then S is said to be generated by sections. For such a configuration, an obvious
sufficient condition for the combinatorial rigidity is that the intersection s1 · s2 of a
pair of sections s1, s2 such that s̄1, s̄2 ∈ Ā is determined by their images s̄1, s̄2, i.e., for
any other configuration S′ ⊃ P and pair of sections s′

1, s′
2 ∈ S′(P) such that S̄′ = S̄

and s̄′
1 = s̄1, s̄′

2 = s̄2, one has s′
1 · s′

2 = s1 · s2. By Lemma 5.9, an ambiguity may arise
only if |s1 ∗ s2| � 1. The following statement is a partial converse of Lemma 5.9; we
do not need to assume that the configuration S ⊃ P is geometric.

Lemma 5.15 Let p = 6, (p, q) = (5, 3), p = 4 and q � 4, or (p, q) = (3, 7).
Consider a pair of sections s1, s2 ∈ S(P) such that |s1 ∗ s2| = 1. Then, P has a pair
of sections s′

1, s′
2 such that s′

1 · s′
2 = 1 and [s′

i ] = s̄i , i = 1, 2, if and only if there is a
section s such that s̄ ⊕ s̄1 ⊕ s̄2 = I.

Proof The necessity is given by Lemma 5.9. For the converse, it suffices to show that
three sections s, s1, s2 as in the statement cannot be pairwise disjoint. Most such triples
are eliminated by Lemma 5.14, and the few remaining ones violate condition (1) in
Definition 3.6. �

5.5 Primitivity and rigidity for type (6, ∗)

Primitive and imprimitive pencils of type (6, ∗) exhibit very different behaviour. Here,
we start with a few common observations; imprimitive pencils are treated separately
in the next section.

Proposition 5.16 Assume that p = 6. Then the following holds:

(1) if P is not maximal or q � 1, then P is imprimitive;
(2) if P is imprimitive, then P̃/P = 〈β〉, β := ∑6

i=1 μi , up to automorphism.

Proof The imprimitivity follows from Theorem 3.2, and the only possible nontrivial
pivot is given by Observation 5.1 and Lemma 5.2. �

Lemma 5.17 Let (p, q) = (6, 0). Consider a geometric configuration S ⊃ P , let S̄
be the image of S(P) under the coordinate map, and, for a pair s1, s2 ∈ S(P), denote
s̄ := I � s̄1 � s̄2 ∈ C6,0. Then the following holds:

(1) if |s1 ∗ s2| = 0 and s1 · s2 = 0, then P is imprimitive and 1
3 (s1 − s2) ∈ P̃;

(2) if |s1 ∗ s2| = 0 or 3 and s̄ ∈ S̄, then P is imprimitive;
(3) if |s1 ∗ s2| = 1, then s̄ ∈ S̄ if and only if s1 · s2 = 1;
(4) if |s1 ∗ s2| = 4, then s̄ ∈ S̄.
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Proof Statement (1): the two vectors are linearly dependent by Lemma 5.14; then
s1 − s2 = β up to automorphism.

Statement (2), |s1 ∗ s2| = 0: if P is primitive, then s · s1 = s · s2 = s1 · s2 = 1 by
Statement (1); hence, the three sections span a plane, and the forth line of this plane
is in P(l)�P , which contradicts Proposition 5.16(1).

Statement (2), |s1 ∗ s2| = 3: the imprimitivity of spanh(P, s1, s2, s) is given by
Theorem 3.2, and the enumeration of isotropic elements not realized by vectors e as
in Definition 3.6(1) shows that the pivot is generated by β (up to isomorphism).

Statements (3) and (4) follow from Lemmas 5.15 and 4.6(3), respectively. �

Corollary 5.18 Any (6, 0)•-configuration generated by sections is rigid.

5.6 Triplets of sections

In this section, we study in more detail an imprimitive pencil of type (6, 0)◦. Thus, we
fix a pencil P and number the lines m∗ in the fibers so that the pivot P̃/P is generated
by the element β introduced in Proposition 5.16. Then, for any section s,

ε1(s) + · · · + ε6(s) = 0 mod 3. (5.2)

The group Oh(P̃, l) is obviously the subgroup

G̃ := ((Z/3)5
� Z/2) � S6 ⊂ G6,0; (5.3)

indeed, the choice of β gives rise to a distinguished cyclic order in each fiber, which is
well defined up to simultaneous reversal. This group has a distinguished subgroup of
order 3: it is generated by the permutations σ±1 : mi, j �→ mi, j±1, i ∈ fb3 P , j ∈ Z/3.
A choice of one of these two generators makes C6,0 an F3-affine space.

Consider a configuration S ⊃ P̃ and let S̄ ⊂ C6,0 be the image of S(P) under the
coordinate map.

Lemma 5.19 The set S̄ is σ -invariant, i.e., s̄± := σ±1s̄ ∈ S̄ whenever s̄ ∈ S̄. The
three sections s̄, s̄± are pairwise disjoint.

Proof Up to automorphism, one can assume that s̄ = [1, . . . , 1]. Then the two other
sections are s + β and s − 2h + 2l + ∑6

i=1(mi,1 + mi,−1) − β. �

A subset {s, s±} ⊂ S(P) or {s̄, s̄±} ⊂ S̄ as in Lemma 5.19 is called a triplet. Two
sections s1, s2 ∈ S(P) are said to be equivalent, s1 ∼ s2, if they belong to one triplet.
Note that |s1 ∗ s2| = 0 whenever s1 ∼ s2.

Lemma 5.20 For a pair of sections s1, s2 ∈ S(P), one has s1 · s2 = 1 if and only if
|s1 ∗ s2| � 1 and s1 � s2.

Proof If |s1 ∗ s2| = 0 and s1 · s2 = 0, Lemma 5.17(1) and the fact that �3(P̃/P) = 1
imply that s1 ∼ s2. If |s1 ∗ s2| = 1, then, using (5.2) and Lemmas 5.17(4) and 5.19,
one can easily show that I � s̄1 � s̄2 ∈ S̄; then, s1 · s2 = 1 by Lemma 5.17(3). �
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Corollary 5.21 Any (6, ∗)◦-configuration generated by sections is rigid.

Note that, for (6, ∗)◦-configurations, the rigidity holds in a very strong sense: the
intersection of two sections is completely determined by their coordinates.

The set of triplets can be coordinatized by the affine space

A := {s̄ ∈ C6,0 | s̄ satisfies (5.20)}/σ.

In fact, A is naturally a principal homogeneous space over the subquotient λ⊥/λ of the
discriminant discr P̃ . Denote by q the descent of the discriminant form of P̃ reduced
modulo Z; then, clearly, q(s̄1−s̄2) = 1

3 (|s1�s2|mod 3). Comparing the orders, one can

see that the group G̃/σ is isomorphic to the full group O(q)�A of q-isometries ofA. In
other words, any G̃-invariant property of a set of sections S̄ ⊂ C6,0 satisfying (5.2) and
Lemma 5.19 can be stated as a “metric” (with respect to q) property of the projection
S̄ of this set to A.

Below, we state two properties that hold for any configuration S, not necessarily
geometric. Recall that the lines in λ⊥/λ can be subdivided into

– 15 positive lines �+ and 15 negative lines �−, with q|�± ∼= 〈± 1
3 〉, and

– 10 isotropic lines �0, with q|�0 ≡ 0.

The planes in λ⊥/λ can be subdivided into

– 20 positive planes π+ and 20 negative planes π−, with π± ∼= �± ⊕ �0,
– 45 hyperbolic planes, isomorphic to �+ ⊕ �−, and
– 45 definite planes, isomorphic to �+ ⊕ �+ ∼= �− ⊕ �−.

(There are no isotropic planes.) The same terminology applies to the lines/planes inA,
according to the underlying vector space. The group O(q) acts transitively on the set
of lines/planes of the same type.

Lemma 5.22 For any configuration S ⊃ P̃, the set S̄ ⊂ A is “convex”: whenever a
negative line �− ⊂ A has two common points with S̄ , it is contained in S̄.

Lemma 5.23 Let S ⊃ P̃ be a configuration and π− ⊂ A a negative plane. Then the
intersection S̄ ∩ π− is contained in a line; equivalently, π− �⊂ S̄.

Proof of Lemmas 5.22 and 5.23. Lemma 5.22 is a restatement of Lemma 5.17(4). By
Lemma 5.22, the two restrictions in Lemma 5.23 are equivalent: S̄ ⊃ π− if and only
if S contains three non-collinear points of π−. If this is the case, the points can be
chosen to form an equilateral triangle with side − 1

3 ; by Lemma 5.19, we can find
three sections s1, s2, s3 so that |si ∗ s j | = 1 for all i �= j but |s1 ∗ s2 ∗ s3| = 0.
Then si · s j = 1, see Lemma 5.20, and the three sections span a plane. This plane
must contain three more lines, viz. the elements of P intersecting the three pairs si ,
s j , 1 � i < j � 3. This is a contradiction to Lemma 4.5. �

Remarkably, Lemmas 5.22 and 5.23 almost characterize the sets of sections in
configurations (not necessarily geometric) containing a pencil of type (6, 0)◦: this fact
is established experimentally during the proof of Theorem 6.2. There is but one extra
restriction, stated below without proof.

Lemma 5.24 Let S ⊃ P̃ be a configuration and �′, �′′ two parallel isotropic lines in
a positive plane in A. If �′ ⊂ S̄ and S̄ contains two points of �′′, then �′′ ⊂ S̄.
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5.7 Primitivity and rigidity for types (4, ∗) and (3, ∗)

As above, we fix a configuration S ⊃ P and denote by S̄ ⊂ Cp,q the image of the
set of sections S(P) under the coordinate map. It follows from Observation 5.1 and
Lemma 5.2 that any pencil of type (4, q), q � 5, or (3, q), q � 6, is primitive. Below,
we consider in detail the two extremal cases.

Proposition 5.25 If (p, q) = (4, 6), then P is imprimitive and has a unique, up to
isomorphism, geometric finite index extension. Furthermore,

(1) P has a unique section l∗ ∈ S intersecting all ten fibers;
(2) as a consequence, P is maximal in any configuration;
(3) if a section s intersects l∗, then the lines s and l∗ span a plane;
(4) the set S̄ is invariant under the involution s̄ �→ s̄∨ := I � l∗ � s.

If (p, q) = (3, 7), then P is imprimitive if and only if there is a section l∗ as in (1)
above; if this is the case, Statements (3) and (4) also hold.

Proof Let (p, q) = (4, 6). The pivot P̃/P must have 3-torsion by Theorem 3.2,
whereas its 2-torsion is trivial by Lemma 5.3. In addition to the classes mentioned
in Lemma 5.2, the isotropic elements in discr3 P4,6 are those constituting the G4,6
orbits of the classes of ±ω, see Observation 5.1. Hence, up to automorphism, P̃/P
is generated by ω, and it is immediate that ω is a section l∗ as in (1). A section with
these properties is unique due to Lemma 5.10(1).

If (p, q) = (3, 7), the only nontrivial elements that may be contained in the pivot
are the orbits of the classes of ±(ω − λ), and ω − λ is a section l∗ as in (1).

With the above choice of l∗, we have [l∗] = [0, . . . , 0; 1, . . . , 1] and

|s ∗ l∗| = 4 − 3(s · l∗) (5.4)

for any other section s. (In particular, this relation restricts the coordinate vectors
realized by sections.) Clearly, s · l∗ = 1 if and only if |s ∗ l∗| = 1, in which case s
and l∗ intersect a third common line a ∈ P and thus span a plane; in fact, this plane is
{l∗, a, s, s∨}. Statement (4) follows from Lemma 5.9 or Lemma 5.10(2) if s · l∗ = 1
or 0, respectively. �

Proposition 5.26 Let (p, q) = (3, 7). If P is not maximal, then there is a section s
of P such that |s|2 � 6. Conversely, if there is a section s such that |s|2 = 6, then P
is not maximal.

Proof The only pencil P ′ that may properly contain P is one of type (4, 6), and the
section s as in the statement is the restriction of l∗ given by Proposition 5.25. If P has
a section s such that |s|2 = 6, then s and l intersect nine disjoint lines; by Lemma
4.6(2), they must intersect a tenth line. �

Proposition 5.27 Let (p, q) = (4, 5). Then P is primitive, and P is maximal in a
geometric configuration S if and only |s|1 � 4 for each section s ∈ S(P).
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Proof The primitivity is essentially given by Observation 5.1 and Lemmas 5.2 and 5.3.
By Lemma 4.6(3), if there is a section s with |s|1 = 5, the pencil has a tenth fiber.
Conversely, the only pencil that can properly contain P is one of type (4, 6), and its
section l∗ given by Proposition 5.25(1) restricts to P . �

Proposition 5.28 Let p = 4, q � 4 or (p, q) = (3, 7), and assume thatP is maximal.
Then, for any ambient geometric configuration S ⊃ P , the coordinate map c : S(P) →
Cp,q , s �→ [s], identifies at most one pair of sections. Furthermore, if such a pair s1, s2
identified by c does exist, then there also is a (unique) section l∗ ∈ S(P) such that
s̄1 + s̄2 + l̄∗ = I, and, for this section l∗, one has |l∗|2 = q.

Proof Let s1 �= s2 be a pair of sections such that s̄1 = s̄2. By Lemma 4.6(3), we have
|s̄i |2 + p � 4 and, if |s̄i |2 + p = 4, there also is a section l∗ as in the statement. The
number of sections l∗ with |l∗|2 = q � 4 is

– one if (p, q) = (4, 6) or at most one if (p, q) = (3, 7), see Proposition 5.25,
– zero if (p, q) = (4, 5), see Proposition 5.27, and
– zero, one, or three if (p, q) = (4, 4), see Lemma 4.6(3).

Furthermore, a given section l∗ cannot share all 3-coordinates with any section other
than s1, s2, see Lemma 4.6(3) again.

If (p, q) = (4, 4) and P has three sections l∗1 , l∗2 , l∗3 with |l∗i |2 = 4, one can easily
show that only one pull-back c−1(l̄∗i + I) may be nonempty, as otherwise S does not
admit a geometric L-realization.

In the remaining case (p, q) = (3, 7) and |s̄i |2 = 0, one can use Theorem 3.2 to
show that the image of any geometric realization of S must contain a section s of P
such that |s|2 = 6; hence, P is not maximal, see Proposition 5.26. �

Till the rest of this section, we assume that (p, q) = (4, 6).
Denote S∗(P) := {s ∈ S(P) | s · l∗ = 1}. According to (5.4), the image of this set

in C4,6 can be characterized as

S̄∗ = {
s̄ ∈ S̄

∣∣ |s̄ ∗ l∗| = 1
}
. (5.5)

Let also

S̄◦ := {
s ∈ S̄

∣∣ |s ∗ s′| = 0 and |s|1 + |s′|1 = 1 for some s′ ∈ S̄∗}.

The following statement complements Lemma 5.15; we do not need to assume that
the configuration S ⊃ P̃ is geometric.

Lemma 5.29 Let (p, q) = (4, 6). Consider a pair of sections s1, s2 ∈ S(P) such that
|s1 ∗ s2| = 0 and let s̄′

1 := I � s̄∨
1 � s̄2 and s̄′

2 := I � s̄1 � s̄∨
2 = (s̄′

1)
∨. Then:

(1) one has 1 � |s1|1 + |s2|1 � 5;
(2) if |s1|1 + |s2|1 = 5, then also s̄′

1, s̄′
2 ∈ S̄.

If the pair s1, s2 is “homogeneous”, then:

(3) if s̄1, s̄2 ∈ S̄∗, one has s1 · s2 = 0, and
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(4) if s̄1, s̄2 /∈ S̄∗, one has s1 · s2 = 1.

If the pair is “mixed”, s̄1 ∈ S̄∗ and s̄2 /∈ S̄∗, then:

5. if |s1|1 + |s2|1 � 3, one has s1 · s2 = 1, and
6. if |s1|1 + |s2|1 = 2, one has s1 · s2 = 0 if and only if s̄′

1, s̄′
2 ∈ S̄.

If S is required to be geometric, then one can also state that |s1|1 + |s2|1 � 4
whenever s̄1 ∈ S̄∗. We do not use this restriction explicitly.

Proof of Lemma 5.29. Statement (3) is obvious, as s1, s2 are in distinct fibers of the
pencil P(l∗). In all other cases, by Lemma 4.6(4), the section s1 must intersect exactly
one (if s̄1 ∈ S̄∗) or two (if s̄1 /∈ S̄∗) of the lines s2, s∨

2 ; with (5.4) taken into account,
the intersection s1 · s∨

2 is given by Lemmas 5.9 and 5.15. �

Corollary 5.30 (of Lemmas 5.15 and 5.29) Any (4, 6)-configuration S generated by
S̄�S̄◦ is rigid.

Remark 5.31 For many configurations, the hypotheses of Corollary 5.30 can also be
verified combinatorially, using Lemmas 5.10(2) and 5.15: assuming that S ⊃ P̃ is
generated by sections, it is generated by S̄�S̄◦ if, for any s̄ ∈ S̄◦, there is a pair
s̄1, s̄2 ⊂ S̄�S̄◦ such that s̄ ⊕ s̄1 ⊕ s̄2 = I and |s̄1 ∗ s̄2| = 1 or 4.

5.8 Rigidity for type (5, 3)

As an immediate consequence of Observation 5.1 and Lemma 5.2, any pencil of type
(5, ∗) is primitive.

In the next two statements, S does not need to be geometric.

Lemma 5.32 Let p = 5, q � 1, and assume thatP has a section. ThenP is contained
in a pencil P ′ of type (6, ∗)◦ if and only if P has a pair of sections s1, s2 such that
s1 · s2 = 0, |s1 ∗ s2|3 = 0, and |s1 � s2|1 > 0.

Proof IfP ⊂ P ′, then s1, s2 are two appropriate equivalent sections ofP ′, see Lemma
5.19. For the sufficiency, assume that (p, q) = (5, 1) and

s̄1 = [0, 0, 0, 0, 0; 1], s̄2 = [1, 1, 1, 1, 1; 0].

Then an extra member of P ′ is h − l + ∑5
i=1(mi,+ − mi,0) − 2n1 − 3s1 + 3s2. �

Corollary 5.33 Let p = 5, q � 1, and assume that P is maximal. Then, for any pair
s1, s2 ∈ S(P) such that |s1 ∗ s2| = 0 and |s1|1 + |s2|1 > 0, one has s1 · s2 = 1.

Let (p, q) = (5, 3) and assume that P is maximal (see Lemma 5.32 for a criterion).
Then, according to Lemma 5.15 and Corollary 5.33, the intersection s1 · s2 may not
be determined by the coordinates s̄1, s̄2 ∈ S̄ only if

– one has |s̄1 ∗ s̄2| = |s̄1|1 = |s̄2|1 = 0 and
– for any s̄ ∈ S̄, if |s̄ ∗ s̄1| = |s̄ ∗ s̄2| = 0, then |s̄|1 = 0.
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(For the latter condition, if |s̄|1 > 0, then s · s1 = s · s2 = 1 by Corollary 5.33 and,
hence, s1 · s2 = 0, see Corollary 5.13(3).) Denote by S̄◦ ⊂ S̄ the union of all such
pairs (s̄1, s̄2).

Corollary 5.34 Any (5, 3)-configuration S generated by S̄�S̄◦ is rigid.

For another sufficient rigidity condition, consider a section s0 ∈ S(P) and let
S(s0) := P(s0) ∩ Sk(P). If |s0|1 > 0, this set is determined by the coordinates: by
Lemma 5.15 and Corollary 5.33, one has s ∈ S(s0) if and only if |s̄ ∗ s̄0| = 0 or
|s̄ ∗ s̄0| = 1 and I � s̄ � s̄0 ∈ S̄. Furthermore, the intersections s1 · s2, s1, s2 ∈ S, are
also known: they are given by Corollary 5.13.

Corollary 5.35 Any (5, 3)-pair (S,P) generated by the union {s̄0} ∪ S̄(s0) for some
section s0 ∈ S(P) such that |s0|1 > 0 is rigid.

5.9 Other types

For completeness, we discuss the primitivity of the other types of pencils. We treat the
3- and 2-torsion of the pivot separately.

Proposition 5.36 Let P be a pencil of type (p, q) with p � 2. If the pivot P̃/P has
3-torsion, then

– p + q = 10, i.e., (p, q) = (2, 8), (1, 9), or (0, 10), and
– P has a section l∗ as in Proposition 5.25(1).

Conversely, if P has a section l∗ as in Proposition 5.25(1), then p + q = 10, one has
P̃/P = Z/3, and Statements (3) and (4) of Proposition 5.25 also hold.

A section l∗ as above (or, equivalently, a geometric index 3 extension P̃ ⊃ P) is
unique up to automorphism.

Proof The proof repeats literally that of Proposition 5.25; the section l∗ is the class
1
3 [ω + (p − 4)λ] (cf. also Lemma 4.6(2). A direct computation shows that, whenever
the pivot P̃ � l∗, one has P̃/P = Z/3, i.e., no further finite index extension satisfies
the conditions of Definition 3.6. �

By Observation 5.1, any 2-torsion element α ∈ P̃/P is of the form
∑

3νk , where
the index k runs over a certain subset supp α ⊂ fb1 P , called the support of α. It is
clear that supp(α + β) is the symmetric difference (supp α) � (supp β).

Proposition 5.37 Let P be a pencil of type (p, q), and let α ∈ P̃/P be a nonzero
2-torsion element. Then

(1) one has |supp α| = 8 and, in particular, q � 8;
(2) |supp α ∩ {s}1| = 0, 2, or 4 for any section s of P .

Besides, the 2-torsion of the pivot is as follows:

– (Z/2) ⊕ (Z/2) if (p, q) = (0, 12),
– Z/2 if (p, q) = (0, 11), (1, 10), or (2, 9),
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– 0 or Z/2 in all other cases with q � 8.

A geometric index 2 (index 4 in the case q = 12) extension P̃ ⊃ P is unique up to
automorphism.

Proof Clearly, |supp α| = 0 mod 4; hence, |supp α| = 8 or 12 by Lemma 5.3. The last
statement is proved by a direct computation using Theorem 3.2. In particular, it follows
that, in the case q = 12, there are three distinct nonzero elements and, hence, none of
them can have support of length 12. This proves Statement (1). For statement (2), it
suffices to consider the minimal pencil of type (0, 8), so that supp α = fb1 P . Then,
clearly, |s|1 is even, as otherwise s /∈ P , and the values |s|1 = 6 and 8 are ruled out
by Definition 3.6(1) and (2), respectively.

The uniqueness is immediate. In the case of index 2, an extension is determined
by a choice of the octet supp α ⊂ fb1 P . If q = 12, three octets supp αi ⊂ fb1 P ,
i = 1, 2, 3, should be chosen so that |supp αi ∩ supp α j | = 4 whenever i �= j . This
choice is equivalent to partitioning fb1 P into three quadruples. �
Corollary 5.38 (cf. Lemma 4.6(2) If a pencil P has a section s intersecting ten fibers
of P , then P has no other fibers.

Proof Assuming that P is of type (0, 11), Proposition 5.37(2) applied to s and the
nontrivial element α ∈ P̃/P leads to a contradiction. The existence of α is also
guaranteed by Proposition 5.37. �

As another consequence of the results of this section, the type (p, q) and the prim-
itivity bit almost determine a geometric realization P → L up to isomorphism. The
pivot P̃/P may (must if q > 10) have 2-torsion if and only if q � 8 (see Proposition
5.37), and it may (must if (p, q) = (4, 6) or p = 6 and q > 0) have 3-torsion if and
only if p = 6 (see Proposition 5.16) or p + q = 10 (see Propositions 5.25 and 5.36).
The case p + q = 10 and q � 8 is exceptional: here, the pivot may be trivial, Z/2, or
Z/3, i.e., there are three geometric realizations P → L. In this latter case, it makes
sense to subdivide the type (p, q)◦ into (p, q)2 and (p, q)3.

6 Counting sections of pencils

The goal of this section is a computer aided estimate on the size of a geometric config-
uration containing a pair of large obverse pencils. Even though most extra restrictions
in the “counting” lemmas seem purely technical, for the moment we do need them to
keep the computation under control.

6.1 The algorithm

Fix a pencil P := P(l) of type (p, q) and a section s0 of P . Let s̄0 := [s0] ∈ Cp,q and
denote by G(s̄0) the stabilizer of s̄0. (Up to automorphism, there are q +1 possibilities
for s̄0; we usually choose for s̄0 the vector with several last 1-coordinates equal to 1
and all other coordinates equal to 0.) More sections s1, s2, . . . are added one by one,
building the obverse pencil P(s0). Thus, we assume that

s0 · si = 1 and si · s j = 0 for i > j � 1, (6.1)
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i.e., all new sections are in separate fibers of P(s0). Our goal is adding sufficiently
many sections, so that, in the resulting configuration, P is still a maximal pencil and
the multiplicity and valency of s0 satisfy certain prescribed bounds

pmin � mult s0 � pmax, vmin � val s0 � vmax.

It is essential that most of the time we deal with coordinates rather than sections
themselves: we choose certain elements s̄i ∈ Cp,q and consider the pre-configuration

Sk := P(s̄0, . . . , s̄k) = (P̃ + Zs0 + · · · + Zsk)/ker,

where [si ] = s̄i for all i � 0 and the intersection matrix of P is extended using (6.1)
and the definitions of sections and coordinates. By Corollary 5.13, for each i � 1 we
must have s̄i ∈ C0(s̄0) ∪ C1(s̄0), where

Cr (s̄0) := {
s̄ ∈ Cp,q

∣∣ |s̄ ∗ s̄0| = r
};

furthermore, si is contained in a 1-fiber of P(s0) if and only if s̄i ∈ C0(s̄0).
Once a lattice Sk has been constructed, we denote by

Gk := Oh(Sk, l, s0)

the group of its isometries preserving h, l and s0. The computation of this group is
discussed in Sect. 6.1.3 below. (At the expense of a certain overcounting, we compute
separately the stabilizers in S

p
3 and Sp × Sq .)

The algorithm runs in several steps.

6.1.1 Step 1: collecting the candidates

Assume Sk−1 known and denote by S̄k−1 the multiset {[s] | s ∈ Sk−1(P)}. The group
Gk−1 acts on C0(s̄0) ∪ C1(s̄0)�S̄k−1 and, when passing to Sk , it suffices to take for s̄k

one representative from each orbit of this action. We can also assume that all explicit
3-fibers are added first and avoid adding too many 3-fibers:

(1) s̄k ∈ C1(s̄0) if mult s0 < pmin and s̄k ∈ C0(s̄0) if mult s0 � pmax.

There is an obvious injective map from the set of 3-fibers ofP(s0) to fbP (each 3-fiber
contains a unique line a ∈ P); this map should remain injective:

(2) if s ∈ Sk−1(P) is contained in a 3-fiber of P(s0), then |s̄0 ∗ s̄k ∗ s| = 0.

Other restrictions taken into account when choosing s̄k are as follows:

(3) Lemma 5.14 (in fact, we check that [−ri j ] is negative semi-definite);
(4) rk[−ri j ] + 2p + q � 18 (as Sk should admit an embedding to L);
(5) S4(s̄k): |s̄k ∗ s̄| � 4 for any s̄ ∈ S̄k−1, see Lemma 5.10(1);
(6) S3(s̄k): |s̄k ∗ s̄′ ∗ s̄′′| � 3 for all s̄′ �= s̄′′ ∈ S̄k−1, see Lemma 5.10(2), (3);
(7) Sh(s̄k): if |s̄k ∗ s̄| = 4 for some s̄ ∈ S̄, then S4(s̄′) and S3(s̄′) hold, where

s̄′ := I � s̄ � s̄k , see Lemma 5.10(2);
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(8) if s̄k ∈ C1(s̄0), then S4(s̄′), S3(s̄′), and Sh(s̄′) hold for s̄′ := I � s̄0 � s̄k .

In cases (7) and (8), we also exclude from further consideration the Gk−1-orbit of the
respective section s̄′, as its presence in S̄k would imply the presence of s̄k .

6.1.2 Step 2: validating a section s̄k

Now, for each candidate s̄k collected at the previous step, we compute the pre-
configuration Sk = (Sk−1 + Zsk)/ker, consider the orthogonal complement h⊥ in
Sk , and use GAP [12] function ShortestVectors to compute the sets V2(Sk) and
V4(Sk), where

Vr (Sk) := {v ∈ h⊥ ⊂ Sk | v2 = −r}.

(Note that the lattice Sk is hyperbolic, hence h⊥ is elliptic, by Sect. 6.1.1(3)).
A candidate s̄k is rejected as invalid (not leading to a geometric configuration) if

one of the following holds:

1. V2 �= ∅, see Definition 3.6(1);
2. there is v ∈ V4 such that v + h ∈ 2Sk , see Definition 3.6(2).

Otherwise, the new set of sections Sk(P) is computed via

Sk(P) = {v + l | v ∈ V4, v · l = 2}.

At this point, the full intersection matrix is known, and we can compute and record
the set

Sk := S(s̄0, . . . , s̄k) = P(s0) ∩ Sk(P),

including types of the fibers. This set is used for the further validation. Namely, we
reject s̄k if

3. mult s0 > pmax (too many 3-fibers), or
4. val s0 > vmax (too many lines in P(s0)), or
5. there is a pair s′ �= s′′ ∈ Sk such that s′ · s′′ = 1 and |s0 ∗ s′ ∗ s′′| = 0, see

Corollary 5.13, or
6. any other type specific restriction is not satisfied (whenever used, this extra restric-

tion is specified explicitly in the respective proof).

To save space, for each candidate s̄k that passed the validation, we record

– the elements s̄0, . . . , s̄k ∈ Cp,q ,
– the multiset S̄k (sections in terms of coordinates), and
– the image S̄k ⊂ S̄k of Sk under the coordinate map,

disregarding all other information.
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6.1.3 Step 3: eliminating repetitions

Before further processing, we eliminate the repetitions in the obtained list of lattices Sk

by retaining a single representative of each orbit of the G(s̄0)-action. To compute the
orbits or, equivalently, the stabilisers Gk , we use one of the following two approaches.

(1) The stabilizers are computed via Gk = stab S̄k ⊂ G(s̄0), and the lattices are
compared by means of the orbits of S̄k . This approach works if each Sk is exactly
as in the construction above, i.e., generated over P̃p,q by the set {s0} ∪ Sk , on
which the intersection matrix is known.

(2) The stabilizers are computed via Gk = stab S̄k ⊂ G(s̄0), and the lattices are
compared by means of the orbits of S̄k . This approach applies if each Sk is known
to be combinatorially rigid.

By default, we use approach (1).

6.1.4 Step 4: checking the L-realizability

For each configuration Sk obtained at Step 3, we check if it admits a geometric L-
realization. To this end, we start with the lattice Sk itself and apply Theorem 3.2 to
see if Sk admits a primitive L-realization. If not, we replace Sk with a finite index
extension S̃k ⊃ Sk defined by an isotropic vector v ∈ discr Sk of prime order. (This
and subsequent steps are repeated for each isotropic vector found.) The new lattice S̃k

is rejected if it fails to satisfy one of the conditions in Sect. 6.1.2; otherwise, we apply
Theorem 3.2 again. The algorithm stops when a primitive embedding is found (and
then Sk is accepted) or all isotropic vectors are exhausted; in the latter case, the original
lattice Sk is rejected as not admitting a geometric L-realization. Admittedly ineffective,
this algorithm works reasonably well for the vast majority of configurations.

6.1.5 Increasing the rank

We repeat Steps 1–4 above until either nothing else can be added or the desired
bounds mult s0 � pmin, val s0 � vmin have been achieved. Most lattices Sk obtained
have rank 20 and, hence, each geometric configuration containing Sk is a finite index
extension of Sk . In the cases where rk Sk � 19, we keep Sk on the list, but we
allow also the addition of an extra section sk+1 disjoint from s0. (Certainly, in this
case we have to switch to approach (2) in Sect. 6.1.3, i.e., we need to know that
the configurations obtained are combinatorially rigid. If the latter property cannot be
asserted, configurations with extra sections are excluded from Step 3.) This time, we
have s0 ·sk+1 = 0, but the intersections ιi := si ·sk+1, i = 1, . . . , k, should be given as
part of the input; for each pair (s̄k+1, [ιi ]), we check conditions (3)–(8) in Sect. 6.1.1,
requiring in addition that rk Sk+1 > rk Sk , i.e., the same lattice cannot be obtained as
a finite index extension of Sk . Then, Steps 2–4 are repeated and, at Step 2, we require
that

(1) the valency of s0 in Sk+1 must be equal to that in Sk ,

as otherwise the same lattice can be obtained by adding a section intersecting s0.
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6.1.6 Final step: computing L-realizations

What remains is to enumerate, for each lattice Sk , its geometric L-realizations. This
is done similar to Sect. 6.1.4, except that we do not stop at the first valid realization;
on the other hand, we require that

(1) the valency of s0 in S̃k must be equal to that in Sk , cf. Sect. 6.1.5(1).

At this step, for all consecutive extensions Sk = S̃0
k ⊂ S̃1

k ⊂ · · · of prime index, we
can also check that |Fn(S̃i

k)| > |Fn(Si−1
k )|; this fact implies that all configurations

found are generated by sections.
For each finite index extension S̃k ⊃ Sk found in this way, assuming that P is

maximal in S̃k , we have

|Fn(S̃k)| = |S̃k(P)| + 3p + q + 1. (6.2)

In extreme cases (when too many lines have been found), we recompute the maximal
pencil via

P(l) = {v + l | v ∈ V6(S̃k), v · l = 3}

and compute the pencil structure of S̃k . (The computation of V6 is rather expensive
and we try to avoid it as much as possible.)

6.2 A list of configurations

For further references, we collect in Table 1 a list of large configurations found in
the experiments. (We list all configurations found that have more that 48 lines. A
few other configurations with 52 lines and a number of those with 48 lines have been
discovered in the recent paper [10]. Our choice of configurations to be listed in Table 1
was mainly motivated by Theorem 6.1 below.) The notation refers to certain particular
configurations found in the computation. We will also speak about configurations of
type X∗, Y∗, etc., meaning that the pencil structures of the two configurations are
equal. The configurations marked with a ∗ in the table (most notably, the Y-series)
admit totally reflexive L-realizations; the others do not. One has rk Z∗ = 19; the
other configurations listed in the table are of rank 20. There is no particular difference
between X and Q.

Theorem 6.1 A geometric configuration of each type listed in Table 1 is unique up to
isomorphism.

Proof Each configuration S satisfies the hypotheses of the respective classification
statement cited in the table (with pencils of type (6, 0)• ruled out by Theorem 6.3),
and the uniqueness follows from the classification.

Indeed, the essential part of the hypotheses is the existence of a certain pair of
obverse pencils. Let v := max{val l | l ∈ Fn(S)}, and denote by n the number of
lines of valency v. If v > 18, then, in view of (5.1), the configuration is covered by
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Table 1 Known large geometric configurations

S |Fn| Pencil structure (see Sect. 4.4), reference, remarks

X64 64 (6, 0)16(4, 6)48, see Theorems 6.2 and 6.4

X′
60 60 (6, 2)10(4, 4)30(3, 7)20, see Theorem 6.2

X′′
60 60 (4, 5)60, see Lemma 6.5

X56 56 (4, 6)8(4, 4)32(2, 8)16, see Theorem 6.4

∗Y56 56 (4, 4)32(3, 7)24, see Lemma 6.9

Q56 56 (4, 4)24(3, 7)32, see Lemma 6.9

X54 54 (6, 2)4(4, 6)6(4, 4)6(4, 2)24(2, 8)12(0, 10)2, see Theorem 6.2

Q54 54 (4, 4)24(4, 3)24(0, 12)6, see Lemma 6.10

X′
52 52 (6, 0)1(4, 4)12(4, 3)12(4, 2)3(3, 5)18(0, 12)6, see Theorem 6.2

X′′
52 52 (6, 0)1(4, 4)9(4, 3)18(3, 5)18(0, 12)6, see Theorem 6.2

X′′′
52 52 (4, 6)10(3, 5)40(0, 10)2, see Theorem 6.4

Xv
52 52 (5, 3)8(3, 5)32(2, 8)12, see Theorem 6.7

∗Y′
52 52 (4, 6)2(4, 4)16(3, 5)20(2, 8)14, see Theorem 6.4

∗Y′′
52 52 (4, 5)8(4, 3)12(3, 6)16(2, 7)16, see Lemma 6.5

∗Z52 52 (6, 0)4(4, 4)12(4, 2)24(2, 8)12, see Theorem 6.2; rk Z52 = 19

Q′
52 52 (4, 4)16(4, 3)16(4, 2)16(0, 12)4, see Lemma 6.10

Q′′
52 52 (4, 4)8(4, 3)32(4, 2)8(0, 12)4, see Lemma 6.10

X51 51 (6, 2)1(5, 3)6(4, 3)3(3, 6)6(3, 4)8(2, 7)27, see Theorem 6.2

X′
50 50 (6, 1)1(4, 4)9(4, 3)9(4, 2)9(3, 4)18(0, 12)3(0, 10)1, see Theorem 6.2

X′′
50 50 (6, 1)1(4, 4)6(4, 3)15(4, 2)6(3, 4)18(0, 12)3(0, 10)1, see Theorem 6.2

X′′′
50 50 (5, 3)4(4, 4)8(3, 5)16(2, 8)4(2, 6)18, see Theorem 6.7

Z50 50 (4, 4)10(3, 5)40, see Lemma 6.10; rk Z50 = 19

Z49 49 (6, 0)1(4, 3)18(4, 2)9(3, 4)18(0, 12)3, see Theorem 6.2; rk Z49 = 19

∗Y′
48 48 (5, 1)2(3, 7)6(3, 5)24(2, 6)12(1, 9)4, see Lemma 6.9

∗Y′′
48 48 (4, 4)4(4, 2)16(3, 6)8(2, 7)12(2, 6)8, see Lemma 6.10

Theorem 6.2. If n � 5 or n � 4 and |Fn(S)| < 4v −8, then, referring in the latter case
to Corollary 4.4, we obtain a pair of skew lines of valency v, which suffices for all
statements. In the remaining four cases (X′

52, X′′
52, Y′

52, and Z49), a similar argument
gives us a pair of lines of valency v = 18 and � 15. �

Among others, Table 1 lists all geometric configurations S containing a pair of
obverse pencils P1, P2 such that

|Fn(S)| > 48 and |P1| + |P2| � 33.
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6.3 Pencils of type (6, ∗)

For the moment, (6, ∗)◦-configurations is the only class that is sufficiently well under-
stood. The properties of such configurations are summarized in the next theorem.

Theorem 6.2 There are 300 isomorphism classes of (6, q)◦-pairs:

– for q = 0: 62 classes, of which 43 are totally reflexive;
– for q = 1: 107 classes, none totally reflexive;
– for q = 2: 131 classes, none totally reflexive.

Let (S,P) and (S′,P ′) be two (6, ∗)◦-pairs. Then:

(1) S is generated by sections and combinatorially rigid;
(2) with one exception, one has (S′,P ′) ∼= (S,P) if and only if ls(S′) = ls(S);
(3) either one has |Fn(S)| < 52 or S ∼= X64, X′

60, X54, X′
52, X′′

52, or Z52.

Furthermore, for any n ∈ {19, . . . , 52, 54, 60, 64}, there is a (6, ∗)◦-configuration S
such that |Fn(S)| = n.

As an addendum to Theorem 6.2(2), note that, with the exception of eleven pairs,
any two distinct (6, ∗)◦-configurations are distinguished by the pencil structure.

Proof of Theorem 6.2. We start with a pencilP of type (6, 0)◦ and apply the algorithm
of Sect. 6.1, introducing a number of modifications:

– we do not fix a section s̄0 and use the group G̃ instead of G(s̄0), see (5.3); the
intersection matrices are computed by means of Lemma 5.20;

– at Step 1, all restrictions are lifted: instead, we construct the “convex hull” (in the
sense of Lemma 5.22) of the set S̄k−1 ∪ s̄k and check whether the resulting set S̄k

satisfies Lemma 5.23; certainly, s̄k must satisfy (5.2);
– at Step 2, all restrictions except (1) and (2) are lifted;
– at Step 3, approach (2) can be used due to Corollary 5.21;
– since all sets of sections are to be tried, we replace condition (1) in Sect. 6.1.6

with |Fn(S̃k)| = |Fn(Sk)|. It turns out that such extensions do not exist; hence, any
geometric configuration is generated by sections.

As a result, we obtain 84 configurations (of which 25 are extremal with respect to
inclusion) generated by sections ofP; in these configurations,P is not always maximal.
Then, we try to add up to two extra 1-fibers. The procedure is similar to Sect. 6.1.5:
we specify the intersection of the fiber added with sections generating Sk and repeat
Steps 1–4 of the algorithm; a new configuration S′

k is accepted only if |Fn(S′
k)| >

|Fn(Sk)|. Repetitions are eliminated using approach (2) of Sect. 6.1.3 and appropriate
subgroups G̃ ⊂ G6,q .

All other statements of the theorem follow directly from the classification. �

Theorem 6.3 There are 69 isomorphism classes of (6, 0)•-pairs (S,P) admitting a
section s0 ∈ S(P) such that 15 � val s0 � 18. Let (S,P) and (S′,P ′) be two such
pairs. Then:

(1) S is generated by sections and combinatorially rigid;
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(2) (S′,P ′) ∼= (S,P) if and only if ls(S′) = ls(S);
(3) one has |Fn(S)| < 44.

Proof The sections are enumerated using the algorithm of Sect. 6.1, letting

pmin = 2, pmax = 6, vmin = 15, vmax = 18. (6.3)

Here, the lower bound pmin = 2 follows from (5.1), and the seemingly redundant
upper bound pmax = 6 helps us eliminate a number of configurations before any
further processing. We introduce also a few modifications to the algorithm. First, by
Corollary 5.18, we can use approach (2) in Sect. 6.1.3: this is necessary since some of
the configurations Sk with val s0 � 16 have rank 19, see Sect. 6.1.5. Besides, we can

– use Lemma 5.17(2) for condition (6) in Sect. 6.1.2, and
– in Sect. 6.1.5, consider only the candidates s̄k+1 satisfying 1 � |s̄k+1 ∗ s̄0| � 4,

see Lemmas 5.17(1) and 5.10(1).

We obtain 81 configurations, each with a distinguished section s0. Switching to the
full automorphism group G6,0 and resorting reduces the list down to 69 classes. The
maximal number of lines in the configurations obtained is 44. �

6.4 Pencils of type (4, ∗)

A complete classification of (4, 6)-configurations also seems feasible; however, for
the moment we confine ourselves to a partial statement that is similar to Theorem 6.3.

Theorem 6.4 There are 195 isomorphism classes of (4, 6)-pairs (S,P) admitting a
section s0 ∈ S(P) such that 15 � val s0 � 18. If (S,P) is such a Zpair, then:

(1) S is generated by sections and combinatorially rigid;
(2) either one has |Fn(S)| � 48 or S ∼= X64, X56, X54, X′′′

52, or Y′
52.

Proof First, assume that mult l∗ � 2, hence s0 �= l∗. We need to consider seven
cases: |s0|1 ∈ {0, . . . , 4} and s0 · l∗ = 0 or 1 for the first two values |s0|1 = 0, 1. In
each case, we employ the algorithm of Sect. 6.1, using parameters (6.3), restricting
the candidates in Sect. 6.1.1 to satisfy (5.4), and imposing the restriction |S̄∗| � 4,
see (5.5), as condition (6) in Sect. 6.1.2. All pairs obtained are rigid by Corollary 5.30,
and resorting the list with the full automorphism group G4,6 reduces it to 20 classes.

Let s0 = l∗. To avoid complications with large pivots, we start with a manual
classification of configurations S ⊃ P generated by up to four sections si such that
si · l∗ = 1 and |si |1 = 0. It is easily shown that, in addition to P itself, there are
six isomorphism classes of such configurations S, each admitting a unique, up to
automorphism, geometric finite index extension S̃ ⊃ S. Briefly, they are as follows:

– 1 class with mult l∗ = 1, rk S = 17, and �3(S̃/S) = 0,
– 2 classes with mult l∗ = 2, rk S = 18, and �3(S̃/S) = 1,
– 1 class with mult l∗ = 3, rk S = 19, and �3(S̃/S) = 2,
– 1 class with mult l∗ = 4, rk S = 19, and �3(S̃/S) = 2,
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– 1 class with mult l∗ = 4, rk S = 20, and �3(S̃/S) = 3.

Starting, instead of P̃ , with one of these geometric configurations S̃, we build a separate
list, replacing G(s̄0) with Oh(S̃, l) and inhibiting sections s̄ with |s̄|1 = 0 at Step 1.
Running the algorithm, we obtain a large number of configurations (due to the lack
of sorting in Sects. 6.1.5 and 6.1.6). All but one are rigid by Corollary 5.30, and
the remaining one has an “ambiguous” pair of sections s1, s2, but the assumptions
s1 · s2 = 0 or 1 result in configurations S0, S1 with non-isomorphic sets of sections
(in fact, S0 is generated by S̄0�S̄◦

0 , whereas S1 is not; this phenomenon is similar to
Lemma 5.15). Thus, a posteriori, all configurations are rigid; switching to approach (2)
in Sect. 6.1.3 and resorting the list reduces it to 175 classes. �

Lemma 6.5 If a (4, 5)-pair (S,P) admits a section s0 such that 16 � val s0 � 17,
then either one has |Fn(S)| � 48 or S ∼= X′′

60 or Y′′
52. Furthermore, a geometric

configuration of type X′′
60 is unique up to isomorphism.

Proof We apply the algorithm of Sect. 6.1, letting

pmin = 3, pmax = 5, vmin = 16, vmax = 17 (6.4)

and using for (6) in Sect. 6.1.2 the extra requirement that |s̄|1 � 4 for any s̄ ∈ S̄k , see
Proposition 5.27. We also suppress the sorting in Sect. 6.1.6, which results in a rather
large number of classes in the case where |s̄0|1 = 4. Disregarding the pairs (S,P)

with |S(P)| � 30, we arrive at a number of configurations of type Y′′
52 and several

dozens of those of type X′′
60; crucial is the fact that only two configurations of type X′′

60
appear in the case where |s̄0|1 = 0.

For the uniqueness, we compute the linking structure of each configuration S of
type X′′

60. The result is the same for all configurations:

ls(S) = (4, 4)150(5, 3)360(6, 2)360(7, 2)240(8, 0)30(8, 3)120.

Since (4, 4) ∈ ls(S), it follows that S has a pair of skew lines l, s0 such that |s0|1 = 0
with respect to P(l); in particular, there are at most two isomorphism classes.

A further computation in (any) one of the configurations shows that there are at
least two classes of pairs P1,P2 such that |P1 ∩ P2| = 4. Namely, in each 3-fiber
of P2, consider the two lines s′, s′′ that are sections of P1 and compute |s′|1, |s′′|1 with
respect to P1. The resulting multiset of four unordered pairs is obviously an invariant
of P1,P2; it turns out to be symmetric, and it can take values

(1, 4)2(2, 3)2 (120 pairs) or (1, 4)4 (30 pairs). (6.5)

Thus, we conclude that the two classes obtained in the case |s0|1 = 0 correspond, in
fact, to two distinct pairs of obverse pencils in the same configuration.

All configurations of type Y′′
52 (obtained in the computation) are isomorphic, as

only one configuration is obtained when |s0|1 = 2 and each configuration has a pair
of obverse pencils P1, P2 of type (4, 5) and such that |P1 ∩ P2| = 6. �
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Corollary 6.6 (of the proofs). For any n ∈ {18, . . . , 48, 52, 54, 56, 60, 64}, there
exists a (4, ∗)-configuration S such that |Fn(S)| = n. If n ∈ {18, . . . , 47, 52}, this
configuration S can be chosen totally reflexive.

Proof By Propositions 5.25 and 5.27, we can reliably detect the maximality of a
pencil P of type (4, 6) or (4, 5) in a configuration S by the set of sections S(P),
without recomputing the full set Fn(S). Hence, (6.2) applies to any geometric finite
index extension S̃k ⊃ Sk accepted in Sect. 6.1.4; recording the values obtained, we
obtain the first statement of the corollary. The second one is obtained by using, in
addition, Lemma 3.8, cf. the proof of Proposition 5.6. �

6.5 Pencils of type (5, ∗)

As in the case (4, ∗), we have a partial classification for the maximal type (5, 3) and
certain bounds for the submaximal type (5, 2).

Theorem 6.7 There are 421 isomorphism classes of (5, 3)-pairs (S,P) admitting a
section s0 ∈ S(P) such that 15 � val s0 � 18. If (S,P) is such a pair, then either
one has |Fn(S)| � 48 or S ∼= Xv

52, X51, or X′′′
50.

Proof The computation runs exactly as outlined in Sect. 6.1, with the parameters as
in (6.3) and Lemma 5.32 used for condition (6) in Sect. 6.1.2. (Note that, since the
only pencil that can properly contain P is that of type (6, 2), Lemma 5.32 gives us
a criterion of maximality of P .) With two exceptions, all configurations obtained are
rigid by Corollary 5.34 or 5.35, and we can resort the combined list (the union over
all four values |s̄0|1 = 0, . . . , 3) using approach (2) in Sect. 6.1.3 and the full group
G5,3. Each of the two configurations whose rigidity could not be established differs
from all others by its linking structure. �
Lemma 6.8 If a (5, 2)-pair (S,P) admits a section s0 such that 16 � val s0 � 17,
then one has |Fn(S)| � 48.

Proof The computation runs as outlined in Sect. 6.1, using parameters as in (6.4)
and Lemma 5.32 for condition (6) in Sect. 6.1.2. There are a few configurations Sk of
rank 19, to which we add extra sections (see Sect. 6.1.5) but do not sort the results, i.e.,
skip Step 3. Apart from several configurations of type Xv

52 or X′′′
50, one has |S̃k(P)| � 30

and the statement follows from (6.2). �

6.6 Pencils of size 16

In this section we deal with geometric configurations containing a pair of obverse
maximal pencils P := P(l) and P ′ := P(s0) such that |P| = |P ′| = 16. Since we
are interested in the configurations themselves rather than triples (S,P,P ′), we make
several additional assumptions.

First of all, we assume that mult l � mult s0; hence, when applying the algorithm
outlined in Sect. 6.1, we can use the parameters

pmin = p := mult l, pmax = 5, vmin = vmax = 16.
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The next few restrictions are considered as part of the type specific condition (6)
in Sect. 6.1.2; the necessary computation uses the set V4(Sk).

(1) We require that max{val l | l ∈ Fn(S)} � 17.

This restriction is part of all statements: on the one hand, it helps us eliminate a number
of configurations covered by other theorems and, on the other hand, it is sufficient for
the proof of Proposition 8.1 in its current form.

Besides, we list all pairs l1, l2 ∈ Fn(S) of skew lines such that val l1 = val l2 = 16
and compute the refined types of the pencils Pi := P(li ), i = 1, 2, and the linking
types lk(l1, l2). For each pair l1, l2, assuming that mult l1 � mult l2, we require that

(2) mult l1 � p, and
(3) if mult l1 = p, then |P1 ∩ P2| � |s0|2 + p.

(If these two conditions are not satisfied, we can obtain the same configuration S
replacing l, s0 with the “smaller” pair l1, l2.)

In Sect. 6.1.3, approach (1) is used for sorting. In Sect. 6.1.5, we may need to add up
to two extra sections; since the combinatorial rigidity is not known, the configurations
containing extra sections are excluded from the sorting algorithm. Finally, at the final
step we only keep the configurations S such that |Fn(S)| > 48 or |Fn(S)| = 48 and S
is totally reflexive.

Lemma 6.9 Let (S,P) be a (3, 7)-pair and s0 ∈ S(P) a section such that

max{val l | l ∈ Fn(S)} � 17 and val s0 = 16.

Then either one has |Fn(S)| � 48 or S ∼= Y56 or Q56. If S is totally reflexive, then
either |Fn(S)| < 48 or S ∼= Y56 or Y′

48.

Proof The computation runs as outlined above. In addition to (1)–(3), we inhibit all
configurations in which P has a section s such that |s|2 = 6, see Proposition 5.26. We
obtain several configurations of type Y56, Q56, or Y′

48; furthermore,

– if |s0|2 = 0, there is a single configuration S; this configuration S is of type Q56,
and the pencils P and P ′ are of type (3, 7)•;

– if |s0|2 = 1, there is a unique configuration S of type Y56 in which P is of type
(3, 7)◦ and P ′ is of type (4, 4);

– if |s0|2 = 2, there is a unique configuration S of type Y′
48 in which P is of type

(3, 7)◦ and P ′ is of type (3, 7).

On the other hand, a direct computation shows that each configuration S obtained has
a pair P , P ′ of obverse pencils whose types and intersection |P ∩ P ′| are as above.
(Recall that |P(l) ∩ P(s0)| = |s0|2 + 3.) Replacing l and s0 with the axes of these
pencils, we conclude that, up to isomorphism and under the assumptions of the lemma,
each type Y56, Q56, Y′

48 is represented by a unique configuration. �

Lemma 6.10 Let (S,P) be a (4, 4)-pair and s0 ∈ S(P) a section such that

max{val l | l ∈ Fn(S)} � 17 and val s0 = 16.
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Then either one has |Fn(S)| � 48 or S ∼= Y56, Q56, Q54, Q′
52, Q′′

52, or Z50. If S is
totally reflexive, then either |Fn(S)| < 48 or S ∼= Y56 or Y′′

48.

Proof The configurations of type (hence, isomorphic to) Y56 or Q56 are given by
Lemma 6.9. The other types are obtained by a computation outlined above, which
returns several dozens of configurations with |s0|2 � 2. Switching to approach (2) in
Sect. 6.1.3 and the full automorphism group G4,4 and checking explicitly that each
isomorphism S̄′ → S̄′′ lifts to an isometry S′ → S′′, one can show that, for any two
configurations S′, S′′ in the lists obtained, S′ ∼= S′′ if and only if ps(S′) = ps(S′′).
The pencil structures realized are those listed in the statement. �

Lemma 6.11 Let (S,P) be a (5, 1)-pair and s0 ∈ S(P) a section such that

max{val l | l ∈ Fn(S)} � 17 and val s0 = 16.

Then one has |Fn(S)| � 48.

Proof The computation runs as outlined at the beginning of this section, with Lemma
5.32 used to rule out some non-maximal pencils. This computation results in an empty
list of configurations. �

6.7 Triangle free configurations

A configuration S is called triangle (respectively, quadrangle) free if the graph Fn S
has no cycles of length 3 (respectively, 3 or 4). By Lemma 4.5, a configuration is triangle
free if and only if it contains no planes. Clearly, all pencils in such a configurations
are of type (0, ∗).

Lemma 6.12 Let P,P ′ be a pair of obverse pencils in a geometric triangle free
configuration S, and assume that |P ∩ P ′| � 2. Then one has either |P ∪ P ′| � 18
or |Fn(S)| � 33.

Proof Assuming that |P| � |P ′|, denote by s0 the axis of P ′; it is a section of P
and r := |s0|1 � 2. Clearly, P is of type (0, q), and we can assume that q � 11
and r � 2q − 19, as otherwise the inequality |P ∪ P ′| � 18 holds immediately.
The structure of the extension P̃ ⊃ P is given by Proposition 5.37 (the pivot has no
3-torsion by Proposition 5.36) and, depending on the values of q, r , there are up to
two (up to automorphism) possibilities for the section s0.

We apply the algorithm outlined in Sect. 6.1, using the parameters

pmin = pmax = 0, vmin = 19 − q, vmax = q − r

and introducing a few modifications. Namely, at Step 1 we allow repetition when
collecting sections s̄i , as the coordinate map (cf. Corollary 5.12) is not injective for P;
on the other hand, only the sections satisfying Proposition 5.37(2) are to be considered.
At Step 2, as condition (6) in Sect. 6.1.2, we check that the configuration is still triangle
free. Adding, if necessary, up to two extra sections disjoint from s0 (see Sect. 6.1.5;
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such records are not sorted), we arrive at a number of configurations, each containing
at most 33 lines. �

Lemma 6.13 Let S be a geometric quadrangle free configuration. Consider three
lines l0 ∈ Fn(S) and l1, l2 ∈ P(l0) such that val l0 � val l1 � val l2. Then either

– val l0 + val l1 � 14 and val l2 = 1, or
– val l0 � 7 and val l2 � val l1 � 5, or
– val l1 � val l0 � 6 and val l2 � 5.

Proof It is convenient to consider the pencil P := P(l1), of which l0 is a fiber and l2
is a section. Since S is quadrangle free, each section of P intersects at most one fiber,
and two sections intersecting l2 cannot intersect the same fiber. In addition to l2, the
pencil P has (val l0 − 2) sections intersecting l0 (all disjoint from l2) and (val l2 − 1)

sections intersecting l2 (all disjoint from l0); all these sections are pairwise disjoint.
An extra parameter is the number of the sections intersecting l2 that also intersect a
fiber of P . A direct computation (applying Theorem 3.2 to the finite index extensions
allowed by Definition 3.6) rules out the values

(6, 6, 6), (7, 6, 1), (8, 5, 1), (10, 4, 2), (11, 3, 2), (11, 4, 1), (12, 2, 1)

for the triple (val l0, val l1, val l2). �

6.8 Existence and uniqueness

We conclude this section with two statements related to the uniqueness of large con-
figurations and the existence of configurations with a prescribed number of lines.

Lemma 6.14 Each pencil structure listed in Table 2 is realized by a unique, up to
weak isomorphism, L-configuration S. This L-configuration S is totally reflexive if
and only if S = Y56; it is reflexive unless S = X′′

60 or X56, whereas X′′
60 and X56 are

not symmetric.

Table 2 L-configurations with more than 52 lines (see Lemma 6.14)

S |Fn| t.r. ref sym |Oh(S)| discr S T := S⊥

X64 64
√ √

4608 V4 ⊕ 〈 4
3 〉 [8,4,8]

X′
60 60

√ √
480 U2 ⊕ 〈 4

3 〉 ⊕ 〈 2
5 〉 [4,2,16]

X′′
60 60 240 〈 6

5 〉 ⊕ 〈 10
11 〉 [4,1,14]

X56 56 128 〈 15
8 〉 ⊕ 〈 15

8 〉 [8,0,8]

Y56 56
√ √ √

64 〈 3
2 〉 ⊕ 〈 63

32 〉 [2,0,32]

Q56 56
√ √

384 U2 ⊕ 〈 4
3 〉 ⊕ 〈 2

5 〉 [4,2,16]

X54 54
√ √

384 〈 1
4 〉 ⊕ 〈 3

8 〉 ⊕ 〈 4
3 〉 [4,0,24]

Q54 54
√ √

48 V2 ⊕ 〈 2
19 〉 [4,2,20]
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Proof By Theorem 6.1, each pencil structure as in the statement is realized by a unique
geometric configuration S; hence, there only remains to verify that each of the eight
configurations admits a unique primitive L-realization.

All configurations are known explicitly, and one can compute their automor-
phism groups, discriminants, and perspective transcendental lattices T := S⊥; they
are as shown in Table 2. (The lattice T is generated by two vectors u, v so that
u2 = a, u · v = b, and v2 = c, where [a, b, c] is the triple given in the table.
Each lattice is unique in its genus, which follows from the classical theory of binary
forms [13].)

With two exceptions, the homomorphism ρ : Oh(S) → Aut discr S is surjective.
The exceptions are:

– S = Q54, where Im ρ = Aut discr2 S, and
– S = X56, which will be treated separately.

Furthermore, each involution in Im ρ lifts to an involution in Oh(S). (This is not a
common property of configurations, a counterexample being Z50, see Sect. 9.4.5.)

In each case (other than S = X56), it is immediate that the image of O+(T )

intersects each coset modulo Im ρ and, hence, a primitive L-realization is unique
up to weak isomorphism (see the description of primitive extensions in Sect. 3.1).
Besides, whenever T has an orientation reversing isometry (i.e., in all cases except
S = X′′

60, see Table 2), this isometry, which is necessarily involutive, can be chosen to
induce an element in the image Im ρ and, thus, lift to an involution in Oh(S). Hence,
the L-configuration is symmetric and reflexive.

In the exceptional case S = X56, the image of Oh(S) (respectively, O(T )) is the
index 2 subgroup of Aut discr S generated by the reflections tα , where α ∈ discr S
and α2 = 3

8 or 3
4 mod 2Z (respectively, α2 = 15

8 or 7
4 mod 2Z). The intersection of the

two subgroups has index 4 and coincides with the image of O+(T ). It follows that
there is a single weak isomorphism class, which is not symmetric.

The only totally reflexive configuration is Y56, as Y56
⊥ is the only transcendental

lattice containing a vector of square 2, see Table 2. �

Remark 6.15 The computation of the automorphism groups makes use of the pencil
structure: we list all pencils of a given type (usually, the first one listed in Table 1)
and then enumerate the isometries taking one fixed pencil to another one similar to
the sorting algorithm in Sect. 6.1.3.

Remark 6.16 Not every configuration S listed in Theorem 6.1 admits a unique L-
realizations. Simplest examples are Y∗, see Sect. 9.4.2 and Table 6 below. More
examples are found in Table 6 in Sect. 9.

Lemma 6.17 For any number n ∈ {0, . . . , 52, 54, 56, 60, 64}, there is a geometric
configuration S such that |Fn(S)| = n. If n ∈ {0, . . . , 48, 52, 56}, this configuration
can be chosen totally reflexive.

Proof Any count n � 17 is easily realized by the span of a single pencil. Hence, the
first statement follows from Theorem 6.2, and the second one mostly follows from
Corollary 6.6. The missing values n = 48, 56 for totally reflexive configurations are
given by Lemma 6.9. �
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7 Triangle free configurations

Recall that a configuration S is said to be triangle free if it contains no planes. The
principal goal of this section is a proof of a bound on the number of lines in such a
configuration, see Theorem 7.6 in Sect. 7.3 below. Throughout the section, we fix a
configuration S and a geometric L-realization ψ : S → L.

7.1 Adjacency graphs

Given a graph Γ , we denote by ZΓ the lattice freely generated by the vertices of Γ ,
so that v2 = −2 for each vertex v and u · v = 1 (respectively, 0) if the vertices u �= v

are (respectively, are not) adjacent in Γ . If Γ ⊂ Fn(S), we also consider the images
SΓ := ZΓ/ ker ⊂ S and LΓ := ψ(SΓ ) ⊂ L of this lattice in S and L, denoting by
ψΓ : ZΓ → L the composed map.

A graph � is called elliptic (respectively, parabolic) if Z� is negative definite
(respectively, negative semi-definite). The Milnor number μ(�) of an elliptic or
parabolic graph � is the rank of the lattice Z�/ ker. A connected elliptic (parabolic)
graph is called a Dynkin diagram (respectively, affine Dynkin diagram). A Dynkin
diagram D extends to a unique affine Dynkin diagram, which we denote by D̃ ⊃ D;
we refer to [7] for a detailed treaty of Dynkin diagrams and their affine counterparts.
Recall that any graph � such that Z� is not negative definite contains an affine Dynkin
diagram as an induced subgraph. For any affine Dynkin diagram D̃, the kernel ker ZD̃
is spanned by a single distinguished generator kD̃ = ∑

κ(e)e, e ∈ D̃, with each
coefficient κ(e) strictly positive. The coefficient sum κ(D̃) := ∑

κ(e) of this linear
combination is as follows:

κ(Ãp) = p + 1, κ(D̃q) = 2q − 2, κ(Ẽ6) = 12, κ(Ẽ7) = 18, κ(Ẽ8) = 30.

(7.1)

We extend this κ-notation to elliptic Dynkin diagrams letting κ(D) := κ(D̃).

Lemma 7.1 Let � ⊂ Fn(S) be a parabolic subgraph such that rk ker Z� = 1. Then,
the isometry ψ� : Z� → L is a monomorphism.

Proof By the assumption, � is a disjoint union of several Dynkin diagram and a
single affine Dynkin diagram D̃. Since ψ� is an isometry, one has Ker ψ� ⊂ ker Z�,
and, as explained above, the latter subgroup is spanned by a single vector kD̃ so that
ψ�(kD̃) · h = κ(D̃) > 0. Hence, ψ�(kD̃) �= 0 and Ker ψ� = 0. �

7.2 Pseudo-pencils

Given a nonzero isotropic vector v ∈ S, the pseudo-pencil defined by v is the set

K(v) := {
a ∈ Fn(S)

∣∣ a · v = 0
}
.
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Since S is hyperbolic, v · h �= 0 and we can assume v · h > 0. We can also assume v

primitive. Then, the integer degK := v · h is called the degree of K. The connected
components of K are called its fibers. A section (more generally, n-section, n > 0)
of K is a line s ∈ Fn(s) such that s · v = 1 (respectively, s · v = n). The set of sections
of K, depending on the ambient configuration S, is denoted by S(K).

Each pencil is a pseudo-pencil of degree 3: one has P(l) = K(h − l). Conversely,
if v · h = 3, then l := h − v ∈ Fn(s) and K(v) = P(l).

As another example, fix an affine Dynkin diagram D̃ ⊂ Fn(S) and let v ∈ S be
the image of kD̃; by Lemma 7.1, ψ(v) �= 0 and K(D̃) := K(v) is a pseudo-pencil.
Clearly, D̃ ⊂ K(D̃). Since kD̃ is a positive linear combinations of the vertices of D̃
and the intersection of two lines is nonnegative (see Lemma 4.1), it follows that

K(D̃) = {a ∈ Fn(S) | a · v = 0 for each vertex v ∈ D̃}. (7.2)

Proposition 7.2 For each pseudo-pencil K the following statements hold:

(1) either degK = 1 and |Fn(S)| = 1, or degK � 3;
(2) as a graph, K is elliptic or parabolic and μ(K) � 18;
(3) if D ⊂ K is a Dynkin diagram and (degK) | κ(D), then D̃ is a fiber of K.

Furthermore, if s ∈ S(K), then, for any parabolic fiber D̃ of K,

(4)
∑

κ(e)(s · e) = 1, the summation running over e ∈ D̃;
(5) in particular, if S(K) �= ∅, then κ(D̃) = degK and kD̃ = v.

Proof Let K = K(v) with v · h = degK. The possibility v · h = 2 is excluded by
item 2 in Definition 3.6. If v · h = 1, then a := h − 3v is a line. Consider another
line b ∈ Fn(S). If b · v �= 0 or 1, then σ+(Zh + Zv + Zb) = 2. If b · v = 0, then
e := b − v is as in item 1 in Definition 3.6. In the remaining case b · v = 1 one has
rk ker(Zh + Zv + Zb) = 2 and, hence, b = a, i.e., a is the only line.

The assumption that v �= 0 implies that v⊥ has a non-trivial kernel and, hence, is
parabolic; since also rk ψ(K) � 19 = σ−L, this proves item 2.

For item 3, observe that κ(e0) = 1 for the only vertex e0 ∈ D̃�D, see, e.g., [7].
Hence, e0 is an integral linear combination of v and the vertices of D, i.e., e0 ∈ S.
Clearly, e0 is a line and, thus, D̃ ⊂ K. Finally, any affine Dynkin diagram is a whole
connected component of any parabolic graph in which it is contained.

The last two statements follow from the definitions and the fact that, for each
parabolic fiber D̃ of K, the vector kD̃ is a multiple of v (as kD̃ · v = 0); on the other
hand,

∑
e∈D̃ κ(e)(s · e) = s · kD̃ . �

Corollary 7.3 For a pseudo-pencil K, one has |K| � 18(1 + 1/μ), where μ is the
minimal Milnor number of the parabolic fibers of K. In particular, |K| � 24.

Proof The first bound follows from the obvious identity

|K| = μ(K) + |{parabolic fibers of K}|.

If K has a fiber of type Ã2, it is an ordinary pencil and |K| � 20 by Corollary 5.5.
Otherwise, μ � 3 and we have |K| � 24. �
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Geometrically, if S = F(X) for a nonsingular quartic X ⊂ P
3, a pseudo-pencil K

can often be interpreted as an elliptic pencil π : X → P
1 whose fibers are curves of

degree degK in P
3. For example, this is so in the important special case where K has

a parabolic fiber D̃. Indeed, in this case, the class v = ∑
κ(e)e, e ∈ D̃, regarded as

a divisor, is obviously numerically effective and, hence, does define a linear system
of arithmetic genus 1 without fixed points or components. From this geometric point
of view, K is the union of lines contained in the fibers of π . More precisely, if all
components of a reducible fiber F of π are lines, these lines form a parabolic fiber
of K; otherwise, the lines contained in F constitute one or several elliptic fibers of K.
Furthermore, in this interpretation, the bound |K| � 24 given by Corollary 7.3 follows
from the inequality

|{components in the singular fibers of F}| � χ(X) = 24.

Using this geometric interpretation, one can partially extend Statements (4) and (5)
of Proposition 7.2 to the elliptic fibers of K. Namely, for each section s ∈ S(K) and
each elliptic fiber D of K, one has

(4)
∑

κ(e)(s · e) � 1, the summation running over e ∈ D;
(5) in particular, if S(K) �= ∅, then κ(D) < degK.

As we do not use these statements, we will not try to prove them arithmetically. (Unlike
Proposition 7.2, these statements may depend on the requirement that S should be
geometric and involve a case-by-case analysis, cf. the discussion below.)

The type of a pseudo-pencil K is the isomorphism type of the lattice ZK; by Propo-
sition 7.2, it is an orthogonal direct sum of elliptic and parabolic root lattices. (For
example, in this new language, an ordinary pencil of type (p, q) has type pÃ2 ⊕qA1.)
Using Proposition 7.2 and arguing as in Sect. 5, i.e., applying Nikulin’s Theorem 3.2
to all finite index extensions of the lattice P := (ZK + Zh)/ ker that are not ruled
out by Definition 3.6, it should not be difficult to obtain a complete classification of
pseudo-pencils appearing in geometric configurations; in particular, one can probably
improve the bound |K| � 24 given by Corollary 7.3. However, we confine ourselves
to just the two special cases used in the proof of Theorem 7.6.

Lemma 7.4 Assume that S is triangle free, and let K ⊂ S be a pseudo-pencil with a
fiber of type Ã3. Then either |K| � 20 or K is of type 5Ã3 ⊕A1; in the latter case, one
has |Fn(S)| � 45.

Proof By Proposition 7.2, one has degK = κ(Ã3) = 4 and all fibers of K are of
types Ã3, A2, or A1. Arguing as explained above, we conclude that the only pseudo-
pencil K such that |K| > 20 and the lattice P := (ZK+ Zh)/ ker admits a geometric
L-realization is that of type 5Ã3 ⊕ A1. Assuming this type, consider the quadrangle
D̃ := {l1, . . . , l4} constituting one of the type Ã3 fibers. Letting Pi := P(li ), by (7.2)
we have

|Fn(S)| = |P1 ∪ P3| + |P2 ∪ P4| + |K| − 4. (7.3)

(Since S is triangle free, a line a ∈ Fn(S) cannot intersect two adjacent vertices of
the quadrangle.) Due to Lemma 4.6(2) and Corollary 5.38, for each of the two pairs
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(i, j) = (1, 3) or (2, 4), either |Pi ∪ P j | = |Pi ∩ P j | = 10 or |Pi ∩ P j | � 8; thus,
letting ni := |Pi �P j |, we get |Pi ∪ P j | � max{20, 16 + ni + n j } and, if ni � 3 for
all i = 1, . . . , 4, from (7.3) we obtain |Fn(S)| � 45, as stated.

What remains is the case where one of the integers ni , say, n1, is at least 4, i.e.,
there are at least four lines intersecting l1 and disjoint from the three other lines.
In this case, we run an algorithm similar to that described in Sect. 6.1, adding to S
up to three sections intersecting l1 in order to increase the rank from rk P = 18 to
the maximum 20. By Proposition 7.2(4), each section intersects exactly one line of
each other parabolic fiber; given the rich automorphism group, this observation leaves
relatively few possibilities for pairs and triples of sections. Then, as in Sect. 6.1.6,
we enumerate the geometric realizations of each configuration of maximal rank and
compute the number of lines, arriving at the inequality |Fn(S)| � 33. �
Lemma 7.5 If K ⊂ S is a pseudo-pencil with a fiber of type D̃4, then |K| � 19.

Proof By Proposition 7.2, one has degK = κ(D̃4) = 6 and all fibers of K are of
types D̃4, Ã5, or Ap, 1 � p � 4. Trying all combinations one by one and arguing as
explained prior to Lemma 7.4, we arrive at the inequality stated. (In fact, the only type
with |K| = 19 is 2D̃4 ⊕ Ã5 ⊕ A2 ⊕ A1.) �

7.3 The bound

The following theorem is the principal result of this section.

Theorem 7.6 If a geometric configuration S is triangle free, then |Fn(S)| ≤ 52.

Proof We consider separately several cases, each time picking an appropriate affine
Dynkin diagram D̃ ⊂ Fn(S) and using (7.2) to estimate the number of lines, which is
|K(D̃)| + |{lines intersecting a vertex of D̃}|.

First, assume that the maximal valency of a line in S is at most 3. If Fn(S) is elliptic,
then |Fn(S)| � 19. Otherwise, Fn(S) contains an affine Dynkin diagram; pick one
D̃ ⊂ Fn(S) of the minimal Milnor number μ. Using the classification of affine Dynkin
diagrams, we conclude that the number of lines that are not in D̃ and adjacent to a
vertex of D̃ is at most 2n1 + n2 � μ + 3, where ni is the number of vertices of D̃ of
valency i . Since 2 � μ � 18, by (7.2) and Corollary 7.3,

|Fn(S)| � μ + 3 + |K(D)| � μ + 18

μ
+ 21 � 40.

Now, assume that S has a line of valency at least 4 and is quadrangle free. Let
l0 be a line of maximal valency, and pick four lines l1, . . . , l4 adjacent to l0 so that
val l1 � · · · � val l4. Then, D̃ := {l0, . . . , l4} is a subgraph of type D̃4 and, by (7.2)
and Lemma 7.5,

|Fn(S)| � val l0 + val l1 + val l2 + val l3 + val l4 + 11.

The sum of the valencies in the latter expression is estimated using Lemma 6.13 (and
the assumption val l3, val l4 � val l2), and we obtain |Fn(S)| � 38.
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Finally, assume that Fn(S) has a quadrangle, i.e., a 4-cycle l1, l2, l3, l4, which can
be regarded as a subgraph D̃ of type Ã3. Assume that |Fn(S)| � 46 and apply (7.3):
each of the first two terms is bounded by 18 by Lemma 6.12, and |K| � 20 by Lemma
7.4; hence, |Fn(S)| � 52. �

Remark 7.7 The idea that triangle free configurations of lines in quartics should be
treated separately is also due to B. Segre, and his geometric proof [27] of the bound
|Fn(S)| � 64 for such configurations can easily be modified to get |Fn(S)| � 60.
Our bound |Fn(S)| � 52 given by Theorem 7.6 can be improved to |Fn(S)| � 50: in
Lemma 7.4, the few types with |K| = 19 or 20 can be ruled out similar to 5Ã3 ⊕ A1.
Probably, this better bound is still not sharp: currently, the best known example of
triangle free configurations has 37 lines.

8 Proofs

In this section, we prove the principal results of the paper, viz. Theorem 1.1, Corollary
1.3, and Addendum 1.4.

8.1 Large configurations

All proofs are based on the following statement, which bounds the number of lines in
a geometric configuration containing a plane. With further applications in mind, we
state it in a slightly stronger form.

Proposition 8.1 If a geometric configuration S contains a plane, then either

– S is isomorphic to X64, X′
60, X′′

60, X56, Y56, Q56, X54, Q54, X′
52, X′′

52, X′′′
52, Xv

52, Y′
52,

or Z52, or
– one has |Fn(S)| � 52 and max{val l | l ∈ Fn(S)} � 17, or
– one has |Fn(S)| < 52.

Proof Assume that |Fn(S)| � 52. If S has a pencil of type (6, ∗)◦, Theorem 6.2
implies that S ∼= X64, X′

60, X54, X′
52, X′′

52, or Z52. Hence, from now on we can also
assume that S does not have such a pencil. In particular,

v := max{val l | l ∈ Fn(S)} � 18;

if v � 15, then |Fn(S)| = 52 by Corollary 4.4.
Pick a maximal pencil P such that |P| = v. By (5.1), this pencil P has a 3-fiber

{m1, m2, m3}, which we order so that val m1 � val m2 � val m3. We have

val m1 + val m2 + val m3 = |Fn(S)| + 8 − v � 42;

hence val m3 � 14. Then mult m3 � 2 by (5.1) again, and one can find another plane
{s0, s1, s2, m3} containing m3. The lines s0, s1, s2 are sections of P , and they satisfy
the inequality

123



Lines on quartic surfaces 799

val s0 + val s1 + val s2 = |Fn(S)| + 8 − val m3.

Assuming that val s0 � val s1 � val s2, we obtain

3 val s0 � |Fn(S)| + 8 − val m3. (8.1)

Let v = 18. We need to show that val s0 � 15; then, Theorems 6.3, 6.4, and 6.7,
would imply that S ∼= X56, X′′′

52, Xv
52, or Y′

52. If val m3 � 17, the desired inequality
val s0 � 15 follows from (8.1). If val m3 = 18 and val s0 � 14, we repeat the same
argument, taking m3 and s0 for l and m3, respectively, and obtaining a section s′

0 of
the new pencil P(m3) of valency val s′

0 � 16.
If v = 16 and |Fn(S)| > 52, the same argument as above produces a pencil P ′ (not

necessarily the original one) and section s′
0 of P ′ such that |P ′| = val s′

0 = 16; hence,
Lemmas 6.9, 6.10, and 6.11 imply that S ∼= Y56, Q56, or Q54.

Finally, let v = 17. If |Fn(S)| � 54, we use the same argument to get a pencil P ′
and section s′

0 of P ′ such that |P ′| = 17 and val s′
0 � 16; hence, by Lemmas 6.5

and 6.8, we have S ∼= X′′
60. If |Fn(S)| = 53, the argument may fail as one may have

val s0 � 15 and val m3 = 16. But in the latter case, starting with P ′ := P(m3), we
obtain a section s′

0 of P ′ such that val s′
0 � 16; this is a contradiction to Lemmas 6.9,

6.10, and 6.11 (if val s′
0 = 16) or 6.5 and 6.8 (if val s′

0 = 17; in this latter case, when
applying the lemmas, we regard m3 as a section of P(s′

0)). �

8.2 Real configurations

In the next statement, we consider a configuration S equipped with a “real structure”,
i.e., involutive automorphism S → S, a �→ ā. For such a configuration, the real part
is the subconfiguration SR := {a ∈ S | ā = a}. We let FnR(S) := Fn(SR) and call the
lines contained in FnR(S) real.

Proposition 8.2 Let S be a geometric configuration equipped with an involutive auto-
morphism a �→ ā, and assume that |FnR(S)| > 48. Then any plane α ⊂ Fn(S) is
totally real, i.e., α ⊂ FnR(S).

Proof Consider a plane α = {a1, a2, a3, a4}. Let r be the number of real lines in α,
and let ri be the number of real lines in P(ai ), i = 1, . . . , 4. The following formula is
a straightforward modification of the conclusion of Corollary 4.4:

|FnR(X)| = r1 + r2 + r3 + r4 − 2r.

If ai is real, then ri � |P(ai )| � 20 by (5.1). Otherwise, ri � |P(ai ) ∩P(āi )|, which
does not exceed 2 or 10 if ai · āi = 1 or 0, respectively, see Lemma 4.8.

Consider the conjugate plane ᾱ. If α ∩ ᾱ = ∅, then r = 0 and |FnR(X)| � 40. If
|α ∩ ᾱ| = 1 (i.e., r = 1), then |FnR(X)| � 48. If |α ∩ ᾱ| > 1, then α = ᾱ by Lemma
4.5 and ri � 2 for each non-real line ai ; hence, |FnR(X)| � 16r + 8 and, since r �= 3,
we conclude that r = 4, i.e., α ⊂ FnR(S). �

The following corollary is a real counterpart of Theorem 7.6.
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Corollary 8.3 Let X ⊂ P
3 be a nonsingular real quartic. If |FnR(X)| > 52, then

FR(X) contains a plane; moreover, any plane in F(X) is contained in FR(X).

Proof Clearly, FR(X) is the real part of the Fano configuration F(X) with respect to
the involution a �→ − conj∗ a induced by the real structure. The configurationF(X) is
geometric (see Theorem 3.9) and it contains a plane (see Theorem 7.6); there remains
to apply Proposition 8.2. �

8.3 Proof of Theorem 1.1

According to Theorem 3.9, the Fano configuration F(X) is geometric and, since we
assume |Fn(X)| > 52, Theorem 7.6 implies that this configuration contains a plain.
Then, by Proposition 8.1, F(X) is isomorphic to one of the configurations listed in
Table 2, and the statement of the theorem follows from Lemma 6.14 and Addendum
3.11. (The quartic corresponding to X64 is identified as Schur’s quartic since both
contain 64 lines.)

8.4 Proof of Corollary 1.3

The real Fano configuration FR(X) is geometric (see Theorem 3.9) and, assuming
that |FnR(X)| > 52, this configuration contains a plain due to Corollary 8.3. Then,
the statement of the corollary follows from Proposition 8.1 and Corollary 3.13.

8.5 Proof of Addendum 1.4

The statement is an immediate consequence of Lemma 6.17 and Theorem 3.9 (for
lines in complex quartics) or Corollary 3.13 (for real lines in real quartics).

9 The known examples

9.1 Schur’s quartic

The following example is more than 130 years old: it goes back to F. Schur [25]
(see also [2,6]). According to our Theorem 1.1, this is the only nonsingular quartic
containing 64 lines, and its configuration of lines is X64.

Consider the quartic X64 given by the equation

ϕ(z0, z1) = ϕ(z2, z3), ϕ(u, v) := u(u3 − v3). (9.1)

Let k0 := 0, k1 := 1, and k2,3 := (−1 ± i
√

3)/2 be the four roots of ϕ(u/v, 1). Then,
X64 contains the sixteen lines

z1 = kr z0, z3 = ks z2, r, s = 0, . . . , 3. (9.2)

Besides, X64 contains the line

l0 := {z0 = z2, z1 = z3}.
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Finally, observe that ϕ is the “most symmetric” polynomial of degree four: its zero
locus {k0, k1, k2, k3} ⊂ P

1 has j-invariant 0, i.e., ϕ is invariant under a subgroup
G ∼= A4 ⊂ PGL(2, C). This subgroup lifts to a subgroup G̃ ⊂ GL(2, C) preserving
ϕ literally, not just up to a factor; it is generated by

1√
3

[
1 −1
−2 −1

]
,

[
1 0
0 ε

]
∈ GL(2, C), ε3 = 1, ε �= 1,

and the kernel of the projection G̃ � G is the central subgroup H ∼= Z/4 gener-
ated by i id. Letting G̃ act separately on (z0, z1) and (z2, z3), we obtain a subgroup
Aut0 X64 := G̃ � G̃ ⊂ Aut X64, where the central product is the quotient of G̃ × G̃
by the diagonal H ⊂ H × H . The stabilizer of l0 is the diagonal G̃/H ⊂ Aut0 X64;
hence, its orbit consists of 48 distinct lines, and X contains 16 + 48 = 64 lines.

A computation of the intersection matrix reveals that the sixteen lines (9.2) are
distinguished: each is contained in six planes α such that X64 ∩ α splits into four
lines, whereas any other line is contained in four such planes. Hence, any (anti-)
automorphism of X64 preserves the pair of lines mi j := {zi = z j = 0}, (i, j) = (0, 1)

or (2, 3). It follows that Aut X64 is an extension of the group Aut0 X64 preserving
each of m01, m23 by the involution z0 ↔ z2, z1 ↔ z3 interchanging m01 ↔ m23. This
group has order 1152. As a consequence, we have the following statement.

Proposition 9.1 Up to automorphism, the quartic X64 has four real structures, viz.
those sending [z0 : z1 : z2 : z3] to

[z̄0 : z̄1 : z̄2 : z̄3], [z̄0 : z̄1 : i z̄2 : i z̄3], [z̄2 : z̄3 : z̄0 : z̄1], [z̄2 : z̄3 : −z̄0 : −z̄1].

The numbers of real lines are 8, 4, 28, and 4, respectively.

Proof Denote by¯ the standard complex conjugation, and extend its action to matrices.
Then, any real structure on X64 is σg : z �→ gz̄, where g ∈ Aut X64 is such that
gḡ = id. Two real structures σg , σg′ are isomorphic if and only if one has g′ = h−1gh̄
for some h ∈ Aut X64.

The set of lines real with respect to a real structure σg is found as follows. A line
l ⊂ X64 as in (9.2) is uniquely determined by its “endpoints” l ∩ m01, l ∩ m23, and the
set of all eight endpoints is preserved by any (anti-)automorphism of X64. Hence, such
a line is real if and only if σg preserves its pair of endpoints; there are four such lines
for any g. The other lines constitute the orbit Aut0 X64/G of l0, where G = G̃/H is
the diagonal. Since l̄0 = l0, a line hl0 is σg-real if and only if h−1gh̄ ∈ G. Now, both
statements are easily proved using GAP [12]. �

9.2 A real quartic with 56 real lines

To our knowledge, this example is new.
Below, we make use of bihomogeneous polynomials, i.e., algebraic curves in the

product P
1 × P

1. For the sake of simplicity, we use the affine coordinates u := z0/z1,
v := z2/z3 in the two copies of P

1.
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Table 3 The solutions to
ξ1(u, v) = ξ2(u, v) = 0 P1(−1 + ε,−1 + ε) A1(1/ε, −2) B1(∞, ∞)

P2(1 + ε,−1 − ε) A2(1/2, ε) B2(0, 0)

P3(1 − ε, 1 − ε) C1(−1/ε, 2)

P4(−1 − ε, 1 + ε) C2(−1/2, −ε)

Table 4 The six special planes
Plane New lines Old lines

z1 = 0 (z0 − z3)(z0 + z3) m1, b1

z2 = 0 (z0 − z3)(z0 + z3) m2, b2

z1 = εz0 (z0 + z2 − z3)(z0 − z2 + z3) m1, a1

z1 = −εz0 (z0 + z2 + z3)(z0 − z2 − z3) m1, c1

z2 = εz3 (z0 + z1 + z3)(z0 + z1 − z3) m2, a2

z2 = −εz3 (z0 − z1 − z3)(z0 − z1 + z3) m2, c2

Fix ε := ±√
2 and consider the polynomials

ξ1(u, v) := −3v + v3 + 2εu, ξ2(u, v) := 2εu3 − v + 3u2v

of bidegree (1, 3) and (3, 1), respectively. The quartic Y := Y56 in question is given
by the polynomial

z1z3
3ξ1

( z0

z1
,

z2

z3

)
− z3

1z3ξ2

( z0

z1
,

z2

z3

)
, (9.3)

or, explicitly,

3εz2
0z1z2 + 3εz1z2z2

3 − εz3
1z2 − εz1z3

2 + 4z3
0z3 − 4z0z3

3.

Below, we show that Y contains 56 real lines; by Theorem 1.1, this configuration of
lines is Y56, and Y is the only real quartic with this property.

The quartic Y contains the two lines

m1 := {z0 = z1 = 0}, m2 := {z2 = z3 = 0}. (9.4)

The curves {ξk = 0} ⊂ P
1 × P

1, k = 1, 2, intersect at 10 real points, see Table 3.
Each such point L(u, v) gives rise to the line

l := {z0 = uz1, z2 = vz3} (9.5)

through [u : 1 : 0 : 0] ∈ m2 and [0 : 0 : v : 1] ∈ m1; it is contained in Y .
The intersection of Y with each of the six planes shown in Table 4 splits into

four lines; twelve of the resulting 24 lines (some of which coincide) are among (9.4)
and (9.5), see Table 4, and the twelve others are new and distinct.
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Table 5 The sixteen special
quadrics (a1, b1, c1, b2) u + 2εv

(a2, b2, c2, b1) u − 2εv

(p1, p3, b1, b2) u − v

(p2, p4, b1, b2) u + v

(p3, p4, b1, a1) 1 + εu + v

(p1, p2, b1, c1) 1 − εu − v

(p2, p3, b2, a2) εu − v + uv

(p1, p4, b2, c2) εu − v − uv

(p1, p4, a1, c1) ε − 2εu − v + uv

(p2, p3, a1, c1) ε + 2εu + v + uv

(p1, p2, a2, c2) 1 − 2εu + v − εuv

(p3, p4, a2, c2) 1 + 2εu − v − εuv

(p1, p3, a1, a2) −3ε + 4 + (2ε − 2)u − (2ε − 2)v + εuv

(p1, p3, c1, c2) −3ε + 4 − (2ε − 2)u + (2ε − 2)v + εuv

(p2, p4, a1, c2) 3ε + 4 + (2ε + 2)u + (2ε + 2)v + εuv

(p2, p4, a2, c1) 3ε + 4 − (2ε + 2)u − (2ε + 2)v + εuv

Finally, the ten skew lines (9.5) constitute sixteen quadruples (l1, l2, l3, l4), each
lying in a quadric, see Table 5. The equation of this quadric Q is

z1z3 χ
( z0

z1
,

z2

z3

)
= 0,

where χ(u, v) is the polynomial given in Table 5 (see also Remark 9.2 below). The
intersection Y ∩ Q is a bidegree (4, 4) curve in Q. Since it contains four skew gen-
eratrices of Q, it must split into l1, . . . , l4 and four generatrices of the other family.
Two of them are m1, m2, and the two others are new. It is straightforward that the
16 × 2 = 32 lines thus obtained are all real (see also Remark 9.3 below), pairwise
distinct (as the sixteen quadrics are distinct), and distinct from (9.4), (9.5), and the
lines in Table 4 (as they are disjoint from m1 ∪ m2).

Summarizing, we obtain 2 + 10 + 12 + 32 = 56 real lines in Y .

Remark 9.2 Let u1, . . . , u4 ∈ m1 and v1, . . . , v4 ∈ m2 be two quadruples, where, as
above, we let u := z0/z1 and v := z2/z3. Then the lines li := (uivi ), i = 1, . . . , 4,
cf. (9.5), lie in a quadric if and only if the quadruples (ui ) and (vi ) are isomorphic,
i.e., their cross-ratios are equal. When this is the case, the quadruples are related by a
fractional linear transformation, vi = f (ui ) for i = 1, . . . , 4, and the equation of the
quadric is obtained from z2/z3 = f (z1/z0) by clearing the denominators.

9.3 Further properties of Y56

Let Y := Y56 be the quartic constructed in the previous section. The following state-
ments are straightforward.
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(1) The lines m1 and m2 are disjoint.
(2) The lines (9.5) are pairwise disjoint; each of them intersects m1 and m2.

Let α be a plane as in Table 4. Then Y ∩ α splits into mi , l, and a pair r1, r2, where
i = 1 or 2 and l is one of the lines (9.5), see Table 4.

(3) The lines r1 and r2 intersect mi , l, and each other; they are disjoint from m3−i

and any line l ′ �= l as in (9.5).

This observation confirms the fact that all twelve lines thus obtained are pairwise
distinct and distinct from (9.4) and (9.5). Note that, according to Table 4, the plane α

is completely determined by the line l ⊂ α as in (9.5); hence, we can use the notation
α(l) and r1,2(l).

Finally, pick a quadruple (l1, l2, l3, l4) as in Table 5, let Q be the corresponding
quadric, and let n1, n2 be the two extra lines (other than m1, m2) in Y ∩Q. The remaining
observations follow from the properties of the generatrices of Q; in particular, the
intersection Y ∩ Q may contain at most four generatrices of each family and, if a line
intersects three generatrices of the same family, it lies in Q.

(4) The lines n1 and n2 are disjoint from m1 ∪ m2; they intersect each of l1, l2, l3, l4
and are disjoint from all other lines as in (9.5).

(5) If a line l as in (9.5) is distinct from all li , i = 1, . . . , 4, the lines n1, n2 and r1,2(l)
can be indexed so that #(ni ∩ r j ) = δi j is the Kronecker symbol.

In more details, the intersection matrix can be computed using explicit equations of
all lines. We leave this exercise to the reader.

Remark 9.3 Statement (5) proves also that n1 and n2 are real: if they were complex
conjugate, they would have to intersect the same real line r1 or r2.

We conclude with a description of the automorphism group Aut Y56.

Proposition 9.4 The group Aut Y56 ⊂ PGL(4, C) is generated by

– the reflections zi �→ ρi zi with ρi = ±1 and ρ0ρ3 = ρ1ρ2,
– the transposition z1 ↔ z2,
– the order 4 map z0 �→ z3, z3 �→ −z0, and
– the involution z0 �→ (z0 + z3)/ε, z3 �→ (z0 − z3)/ε.

This group has order 32; it acts faithfully on the set of lines contained in Y56.

Proof Computing the intersection matrix, one can see that there are exactly four pairs
(l1, l2) of skew lines such that l1 and l2 intersect ten other common lines. In turn,
these pairs split into four quadrangles: one is (m1, m2), (b1, b2), and the other is
formed by the four remaining lines in the planes {z1 = 0} and {z2 = 0}, see Table
4. The last involution in the statement interchanges the two quadrangles. The other
transformations preserve the quadrangle (m1, m2), (b1, b2) and, hence, the coordinate
tetrahedron; they can easily be listed. The last two statements are straightforward. �
Remark 9.5 All automorphisms of Y56 are real with respect to the standard complex
conjugation c : [zi ] �→ [z̄i ]. Hence, the last statement of Proposition 9.4 implies that
c is the only real structure on Y56 with respect to which all 56 lines are real. (In fact,
up to automorphism Y56 has six real structures: they are enumerated by the conjugacy
classes of the involutions in Aut Y56.)
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Remark 9.6 By rescaling u �→ εu, one can make the quartic Y56 defined over Q;
however, some of the lines are still defined over the quadratic number field Q(ε) only.
To see this, one can observe that the cross-rations of some of the quadruples of points
in m1 cut by the lines as in (9.5) are irrational, see Table 3.

9.4 A few other quartics

In this concluding section, we describe briefly a few other quartics with large con-
figurations of lines, for which we do not know explicit equations. The existence
(and uniqueness, when it holds) is given by the existence of the corresponding L-
configurations, see Table 1, and the results of Sect. 3.4. Other properties, e.g., groups
of projective automorphisms, classes of real structures, etc., can easily be computed
using the corresponding properties of configurations and Nikulin’s theory of lattice
extensions; however, we omit these details.

9.4.1 The quartics mentioned in Theorem 1.1

By Lemma 6.14 and Theorem 3.9, for each of the four configurations S = X′
60,

Q56, X54, Q54, there exists a unique, up to projective equivalence, quartic X such
that F(X) ∼= S; this quartic can be chosen real, see Proposition 3.10. We denote
these quartics by X ′

60, Q56, X54, Q54, respectively. Besides, for S = X′′
60 or X56,

there is a unique pair of nonequivalent complex conjugate quartics X , X̄ such that
F(X) ∼= F(X̄) ∼= S; these pairs are denoted by X ′′

60, X̄ ′′
60 and X56, X̄56, respectively.

Together with X64 (see Sect. 9.1) and Y56 (see Sects. 9.2, 9.3), these surfaces make a
complete list of quartics containing more than 52 lines.

9.4.2 Large configurations of real lines

Arguing as in the proof of Lemma 6.14, it is not difficult to classify the L-realizations
of the four other Y-type configurations listed in Table 1; we summarize the results in
Table 6. This table is organized similar to Table 2, with the last column showing the
numbers r , c of, respectively, real and pairs of complex conjugate quartics with the
given configuration of lines. Note, though, that, with the only exception of Proposition
9.7 below, we never assert the uniqueness of the real form: considering the large
automorphism groups, it is likely not unique, cf. Proposition 9.1 and Remark 9.5.

If S = Y′′
48, the natural homomorphism ρ : Oh(S) → Aut discr S maps Oh(S) onto

the index 2 subgroup Aut discr5 S; in the other three cases, ρ is surjective. It follows
that, in all four cases, the weak isomorphism classes of L-realizations are classified
by the transcendental lattices T := S⊥. In three cases, there are several isomorphism
classes; however, only one of them is totally reflexive. In view of Addendum 3.14, this
fact merits a separate statement.

Proposition 9.7 For each Y-type configuration S listed in Table 1, there is a unique,
up to real projective equivalence, real quartic Y such that FR(Y ) ∼= S. The real part
of this real quartic is a connected surface of genus 10.
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Table 6 Configurations with many L-realizations

S |Fn| t.r. ref sym |Oh(S)| discr S T := S⊥ (r,c)

X′′
60 60 240 〈 6

5 〉 ⊕ 〈 10
11 〉 [4,1,14] (0,1)

X56 56 128 〈 15
8 〉 ⊕ 〈 15

8 〉 [8,0,8] (0,1)

Y′
52 52

√ √ √
8 〈 1

2 〉 ⊕ 〈 3
2 〉 ⊕ 〈 4

19 〉 [2,0,38] (1,1)

[8,2,10]

Y′′
52 52

√ √ √
8 〈 6

79 〉 [2,1,40] (1,2)

[4,1,20]

[8,1,10]

Q′′
52 52 64 〈 1

4 〉 ⊕ 〈 5
4 〉 ⊕ 〈 2

5 〉 [8,4,12] (0,1)

X51 51
√ √

12 〈 4
3 〉 ⊕ 〈 2

29 〉 [6,3,16] (1,1)

[4,1,22]

X′′
50 50 ×2 ×2 12 〈 7

4 〉 ⊕ 〈 5
8 〉 ⊕ 〈 4

3 〉 [4,0,24] (2,0)

X′′′
50 50 16 〈 7

4 〉 ⊕ 〈 5
8 〉 ⊕ 〈 4

3 〉 [4,0,24] (0,1)

Y′
48 48

√ √ √
8 〈 1

2 〉 ⊕ 〈 5
16 〉 ⊕ 〈 2

3 〉 [2,0,48] (1,0)

Y′′
48 48

√ √ √
8 〈 2

5 〉 ⊕ 〈 4
19 〉 [2,1,48] (2,1)

[8,1,12]√ √
[10,5,12]

The configuration S = Y′′
48 admits another reflexive L-realization, which is not

totally reflexive; thus, the corresponding quartic X can be chosen real, but some of the
lines contained in X are necessarily complex conjugate. (Note that, unlike the case
of Schur’s quartic X64, see Proposition 9.1, or the maximizing real quartic Y56, see
Remark 9.5, this quartic X and the quartic Y given by Proposition 9.7 are not just
distinct real forms of the same surface: X and Y are not projectively equivalent even
over C.)

Remark 9.8 Table 6 suggests also that the quartics Y∗ realizing each of the configura-
tions Y∗ := Y′

52, Y′′
52, Y′

48, Y′′
48 are Galois conjugate over a certain algebraic number

field K of degree 3, 5, 1, 4, respectively, so that this field K is the minimal field of
definition of Y∗. In particular, none of Y ′

52, Y ′′
52, or Y ′′

48 can be defined over Q.

9.4.3 Lines defined over Q

At present, we do not know how many lines defined over Q a quartic defined over Q

may have; since Q ⊂ R and Y56 has been ruled out (see Remark 9.6), Corollary 1.3
implies that this maximal number is at most 52. Furthermore, in view of Schütt’s
criterion [26] for K 3-surfaces of Picard rank 20 over Q, the only candidate left is the
configuration Z52 of rank 19. The best known example contains 46 lines; the maximal
number of lines defined over Q and spanning a lattice of rank 20 is known: it equals
41 (see [10]).
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9.4.4 Configurations with many realizations

For completeness, we describe also the few configurations from Table 1 that admit more
than one geometric realization. For all configurations of maximal rank, the computation
runs exactly as in the proof of Lemma 6.14 and can easily be automated. Omitting
the straightforward details, we summarize the results in Table 6. (The meaning of the
columns is explained in Sect. 9.4.2.) In the row containing X′′

50, the symbol “×2”
means that there are two distinct geometric L-realizations, which are both reflexive.

Any other configuration in Table 1 admits a unique geometric L-realization, and this
realization is reflexive. In particular, for a configuration S as in Table 1, a geometric L-
realization is reflexive if and only if it is symmetric. Currently, we do not know whether
this is a common property of configurations: in some similar K 3-related problems, it
may not hold (cf. the existence of a connected real equisingular family of simple plane
sextics containing no real curves discovered in [1].)

Remark 9.9 The isomorphism type of a singular K 3-surface (i.e., one of Picard
rank 20) is determined by its transcendental lattice. Analyzing Tables 2 and 6, one
can observe that the quartics X ′

60 and Q56 are isomorphic as abstract K 3-surfaces; a
similar statement holds for the seven quartics realizing the configurations X54, X′′

50,
and X′′′

50. On the other hand, each of the configurations Y′
52, Y′′

52, X51, Y′′
48 is realized

by several distinct K 3-surfaces.

9.4.5 Families with parameters

Finally, worth mentioning are the configurations S = Z52, Z50, Z49 in Table 1. Recall
that the dimension of the equilinear moduli space Ω ′(S)/PGL(4, C), cf. the proof
of Theorem 3.9, equals 20 − rk S; hence, we obtain 1-parameter families of distinct
quartics sharing the same combinatorial type of configurations of lines.

The connectedness of each family follows from Theorem 3.9 and a computation
based on the results of [16], covering indefinite transcendental lattices. We have

– if S = Z52, then S = 〈 1
2 〉 ⊕ 〈 1

2 〉 ⊕ 〈 5
8 〉 ⊕ 〈 4

3 〉 and O+(T ) � Aut discr T ;
– if S = Z50, then S = 〈 7

4 〉 ⊕ 〈 2
5 〉 ⊕ 〈 2

5 〉 and Oh(S) � Aut S;
– if S = Z49, then S = V2 ⊕ 〈 5

4 〉 ⊕ 〈 6
7 〉 and Im[Oh(S) → Aut S] = Aut S2.

The uniqueness of T := S⊥ in its genus and the assertion on O+(T ) for S = Z52
follow from [16]. Thus, in each case, there is a unique geometric L-realization. If
S = Z52, this realization is totally reflexive, i.e., there is a 1-parameter family (not
necessarily connected) of real quartics Z such that FR(Z) ∼= Z52. For the other two
configurations, for each involution a ∈ Aut discr S, exactly one of ±a admits an
involutive lift to Oh(S). Hence, these configurations are reflexive (not totally) and the
corresponding equilinear families also contain real quartics.

The existence of the family corresponding to Z52, with exactly 52 lines in each
quartic, as well as the non-uniqueness of L-realizations discussed in Sects. 9.4.2 and
9.4.4, can be regarded as yet another justification for the assumption |Fn(X)| > 52 in
Theorem 1.1: quartics with fewer lines are probably more difficult to control.
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