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Abstract We consider the problem of screening where a seller puts up for sale an
indivisible good, and a buyer with a valuation unknown to the seller wishes to acquire
the good. We assume that the buyer valuations are represented as discrete types drawn
from some distribution, which is also unknown to the seller. The seller is averse
to possible mis-specification of types distribution, and considers the unknown type
density as member of an ambiguity set and seeks an optimal pricing mechanism in a
worst case sense. We specify four choices for the ambiguity set and derive the optimal
mechanism in each case.
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1 Introduction

Mechanism design is an area of economics where optimization is ubiquitous. The
present paper aims to contribute to the interface of economics/mechanism design and
optimization by investigating optimal pricing mechanisms for an indivisible object
in a single seller/single buyer context where buyer valuations and their distribution,
assumed to be discrete, are unknown to the seller in a Knightian uncertainty context.
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As in Bergemann and Schlag [8,9], we relax the common priors assumption pervasive
in the literature (i.e., the common priors assumption states that the buyer valuations,
while not known to the seller, are drawn from a known distribution) and we assume
that the distribution of valuations is not known to the seller. However, the seller, while
risk neutral, is averse to any imprecision in the distribution in the spirit of Gilboa
and Schmeidler [15]. In other words, the seller evaluates each action by its mini-
mum expected revenue across all priors. He/she considers a set of distributions, and
wishes to design a mechanism that is optimal in a worst-case sense, i.e., he/she max-
imizes the worst-case expected revenue with respect to nature/adversary’s choice of
distribution.

We use the first m positive integers to denote the type of a buyer, and the mapping
t ∈ {t (1), t (2), . . . , t (m)} from the first m positive integers to positive reals (we
assume t (1) < t (2) < · · · < t (m)) represents the m possible valuations of the buyer,
where t (1) = k and t (m) = M with t (i) = t (i − 1) + (M−k)

m−1 for i = 2, . . . ,m.
The symbol f represents the discrete probability mass from which types are drawn.
For ease of reference we denote by � the ratio (M−k)

m−1 . We exclude from our model
marginal production costs. Hence we assume that either we are dealing with sales after
the good has been produced, or a scenario where the seller does not attach any value
to the good.

By virtue of the Revelation Principle [21] the seller wishes to optimally choose two
discrete functions p (for price) and A (for allocation), both functions of type i , which
determine a direct selling mechanism. In other words, the seller declares a price pi
and a quantity allocation Ai for each type i , where i ∈ {1, . . . ,m}. Thus, the problem
of pricing the indivisible good is formulated as the following optimization problem.
We define the decision variables pi for all i ∈ {1, . . . ,m} for the price quoted by the
seller to a buyer of type i , in addition to the allocation variables Ai ∈ {0, 1}, i.e., the
allocation variable represents whether or not the buyer gets the good. However, in the
sequel we shall treat the allocation variables as continuous, i.e., we have Ai ∈ [0, 1]
in order to deal with the resulting optimization as a linear optimization problem. This
is not a severe limitation since in three of our four cases of ambiguity specification
we shall obtain binary allocations in the optimal solutions. When optimal allocation
values fail to be binary valued we interpret the resulting value as the probability of a
buyer getting the object. The utility of an agent declaring type i with valuation t (i) is
equal to t (i)Ai − pi .

The seller’s goal is to maximize the expected profits from the sale:

m∑

i=1

fi pi (1)

under the restrictions of Incentive Compatibility (IC), Individual Rationality (IR) and
constraints on the allocation variables Ai that are, respectively:

t (i)(Ai − A j ) ≥ pi − p j , ∀i, j ∈ {1, . . . ,m} (2)

t (i) · Ai − pi ≥ 0, ∀i ∈ {1, . . . ,m}. (3)

0 ≤ Ai ≤ 1, ∀i ∈ {1, . . . ,m}. (4)
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The constraint (IC) ensures that the utility of the agent that declares his/her type
truthfully is at least as large as the utility derived from reporting a different type. The
constraint (IR) is to ensure that the minimum (reservation) utility of any buyer of
any type is at least zero, which leads to ensuring participation of the buyers into the
mechanism.

In summary, the seller, with full knowledge of the probability mass f , seeks a
pair pi ≥ 0, Ai ∈ [0, 1] for each type i ∈ {1, . . . ,m} that maximizes (1) under the
restrictions (2)–(3). We can always define a dummy type i = 0 with A0 = p0 = 0
and incorporate constraint (3) into (2); see [24]. Now using the development in [24]
we have that for fixed Ai , i ∈ {1, . . . ,m}, the inequalities for incentive compatibility

t (i)(Ai − A j ) ≥ pi − p j ,∀i, j ∈ {1, . . . ,m}

hold for all pi , i ∈ {1, . . . ,m} if and only if Ai is monotone non-decreasing in i by the
theory of duality applied to the shortest path problem; see chapters 3 and 4 of [24] or
[25] for an in-depth analysis of shortest path duality. Furthermore, at optimality one has

pi = t (i)Ai − �

i−1∑

j=1

A j .

For future ease of reference the set SP is defined as

SP =
⎧
⎨

⎩(p, A)|pi = t (i)Ai − �

i−1∑

j=0

A j , i = 1, . . . ,m;

0 ≤ A1 ≤ A2 ≤ · · · ≤ Am ≤ 1

⎫
⎬

⎭ .

Therefore, the problem ofmaximizing (1) under the restrictions (2)–(3) is equivalently
posed as maximizing (1) under the restriction (p, A) ∈ SP .

In the continuous types case, it is well-known that the optimal mechanism here is
a posted price mechanism, where there exists a cut-off price p∗ such that any buyer
with valuation above p∗ or higher gets the object by paying the posted price p∗ (see
e.g. Chapter 2 of [11]). Translated to a discrete type space1 the optimal mechanism
is a solution of the form pi = p and Ai = 1, for all i = i∗, . . . ,m, and zero
everywhere else. This is the simplest possible direct mechanism that is taught in
elementary microeconomics: set a price p and tell the buyer he can have the good if
he is willing to pay the price p. Suppose the seller picks this procedure the question
is now to decide the price he/she should choose. Buyer will purchase if his evaluation
is at least as large as p. The probability of this event is 1 − F(p) (assuming p is
a continuous random variable and F is its cumulative distribution function). Thus,

1 We provide a discrete analog of this result in Proposition 1 since we were not able to find this result for
discrete type space and general distributions in the literature.
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expected revenue is p(1 − F(p)). Choose p to maximize this. Solving the sufficient
first-order condition (if p(1 − F(p)) is concave), one obtains the posted price; see
[23] for a complete treatment of pricing. The aforementioned posted price mechanism
corresponds simply to a discrete analog of the previous argument.

Against this background we shall consider the following problem

max
p,A∈SP min

f ∈P
pT f

where P is a set of ambiguity for the prior f (uncertainty set in the jargon of robust
optimization [5]). ARevelation Principle ensuring that the above formulation is valid is
given in the Appendix. For more information on the Revelation Principle in ambiguity
averse mechanism design, the reader is referred to e.g., [18]. We emphasize that the
present paper restricts attention to deterministic mechanisms. We shall consider four
choices for P: (1) a uniform box, i.e., a set where each fi is constrained to be between
two extreme values l and u, and (2) a set of distributions with mean valuation fixed
to α, (3) a set of distributions with the mean valuation equal to α and variance of
valuations equal to σ 2. We refer to these cases as the uniform box ambiguity, themean
constrained ambiguity, and the mean-variance constrained ambiguity, respectively.
We also consider a fourth representation of ambiguity, where a perturbation set around
a reference prior is specified, and a worst-case solution that protects against ambiguity
with respect to this ambiguity set is sought.

1.1 Related literature

The subject of this paperwas inspired by the progress in robust optimization, a research
effort initiated byBen-Tal andNemirovski [4,5] where uncertain parameters of convex
optimization problems were treated in a worst-case framework after confining the data
in suitable uncertainty sets leading to tractable optimization problems. The search for
robustness is not entirely new in mechanism design. In fact, robust mechanism design
research was initiated with a paper by Bergemann and Morris [6] where the common
knowledge assumptions were relaxed. An in-depth review can be found in [7]. More
recent contributions include Bergemann and Schlag [8,9] where the problem of a
max-min utility seller with imperfect information about the valuation distribution
of the buyer is considered and optimal pricing schemes are investigated, Auster [1]
where a privately informed seller is assumed in the framework of [9], Bandi and
Bertsimas [2,3] where a robust optimization approach is applied in the context of
auction design, Hartline and Karlin [16] where prior-free optimal mechanisms are
studied, and Wolitzky [26] where the buyer and the seller know only the mean of
each other’s valuations. In a similar vein, a recent paper by Kos and Messner [17],
independently from our work, studies the optimal trading rule (without the mechanism
design framework) where the only information about the valuation of the buyer is the
mean confined to an interval. Kos and Messner [17] show that in this case the seller
will be restricted to a zero pay-off, whereas if he/she has access to more information
(e.g., the variance or upper bound on the support) he/she can attain a positive pay-off
under a randomization of prices in some interval. They also consider the case where in
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addition to confining the mean of the valuation distribution to an interval the variance
is also restricted to take values in a given interval. Again, in that case the unique
optimal strategy is a randomized pricing strategy over some interval. An informative
discussion of randomization over posted prices and connection to incentive compatible
and individually rational mechanisms is also contained in [17].

Some of the many connections between optimization theory andmechanism design
were exposed by Vohra [25]. In particular, Vohra [25] showed how to derive the classi-
cal optimal auction design result due to Nobel laureateMyerson [21] using duality the-
ory of linear programming, and polymatroid theory. The present paper aims to continue
in this vein, exploring connections between optimization and economics by studying
a basic problem of economic mechanism design under the lens of robust optimization
with a slight twist where the uncertain data is the probability distribution itself.

Closest to our work, Bergemann and Schlag [8] study the problem of optimal
pricing for a monopoly seller facing an unknown prior distribution for the buyer’s
demand which can take values in a continuous interval [v,1]. The seller has a cost
of production c, or a value attached to the good. Using the min-max regret and max-
min utility criteria, the optimal (random) pricing strategy is characterized as well as
the worst-case demand scenario. In a companion paper [9], the authors examine the
same problem under the setting that a given prior may be subject to perturbation
confined to a suitable set defined using the Prohorov metric in a continuous valuation
environment. They establish that the profit minimizing distribution is independent
of the price decision of the seller. In consequence, the seller maximizes profits by
choosing the optimal deterministic price under the worst-case distribution. The afore-
mentioned result is close to our findings in Sect. 2 where we also establish a worst-case
prior independent of the optimalmechanism chosen by the seller. It is also shown in [9]
that for every positive value of a perturbation parameter, there exists a pair of worst-
case demand and pricewhich is a saddle point of themax-min problem. In comparison,
in Sect. 5 Theorem 3 we have shown that for every value of a perturbation parameter
(our perturbation metric is the Euclidean metric) under a threshold, the posted price
mechanism which is optimal for the reference prior retains its optimality.

In a recent and notable research program, Bandi and Bertsimas [2,3] study opti-
mal auction design (among other well-known problems of stochastic analysis such
as queuing theory) where buyer valuations are not treated as random variables but
rather as uncertain data restricted to lie in suitable uncertainty sets. They construct
uncertainty sets for buyer valuations derived from historical data and consistent with
axioms of probability theory. They work with dominant strategy incentive compatible
mechanisms, and derive an algorithm for computing the optimal reserve price in an
English auction setting. Their algorithm is shown experimentally to give improved
revenues compared to the classical probabilistic approach. Our work differs from the
Bandi-Bertsimas setting in that we treat the prior distribution as uncertain (valuations
are assumed known) whereas they confine buyer valuations to uncertainty sets. We
also consider a simpler setting with a single buyer while they deal with an auction
framework with different specifications (e.g., budget constrained bidders). Hartline
and Karlin [16] also study auctions after removing the common prior assumption.
They derive approximately optimal mechanisms that are prior-free in a worst-case
framework.
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Other related work includes [10,12,14,18] where more complex settings are
assumed. Lopomo et al. [18] consider mechanism design problems with Knightian
uncertainty formalized using incomplete preferences. Every type has a different set of
beliefs on uncertain states of the world which affect her expected utility. They develop
different incentive compatibility notions under ambiguity, namely maximal incentive
compatibility and optimal incentive compatibility. They show in a continuum of types
model that optimal incentive compatibility is equivalent to ex-post incentive compati-
bility. In a related study Bodoh-Creed [10] develops a payoff equivalence theorem for
mechanisms with ambiguity averse participants in the sense of Gilboa and Schmeidler
[15]. The payoff equivalence result is used to characterize explicitly the revenue maxi-
mizing private value auction mechanism for agents with arbitrary forms of ambiguous
beliefs. Dong [14] considers the impact of ambiguity aversion of bidders on their bid-
ding strategies in four classical auction mechanisms. Boze et al. [12] study the optimal
auction problem allowing for ambiguity about the distribution of valuations. In their
setting, agents may be ambiguity averse (modeled using the max–min expected utility
model of Gilboa and Schmeidler [15].)When the bidders facemore ambiguity than the
seller they show that the seller can always increase revenue by switching to an auction
providing full insurance to all types of bidders. Furthermore if the seller is ambiguity
neutral and any prior that is close enough to the seller’s prior is included in the bidders’
set of priors then the optimal auction is a full insurance auction. An important dif-
ference between the above references [10,12,14,18] and our present work is that we
consider uncertainty in prior distribution from the viewpoint of the seller whereas these
references attribute uncertainty aversion to every participant (buyer) into the auction
or game. While the aforementioned references treat more general problems, our more
specific and simpler setting allows more explicit characterizations of optimal policies.

1.2 Contributions

Our contributions are summarized as follows. We consider the more general setting
of mechanism design rather than choosing the optimal worst-case price as in [8,9]
and establish optimality of a posted price scheme in three of our four specifications
of ambiguity. It should be emphasized that our results are restricted to deterministic
mechanisms as opposed to randomized mechanisms such as those used in e.g., [8,9,
17]. While it is well-known that randomization can help achieve superior performance
as demonstrated in [8,9,17], randomized prices may be difficult to implement. Hence,
our decision to study deterministic mechanisms in this paper.

Returning to our specific contributions, we first show that for every prior f (inde-
pendent of the characteristic of the hazard function i − (1− F(i))/ fi ), the mechanism
optimizing the worst-case expected profit is a posted price mechanism. Next we show
that for the uniform box ambiguity, the problem boils down to finding the optimal
cut-off type (the cut-off type is the type with valuation equal to the posted price) for
each instance as in the unambiguous case with a given prior once the worst-case distri-
bution is identified. Our result gives the worst-case prior in closed-form and we show
that as m and � get larger (while staying feasible) the cut-off type tends to �m/2� and
never exceeds it.
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For the mean constrained case, we show that there is a threshold α∗ for α, which is a
function of the problem data, such that for all α exceeding α∗, the optimal mechanism
is an ascending price mechanism, and the problem again reduces to a simple one-
dimensional search over the set of types for the cut-off type. For α smaller than α∗, the
optimal mechanism is a trivial mechanism with a price equal to the lowest valuation
for all types. We also characterize the optimal worst-case posted price mechanism,
and compare it numerically to the optimal ascending price mechanism.

For the mean-variance constrained ambiguity specification we prove that a posted
price mechanism is optimal under some easily verified conditions on the problem
parameters. Furthermore, we give explicitly the optimal posted price. However, we
experimentally observed that the optimal mechanism is a concatenation of an ascend-
ing price menu and a posted price after a threshold type if the aforementioned
conditions on problem parameters fail to hold.

For the case of perturbation around the reference prior, we show using conic duality
that there exists a value of the perturbation parameter such that for all perturbations
within this value, the posted price mechanism optimal for the reference prior is also
optimal in the max-min problem.

2 The optimal mechanism under uniform box ambiguity

In this section we look at the problem under uniform box ambiguity where our prior
f is an element of the convex polytope I defined as I = { f | f ≥ 0, f T e = 1, le ≤
f ≤ ue} for any 0 < l ≤ 1/m ≤ u ≤ 1, and e is the m-vector of all ones. Under this
ambiguity specification we can define our problem as follows.

max
p,A∈SP min

f ∈I p
T f.

We use F to denote the cumulative distribution vector of probability mass f . While an
upper bound on the probability of a typemay be harder to justify (after all, most buyers
may be of the same type), an upper bound may be useful when one has a distribution
obtained from empirical data, such as the one used in the quality degradation of Cable
TV services study in [13], where one may want to use an interval of confidence around
the probability estimates. On the other hand, the intuition for the potential usefulness
of a lower bound is the following. If there is a minimal probability on each type so
that there is a minimal probability on a type above some valuation, the seller might as
well target that part of the distribution constrained by the lower bound.

Before moving on to the analysis of this robust case we concentrate on the problem

max
p,A∈SP pT f

for arbitrary prior f .

Proposition 1 For every probability distribution f the solution to the problem
maxp,A∈SP pT f is a posted price mechanism.
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Proof We use a development similar to the one in [25]. For i ≥ 2, we have pi =
p1 + ∑i

j=2(p j − p j−1), and we can see that the optimal prices must have the largest
possible increments. Hence, we have t (i)(Ai − Ai−1) = pi − pi−1 (observe that
this condition guarantees t (i)(Ai − A j ) ≥ pi − p j ,∀i, j , so it is sufficient) and the
largest possible first price is t (1)A1 = p1 (observe that combined with the equality
for increments this is sufficient for all the IR constraints to be satisfied). Under these
equalities we have pi = t (1)A1 + ∑i

j=2 t ( j)(A j − A j−1) for i ≥ 2. Now using the
afore-mentioned observations we can reduce the objective function to the following
expression:

m∑

i=1

fi

(
t (i) − (t (i + 1) − t (i))

(
1 − F(i)

fi

))
Ai .

This objective function is a linear function of A alone, and the only constraint on Ai

is that it belongs to the polytope defined as {A ∈ Rm |0 ≤ A1 ≤ A2 ≤ . . . ≤ Am ≤ 1}.
Since this is a linear program our optimum will always be satisfied by an extreme
point of the polytope we have just given. It is then enough to show that each extreme
point of this polytope leads to a posted price mechanism.

Take any x ∈ {A ∈ R
m |0 ≤ A1 ≤ A2 ≤ . . . ≤ Am ≤ 1} such that at least one

element of x is not an integer. Let i1 = max{i |xi < 1} and i2 = max{i |xi < xi1} (if
there is no such i2 then take i2 = 0 and xi2 = 0). Let x ′ and x ′′ be two points in the same
polytope such that for i ≤ i2 and i > i1, xi = x ′

i = x ′′
i and for i2 < i ≤ i1 x ′

i = xi2 ,
x ′′
i = 1. Since x ′

i1
< xi1 < x ′′

i1
there exists λ ∈ (0, 1) such that x = λx ′ + (1 − λ)x ′′

and because x 
= x ′, x 
= x ′′ such x can not be an extreme point of our polytope. So
every extreme point of the polytope {A ∈ R

m |0 ≤ A1 ≤ A2 ≤ . . . ≤ Am ≤ 1} has to
be integer valued. From the monotonicity condition we can see that A is an extreme
point only if there exists a j ∈ {1, ...,m} such that Ai = 0 for i < j and Ai = 1
for i ≥ j , which leads to the optimal price vector p where p(i) = 0 for i < j and
p(i) = t ( j) for i ≥ j . This concludes the proof. ��

Now, we return to the sub-problem of min f ∈I pT f . Since we are dealing with a
convex polytope and a linear objective function, once again the extreme points will
provide us an easy way to calculate the optimum points. We start with the characteri-
zation of the extreme points of I .

Lemma 1 x ∈ Rm is an extreme point of I iff x has 0 ≤ k ≤ m − 1 elements having
value l, m − k − 1 elements having value u, moreover ∃ j ∈ {1, ...,m} such that,
l ≤ x j = 1 − kl − (m − k − 1)u ≤ u and eT x = 1.

Proof Define Clu as the cube whose elements lie in [l, u] on each one of the standard
basis, that isClu = {x ∈ Rm |l ≤ xi ≤ u,∀i}. We can see that I = {x |xT e = 1}∩Clu ,
moreover for the choice of 0 ≤ l ≤ 1/m ≤ u ≤ 1, it is non-empty. Since I is the
intersection of the hyperplane {x |xT e = 1} and Clu , everyone of its extreme points
must come from the intersection of a one-dimensional face (intersection with higher
dimensional faces will lie on an at least one dimensional subspace with non-empty
relative interior) of the cube Clu and the hyperplane. The edges of the cube Clu which
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intersects the hyperplane {x |xT e = 1} have either an endpoint on the hyperplane or
each of its two endpoints on different subspaces separated by this hyperplane (observe
that none of the edges is parallel to the hyperplane). Since the points on any edge of
Clu differ in only one index (the element corresponding to index j in the lemma) it is
easy to see that any extreme point has to have the structure given in the lemma.

To prove the opposite direction take an x as given in the lemma. If x j ∈ {l, u} then
it is an extreme point ofClu hence it is also an extreme point of the intersection. If x j ∈
(l, u) then take two extreme points of the cube Clu , namely xl , xu , such that xlj = l,

xuj = u and for every i 
= j xli = xui = xi (they must be the endpoints of an edge of

Clu). The point x is on the edge connecting xl and xu since (xl)T e < 1, (xu)T e > 1
then x is the only intersection point of this edge with the hyperplane {x |xT e = 1},
hence an extreme point of I . ��
Lemma 2 Let p be an ordered price vector such that p1 ≤ p2 ≤ . . . ≤ pm. Define x∗
as x∗

i = u for i = 1, ..., k, x∗
k+1 = 1− ku − (m − k − 1)l, x∗

i = l for i = k + 2, ...,m
where k ∈ {1, ...,m − 1} and eT x∗ = 1. Then we have pT x∗ = min f ∈I pT f .

Proof Observe that x is and extreme point of I if and only if there exist a permutation
μ of indices such that ∀i we have xμ(i) = x∗

i (follows from Lemma 1). Since our sub-
problem min f ∈I pT f has a linear objective function, there exists an extreme point
which will lead to the minimum (easy to see that any permutation of the elements
of the price vector will lead to the same minimum value since all extreme points are
permutations of one another). Since every extreme point is just a permutation of each
other, our objective becomes selecting the order of the elements. The given price vector
p has elements in non-decreasing order hence the extreme point x∗ having elements
in non-increasing order will achieve the minimum. ��

The lemma below characterizes the worst-case prior. As in Bergemann and Schlag
[9], the worst-case prior is achieved by concentrating the cumulative probability to
smaller valuations, and furthermore, the worst-case prior is independent of the pricing
mechanism of the seller.

Lemma 3 maxp,A∈SP min f ∈I pT f = maxp,A∈SP pT x∗ where x∗
i = u for i =

1, ..., k, x∗
k+1 = 1 − ku − (m − k − 1)l, x∗

i = l for i = k + 2, ...,m where k ∈
{1, ...,m − 1} and eT x∗ = 1.

Proof For the types 1, ..,m (which are increasing in order) the IC constraints in SP
dictate that the price vector must be in non-decreasing order, that is, every p ∈ SP
must satisfy p1 ≤ p2 ≤ · · · ≤ pm . Since the order in p is preserved from Lemma 2
our sub-problem reduces to pT x∗ and the result follows. ��

Now we can show that the optimal mechanism for the robust problem is a posted
price mechanism and give a precise relation between u, l and the threshold as follows.

Theorem 1 1. The solution to the problem maxp,A∈SP min f ∈I pT f is the posted
price pti∗ such that i∗ maximizes pTt j x

∗, where (pt j )i = t ( j) if t (i) ≥ t ( j),
(pt j )i = 0 otherwise, and x∗

i = u for i = 1, ..., k, x∗
k+1 = 1− ku − (m − k − 1)l,

x∗
i = l for i = k + 2, ...,m where k = m − � um−1

u−l �.
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2. The cut-off type for the optimum mechanism cannot exceed �m/2�.
3. When l, u are fixed, for sufficiently large m and � the cut-off type is arbitrarily

close to �m/2�.
Proof In Lemma 3 we have shown that the solution to the original problem simplifies
into the one written for the worst case prior and from Proposition 1 we know that the
solution must be a posted price mechanism. Now the only thing we need to determine
is the threshold for the worst case prior and this is given by the relation in the statement
of the theorem.

For part 2, the difference in between the expected payoffs for the cut-off types i and
i + 1 is

∑m
j=i+1 f j t (i + 1) − ∑m

j=i f j t (i) = ∑m
j=i+1 f j (t (i + 1) − t (i)) − fi t (i).

Since our worst case prior is monotonically non-increasing then
∑m

j=i+1 f j (t (i+1)−
t (i)) − fi t (i) ≤ fi ((m − i)� − (i − 1)� − t (1)) and for i ≥ �m/2� this expression
is strictly negative so increasing the cut-off type beyond this point will decrease our
expected profit hence cut-off type can not be larger than �m/2�.

For part 3, we assume that l is fixed to a positive value. Observe that for the largest
feasible m (recall that for l fixed we must have l ≤ 1/m) we have the worst case prior
as fi = l for i ≥ 2 and since for the largest feasible m equal to �1/ l� we have k = 0
it is immediate to see that 2l > f1 ≥ l. To see this note that either ml = 1 in which
case f1 = l or ml < 1 and we have 1 − (m − 1)l < (m + 1)l − (m − 1)l = 2l.
Now, we know from part 2 that the difference in between the expected pay-offs for
the cut-off types i and i +1 is

∑m
j=i+1 f j t (i +1)−∑m

j=i f j t (i) = ∑m
j=i+1 f j (t (i +

1)− t (i))− fi t (i) is at most fi ((m− i)�− (i −1)�− t (1)). We now distinguish two
cases.

Case 1 1/ l is integer: In this case, we have fi = l for all i = 1, . . . ,m and∑m
j=i+1 f j t (i + 1) − ∑m

j=i f j t (i) = ∑m
j=i+1 f j (t (i + 1) − t (i)) − fi t (i) is equal

to fi ((m − i)� − (i − 1)� − t (1)) For any i , if we normalize the expression
fi ((m − i)� − (i − 1)� − t (1)) by t (1) we obtain fi (m − 1)�/t (1) − fi (i −
1)�/t (1) − fi . Since we have fi (m − i) = (1 − Fi ) for all i in general, and
f�m/2�(�m/2� − 1) ≤ 1 − F(�m/2�) for the largest possible m (this is easy to verify
for the largest possible m for which we have just given the worst case prior), for all
i ≤ �m/2� we must have fi (i − 1) < 1− F(i). But then for every j ≤ �m/2� we can
find a large enough �/t (1) such that (1− F(i))�/t (1) − fi (i − 1)�/t (1) − fi > 0
for all i ≤ j , which shows that the optimal cut-off must approach �m/2� since by by
part 2 we know that the cut-off type cannot exceed �m/2�.
Case 2 1/ l is not integer, in this case we have fi = l for all i = 2, . . . ,m, and
l < f1 < 2l. For i = 2, . . . ,m, the argument used in Case 1 above is valid. For i = 1,
the difference in between the expected payoffs for the cut-off type i = 1 and i+1 = 2,
that is the expression

∑m
j=i+1 f j t (i+1)−∑m

j=i f j t (i), is equal to (m−1)�l− f1t (1)
which is again positive for sufficiently large �.

Hence, in both cases we have shown that for the largest possible m and sufficiently
large � the cut-off type approaches �m/2�.

This argument remains valid for all m large enough such that k = 0 ( f1 is not
bounded above by 2l in that case). To treat this case, let m < �1/ l� with k = 0. We
have fi = l for all i = 2, . . . ,m with f1 > l, and

∑m
j=i+1 f j t (i+1)−∑m

j=i f j t (i) =
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∑m
j=i+1 f j (t (i + 1) − t (i)) − fi t (i) is equal to fi ((m − i)� − (i − 1)� − t (1)). For

any i , if we normalize the expression fi ((m−i)�−(i−1)�− t (1)) by t (1)we obtain
fi (m − 1)�/t (1) − fi (i − 1)�/t (1) − fi . Since we have fi (m − i) = (1 − Fi ) for
all i in general, and f�m/2�(�m/2� − 1) ≤ 1− F(�m/2�) as above, for all i ≤ �m/2�
we must have fi (i − 1) < 1 − F(i). But then for every j ≤ �m/2� we can find a
large enough �/t (1) such that (1 − F(i))�/t (1) − fi (i − 1)�/t (1) − fi > 0 for
all i ≤ j . For i = 1, the difference in between the expected pay-offs for the cut-off
type i = 1 and i + 1 = 2, that is the expression

∑m
j=i+1 f j t (i + 1) − ∑m

j=i f j t (i),
is equal to (m − 1)�l − f1t (1) which is again positive for sufficiently large �. ��

Figure 1 illustrates parts 2 and 3 of Theorem 1. We have m = 110 for l = 0.009
and we increase �, the difference between consecutive types.

It is easy to see that under no restriction to the type distribution as in Bergemann
and Schlag [8] the optimal price is equal to the lowest valuation t (1) = k. On the other
hand, in another paper [9] the two authors constrain the type distribution to an uncer-
tainty set built around a reference prior using the Prohorovmetric. Our box-uncertainty
specification can be seen as an alternative or a simple variant to the Bergemann-Schlag
proposal in [9]. Indeed, if a reference prior is derived from available data as in the
cable TV market study of [13], one may incorporate box uncertainty around it and
use the results of the present paper. Box uncertainty would correspond to a ∞-norm
specification around a reference prior. A numerical experiment summarized in Fig. 2
below starting with m = 100, l = 0.0061, u = 0.1, k = 21 and M = 120 shows
that the maximum worst-case expected profit is significantly higher than the expected
worst-case profit valid for all distributions (equal to k), and it increases with increasing

Fig. 1 The cut-off valuation as a function of � for m = 110, l = 0.009 and u = 1. It is seen that the
cut-off valuation is always less than m/2, and converges to it as � increases
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Fig. 2 The maximum worst-case expected profits plotted as a function of the lower bound l when it varies
from 0.0061 to 0.008 for k = 21, M = 120 and � = 1 (hence 120 types). The uppermost curve is
the maximum worst-case expected profit obtained from the optimal posted price mechanism. The worst-
case expected profit when no constraint is put on the distribution is equal to 21, the lowest valuation. It
corresponds to a horizontal line that sits on the l-axis

l, the lower bound specification. The cut-off type i∗ oscillates between 40 and 41 (i.e.,
60 and 61 for the valuation), throughout the experiment.

We also note that the result of Theorem 1 above is akin to the result of Bergemann
and Schlag (Corollary 1 of [8]) where the mini–max regret seller, when constrained
to pure strategies, chooses either the mean 1+c

2 of the interval c and 1 where c is the
value of the good to the seller and 1 is the upper limit of the buyer valuation, or the
lower limit of the buyer valuation interval v.

3 The optimal mechanism under mean constrained ambiguity

In this section we consider the following problem that we shall refer to as MCAS (for
Mean Constrained Ambiguity Screening)

max
p,A∈SP min

f ∈M
pT f

where M is a convex polytope defined as M = { f | f ≥ 0, f T e = 1,
∑m

i=1 t (i) fi =
α} for any real number α ∈ [k, M], and M is assumed to be non-empty. Here, the
seller is assumed to have an idea of the mean valuation of the buyer, and incorporates
this belief into the set of probability distributions M. A similar set of distributions
was used in Neeman [22] to describe how high, on average, the buyer valuations are
in an English auction setting.
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We shall prove that the above problem reduces to a one-dimensional search over
a restricted set of positive integers between 1 and m, (or, over the set of valuations
{t (1), . . . , t (m)}) and that the optimal mechanism is an increasing price mechanism
as opposed to the posted price mechanism of the previous section when the mean
valuation α as viewed by the seller is above a certain threshold value α∗ entirely
characterized by the problem data. If α is less than or equal to the threshold α∗ the
optimal mechanism is a trivial posted price mechanism where every buyer type can
get the object paying the lowest valuation t (1). We do this in two steps.

Lemma 4 There exists a threshold α∗ such that the solution to problem MCAS is an
ascending price mechanism for α ≥ α∗.

Proof As a first step, after a straightforward application of linear programming duality
to the inner min problem we pose the above problem as the linear programming
problem

max
p,A,y,z

y + αz

subject to

pi ≥ y + zt (i),∀ i = 1, . . . ,m

(p, A) ∈ SP,

where we introduced the additional scalar variables y and z that are unrestricted in
sign.

Now we postulate the existence of an optimal solution to the above problem using
i∗ ∈ [1,m] such that i∗ is the smallest integer i where pi = y + zt (i), i.e., we have
pi = y + zt (i) for all i = i∗, i∗ + 1, . . . ,m, all allocations up to and including i∗ are
zero, i.e.,

A1 = · · · = Ai∗ = 0,

as well as all prices up to and including type i∗ are zero, i.e.,

p1 = · · · = pi∗ = 0.

Furthermore, the posited solution has the first i∗ − 1 constraints pi ≥ y + zt (i) non
binding, i.e., we have

pi > y + zt (i), i = 1, . . . , i∗ − 1,

the prices pi∗ , pi∗+1, pi∗+2, . . . , pm as well as Ai∗+1, Ai∗+2, . . . , Am are strictly
increasing with Am = 1.

We shall indeed construct an optimal solution in this form, and obtain conditions
under which such optimal solutions exist. We do this by forming the dual of the linear
program above, and constructing a feasible dual solution, satisfying complementary
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slackness and strong duality properties along with the suggested primal solution. The
dual linear program is the following problem in positive variables f = { fi }mi=1, and
wi , i = 0, 1, . . . ,m:

maxwm

subject to

t (i) fi = �

m∑

j=i+1

f j − wi−1 + wi ,∀ i = 1, . . . ,m

f ∈ M. (5)

First we define the sequence H j
i by the formula

H j
i = 1

t ( j)
+ sum of all two term fractions of the form

�

t (k)t ( j)
+

sum of all three term fractions of the form
�2

t (l)t (k)t ( j)
+ · · · + � j−i

t (i)t (i+1) . . . t ( j)
.

E.g., we have H6
4 = 1

t (6) + �( 1
t (4)t (6) + 1

t (5)t (6) ) + �2

t (4)t (5)t (6) .

We shall pick a dual solution with wm = ζ for some positive ζ 2 and set the
remaining w variables as follows:

w j = 0, j = i∗, . . . ,m − 1,

wi∗−1 = t (i∗)(ζHm
i∗ − 1),

wi∗− j = wi∗−( j−1) + �,∀ j = 2, 3, . . . , i∗.

We set

f j = 0,∀ j = 1, . . . , i∗ − 1, (6)

fi∗ = 1 − ζHm
i∗+1, fm = ζHm

m , (7)

and,
fi = ζ(Hm

i − Hm
i+1),∀ i = i∗ + 1, . . . ,m − 1. (8)

It is immediate to verify that these choices for f and w satisfy the constraints∑m
i=1 fi = 1, (5), and non-negativity restrictions on f and w provided ζ ≥ 1

Hm
i∗
.

We shall return to this condition later.
Now, using the equation

∑m
i=1 t (i) fi = α, we obtain the identity

α = ζ�

m∑

k=i∗+1

Hm
k + t (i∗), (9)

2 We use ζ as the hypothesized optimal value; note that ζ ∈ [k, M] by the nature of the problem.
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which results in

ζ = α − t (i∗)
�

∑m
k=i∗+1Hm

k
.

Now, to enforce strong duality of linear programming, we set ζ = y + αz, which
results in

y = − t (i∗)
�

∑m
k=i∗+1Hm

k
, (10)

z = 1

�
∑m

k=i∗+1Hm
k

. (11)

These choices of y, z lead to the choice of p and A according to complementary
slackness as follows. For the prices we have

pi = i − i∗∑m
k=i∗+1Hm

k
,∀ i = i∗, . . . ,m (12)

and
pi = 0,∀ i = 1, . . . , i∗ − 1. (13)

The allocation variables Ai are set recursively using the equations

Ai = 0,∀ i = 1, . . . , i∗,

Ai = pi + �
∑i−1

j=1 A j

t (i)
,∀ i = i∗ + 1, . . . ,m. (14)

Simple algebraic manipulation results in the formula:

Ai∗+ j = 1∑m
k=i∗+1Hm

k

j∑

k=1

Hi∗+ j
i∗+k , for j = 1, . . . ,m − i∗. (15)

It is immediate to see that Ai ≥ 0, for all i ∈ {1, . . . ,m}, Am = 1, and they are
monotone increasing. These observations ensure that the allocation variable values
indeed satisfy the primal constraints defining the set SP .

Hence, we have constructed a primal-dual pair of points (p, A), and ( f, w, y, z)
satisfying primal feasibility, dual feasibility, complementary slackness (and also strong
duality). All this depends on the initial supposition that ζ ≥ 1

Hm
i∗
, which is assured

provided that

α ≥ t (i∗) + �
∑m

k=i∗+1Hm
k

Hm
i∗

. (16)

Note that as α gets smaller, i∗ moves down to one. Setting i∗ one in (16) shows

that the above derivation is valid for α ≥ α∗ ≡ t (1) + �
∑m

k=2 Hm
k

Hm
1

. ��
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It remains to investigate the case when α ∈ [t (1), α∗). In this case, we shall prove
that the optimal mechanism is to set pi = t (1), Ai = 1 for all i = 1, . . . ,m and y = 1
with z = 0.

Lemma 5 For α ∈ [t (1), α∗) the solution to MCAS is a posted price mechanism
where all types are entitled to the object in return for a payment equal to t (1), the
lowest valuation.

Proof Let us first observe that for α = α∗ we have pi = t (1) and Ai = 1 for all
i = 1, . . . ,m as a result of our derivation above. Define ei as the probability mass
such that ei (i) = 1 and ei ( j) = 0 for j 
= i (these are the extreme points of the
probability simplex). By a similar argument to the box uncertainty case we know
that every extreme point of M must be an intersection of an edge of the simplex
{x : ∑m

i=1 xi = 1, x j ≥ 0, j = 1, . . . ,m} and the hyperplane {x : ∑m
i=1 t (i)xi = α}.

For an edge of the unit simplex to have a non-empty intersection, there must be
exactly one of its end-points in each of the two sub-spaces separated by the hyperplane
{x : ∑m

i=1 t (i)xi = α}. Hence, x̂ is an extreme point iff there exist l 
= k ∈ {1, . . . ,m}
and λ ∈ [0, 1] such that x̂ = λel + (1 − λ)ek where t (l) ≤ α∗ ≤ t (k).

Let α′ < α∗ and maxp,A∈SP min f ∈M ′
∑m

i=1 fi pi = min f ∈M ′
∑m

i=1 fi p′
i where

the mean set corresponding to α′ and α∗ are represented asM′ andM∗, respectively.
Let f ′′ = λ′′el + (1 − λ′′)ek be an extreme point of M∗ such that

∑m
i=1 f ′′

i p′
i =

min f ∈M∗
∑m

i=1 fi p′
i where t (l) ≤ α∗ ≤ t (k). Moreover, since t (1) is the maximum

achievable expected price for α∗we have

t (1) = max
p,A∈SP min

f ∈M∗

m∑

i=1

fi pi ≥ min
f ∈M∗

m∑

i=1

fi p
′
i

=
m∑

i=1

f ′′
i p′

i ⇒ t (1) ≥ λ′′ p′
l + (1 − λ′′)p′

k . (17)

Now, if t (l) ≤ α′ ≤ t (k) then there exists an f ′ such that f ′ = λ′el + (1 − λ′)ek
where λ′t (l) + (1 − λ′)t (k) = α′ and λ′ > λ′′(since α′ < α∗). We have

min
f ∈M′

m∑

i=1

p′
i fi ≤

m∑

i=1

p′
i f

′
i = λ′ p′

l + (1 − λ′)p′
k ≤ λ′′ p′

l + (1 − λ′′)p′
k ≤ t (1) (18)

since k > l and for every feasible price vector we must have p1 ≤ p2 · · · ≤ pm (so,
p′
l ≤ p′

k).
For t (1) < α′ < t (l) let us take the extreme point f ′ = λ′e1 + (1− λ′)el such that

λ′t (1) + (1 − λ′)t (l) = α′. Again we must have

min
f ∈M∗

m∑

i=1

p′
i fi ≤ λ′ p′

1 + (1 − λ′)p′
l ≤ p′

l ≤ λ′′ p′
l + (1 − λ′′)p′

k ≤ t (1) (19)

since p′
1 ≤ p′

l ≤ p′
k .
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Therefore, from (18), (19) we see that for all α < α∗ we must have

max
p,A∈SP min

f ∈M

m∑

i=1

pi fi ≤ t (1).

For the price vector pi = t (1) ∀ i = 1, . . . ,m we have min f ∈M
∑m

i=1 pi fi = t (1)
hence we conclude that

t (1) ≥ max
p,A∈SP min

f ∈M

m∑

i=1

pi fi ≥ t (1) ⇒ max
p,A∈SP min

f ∈M

m∑

i=1

pi fi = t (1)

for t (1) ≤ α < α∗, moreover the optimal price vector is p1 = p2 = · · · = pm = t (1)
with allocations A1 = A2 = · · · = Am = 1.

We summarize the above results below as our main result in this section.

Theorem 2 1. For α ≥ α∗, the problemMCAS reduces to finding the largest positive
integer i∗ ∈ {1,m} satisfying the inequality

α ≥ t (i∗) + �
∑m

k=i∗+1Hm
k

Hm
i∗

.

Furthermore, the optimal mechanism is a linearly ascending price mechanism
described by equations (12)–(15), and with a worst-case distribution given by
(6)–(8) and maximum worst-case profit equal to α−t (i∗)

�
∑m

k=i∗+1 Hm
k
.

2. For 1 ≤ α < α∗, the optimal mechanism is trivial, i.e., it is to set a price equal to
t (1) for all types, where any type is entitled to the object.

Note that in part 1 of Theorem 2, the optimal cut-off type i∗ need not be unique. Take
e.g., the example given in Fig. 3 with α = 4.4701948, then both i∗ = 1 and i∗ = 2
are optimal to a six-digit accuracy.

We also give a simple procedure for computing the optimal worst-case posted price
mechanism under mean constrained ambiguity.

Proposition 2 The optimalworst-case profit of the best posted pricemechanism under
mean constrained ambiguity is given by

max

{
t (1), max

j∈{2,...,m}
t ( j)(α − t ( j − 1))

M − t ( j − 1)

}
.

If α ≤ t (1)(M − t ( j − 1))/t ( j) + t ( j − 1) for all j ∈ {2, . . . ,m} then the maximum
is attained at t (1), and all types are entitled to the object with a payment equal to
t (1). Otherwise, the j∗ which achieves the maximum results in the optimal mechanism
pi = t ( j∗) and Ai = 1 for i = j∗, . . . ,m.
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Proof The best posted price mechanism corresponding to our problem is found by
solving the integer optimization problem:

max
p,A∈SPi

min
f ∈M

pT f

where

SPi =
⎧
⎨

⎩(p, A)|pi = t (i)Ai − �

i−1∑

j=0

A j , i = 1, . . . ,m;

0 ≤ A1 ≤ A2 ≤ · · · ≤ Am ≤ 1, and integer

⎫
⎬

⎭ .

Hence we have the problem

max
p,A,y,z

y + αz

subject to

pi ≥ y + zt (i),∀ i = 1, . . . ,m

(p, A) ∈ SPi .

This problem admits either an optimal solution where Ai ’s are equal to one with all
pi ’s equal to t (1) (the trivial mechanism) or a solution such that A j = p j = 0 for
j = 1, . . . , j∗ − 1, and A j = 1 and p j = t ( j∗) for j = j∗, . . . ,m where j∗ ≥ 2.
In the first trivial mechanism, the objective function is equal to t (1) by setting y = 1
and z = 0. In the second case, consider the LP

max
y,z

y + αz

subject to

pi ≥ y + zt (i),∀ i = 1, . . . ,m

for a fixed (p, A) ∈ SPi . The dual of this LP is simply

min
f

{pt f : f ∈ M}.

Construct the following primal dual pair

z = t ( j∗)
M − t ( j∗ − 1)

, y = −t ( j∗ − 1)
t ( j∗)

M − t ( j∗ − 1)
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Fig. 3 The maximum worst-case expected profits plotted as a function of α when α varies from 5 to 6 for
k = 2, M = 7 and� = 0.1 (hence 51 types). The upper curveMCAS is the maximumworst-case expected
profit obtained from the optimal ascending price mechanism. The curve PP underneath is the maximum
worst-case expected profit obtained by using an optimal posted price mechanism

and

fm = α − t ( j∗ − 1)

M − t ( j∗ − 1)
, f j∗−1 = 1 − α − t ( j∗ − 1)

M − t ( j∗ − 1)
,

all other fi ’s are equal to zero. ��

The increasing price mechanism advocated by Theorem 2 may indeed be benefi-
cial in comparison to a posted price mechanism under mean constrained distribution
ambiguity. A numerical experiment summarized in Fig. 3 illustrates this point. We
have 51 types uniformly spread over the interval [2, 7] with � = 0.1. The maximum
worst-case expected profit obtained for increasing values of α from 5 to 6 are plotted
as well as the maximum worst case expected profit for the optimal posted price mech-
anism.While the superiority of the ascending price mechanism is evident, one notes in
favor of the posted price mechanism that one may prefer to implement it withstanding
a loss of 25 to 30% in maximum worst-case expected profit.

4 Mean-variance constrained ambiguity

In this section we consider a mean-variance constrained set of prior distributions, and
examine the robust screening problem posed as follows:
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max
p,A∈SP min

f ∈V
pT f

where V is a convex polytope defined as V = { f | f ≥ 0, f T e = 1,
∑m

i=1 t (i) fi =
α,

∑m
i=1 fi (t (i) − α)2 = σ 2} for any real number α ∈ [k, M] and a positive real

number σ 2. For ease of reference, we shall refer to the above problem as MVCAS
below for Mean-Variance Constrained Ambiguity Screening. Our work in this section
is related to the recent (and, independent) contribution by Kos and Messner [17]
where robust optimal selling prices are investigated in cases where the seller does
not know the distribution of buyer valuations, but can confine the mean valuation,
and also the variance, to some intervals. They show that the optimal strategy for the
seller is to commit to a randomization over some interval. In contrast, our result below
departs from incentive compatible and individually rationalmechanisms, and obtains a
deterministic posted price as the optimal selling mechanism under some conditions. In
general, the optimalmechanism is a concatenation of an ascendingmenuof prices and a
posted price. It can be argued that while randomizationmay lead to better performance
(i.e. the seller is shown to achieve a higher profit in [17] by using a randomized pricing
policy), a deterministic posted price mechanism is simpler and easier to implement.
We also note that we assume the first moment and the variance known while in [17]
they are only known to belong to some given interval. However, their analysis shows
that in the case of the mean belonging to some interval, only the lower end-point of
the interval of uncertainty plays a role in their results. A similar observation holds for
the upper end-point of the interval of uncertainty for the variance; see [17]. Therefore,
it is the two end-point values rather than the intervals themselves, which are critical
in [17].

Since it is easier to handle, we shall work with the equivalent variance constraint∑m
i=1 fi t (i)2 = σ 2 + α2. Naturally, we assume V to be non-empty. The problem

MVCAS is less conservative than the problem MCAS of the previous section. Using
duality of linear programming, the problem MVCAS is posed as the following linear
programming problem in variables w, y, z, p, A:

maxw + αy + (α2 + σ 2)z

subject to

pi ≥ w + t (i)y + t (i)2z,∀i = 1, . . . ,m

(p, A) ∈ SP.

Numerical experiments show that the above problem usually results in an optimal
strategy that is a mix of an ascending price menu and a posted price scheme after a
threshold type. More precisely, for a sequence of types starting from a first threshold
type as in the previous section an ascending price menu is applied up to a second
threshold type at which point a price is stabilized and a posted price scheme for all
types above and including the second threshold type is in effect. On the other hand, it
is possible to obtain a posted price optimal mechanism which is readily found under
certain conditions as we shall demonstrate below.
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We need to define the following three inequalities that are the key to the result
below:

(x − α)2 + σ 2 ≤ (3x − α)�2

2x + �
, (20)

0 ≤ (x − α)2 + σ 2 + �(x − α) ≤ 2
�3

x
, (21)

0 ≤ (x − α)2 + σ 2 − �(x − α). (22)

We define a to be the largest valuation t (i) smaller or equal to α, and b the smallest
valuation greater than α, i.e., we have a ≤ α < b. Now, if the above conditions hold
at a (respectively, at b), we show below that the optimal strategy is a posted price
mechanism with price equal to a (respectively b).

Proposition 3 The problem MVCAS admits an optimal posted price mechanism pro-
vided that inequalities (20–22) hold with x = a or x = b, with maximum worst-case

profit equal to x
2 [2 − (x−α)2

�2 − σ 2

�2 − x−α
�

].
Proof The proof is based on construction of primal and dual feasible solutions sat-
isfying complementary slackness conditions under the premises of the proposition.
The dual problem to MVCAS is given by the problem over non-negative variables
γ1, . . . , γm+1 and non-negative variables f1, . . . , fm :

min γm+1

subject to

t (i) fi − �

m∑

j=i+1

f j + γi − γi+1 = 0, i = 1, . . . ,m,

f = ( f1, . . . , fm) ∈ V.

Let us fix x = a (the argument is identical for x = b). Let i∗ be such that t (i∗) = a.
Now, we fix a primal solution candidate as p j = 0 for all j = 1, . . . , i∗ − 1 and
p j = a for all j = i∗, . . . ,m, and A j = 0 for all j = 1, . . . , i∗ − 1 and A j = 1 for
all j = i∗, . . . ,m.

First, we shall deal with the dual problem. We fix all fi s to zero except
fi∗−1, fi∗ , fi∗+1. Solving for these three components of f from the three equations

fi∗−1 + fi∗ + fi∗+1 = 1,

t (i∗ − 1) fi∗−1 + t (i∗) fi∗ + t (i∗ + 1) fi∗+1 = α,

t2(i∗ − 1) fi∗−1 + t2(i∗) fi∗ + t2(i∗ + 1) fi∗+1 = α2 + σ 2,

defining the set V (notice that the resulting 3×3 set of linear equations always admits
a solution since the determinant of the matrix is equal to 2�3), we obtain the solution
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fi∗−1 = 1

2

[
(a − α)2

�2 + σ 2

�2 + a − α

�

]
,

fi∗ = 1 − (a − α)2

�2 − σ 2

�2 ,

fi∗+1 = 1

2

[
(a − α)2

�2 + σ 2

�2 − a − α

�

]
.

By the inequality (20) (the right-hand side of this inequality is always smaller or equal
to �2 by our choice of a and b, which ensures that fi∗ ≥ 0), the left-hand inequality
of (21) and by (22), the above solution is non-negative. Now, using complementary
slackness conditions between the primal monotonicity constraints 0 ≤ A1 ≤ A2 ≤
· · · ≤ Am ≤ 1 and the variables γi , we set γi∗ = 0, and solve for the remaining γ

variables using the triplet fi∗−1, fi∗ , fi∗+1 computed above. It is easy to see that the
critical components of γ variables are only γi∗−1 and γi∗+1 for which there is the
risk of being negative. Notice that γ j = γ j+1 + � for j = 1, . . . , i∗ − 2. By direct
calculation we have

γi∗−1 = 1

2

[
2� − a

(a − α)2

�2 + σ 2

�2 + a
a − α

�

]
,

γi∗+1 = −a

[
(a − α)2 + σ 2 − �2

�2

]
− 1

2

[
(a − α)2 + �(α − a) + σ 2

�

]
.

The right-hand inequality of (21) and inequality (20) ensure that the pair γi∗−1, γi∗+1
are non-negative. Hence, we have a feasible dual solution. Using the complementarity
between the triplet fi∗−1, fi∗ , fi∗+1 and the corresponding primal inequalities, and the
supposedposted price scheme,wehave the three equations corresponding to pi∗−1 = 0
and pi∗ = pi∗+1 = a:

w + y(a − �) + z(a − �)2 = 0,

w + ya + za2 = a,

w + y(a + �) + z(a + �)2 = a.

Solving this system (it is always solvable since thematrix is the transpose of thematrix

of the dual equation system above), we obtain the solutionw = − 1
2
a(a2+a�−2�2)

�2 , y =
1
2
a(2a+�)

�2 , z = − 1
2

a
�2 . It is easily verified by direct computation that the remaining

inequalities hold in this primal construction. More precisely, the slack in the subset of
inequalities

p j ≥ w + t ( j)y + t ( j)2z,∀ j = 1, . . . , i∗ − 2

is equal to a( 12k
2 + 1

2k − 1) for k = i∗ − j , and the slack in slack in the subset of
inequalities

p j ≥ w + t ( j)y + t ( j)2z,∀ j = i∗ + 2, . . . ,m

is equal to a( 12k
2 + 1

2k) for k = j − i∗. Thus, we have a primal-dual feasible pair
satisfying complementary slackness, hence optimal in their respective problems. ��
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The proof of the proposition furnishes a simple recipe to compute the posted price
mechanism: just check the three inequalities with x = a first, if they hold, the posted
price is equal to a; otherwise checkwith x = b, if they hold, the posted price is equal to
b. If the conditions fail on both cases, then the optimal mechanism is a concatenation
of an ascending price menu from a first threshold type to a second threshold at which
point it is a posted price afterwards. The proof of the latter observation appears to
be much more involved, and will be presented elsewhere. As an example consider
the problem instance with 6 types, t (1) = 2, � = 3, α = 10.1 and σ 2 = 2. With
x = 8, the inequalities (20)–(22) are satisfied, and the posted price equal to 8 is
optimal, and results in an expected worst-case profit equal to 7.951. If α = 10.5
while all other parameters are kept constant, the inequalities are satisfied with x = 11
(with x = 8 the first inequality does not hold), hence a posted price equal to 11 is
optimal, and results in an expected worst-case profit equal to 8.708. The fact that
MCAS is more conservative than MVCAS may be one of the reasons why in MCAS
a non-trivial posted price mechanism is not optimal. While it is not easy to give an
economic meaning to conditions (20)–(22), we observed numerically that for α and
� fixed, one can find an interval for σ 2 at which the conditions hold and a posted
price scheme is found. For example, for 10 types, t (1) = 2, � = 2, and α = 9.5, for
any σ 2 ∈ [0.75, 0.9721] a posted price equal to 8 is optimal. For values of σ 2 below
0.75, the set V is empty. For values above 0.9721, the posted price scheme is lost. In
the examples above the seller obtained a higher expected pay-off for a higher mean
specification, all other things being constant. This result is in line with the findings
of [17] where the seller’s pay-off increases with increasing lower end-point of the
interval of uncertainty for the mean. On the other hand, Proposition 3 shows that the
expected worst-case profit decreases with increasing variance specification (when all
else remains constant), which is in agreement with the results of [17] concerning the
upper end-point of the interval uncertainty for the variance.

The main insight obtained from mean-variance constrained ambiguity model of
this section is that the additional information about the distribution in the form of the
variance helps in obtaining a posted price mechanism (at least in some cases) which
is a natural and simple mechanism to implement. This finding agrees with the insights
obtained in [17] where it is beneficial for the seller knowing the mean to have access
to additional information about the variance or the upper bound of the support (while
additional information about the mean has no effect on the pay-off).

5 Perturbation of a reference prior

Finally, we investigate the pricing mechanism when the ambiguity set is taken as all
priors which are at most at a (Euclidean3) distance ε from a reference prior in the
spirit of [9]. Hence, the seller seeks protection for every prior distribution around a
reference probability mass f̄ :

3 A statistically justifiable distance is the Hellinger distance which is defined as H( f, g) = ∑m
i=1(

√
fi −√

gi )
2 between two discrete probability masses f and g. However, using this distance in our analysis does

not yield a simple result as the Euclidean distance. Since the Euclidean and Hellinger distances are close
to one another, we use the Euclidean distance as a tractable proxy to the Hellinger distance.
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P = { f | f ≥ 0, eT f = 1, ‖ f − f̄ ‖2 ≤ ε}.

We are interested in direct mechanisms that will maximize expected revenue under
ambiguity of probability mass:

max
(p,A)∈SP

min
f ∈P

pT f

We transform the max−min problem using conic duality into:

max
y,z,q,p,A

y − f̄ T q − εz

subject to

p + q ≥ ye

‖q‖2 ≤ z

(p, A) ∈ SP.

Simplifying the problem we obtain the following equivalent problem:

max
y,q,p,A

y − f̄ T q − ε‖q‖2

subject to

p + q ≥ ye

(p, A) ∈ SP

It is easy to show using elementary arguments that at optimality one has ye = p + q.
Thus, further simplification results into:

max
y,p,A

f̄ T p − ε‖ye − p‖2

subject to

(p, A) ∈ SP.

Theorem 3 There exists ε∗ > 0 such that for ε ∈ [0, ε∗] the optimal direct (posted
price) mechanism for f̄ solves the above problem.

Proof The result follows by applying Theorem 1 of [19] to the simplified problem. ��
Note that as soon as ε exceeds the threshold ε∗, the posted price mechanism is lost.

The resulting mechanism does not appear to be economically meaningful. In a related
result in [9] the authors showed that for every perturbation around a prior based on the
Prohorov metric, there exists a pair of worst-case prior and associated optimal price in
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a continuous valuation setting. Our result, while in a discrete valuation and Euclidean
distance setting, complements the aforementioned result by showing that the optimal
mechanism associated with the given prior continues to be optimal for an interval of
the perturbation parameter.

6 Concluding remarks

In this paper we have considered a very simple, and well-solved, well-understood
instance of economicmechanism design, namely the problem of the sale of an indivisi-
ble object to a buyerwhose valuation of the object is private informationunknown to the
seller. Removing the assumption that the valuation distribution is known to the seller,
we confined the distribution to a suitable ambiguity set, and for an ambiguity-averse
(max-min) seller we characterized the optimal mechanism for different representa-
tions of ambiguity using geometric and algebraic arguments typical of mathematical
programming toolbox. An interesting immediate extension would be to consider the
minimax regret criterion of [8] in the setting of the present paper. A more substantial
extension will be to consider an auction setting. These are left as topics for future
studies.

Appendix

6.1 The revelation principle

Here we provide for the reader’s convenience a version of the Revelation Principle
(due to Myerson [20,21]) useful for our purposes. It is adapted from the forthcoming
book by T. Börgers [11]. We restrict attention to deterministic mechanisms.

In selling an object to a potential buyer with some valuation for the object (unknown
to the seller), the seller can engage into an extensive game with the buyer, where the
terminal history is associated with a probability distribution over [0, 1] × R. This
distribution is interpreted as the probability of the buyer getting the object, and the
paymentmade by the buyer to the seller. The sellerwill also commit to a strategy during
the game. Naturally, the buyer will also commit to a strategy so as to maximize his
expected utility. In our setting, as we assumed that the distribution of buyer valuations
is not known with certainty by the seller, we want to determine the extensive game and
the strategy of the seller who maximizes his/her worst-case expected revenue where
the worst-case is minimum with respect to a set of probability distributions over the
valuations of the buyer.

More formally, a mechanism 	 is a triplet (
, q, μ)where
 is a measurable space
of messages that the buyer can send to the seller, q is a functionmapping eachmessage
to the probability that the buyer wins the object, and μ is a function mapping each
message to the payment the buyermakes to the seller (regardless ofwhether hewins the
object or not). Therefore, in our setting the seller wants to determine the mechanism
	 that will maximize his/her worst-case expected revenue from the sale where the
worst-case is the minimum with respect to the set of distributions of valuations for the
buyer.
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While the space of messages in an arbitrary mechanism may be very complex and
lead to an extensive game, there is a class of mechanisms called direct mechanisms
with a very simplemessage structure: amessage is simply the declared valuation (type)
of the buyer.

Since the buyer only declares a type (valuation), a “direct mechanism” in our
case can be reduced to allocation and payment vectors: i.e., {Ai }mi=1 and {pi }mi=1,
respectively. A buyer’s optimal strategy is a mapping σ from the the first m integers
to the first m integers (or, equivalently from {t (1), . . . , t (m)} to itself) that indicates
for every true type of a buyer the declared type of the buyer.

Proposition 4 For every mechanism 	 and every optimal buyer strategy σ in 	 there
is a direct mechanism 	′ and an optimal buyer strategy σ ′ in 	′ such that

(i.) The strategy σ ′ satisfies

σ ′( j) = j for every j ∈ {1, . . . ,m},

i.e., σ ′ is a truth-telling strategy.
(ii.) For every j ∈ {1, . . . ,m} the allocation A j and the payment p j equal the allo-

cation probability and the payment that result in 	 if the buyer plays her optimal
strategy σ .

Proof For every j ∈ {1, . . . ,m} we define A j and p j as required by (ii) in the
statement of the proposition. We show that for this direct mechanism the strategy
σ ′( j) = j , i.e., a truth-telling strategy, is optimal for the buyer. Under this strategy,
for every j , the buyer with type j (and valuation t ( j)) obtains in the mechanism 	′
the same worst-case expected utility as in the mechanism 	 when choosing strategy
σ . Moreover, when declaring some other type j ′ 
= j , the buyer obtains the same
worst-case expected utility that she would have obtained had she played the strategy
of type j ′, σ( j ′) in 	. The optimality of truthful declaration for type j in 	′ is then a
consequence of the optimality of σ( j) in 	. ��
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