
Ann Oper Res (2017) 254:37–46
DOI 10.1007/s10479-017-2432-4

ORIGINAL PAPER

A finite dominating set of cardinality O(k) and a witness
set of cardinality O(n) for 1.5D terrain guarding problem

Haluk Eliş1
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Abstract 1.5 dimensional (1.5D) terrain is characterized by a piecewise linear curve. Locat-
ing minimum number of guards on the terrain (T ) to cover/guard the whole terrain is known
as 1.5D terrain guarding problem. Approximation algorithms and a polynomial-time approx-
imation scheme have been presented for the problem. The problem has been shown to be
NP-Hard. In the problem, the set of possible guard locations and the set of points to be
guarded are uncountable. To solve the problem to optimality, a finite dominating set (FDS)
of size O(n2) and a witness set of size O(n3) have been presented, where n is the number
of vertices on T . We show that there exists an even smaller FDS of cardinality O(k) and a
witness set of cardinality O(n), where k is the number of convex points. Convex points are
vertices with the additional property that between any two convex points the piecewise linear
curve representing the terrain is convex. Since it is always true that k ≤ n for n ≥ 2 and since
it is possible to construct terrains such that n = 2k , the existence of an FDS with cardinality
O(k) and a witness set of cardinality of O(n) leads to the reduction of decision variables and
constraints respectively in the zero-one integer programming formulation of the problem.

Keywords Finite dominating sets · Location · Terrain guarding problem · Zero-one integer
programming

1 Introduction

Guarding a geographical terrain has several areas of application such as locating receivers to
maintain communication (De Floriani et al. 1994), using watchtowers to protect forests from
fires (Goodchild and Lee 1989) or securing a certain region for military purposes to name
a few. A commonly used representation for terrains is triangulated irregular network (TIN)
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(De Floriani and Magillo 2003). Terrains represented as TIN are known as 2.5D terrains.
Cole and Sharir (1989) showed that 2.5D terrain guarding problem is NP-Hard.

1.5D terrain (T ) may be considered as an intersection of a vertical plane with 2.5D
terrain and is characterized by a piecewise linear continuous curve (also referred to as an
x-monotone polygonal chain). Guarding 1.5D terrains has applications where guarding a
thin and long strip of land makes sense such as placing street lights or security sensors along
roads, constructing communication networks (Ben-Moshe et al. 2007) or locating cameras
along a borderline such that the cameras watch the border to prevent intruders from sneaking
into homeland.

2 Related work

Chen et al. (1995) proposed an optimal polynomial-time algorithm for left-guarding of
T . In left-guarding of T , guards are only allowed to guard those points to their left. Several
constant-factor approximation algorithms were given for TGP and its variants (King 2006;
Ben-Moshe et al. 2007; Clarkson and Varadarajan 2007; Elbassioni et al. 2011, 2012). Gib-
son et al. (2009) presented a PTAS for the discrete version of the problem in which the set of
possible guard locations and the set of points to be guarded are both given finite sets. Later,
Friedrichs et al. (2014) presented a PTAS for TGP. King and Krohn (2011) showed that 1.5D
terrain guarding problem is NP-Hard.

An FDS is a finite set of points which contains an optimal solution to an optimization
problem. There may be many FDS’s for an optimization problem, and their existence is
especially important for optimization problems with uncountable feasible sets since FDS’s
allow for a search for an optimal solution among a finite number of points rather than over an
uncountable set. In linear programming, the set of extreme points is an example of an FDS.
FDS’s exist for several network location problems as well (Hooker et al. 1991; Fernández
et al. 2005). Hamacher andKlamroth (2000), andCarrizosa et al. (2010) use finite dominating
sets to solve planar location problems. Friedrichs et al. (2014) presented the first FDS for
TGP. They showed that the vertices and the ‘x-extremal points’ of the viewshed of each vertex
form an FDS, which has a size of O(n2). They also discretized the terrain to obtain a finite
set, which they call ‘witness set’, such that guarding of all elements of the witness set implies
guarding of T . The witness set presented in Friedrichs et al. (2014) is of size O(n3). Earlier,
Ben-Moshe et al. (2007) showed that there exists a witness set of size O(n2) for the problem
where guards are restricted to the vertices of the terrain. However, an argument similar to the
one in their study (see the proof of Lemma 6.2 in Ben-Moshe et al. (2007)) shows that their
witness set is a valid set for TGP with respect to the FDS’s in Friedrichs et al. (2014) and in
our paper.

Our main contribution is to show that there exist a smaller finite dominating set and a
smaller witness set than those given in Friedrichs et al. (2014) and Ben-Moshe et al. (2007)
respectively. The FDS we construct is of cardinality O(k), where k is the number of convex
points, for which a formal definition is given in the next section. Since it is possible to
construct terrains such that n = 2k , the number of decision variables decreases considerably
in the zero-one integer programming (ZOIP) formulation given in Friedrichs et al. (2014).
Also, the witness set we present has a size of O(n) compared to the witness set of size O(n2)
presented in Ben-Moshe et al. (2007), which leads to the reduction of points to be covered
by the guards.
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Fig. 1 A 1.5 dimensional terrain

3 Description of the problem, definitions and notation

3.1 Description of the problem

In this paper, we use a somewhat different terminology from that in the literature to be able to
introduce the new concepts. Consider a piecewise linear continuous curve in the nonnegative
orthant of the 2-dimensional space representing the surface of a 1.5 dimensional terrain
(Fig. 1). The length of the region of interest is L and we assume without loss of generality
that the one-dimensional region is situated between 0 and L . For any point x in the interval
[0,L] let h(x) denote the height of the point x . We assume h is a continuous real-valued
function defined on [0,L]. We also assume h(x) ≥ 0 ∀x ∈ [0,L].

Let T = {(x, h(x)) : x ∈ [0,L]}. We refer to T as the surface of the terrain of interest. T
is the graph of the function h : [0, L] → R+. The region below T , shown as a shaded region
in Fig. 1, is denoted by F , that is, F = {(x, y) : x ∈ [0, L] and 0 ≤ y < h(x)}. Let V be the
visible region above T , i.e. V = {(x, y) : x ∈ [0, L] and y ≥ h(x)}. We note that T belongs
to the visible region by definition.

We confine the discussion that follows to the half-strip H(0, L) in the nonnegative orthant
defined by the vertical lines passing through (0,0) and (L , 0) (Fig. 1). The line-of-sight
originating at a point in a given direction is the set of points of the form x+λd, λ ≥ 0, where
x is a point inR2, d is a nonzero direction inR2 and λ is a nonnegative real. Given the visible
region V , region F , and the surface T that forms the border between V and F , let x1 and
x2 in R

2 be two points in the half-strip H(0, L). Consider the line segment LS(x1, x2) ≡
{x1 + λ(x2 − x1) : λ ∈ [0, 1]} connecting the points x1 and x2. We say x2 is visible from x1
if LS(x1, x2) is a subset of V , and x2 is not visible from x1 if LS(x1, x2) ∩ F 	= ∅.

Visibility is a symmetric concept, i.e. if x2 is visible from x1 then x1 is visible from x2.
We define a visibility function as follows,

v(x1, x2) = v(x2, x1) =
{
1 if LS (x1, x2) ⊆ V
0 otherwise

We also say that if v(x1, x2) = 1 then x1 guards/covers x2. Let x be a point on T andVS(x)
denote the “viewshed” of x , i.e. V S(x) = {y ∈ T : v(x, y) = 1}. Let X = {x1, . . . , xk} be a
set of points on T . X guards or covers T if every point on T is guarded by at least one of the
guards located at points in X. We express guarding of a point ‘y’ by a set X by the function;
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Fig. 2 Convex points and
convex regions on T
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In TGP, we seek to find the minimum cardinality set X whose elements belong to T such
that X guards T . Formally;

(TGP)

Minimize |X|
Subject to V I S (y,X) = 1,∀ y ∈ T

X ⊆ T

3.2 Additional definitions and notation

Vertex: A vertex is a point where h(x) changes slope. Endpoints (0, h(0)) and (L , h(L))

are also considered as vertices. The number of vertices is given by ‘n’. The leftmost ver-
tex (0, h(0)) is the first and (L , h(L)) is the nth vertex. Given ‘n’ vertices, the terrain is
constructed by connecting vertices by line segments.

Edge: The line segment between vertex i and i + 1, i = 1, . . . , n − 1. The number of
edges is n − 1.

Convex region: A convex portion of T (i.e. of h(x)) which is composed of maximally
connected edges. We denote the set of convex regions by ‘CR.’

Convex point: A vertex where two convex regions intersect. We also consider the two
end points of T , i.e. ((0, h(0) and (L , h(L)), as convex points. We denote the set of convex
points by ‘C’, |C| = k. ((0, h(0)) is the first convex point and (L , h(L)) is the kth convex
point. The convex region between the i th and (i +1)st convex points is the i th convex region.
Obviously, if k is the number of convex points then the number of convex regions is k−1 and
vice versa. There are nine vertices, eight edges, five convex points and four convex regions
in Fig. 2. The part of T that is between convex points 1 and 2 is a convex region which has 3
edges. The other three convex regions in the figure lie between convex points 2 and 3, 3 and
4, and 4 and 5.

QI J : A point p on T “partially covers” convex region M if only a proper subset of M is
covered by p and “fully covers” M if M ⊆ V S(p). For our purposes, we desire to find points
on T that fully cover convex regions to their left and right. One set of such points is the set of
convex points. To find other points, we define a set QI J , which consists of nonconvex points
that fully cover as many convex regions as possible to their left and right (Fig. 3).

For the terrain in Fig. 3, QI J is the thick line segment in convex region 3. Points in QI J

fully cover convex regions 1 and 2 to their left and regions 4 and 5 to their right. For a convex
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Fig. 3 Illustration of a QI J

region M , CS(M) = {y ∈ T : v(y, x) = 1 for all x ∈ M}, i.e. CS(M) is the set of points on
T that are covered by all points in convex region M . Let M and N be two convex regions.
It is true that if N ⊆ CS(M) then M ⊆ CS(N ) due to the symmetric property of visibility.
For the formal definition of this set, let I and J be index sets that are used to index convex
regions. For i ∈ I , Mi is the i th convex region in CR. Let LM and RM denote the left and
right convex point of the convex region M respectively. xc(p) denotes the x-coordinate of a
point ‘p’ ∈ T . Similarly, yc(p) denotes the y-coordinate of p. We give the formal definition
of QI J as follows,

QI J = {p : ∃ convex regions Mi , i ∈ I and N j , j ∈ J s.t. I 	= ∅, J 	= ∅,CS(Mi ) ∩
CS(N j )∩C = ∅, p ∈ CS(Mi )∩CS(N j )∀i ∈ I, j ∈ J, xc(LN j ) > xc(p) > xc(RMi )∀i ∈
I and j ∈ J, I ∪ J is maximal}. In the definition we assume, without loss of generality, that
convex regions indexed by I are to the left and those indexed by J are to the right of the points
in QI J . For the terrain in Fig. 3, I = {1, 2} and J = {4, 5}. We choose the leftmost point in
QI J ’s (for our purposes any points in QI J would work) to form a set DP = {p : p ∈ QI J

for some index sets I and J, xc (p) < xc(q)∀ q ∈ QI J s.t. p 	= q}. We call an element of
DP a “dip point.” LetCP = C ∪DP .CP is the set of “critical points” containing all convex
points and dip points.

4 A finite dominating set of critical points

Observe that a guard located at a convex point can guard the convex regions on both sides.
We can obtain a feasible solution to TGP by placing a guard at each convex point where
two convex regions meet such that the first guard covers the first and second convex regions,

second guard covers the third and fourth regions and so on, with a total number of
⌈

(k−1)
2

⌉
guards. Let ‘p’ be a point on T . L p is defined to be the left convex point in a convex region in
which p exists. Rp denotes similarly the right convex point. Hp is the hyperplane represented
by the vertical line that passes through p. H−

p and H+
p denote the halfspaces to the left and

right of Hp respectively that consist of points on T . For x ∈ T , if x ∈ H−
p or H+

p we assume
x 	= p.

Lemma 1 Let p be a nonconvex point on T . Then V S(p) ∩ H+
p ⊆ V S(L p) ∩ H+

p and
V S(p) ∩ H−

p ⊆ V S(Rp) ∩ H−
p . In words, L p covers all points that p covers in H+

p and Rp

covers all points that p covers in H−
p .

Proof Let q be a point in H+
p such that v(p, q) = 1. Since h(x) is convex in the convex

region where L p and p exist, the line segment between L p and q,LS(L p, q), lies on or above
LS(p, q) in [xc(L p), xc(q)] (see Fig. 4). This implies that if q is visible from p then it is
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Fig. 5 a xc(x̃) > xc(RN ), b xc(x̃) < xc(LN )

visible from L p . Since q is arbitrary the result follows. The same holds true for the other
case ��

Theorem 1 proves that if a nonconvex point covers only a proper subset of a convex region
then, at an optimal solution, that part will be covered by another optimal point. Let x∗ be a
point in an optimal solution X∗. We define OG(x∗) as the set of points on T guarded only
by x∗ and not by other points in X∗, that is, OG(x∗) = {p ∈ T : v(p, x∗) = 1, v(p, x) =
0 for x 	= x∗, x ∈ X∗}.
Theorem 1 Let x∗ be a nonconvex point in an optimal solution X∗ and let x∗ be in convex
region M. Suppose that OG(x∗) ∩ H+

RM
	= ∅ and OG(x∗) ∩ H−

LM
	= ∅. Suppose x∗ covers

a proper subset S of a convex region N, i.e. S ⊆ V S(x∗) ∩ N and ∃ u ∈ N such that
u /∈ V S(x∗). Then it is true that S ∩ OG(x∗) = ∅.
Proof Suppose to the contrary that S ∩ OG(x∗) 	= ∅. Suppose, without loss of generality,
that N ⊆ H−

LM
. Let p ∈ S ∩ OG(x∗) ∩ H−

LM
and t ∈ OG(x∗) ∩ H+

RM
. Let u be the first

vertex in N , which is to the right of p and is not guarded by x∗. Note that such a vertex
exists since otherwise N would be fully covered by x∗. u must be covered by another optimal
point x̃ . x̃ can not be in N since x̃ would also cover p. If xc(x̃) > xc(RN ) then since N
is convex the assumption that x̃ covers u implies x̃ also covers p, a contradiction (Fig. 5
(a)). We note that, for a nonconvex point x∗, the LS(p, t) can not be blocked by the terrain.
If xc(x̃) < xc(LN ) then since LS(x̃, u) and LS(p, t) are not blocked by the terrain, ‘order
claim’ discussed in Ben-Moshe et al. (2007) implies LS(x̃, t) is not blocked either, which
contradicts t ∈ OG(x∗) (Fig. 5b) ��

Theorem 2 is the main result of this paper. It states that it suffices to seek an optimal
solution to an instance of TGP among the critical points.
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Theorem 2 The set of critical points CP is a finite dominating set. In other words, there
exists an optimal solution to TGP whose elements consist of critical points.

Proof Let X∗ be an optimal solution to an instance of TGP and x∗ be a noncritical optimal
point in X∗. We assume that x∗ is in convex region M . If T is convex, i.e h(x) is convex in
[0, L], then optimal solution value is 1 since any point on T guards T . Hence, convex point
Lx∗ (or Rx∗) is also an optimal point and the claim follows. In the following, we assume T
is not convex.

Case (I) OG(x∗) ⊆ H+
RM

∪ M (or OG(x∗) ⊆ H−
LM

∪ M): then Lx∗ (or Rx∗) can replace
x∗ in the optimal solution due to Lemma 1.

Case (II) OG(x∗) ∩ H+
RM

	= ∅ and OG(x∗) ∩ H−
LM

	= ∅.
Case (II)(a) There are fully covered convex regions in both H+

RM
and H−

LM
by x∗: Since

x∗ is not a critical point it is not a convex point. If there is a convex point x̄ such that x̄ fully
covers all convex regions that x∗ fully covers then x̄ can replace x∗ in the optimal solution.
To see this, let N be a partially covered convex region in H+

RM
(or in H−

LM
) by x∗ and S

be the covered part of N . Theorem 1 implies that S can not be in OG(x∗). This implies
OG(x∗) consist only of convex regions fully covered by x∗, which in turn implies x̃ can
replace x∗ in the optimal solution. If there is no convex point that covers the convex regions
x∗ covers then it must be true that x∗ ∈ QI J for some index sets I and J by definition of
QI J . But this implies there is a point x̃ in DP such that xc(x̃) < xc(x∗) and x̃ ∈ QI J by
construction of DP. A reasoning similar to the one discussed above shows that x̃ can replace
x∗.

Case (II) (b) In at least one of H+
RM

and H−
LM

, all convex regions in which there are points
covered by x∗ are partially covered by x∗: Suppose, without loss of generality, that all convex
regions partially covered by x∗ is in H+

RM
. As in case (II) (a), let N be a convex region in H+

RM
and S be the proper subset of N that is covered by x∗. Theorem1 implies that S∩OG(x∗) = ∅.
Since this is true for all convex regions in H+

RM
, it contradicts the standing assumption that

OG(x∗) ∩ H+
RM

	= ∅. ��

5 Construction of a witness set

Let CP = {cp1, . . . cpm} denote the set of critical points and E = {e1, . . . , en−1} denote the
set of edges. A critical point may cover all of an edge, only a proper subset of an edge or can
not see the edge. If only a proper subset of an edge is covered by a convex point then that
part of the edge is considered an element of the witness set that needs guarding. However,
if a subset of an edge is covered by a dip point then that part of the edge is not considered
an element of the witness set since theorem 1 implies that in case a nonconvex point covers
only a proper subset of a convex region that subset of the convex region will also be guarded
by another guard in an optimal solution. If no proper subset of an edge is covered then that
edge, as a whole, is considered an element of the witness set.

Let di j be the proper subset of ei visible from convex point c j , if one exists, such that j is
not one of the two convex points within the convex region containing ei . Let d ′

i = ei\⋃
j di j .

We note that d ′
i is covered by the two convex points on both ends of the convex region in

which ei exists. If guards on T cover di j and d ′
i , for i = 1, . . ., n − 1, j = 1, . . . , k and/or

each edge then T is covered. If, for an edge ‘i’, it is true that di j ⊂ dik for some convex
points ‘ j’ and ‘k’ then we can further eliminate di j from consideration as a line segment to
be covered since, at optimality, guarding of dik implies guarding of di j . We renumber each
remaining line segment (and possibly the edges) to create the witness set.
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Let D = {d1, . . . , dl} be the final set of line segments to be covered and A be the visibility
matrix whose rows correspond to the elements of D and coloumns correspond to the critical
points. Let ai j denote the value at the i th row and the j th coloumn of A. Then ai j =
1 if di is visible by the critical point cp j and 0 otherwise. Let x j be a binary decision
variable corresponding to cp j . x j is 1 if cp j is in the optimal solution and 0 otherwise. ZOIP
formulation (TGPZOIP) is given below;

(TGPZOIP)

Minimize
∑
j∈CP

x j

Subject to
∑
j∈CP

ai j x j ≥ 1,∀i = 1, . . . , l

x j ∈ {0, 1}, j = 1, . . . ,m

We illustrate the approach with an example. Consider the terrain in Fig. 6. There are
18 vertices, 17 edges, 9 convex points and one dip point (with a total of 10 critical points)
on the terrain. Since d13 ⊂ d14, d72 ⊂ d71, d13,10 ⊂ d13,9, d13,5 ⊂ d13,4 we need not
consider d13, d72, d13,10, and d13,5 as elements of the witness set to be covered (Fig. 6a).
After eliminating these redundant segments there are 23 line segments that need to be covered
(Fig. 6b). Thus,Awill have 23 rows and 10 coloumns. 7th critical point, which is a dip point,
does not see the line segments from 1 to 10 and see all line segments from 11 to 23. Then,
ai7 = 0 for i=1,…,10 and ai7 = 1 for i=11,…,23.

Lemma 2 The number of dip points is bounded by k − 1.

Proof There can be at most one dip point in a convex region by definition of a dip point.
Since there are k − 1 convex regions the number of dip points is bounded by k − 1. ��

Total number of constraints, i.e. the size of the witness set, is O(n) since on each edge
there are at most three line segments (after elimination). The number of variables, i.e. the
size of the FDS, is the number of convex points plus the number of dip points, which is
O(k).

Convex points and convex regions can be found in O(n) time. An edge ei is visible from
convex point c j if both vertices of the edge are visible to c j , which is computed in O(n). If
only a part of ei (di j ) is visible from a convex point c j then this implies that the line-of-sight
from c j to ei is blocked by another convex point ck . Thus, di j can be found in O(n) as well.
When the same operation is done for all edges and for all convex points the total effort to
find the visible regions on edges takes O(kn2) time.

Whether a vertex vi can see another vertex v j can be computed in O(n) by check-
ing the intersection of the line-of-sight between vi and v j and the edges of the terrain.
Let M and N be two convex regions such that xc(RM ) < xc(LN ). Then N is in
CS(M) if both the first vertex to the left of RM and RM see both LN and the first ver-
tex to the right of LN , which can be computed in O(n) by the preceding argument. To
find dip points, we look for maximal number of convex regions such that their inter-
section is nonempty. Since for each convex region M there are O(k) convex regions in
CS(M) and O(n) edge intersections are needed to find their intersection, the effort to
find a dip point is O(kn). Finding the entries of A requires checking whether the line
segments in the witness set are visible to the critical points. For each critical point this
amounts to O(n) time and since there are O(k) critical points the total time is O(kn).
Hence, the overall effort to find the critical points and to create the visibility matrix A is
O(kn2).
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Fig. 6 a The visible parts of edges by convex points, b the final set of line segments that need to be covered

6 Conclusions and directions for future research

We have proved the existence of a finite dominating set and a witness set of cardinalities
O(k) and O(n) respectively. Since, in the worst case n could be as large as 2k , our results
eliminate a large number of decision variables in the ZOIP formulation given in Friedrichs
et al. (2014). Also, the witness set constructed in this paper is smaller than found in Ben-
Moshe et al. (2007). Whether a witness set of cardinality O(k) can be constructed is a topic
for further research.

Closely related to TGP is the 2.5D terrain guarding problem and this problem is generally
approached by restricting the guard locations either to vertices and edges or only to vertices
of the triangles forming the terrain (Bose et al. 1997; Eidenbenz 2002). However, to the best
of our knowledge, since the set of vertices and/or edges has not been proved to be an FDS,
the solutions obtained through models which locate minimum number of guards on vertices
and/or edges are only an approximation for the general problem. Therefore, it is still an open
question whether any dominating set exists, or in that respect, what the optimal solution is
for 2.5D terrain guarding problem. We believe our results in this paper may be useful for
obtaining an FDS for the 2.5D terrain guarding problem.
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