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Abstract In this paper, we introduce an automated plan-
ner for deterministic, concurrent domains, formulated as a
graph-based theorem prover for a propositional fragment of
intuitionistic linear logic, relying on the previously estab-
lished connection between intuitionistic linear logic and
planning problems. The new graph-based theorem prover
we introduce improves planning performance by reducing
proof permutations that are irrelevant to planning problems
particularly in the presence of large numbers of objects
and agents with identical properties (e.g. robots within a
swarm, or parts in a large factory). We first present our
graph-based automated planner, the Linear Logic Graph
Planner (LinGraph). Subsequently we illustrate its applica-
tion for planning within a concurrent manufacturing domain
and provide comparisons with four existing automated plan-
ners, BlackBox, Symba-2, Metis and the Temporal Fast
Downward (TFD), covering a wide range of state-of-the-
art automated planning techniques and implementations.
We show that even though LinGraph does not rely on any
heuristics, it still outperforms these systems for concur-
rent domains with large numbers of identical objects and
agents. These gains persist even when existing methods on
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symmetry reduction and numerical fluents are used, with
LinGraph capable of handling problems with thousands of
objects. Following these results, we also show that plan con-
struction with LinGraph is equivalent to multiset rewriting
systems, formally relating LinGraph to intuitionistic linear
logic.
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1 Introduction

Task planning refers to the problem of finding a sequence
of actions, also called a plan, that takes an agent from
a set of possible initial states to a particular goal state,
using suitably chosen formalizations of all components.
This framework assumes a discretized view of time, where
physical actions are summarized by pre-conditions and
effects, providing a discrete abstraction of system behavior
in between [21, 53]. This discrete interface between con-
tinuous, “low-level” behaviors and their “high-level” com-
positions through discrete sequencing of actions has been
at the basis of numerous languages and methods, including
STRIPS and PDDL. In its general form, even for propo-
sitional representations of state, this classical view of task
planning is PSPACE-complete [6]. Consequently, substan-
tial literature is devoted to exploring practical restrictions to
the general problem by reducing expressivity and providing
heuristics for plan search.

In this context, our main contribution in this paper
is the design, implementation and characterization of a
graph-based method for automated generation of plans for
deterministic, concurrent planning problems based on their
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encoding within a propositional fragment of Intuitionistic
Linear Logic (ILL) [23]. In doing so, we rely on the pre-
viously established connection between AI planning and
theorem proving for intuitionistic linear logic [8, 11, 30,
38], but introduce new ideas to achieve a practically feasible
planner. Our automated planner, LinGraph, is particularly
suitable for concurrent domains with large numbers of
functionally identical objects, that present difficult chal-
lenges for existing planners due to the presence of irrelevant
plan permutations and substantial concurrency. LinGraph is
inspired from GraphPlan [3] and maps a planning problem
into a graph encoding states, actions, goals and associated
constraints, wherein plan search corresponds to finding a
subgraph connecting all initial states to all goals. We for-
mulate and perform this search as a Constraint Satisfaction
Problem [32] on integer equalities.

Our approach is similar to the idea of using
bagged representations [50] but supports an automated
mechanism to identify object multiplicities and uses
constraints to encode plan dependencies. It also bears sim-
ilarities to symmetry reduction techniques [1, 15, 48] but
does not impose any explicit symmetry constraints on ini-
tial and goal states and supports concurrency. Recent work
on capturing object equivalence through numerical fluents
is also closely related to our approach [20, 27]. Among
important differences is LinGraph’s connection to intuition-
istic linear logic and its multiset rewriting semantics as a
representational basis to eliminate the need to pre-specify
all objects that the plan might need, as well as its automated
exploitation of symmetries in problems with these char-
acteristics. We illustrate these properties and characterize
the performance of LinGraph through systematic com-
parisons with modern, state-of-the-art automated planners
incorporating a wide range of techniques and show that it
outperforms existing planners for domains featuring large
numbers of functionally identical objects.

2 Related work

2.1 Automated planning systems

Automated planning has long been recognized as a cen-
tral component in the synthesis of autonomous agents. In
this paper, we focus on classical planning, which uses
a deterministic and discrete world model of states and
actions, seeking to find an appropriate ordering of actions
to bring a system from an initial state to a desired final
state [21]. In this context, domain-independent methods use
separate specifications for both the domain and a specific
problem given through a sufficiently expressive language
[46]. STRIPS is commonly used for such specifications,

succeeded by the more general PDDL language, used by the
International Planning Competition (IPC) [10].

Variants of classical planning include sequential prob-
lems, wherein the planner seeks to find a totally ordered
sequence of actions for a single agent, and temporal prob-
lems, wherein concurrent execution of actions need to be
considered to optimize plan duration, or make-span. Ear-
lier methods focusing on the latter set of problems include
Partial-Order Planning (POP) [43] and its extensions, which
formulated the search problem in plan-space rather than
the state space to reduce the complexity of plan search. In
contrast, GraphPlan [3] performs search in the state space,
while encoding concurrent solutions as a layered graph.

These earlier approaches performed uninformed explo-
ration of the state or plan spaces, limiting feasible prob-
lem sizes but ensuring optimality in either plan length for
sequential problems, or make-span for concurrent problems.
A more recent idea, used by successful planners such as
the SatPlan and Blackbox [37], has been to encode plan-
ning problems as instances of boolean satisfiability (SAT)
[36, 52], benefiting from existing, efficient algorithms for
solving SAT problems.

On the other hand, many modern planners rely on heuris-
tics to guide plan search. Substantial recent effort has been
devoted to finding effective, efficient domain-independent
and preferably admissible heuristics for optimality [4, 21].
In general, such heuristics rely on a relaxation of the origi-
nal problem, allowing approximate estimation of remaining
plan cost. Among these are additive and max heuristics [5,
56], as well as those relying on explicit computation of
relaxed plans. For example, the Fast-Forward (FF) plan-
ner uses a GraphPlan-like structure on a relaxed problem
to compute the heuristic, also using the concept of help-
ful actions [28]. More recently, planners such as the Fast
Downward [24] and LAMA [49] systems improve on the
performance of FF by relying on landmarks [29] among
other improvements to guide the search. Other examples
include the Madagascar planner [51], which sequentially
extracts concurrent actions to find feasible plans.

Most of these heuristic methods, however, focus on
sequential problems. Explicit consideration of concurrency
during plan search requires the ability to explore sets of par-
allel actions in a single step, combinatorially increasing the
branching factor for state-based search. Partial-order plan-
ning addresses this problem by switching to search in plan
space but defining heuristics in this alternative formulation
is much more challenging. A commonly used alternative is
to parallelize an initially constructed sequential plan by con-
sidering ordering constraints between actions. However, this
often impairs optimality, makes it difficult to discover and
exploit symmetries within a planning problem and presents
additional challenges associated with required parallelism
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as opposed to action commutativity [12]. Recent planners
with temporal support include CPT [59], which uses Con-
straint Programming to reduce the search space and Tem-
poral Fast-Downward [18, 25], which uses context-sensitive
heuristics.

Intuitionistic linear logic was previously shown to be a suit-
able representational language for planning problems [30,
31, 33, 38]. Our work relies on these results, but proposes a
new, graph-based algorithm for constructing proofs in a suit-
able fragment of intuitionistic linear logic that reduces the
search space by eliminating irrelevantly permuted uses of
identical resources within the planning problem. LinGraph
structures its plan search as constructing successive “layers”
of a graph, whose nodes represent multisets of linear logic
atoms encoding objects and their states, combining equiv-
alent instances of functionally identical objects and their
states. Similar to the use of numerical fluents [20], Lin-
Graph keeps track of node multiplicities as positive integers,
imposing equality constraints to capture dependencies.

LinGraph’s aggregation of functionally identical objects
in a planning problem is also similar in spirit to bagged
representations [50]. LinGraph, however, provides a fully
automated mechanism to this end that can identify object
equivalence even in intermediate states. Problems associ-
ated with such functionally equivalent but distinct objects in
planning problems is also addressed by symmetry reduction
techniques [1, 15, 19, 48]. These methods, however, focus
primarily on sequential A* search. Our approach differs in
its native support for concurrency, as well as its encoding of
symmetries as part of the representation rather than as state
equivalences. As we show in subsequent sections, this turns
out to be very effective for problem domains wherein large
numbers of functionally identical objects are manipulated,
created and destroyed. As we show in our experimental
results, even recent implementations of automated symme-
try reduction techniques in modern planners such as Metis
[1] do not achieve comparable reductions in the search space
for these domains.

2.2 Automated reasoning and linear logic

The use of theorem proving for planning has not received
much recent attention due to the computational complex-
ity of proof search beyond the complexity of the planning
problem itself. Reasons for this include the monotonicity
of classical logic as well as the frame problem [39, 44].
In this context, linear logic [23] provides a strong seman-
tic foundation to represent planning problems, addressing
some of these problems with its interpretation of assump-
tions as consumable resources. A number of researchers
have recognized these advantages of intuitionistic linear
logic, exploring its connections to AI planning problems

both in terms of expressivity [14, 30, 38] and concurrency
[31]. Logic programming and answer sets have also shown
the utility of nonmonotonic reasoning for planning [13, 16,
40, 45].

The use of linear logic for planning problems involves
using simultaneous conjunction, linear implication and dis-
junction to respectively represent state, actions and nonde-
terministic effects [8, 42], with Horn fragments to address
undecidability problems [33]. Certain inherent strengths of
linear logic, such as its native support for concurrency have
also been explored in the context of planning problems [31].
The suitability of using linear logic to represent and solve
planning problems is also suggested by previous uses of
Petri Nets for the same purpose [26, 55]. In this regard,
our method has similarities to the PetriPlan system [55],
which formulates a reachability query in an acyclic Petri
Net and uses Integer Programming to find a solution. Nev-
ertheless, practical deployment of these ideas for automated
planners has been elusive due to the persistent difficulty of
constructing efficient theorem provers for linear logic.

An alternative approach is to use model-based reasoning
[9], wherein plan construction relies on searching through
a semantic structure. In addition to SatPlan, the use of Lin-
ear Temporal Logic for planning is also among successful
applications of this idea [2]. Unfortunately, strict reliance on
temporal logic and model checking decreases expressivity
and eliminates the possibility of deductive reasoning.

An interesting set of planning problems, for which Lin-
Graph will be particularly well suited, is characterized by
the presence of multiple, functionally identical objects [34].
Examples include job scheduling with multiple CPUs, coor-
dination and task planning for swarm robots or parallel
assembly lines. Even though linear logic can natively rep-
resent object multiplicity, existing theorem provers for it
do not yet offer effective means for detecting such sym-
metries to be readily applicable for automated planning.
In order to illustrate the advantages of LinGraph on such
problems, we introduce a new manufacturing domain in
Section 4, in which different types of manipulators with
multiple functionally identical instances operate on a possi-
bly large collections of components of different types. Our
results in Section 6 compare the effectiveness of LinGraph
on these concurrent domains to existing planners.

3 LinGraph: the language

In this section, we introduce the multiplicative exponential
fragment of intuitionistic propositional linear logic we use
as a basis for LinGraph, which we call the Linear Graph
Planning Logic (LGPL).

Formally, LGPL syntax is defined by the grammar
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Resource formulas: FR ::= p | (p ⊗ FR)

Action formulas: FA ::= (FR � FR)

Program formulas: FP ::= !FA | FR

Goal formulas: FG ::= FR | (FP � FG)

where p denotes atomic resources, FR denotes single-use
linear formulae representing states, FA denotes implicative
formulae representing actions, FP captures program formu-
lae that can appear as assumptions and FG denotes goal
formulae.

This grammar incorporates two multiplicative linear con-
nectives, simultaneous conjunction ⊗ and linear implica-
tion �, which allow simple but expressive modeling of
dynamic components of the states. Even though additional
linear connectives can increase expressivity, they are not
necessary to express STRIPS problems. Consequently, for
simplicity and efficiency, we focus on this small fragment of
linear logic to develop LinGraph. The only additional com-
ponent in LGPL other than the multiplicative connectives is
the modal use of the “bang” operator, !, which recovers the
possibility of using action definitions more than once.

For task planning, simultaneous conjunction (⊗) is used
to aggregate components of system state at a particu-
lar time instant, whereas linear implication (�) is used
to model actions, consuming precondition resources and
creating postcondition (effect) resources. In LGPL, linear
implication is also used within goal formulae to define ini-
tial states and actions by introducing them as assumptions.
More specifically, the formula

FP 1 � (... � (FP n � FG)...) (1)

corresponds to the the planning problem where resource
and action formulae among FP 1 through FP n respectively
define the initial state and available actions.

4 A robotic assembly planning domain

Automated planner implementations are often character-
ized based on their ability to solve standardized planning
problems [10]. These domains, however, focus on planning
the actions of a single agent, generating either sequential
or temporal plans without explicit consideration of object
equivalence. LinGraph is not designed to outperform exist-
ing approaches in such small domains, but targets a less
frequently studied class of problems with large numbers of
functionally equivalent objects. In this section, we intro-
duce a new class of planning domains that possess these
properties to compare the performance of LinGraph to
state-of-the-art planners.

The assembly planning domain we introduce consists
of multiple types of components Ci , manipulators Mi and
products Pi . Instances of each type of object are assumed

to be identical in their functionality and properties despite
being physically distinct. In this context, manipulators are
assumed to operate on components to generate products as
a result. An overview of these building blocks is given in
Fig. 1.

Since a particular assembly problem will require dif-
ferent operational sequences on components and products,
each problem will have its own set of actions. For example,
a simple example domain might involve a single compo-
nent type C, a single manipulator type M and a single
product type P , with an action MakeP transforming a com-
ponent C into a product P . Another, more complex example
might have different types of components, products and
manipulators and different actions for each manipulator. An
important aspect of this domain will be the possibility of
having a large number of these building blocks present in a
particular scenario. For example, a large factory might have
hundreds of manipulator robots, all of which considered as
independent resources in constructing a plan. This aspect
of our example domain will help illustrate distinguishing
advantages of the LinGraph planner.

LGPL allows native encoding of STRIPS domains by
using linear resources to represent components of the
dynamic state and implicative formulas to represent actions
[14]. Suppose, for example, that a robotic assembly problem
has a single type of manipulator, M , that takes a component
of type C and transforms it into a product of type P . This
action can be represented by

MakeP := !(C ⊗ M � M ⊗ P) . (2)

Here, MakeP is the name of the action, and the implicative
formula captures the requirement that a component C and a
manipulator M are available, resulting in the production of
a product P and keeping the manipulator M available for
later use. Linearity of LGPL ensures that an instance of C

is consumed and a new instance of P is generated. Unlike
STRIPS, lack of monotonicity in LGPL requires that action
formulas reintroduce resources that are required but are left
unaffected.

The initial state for LGPL encodings of planning prob-
lems are given as a resource formula FR0. For example, the
example above with three components and two manipula-
tors can be encoded as

FR0 := (C ⊗ C ⊗ C ⊗ M ⊗ M) . (3)

Fig. 1 Object types and notation for the robotic assembly planning
domain
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Fig. 2 Algorithm for
constructing a LinGraph
instance

For brevity, we will abbreviate multiple occurrences of
resources with an “exponent” notation

(FR)n := (FR ⊗ ... ⊗ FR)
︸ ︷︷ ︸

n times

. (4)

The example initial state above now takes the form FR0 =
(C3 ⊗ M2). Such automated aggregation of identical
resources is an important novelty of LinGraph.

The goal state for a problem can also be encoded as a
resource formula in LGPL. For instance, a goal of producing
three components would take the form

FGf := (P 3 ⊗ M2) . (5)

Put together, the planning problem for this example corre-
sponds to finding a proof for the goal formula

FG = !(C⊗M � P ⊗M) � (C3 ⊗M2) � (P 3 ⊗M2) .

(6)

Every proof of this formula corresponds to a valid plan,
consisting of a partially ordered application of multiple
instances of MakeP. This mapping between proofs and
plans is in general not injective, with possibly multiple
proofs corresponding to the same partial ordering of actions.
In this paper, we focus on only the existence of plans, and
leave proof equivalence for future work.

5 LinGraph: plan construction

5.1 Planning with LinGraph

LinGraph is structurally similar to GraphPlan [3] in that it
incrementally constructs an approximate reachability graph
consisting of alternating state and action layers. In Lin-
Graph, state nodes encode linear resources, together with
their multiplicities, guaranteed to be uniquely reachable

from the initial states. LinGraph also keeps separate track
of multiple nodes associated with the same proposition
that possibly have different multiplicities and constraint
structures. In this fashion, concurrent application of con-
flicting actions can be prevented through the use of integer
inequality constraints that generalize the binary mutexes
of GraphPlan. Overall, careful maintenance of nodes, their
multiplicities and constraints enables LinGraph to find plans
that minimize plan make-span, even in the presence of large
numbers of functionally identical resources.

Unlike GraphPlan, LinGraph is closer to a forward chain-
ing approach since even a partially constructed LinGraph
captures all possible applications of actions. Consequently,
once a propositional state layer that matches the goals and
a valid solution for the cumulative set of constraints are
found, plan extraction is guaranteed to succeed and an addi-
tional backchaining search is not required. This aspect of
LinGraph is illustrated by the examples in Section 5.1 (see,
for example, Fig. 8), and justified by its formal connection
to multiset rewriting systems described in Section 7.

The overall structure of our method for constructing a
LinGraph is shown in Fig. 2. The algorithm starts by initial-
izing nodes in the first layer based on the initial plan state
by decomposing the original LGPL formula into its linear
assumptions (initial state), unrestricted assumptions (action
definitions) and the goal formula (goal state). Subsequently,
goal nodes are also initialized in preparation for the goal
check that attempts to match goal states to nodes of the lat-
est state layer. Our careful maintenance of node constraints
ensures that a successful match yields a valid plan. If no
match is found, the graph is extended by one layer.

In visualizing the construction of the LinGraph, we use
the components illustrated in Fig. 3. In particular, state
nodes are be shown with rounded rectangles, including the
corresponding atomic resource type p, the count n, avail-
able number of resources with this type and a unique label s.

Fig. 3 LinGraph nodes for states, actions and goals
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Nodes in action layers will be shown with circles, showing
the corresponding implicative formula FA, the maximum
number of times n that this action can be used and a unique
action label a. Finally, goal nodes are shown with oval
shapes, showing the corresponding atomic resource type
p, the number of required instances n and a unique goal
label g.

In the rest of the paper, we will use n(si), n(ai) and n(gi)

to denote the number of available instances for state, action
and goal nodes, respectively. We will also use lvl(si) and
lvl(ai) to denote the graph level for state and action nodes,
respectively. Finally, we will use f rm(si), f rm(ai) and
f rm(gi) to denote formulae associated with state, action
and goal nodes, respectively.

5.1.1 LinGraph constraints

LinGraph incorporates constraints on the number of
instances that can be used for each state node, ensuring strict
correspondence between plans extracted from LinGraph and
associated LGPL proofs. Constraints in LinGraph take the
form of integer linear equality and inequality conditions on
the number of instances consumed from each state node,
which we denote by overloading the unique labels si for
state nodes, constrained to be integers in the range 0 ≤
si ≤ n(si). Based on this notation, LinGraph constraint Cj

is formally defined as

Cj :=
N

∑

i=0

αi
j si = βj or Cj :=

N
∑

i=0

αi
j si ≥ γj

where N is the total number of state nodes, αi
j are integer

constraint coefficients and βj , γj are constants. LinGraph
constraints serve two purposes. First, when a match can be
found between the desired goal state encoded by goal nodes,
and the final reachable state encoded by state nodes in the
last level of the LinGraph, constraints are used to ensure
that a corresponding valid LGPL proof can be found with-
out violating linearity properties of the underlying logic.
The second use of LinGraph constraints accompanies graph
expansion, wherein preconditions of available actions are
matched against available state nodes in the last level. Con-
straints are used to prevent the creation of actions whose
preconditions cannot be simultaneously realized, reducing
the size of the LinGraph by. In both cases, we use an exist-
ing constraint solver, Minion, to find a feasible solution to
a set of constraint equations [22], revealing the number of
instances si consumed for all state nodes.

5.1.2 Decomposing the goal and initializing LinGraph

Consider the planning problem encoded by the formula

C2 � M2 �!(C ⊗ M � M ⊗ P) � (P 2 ⊗ M2) . (7)

Parsing of this goal formula allows the identification of lin-
ear resources Δ = {C2, M2}, unrestricted actions Γ =
{C ⊗ M � M ⊗ P } and the goal formula FG = P 2 ⊗ M2,
leading to the LGPL sequent

(C ⊗ M � M ⊗ P); (C2, M2) ⇒ P 2 ⊗ M2 .

The final state is also decomposed into its atomic con-
stituents P 2 and M2 to initialize goal nodes.

Subsequently, initial state nodes si are created in the
first state layer corresponding to each unique type of initial
resource, with n(si) initialized with the total number of such
resources. For the example above, this results in two nodes,
C and M , with two instances available for each as shown in
Fig. 4. Similarly, individual goal nodes are created for each
type of goal resource. In the above example, this results in
two nodes, for types P and M , each having a count of two.
Each new node is assigned a unique label.

LinGraph initialization is completed by adding an equal-
ity constraint for each initial state node, capturing the
requirement that all initial resources must be completely
consumed. For the example above, this results in two con-
straints, s1 = 2 and s2 = 2.

5.1.3 Goal check

Each incremental step in the construction of the LinGraph
checks whether all desired goals can be satisfied with
resources in the very last level, while also satisfying all pre-
viously recorded constraints. To this end, the goal check
goes through each goal node gi and finds all associated state
nodes in the last level lmax of the LinGraph with matching
formulae, defining the set

S[gi] := {

sj | (lvl(sj ) = lmax) ∧ (f rm(sj ) = f rm(gi))
}

.

For each goal, a corresponding constraint is defined, ensur-
ing that an adequate number of states are found to satisfy
the goal, taking the form
⎛

⎝

∑

sj ∈S[gi ]
sj

⎞

⎠ = n(gi) .

Fig. 4 LinGraph instance with initial state and goal nodes for the plan-
ning problem of (7). Initial constraints and the first failed goal check
attempt are also shown
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Recall that the symbol sj is overloaded to both denote the
label for the state node, as well as the number of times
the corresponding resource is used in the final plan. Sub-
sequently, a solver for these constraints together with all
previously accumulated LinGraph constraints is invoked
to find a feasible solution for the number of consumed
instances si for all state nodes within the bounds 0 ≤ si ≤
n(si). By construction, constraints added during initializa-
tion and expansion ensure that this solution corresponds to a
valid LGPL proof and hence a feasible plan (see Section 7).

For our example above, a match is found for g2 with
S[g2] = {s2}, resulting in the constraint s2 = n(g2) = 2.
However, no matches are found for g1, yielding S[g1] = {}
corresponding to an unsatisfiable constraint 0 = n(g1) =
2. This requires the expansion of the LinGraph (see
Section 5.1.4), followed by subsequent creation of addi-
tional constraints (see Section 5.1.5).

5.1.4 LinGraph expansion: creating new nodes

The failure of the goal check step indicates that no feasi-
ble plans exist with the current number of graph levels and
that plans with more steps should be explored. To this end,
the expansion step creates a new LinGraph level, containing
nodes for states reachable by actions consuming resources
in the last level of the existing graph. In the rest of this
section, the last LinGraph level before expansion will be
denoted with k, with the expansion creating the level (k+1).

In order to ensure that the new level includes complete
information on all reachable states, all states in level k are
copied to the level (k + 1) level through special “copy”
actions. Formally, consider a node si in level k. A new copy
action anew is created for this state node with f rm(anew) =
(f rm(si) � f rm(si)) and n(anew) = n(si), connect-
ing to a new state node snew with f rm(snew) = f rm(si)

and n(snew) = n(si). For convenience we will define the
parameterized notation Copy(x) := x � x to denote for-
mulas associated with copy actions in LinGraph illustrations
throughout the rest of the paper, keeping in mind that these
are not explicitly included as actions.

Figure 5 illustrates the expansion of the LinGraph for the
example in Fig. 4 from the first level to the second level.
Both s1 and s2 in the first level, having types C and M , are
linked to two new copy actions a1 and a2, creating two new
state nodes s3 and s4.

Once all state nodes are copied to the new level, the sys-
tem considers possible applications of all available actions
FA ∈ Γ . Consider one such action

FA := e
c1
1 ⊗ ... ⊗ ecm

m � f
d1
1 ⊗ ... ⊗ f dn

n

with atomic preconditions and effects. For each such
action, LinGraph expansion first attempts to match each

Fig. 5 LinGraph expansion example illustrating second level nodes
created both through copying (s3 and s4) as well as the application of
the MakeP action (s5 and s6)

precondition ei to a corresponding state node sei
in level k,

such that lvl(sei
) = k, f rm(sei

) = ei , and n(sei
) ≥ ci . If

nodes satisfying these conditions are found for all precon-
ditions, a new action node anew is created with n(anew) =
minm

i=1(�n(sei
)/ci	)) and f rm(anew) = FA. Subsequently,

new state nodes are created in level k + 1 with fresh labels
snew,j such that lvl(snew,j ) = k + 1, lvl(snew,j ) = fi

and n(snew,j ) = n(anew) ∗ dj with j = 1, ..., n. Figure 5
illustrates the expansion of the LinGraph in Fig. 4.

5.1.5 LinGraph expansion: constraints

In addition to the initial node constraints of Section 5.1.2
and the goal checking constraints of Section 5.1.3, Lin-
Graph makes use of sibling constraints to ensure that the
effects of a single action are used in accordance with
their cardinality in the action definition and dependency
constraints to enforce limitations arising from shared pre-
conditions between actions in the same level.

We first describe sibling constraints created for each
newly created action with two or more different types of
effects. Consider, for instance, an action

FA := e
c1
1 ⊗ ... ⊗ ecm

m � f
d1
1 ⊗ ... ⊗ f dn

n

created during the expansion step from level k to level k + 1
with n > 1. Every instance of this action used within the
final plan will create d1 instances of the resource f1, d2

instances of the resource f2 and so on, all of which must be
consumed by subsequent actions. Assuming that state nodes
s1 through sn are created in level k + 1 after the expan-
sion step, corresponding to the effects f1 through fn for this
action, this requires that s1/d1 = s2/d2 = ... = sn/dn.
Denoting the least common multiple of d1 through dn with
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lcm(d1, ..., dn), this expands into n − 1 integer equality
constraints

lcm(d1, ..., dn)s1/d1 = lcm(d1, ..., dn)s2/d2

...

lcm(d1, ..., dn)sn−1/dn−1 = lcm(d1, ..., dn)sn/dn

added to the current set of LinGraph constraints. For the
example in Fig. 5, this results in the addition of the con-
straint s5 = s6 as shown in Fig. 6.

In contrast, dependency constraints are introduced fol-
lowing the expansion step from level k to level k+1 between
effects of actions and their common preconditions in level
k. Suppose that a state node scm with f rm(scm) = ecm in
level k appears as a precondition with different cardinal-
ities to multiple actions (possibly including copy actions)
a1, ..., aj , taking the form

f rm(a1) = ... ⊗ ec1
cm ⊗ ... � f

d1,1
1,1 ⊗ ... ⊗ f

d1,n1
1,n1

...

f rm(aj ) = ... ⊗ e
cj
cm ⊗ ... � f

dj,1
j,1 ⊗ ... ⊗ f

dj,nj

j,nj

The expansion step will then have created new state nodes
sr,t in level k + 1 corresponding to the effects fr,t of these
actions with r = 1, ..., j and t = 1, ..., nr . However, there
are only n(scm) instances available for the node scm, mean-
ing that only a certain subset of these actions can be used
in the final proof. A constraint must be introduced to ensure
that these state nodes in level k + 1 are used no more or less
than what is allowed by the availability of the state node scm
in level k. Since sibling constraints described above ensure
consistency of sr,1 through sr,nr in level k + 1, it is suffi-
cient to impose the dependency constraint on the first effect
node sr,1 for each action. This dependency constraint for
scm hence takes the form

∑j

r=1 cr
sr,1
dr,1

= scm which can be
transformed into the equality

j
∑

r=1

cr

lcm(d1,1, ..., dj,1)

dr,1
sr,1 = lcm(d1,1, ..., dj,1)scm

Satisfaction of this constraint ensures that the state node scm
is used within its allowable limits.

In the example of Fig. 5, the state node s1 is shared by
a1 and a3, and the state node s2 is shared by a2 and a3.
These dependencies result in the creation of the constraints
s3 +s5 = s1 and s4 +s5 = s2 as shown in the final LinGraph
of Fig. 6.

Having created both the sibling and dependency con-
straints for newly created state nodes in level k + 1, our
algorithm proceeds to perform another goal check. To this
end, new goal check constraints are created as s5 = 2,
s4 + s6 = 2 and s3 = 0 as shown in Fig. 6. In this case, a
valid solution is found as

s1 = 2, s2 = 2, s3 = 0, s4 = 0, s5 = 2, s6 = 2 , (8)

corresponding to a valid solution for the planning problem
of (7).

5.1.6 LinGraph expansion: pruning actions

As described in Section 5.1.5, the expansion step exhaus-
tively explores all possible matches for the preconditions
of an action to state nodes in the last level of the Lin-
Graph. This is one of the primary sources of computational
complexity in the LinGraph planner, corresponding to the
nondeterminism for action selection also inherent to proof
search for linear logic. In this section, we introduce two
mechanisms to prevent instantiating actions that are either
redundant, or guaranteed to be inapplicable. These mech-
anisms reduce the size of the LinGraph, and substantially
increase the performance of plan search. Suppose that an
action

FA := e
c1
1 ⊗ ... ⊗ ecm

m � f
d1
1 ⊗ ... ⊗ f dn

n

is being considered for expansion and a particular set of
matching nodes sei

have been identified in level k. If all pre-
conditions, sei

, have been created as effects of copy actions
in level k − 1, we prevent the creation of a new action since

Fig. 6 Final state of the
LinGraph for the planning
problem of (7) with all goals
satisfied
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Fig. 7 LinGraph expansion step
checking for feasibility of a new
instance of the MakeP action
through action constraints

all nodes sei
have, by construction, identical corresponding

nodes in level k, which would have matched the precondi-
tions of FA, thereby creating its effects. Introducing another
action node would be fully redundant, adding no new plan
alternatives.

The second mechanism involves locally checking
whether simultaneous use of all preconditions for a sin-
gle application of an action is feasible under the current
set of constraints. However, such a single, isolated action
application will naturally result in a partial consumption of
available resources. However, to preserve correspondence to
the semantics of linear logic, initial, sibling and dependency
constraints enforce all available resources to be entirely
consumed, and hence do not allow such a partial check.

Fortunately, we can proceed by observing that
checking for partial resource consumption can be
implemented using inequality constraints. In particular,
we will replace initial equality constraints of Section 5.1.2
with inequalities, placing an upper bound on the number
of initial resources to be used. Similarly, dependency con-
straints that were previously equality conditions on state
nodes in successive levels, are transformed into inequal-
ity constraints, placing a lower bound on resources to be
used in level k, based on the needs of level k + 1. Sibling

constraints are kept as equality conditions. Finally, usage
counts for nodes in level k + 1 that are neither among the
preconditions or for the action under consideration nor
among their siblings are forced to be zero for efficiency.

To illustrate, consider the slightly modified example

C2 � M �!(C ⊗ M � M ⊗ P) � (P 2 ⊗ M) , (9)

wherein only a single manipulator is available and a suc-
cessful plan requires a third level. Having only a single
product available in the second level as shown in Fig. 7, the
LinGraph algorithm proceeds with the next expansion stage,
and considers the MakeP action, yielding the updated action
constraints for this problem shown in Fig. 7. In this case, the
resulting equality and inequality constraints are satisfiable,
successfully instantiating the action node.

5.1.7 Plan extraction

LinGraph construction ends when the constraint solver finds
a solution to the current set of constraints during the goal
check. This solution identifies how many resources from
each state node is used for the final plan. The final LinGraph
for the example of (9) is shown in Fig. 8, where we have

Fig. 8 Plan extraction using the solution obtained from the constraint solver. Each state node shows the number of utilized resources in the lower
right corner
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also included a specific solution to the constraints with the
utilization counts si .

Plan extraction from LinGraph yields multisets of actions
to be executed (possibly in parallel) for each level, ignor-
ing copy actions. For example, the final plan for the graph
of Fig. 8 consists of two successive applications of the
MakeP action. Note, also, that multiple instances of the
same action can be present in a particular level, captur-
ing multiple concurrent operations on different instances of
similar objects.

5.1.8 Algorithmic properties of LinGraph

The first component in the complexity of LinGraph comes
from the space required to represent its graph structure.
Given a LinGraph with i levels, and Ni nodes in its last
level, a actions, with a maximum of e postconditions
and a maximum of k different ways each action can be
applied, the graph expansion phase requires the creation
of Ni+1 ≤ k ∗ a ∗ e ∗ Ni new nodes. In the worst case,
this means that the LinGraph size is exponential in the
number of graph levels, with space complexity O((kae)i),
compatible with the EXPSPACE-hard complexity of mul-
tiset rewriting [41]. In particularly problematic cases with
many nodes having identical propositions, k may also be
proportional to Ni , resulting in doubly exponential com-
plexity. In general, however, object symmetry will reduce
both e and k since identical propositions will be aggre-
gated in the same node and our constraint based pruning
in Section 5.1.6 will prevent infeasible actions from being
considered.

In the face of the exponential space complexity of Lin-
Graph, our examples focus on how performance scales with
the number of functionally identical object instances, which
is the axis along which our algorithm outperforms exist-
ing approaches. Naturally, as the number of graph levels
(and hence plan length) increases, LinGraph in its current
form becomes infeasible due to this space complexity. Nev-
ertheless, two aspects of LinGraph help with the complexity
along this axis. First and foremost, LinGraph aggregates
identical propositions within the postconditions of an action
into a single node, decreasing exponential buildup of space
requirements for representing multisets that include iden-
tical propositions. Second, domains that encode physical
planning problems, in general, include actions that trans-
form physical resources, which inherently disallow an expo-
nential buildup in the number of generated objects and
resources. In the long term, the exponential space com-
plexity of LinGraph can be improved on by combining
multiple node instances with the same proposition into a sin-
gle node without, but this requires a careful reconsideration
of how node constraints are formulated to maintain semantic
validity. We leave this extension for future work.

The second computationally expensive component in
LinGraph is the goal check. In the worst case, with g goals,
having maximum multiplicities n, each matching a max-
imum of k, mutually independent nodes in the last level,
LinGraph will generate g constraints, each involving at most
k variables with their right hand side equal to m. Assum-
ing an uninformed, brute force constraint solver, this result
in the consideration of Ng = (km)g combinatorial assign-
ments to constraint variables. It is important to note that
the complexity of the goal check is complementary to the
complexity of graph construction in that, the worst case for
graph size, with each node and goal having a multiplicity
of one, corresponds to the best case for the goal check. In
contrast, when node multiplicities increase, the graph size
decreases but constraints have greater freedom with larger
values of g and larger ranges for the variables si .

It is important to note that LinGraph does not yet use any
heuristics. Therefore, its average performance on sequential
problems is expected to be below existing planners that per-
form better pruning of the search space. As a result, we have
limited the scope of this paper to present the basic ideas
behind LinGraph and its ability to successfully and automat-
ically recognize symmetries in a domain, and left extensions
to incorporate heuristics and better search methods for
future work. These extensions would require relaxing the
layered structure of the graph, tighter integration with the
constraint solver to reduce space requirements and work on
finding heuristics in the presence of concurrency.

5.2 A more challenging assembly planning example

In this section, we use the LinGraph planner on a more
complex problem instance within the domain of Section 4.
Figure 9 shows the associated object types and actions,
wherein two types of components are first transformed into
two separate sub-products, which are then assembled in
pairs into a single product. Four instances of these products
are finally assembled into a final product (using the action
MakeFP) to finish the process.

This example is structurally similar to our previous
examples, but the presence of multiple intermediate prod-
ucts requires more levels for the solution. Linear logic

Fig. 9 LGPL encodings for objects and actions for the planning
example with a final product
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Fig. 10 Linear logical encodings of actions within the more complex
assembly planning problem domain

formulae corresponding to the actions described in Fig. 9
are shown in Fig. 10.

We now describe a challenging example problem in this
domain. Suppose that we initially have 32 components of
type C1, 32 components of type C2 and 48 manipulators
M . Using these components, we would like to produce 16
instances of product P and 4 instances of the product FP .
This corresponds to the goal formula

!MakeS1 � !MakeS2 � !MakeP � !MakeFP

�
(

C32
1 ⊗ C32

2 ⊗ M48
)

� (P 16 ⊗ FP 4 ⊗ M48) (10)

The initial number of available components and manip-
ulators were chosen to both illustrate parallel execution of
actions, as well as the extension of the plan to several
steps due to the relatively limited number of manipulators.
The LinGraph generated for this example up to the level
where a solution is found is partially illustrated in Fig. 11.
LinGraph succeeds in finding a valid plan even for this
complex example including large numbers of components
and manipulators. The plan extracted from the LinGraph is
shown in Fig. 12, with multiple actions executed in parallel
within each step.

Fig. 12 Solution to the assembly planning problem of (10)

6 Experimental results

In this section, we evaluate the performance of Lin-
Graph on increasingly difficult, concurrent planning
problems and show that it outperforms modern automated
planners for problems with substantial symmetry, large
numbers of functionally equivalent objects, as well as inter-
mediate creation of objects throughout the plan. Currently,
LinGraph does not use any heuristics to guide plan search.
As a result, its performance on structurally simple, general
planning problems, particularly sequential domains with
long action sequences, cannot challenge existing planners.
Even though we believe that relaxing the layered structure
of LinGraph to support heuristic search and actions with
non-unit durations will be possible to bring its performance
on general planning problems to match modern planners
for temporal problems, we have left these extensions for
future work and focused the scope of the present paper to
describe LinGraph’s novel representation of object equiva-
lence and its performance on domains with large numbers
of functionally identical objects.

Our evaluation focuses on comparing LinGraph’s execu-
tion time to several existing planners for specific problems
with the characteristics described above. First, we consider

Fig. 11 Final LinGraph for (10). Some actions and nodes for levels larger than 2 were omitted for visual clarity
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Blackbox, one of the earlier yet successful planners based
on a combination of GraphPlan and SAT planning with
support for concurrency and make-span optimality. Our
comparisons also include Symba-2 [57], which is one of the
recent high performance planners for sequential domains,
having won the sequential optimal track for the 2014 IPC.
Next, we consider the Metis planner [1] since it implements
symmetry reduction techniques that are uniquely relevant
to our approach. Due to their exclusive focus on sequential
problems, these last two planners do not generate concur-
rent plans and hence can be considered to operate on easier
instances of our domains. Finally, we include the Tempo-
ral Fast Downward (TFD) planner [17], which is among the
best modern planners for temporal problems with explicit
support for concurrency and make-span optimality, as well
as numerical fluents.

Our prototype LinGraph planner was implemented in
SML, without any explicit optimizations for execution effi-
ciency. In contrast, the latest, optimized implementations
were used for Blackbox, Symba-2, Metis and TFD. In all
cases, experiments were performed on a 2.93GHz Intel
Pentium Dual-Core CPU E6500 Processor and 2 GB of
RAM.

All planning examples we describe in this section were
fed to our LinGraph planner in the form of LGPL goal
formulas. In contrast, Blackbox, Symba-2, Metis and TFD
implementations were given problem inputs encoded in
PDDL. Additional PDDL features we relied on for encoding
example problems included type specifications and durative
actions, as well as numerical fluents to explicitly encode
object multiplicity. It is also important to remember that
plans generated by the Symba-2 and Metis planners are
sequential and fail to capture concurrency features of any
domain.

6.1 Domain-1: assembly with two component types

The first example we investigate is an instance of the assem-
bly planning domain described in Section 4, with two types
of components, C1 and C2, first transformed into sub-
products S1 and S2, which are then combined to make a
product. Associated actions encoded in LGPL take the form

MakeSi : (Ci ⊗ M) � (Si ⊗ M)

MakeP : (S1 ⊗ S2 ⊗ M) � (P ⊗ M) (11)

The PDDL domain encoding of the same problem is shown
in Fig. 13, wherein object types, available predicates and
actions are defined together with a specification of required
PDDL features. An important detail in this encoding is
that the effects of each action include both (manip ?m)

and (not (manip ?m)), which was needed to ensure that
the same manipulator is not used simultaneously within the
same level. The need for such tricks in STRIPS encodings of

Fig. 13 PDDL domain file for Domain-1 with two types of
components

planning problems are a byproduct of the informal seman-
tics associated with PDDL, wherein implementation details
for a particular planner may result in different semantics for
the domain. Due to its semantic correspondence to LGPL
formulae, LinGraph does not require such implementation
specific details for its encodings.

A specific problem instance requires the specification of
initial and goal states. For instance, suppose four of each
component are available and four final products are to be
produced. The LGPL encoding takes the form

!MakeS1 � !MakeS2 � !MakeP

�
(

C4
1 ⊗ C4

2 ⊗ M4
)

� (P 4 ⊗ M4) . (12)

In contrast, the PDDL encoding of the same example is
given by the problem file shown in Fig. 14. An inconvenient
requirement for the PDDL problem definition is the need to
define all objects that may be needed throughout the plan,
including any number of intermediate objects. However, it
is often difficult to know these beforehand, highlighting
another advantage of the LGPL encoding.

The PDDL encodings of Figs. 13 and 14 are appropriate
for sequential planners. Temporal planners, including TFD,
require support for durative actions as shown in Fig. 15.

Fig. 14 PDDL encoding of a Domain-1 problem instance with four
components
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Fig. 15 PDDL encoding of the durative version of the MakeS1 action
for Domain-1

The problem file for TFD is similar to Fig. 14, except a new
directive to request minimization of the plan’s make-span.

In addition to these two, we have also used a third PDDL
encoding to support a more concise and efficient represen-
tation with numerical fluents and the PDDL feature fluents
as shown in Fig. 16. This feature is supported by the TFD
planner, allowing us provide a fair comparison with a mod-
ern planner and an encoding that is similar in spirit to
LinGraph’s aggregation of functionally identical resources.

In this definition, several numerical functions are defined
to keep track of the available instances for the components,
subcomponents and manipulators, as well as a special func-
tion num to allow the planner to explore using different
object multiplicities. The definition for the MakeS1 action
checks manipulator availability as a precondition, picks the
number of manipulators to use through (num ?u) and
adjusts the postconditions accordingly. It is assumed that
the problem file will define the predicate (num ?u) for as
many positive integers as there are manipulators. Figure 17
shows an example problem file with six manipulators and
three of each component to produce three final products. We
use TFD-NF to refer to this encoding in our results.

We first investigate problems in Domain-1 where there
are enough manipulators to transform all components in the
first level, allowing a solution in three levels. The associated
LGPL encoding is

!MakeS1 � !MakeS2 � !MakeP

�
(

Cn
1 ⊗ Cn

2 ⊗ M2n
)

� (P n ⊗ M2n) . (13)

Fig. 16 PDDL encoding of Domain-1 using numerical fluents to cap-
ture object multiplicity. This figure only shows the definition of the
MakeS1 action

Fig. 17 An example PDDL problem definition for Domain-1 using
numerical fluents

Table 1 shows execution times for all planners for dif-
ferent values of n. The optimized implementations for
Blackbox, Symba-2, Metis, TFD and TFD-NF perform as
well, and sometimes better than LinGraph for small val-
ues of n. However, the combinatorial choices for different
instances of components quickly increase the search space,
resulting in termination with a (possibly out-of-memory)
errors for Blackbox, Symba-2, Metis, TFD and TFD-NF. In
contrast, as a result of its aggregation of identical compo-
nents, LinGraph can solve large instances of this problem.
An important additional observation is that TFD-NF, despite
its use of numerical fluents, fails to find valid plans after a
certain problem size, whereas LinGraph performance stays
constant independent of problem size.

The second Domain-1 example involves a smaller num-
ber of manipulators requiring plans to extend to level 4, with
two new levels to produce all subproducts and a final level
to produce the final products. The general form of the LGPL
encoding for this problem is

!MakeS1 � !MakeS2 � !MakeP

�
(

Cn
1 ⊗ Cn

2 ⊗ Mn
)

� (P n ⊗ Mn) . (14)

Results from this second problem instance are shown
in Table 2 and exhibit scalability properties similar to the
previous problem, showing that LinGraph can success-
fully handle large numbers of functionally identical objects
without increasing the search space. Sequential planners,

Table 1 Execution times (in seconds) for Domain-1 with twice the
number of initially available manipulators as the number of initial
components n

n BB S-2 M T T-N LG

1 0.004 0.292 0.144 0.022 0.096 0.056

2 0.008 0.672 0.204 7.788 0.112 0.055

3 0.021 1.104 0.604 Error 0.220 0.058

4 3.136 1.544 1.756 – 0.896 0.059

8 Error 11.88 166.2 – 257.7 0.059

32 – Error Error – Error 0.055

1000 – – – – – 0.061

LinGraph solutions have 4 levels



LinGraph: a graph-based automated planner for concurrent task planning based on linear logic 927

Table 2 Execution times (in seconds) for Domain-1 with the same
number n of initially available components and manipulators

n BB S-2 M T T-N LG

1 0.004 0.284 0.124 0.076 0.080 0.198

2 0.008 0.688 0.146 0.218 0.092 0.678

3 0.556 1.098 0.348 99m 0.156 0.775

4 43m 1.348 1.016 Error 0.520 0.788

5 >1d 1.964 2.616 – 2.716 0.752

1000 – Error Error – Error 0.794

10000 – – – – – 2.497

LinGraph solutions have 4 levels

Symba-2 and Metis, perform better in this second prob-
lem instance than the first since the smaller number of
manipulators decrease the available number of actions in
each step. TFD experiences similar performance gains since
its underlying search relies on intermediate parallelization
of sequential plans. In contrast, LinGraph and Blackbox
natively support concurrency, exhibiting degraded perfor-
mance due to the longer make-span required for the optimal
solution.

Extending on the examples above, Table 3 shows results
for the same domain, with the initial number of manipula-
tors chosen to be a non-integer multiple of components. The
associated LGPL encoding is

!MakeS1 � !MakeS2 � !MakeP

�
(

Cn
1 ⊗ Cn

2 ⊗ Mm
)

� (P n ⊗ Mm) , (15)

which is also successfully solved by LinGraph.
In order to illustrate the internal operation of LinGraph,

Table 4 shows node and constraint statistics for LinGraph
solutions to different instances of (15). For all instances
of Domain-1 problems, the same LinGraph structure was
obtained beyond a certain problem size. This results from
having a fixed number of possible combinations for differ-
ent object types and actions, wherein only the multiplicities

Table 3 Execution times (in seconds) for Domain-1 with the num-
ber m of initially available manipulators a non-integer multiple of the
number n of initially available components

n/m BB S-2 M T T-N LG

2/3 0.012 0.696 0.192 1.936 0.120 0.774

3/5 1.580 1.148 0.548 7.248 0.240 0.739

4/6 47 m 1.512 1.348 13.855 2.016 0.783

5/8 Error 2.112 3.912 46.272 9.300 0.777

32/48 – Error Error Error Error 0.742

1000/1500 – – – – – 0.781

LinGraph solutions have 4 levels

Table 4 LinGraph level, node and constraint statistics for different
instances of (15), showing number of levels, last level and total num-
ber of nodes, pruned nodes as well as the number of dependency and
sibling constraints

n/m Lvls (Last/All) Pr Dep Sib

1/1 4 15/36 70 21 6

2/2 4 87/116 136 29 42

3/3 4 185/216 60 31 91

4/4 4 221/252 24 31 109

5/5 4 223/254 22 31 110

1000/1000 4 223/254 22 31 110

32/48 4 223/254 22 31 110

32/64 3 21/31 4 10 9

for each node and action increase beyond a certain problem
size. This also explains why the execution times for Lin-
Graph remain the same (except differences due to constraint
solver overhead and parsing of the problem) in Tables 1, 2
and 3 even when problem sizes are increased dramatically.

Finally, Table 5 shows node and constraint statistics for
the expansion of each intermediate level for the Domain-1
problem instance with n = m = 10000. Once the LinGraph
reaches level 4, there is a sharp increase in the number
of created nodes due to many new combinations becoming
available for how actions can be applied to nodes in level 3.
As we will see in subsequent sections, however, not all prob-
lem domains entail such exponential increase in the number
of nodes.

6.2 Domain-2: assembly without trivial parallelism

Domain-1 includes trivial parallelism wherein the produc-
tion associated with each manipulator can be separately
considered, decomposing the problem into multiple smaller
subproblems that may be manageable for planners other
than LinGraph. In this section, we extend Domain-1 to dis-
allow such explicit parallelization by requiring that multiple
Product instances are assembled in a final step into a so
called “Final Product”, extending (11) with the new action

MakeFP : P ⊗ P ⊗ P ⊗ P ⊗ M � FP ⊗ M .

Table 5 Node and constraint statistics for each level of the LinGraph
solution for Domain-1 with n = m = 10000

Lvl Nodes Pr Dep Sib

1 3 0 0 0

2 7 0 3 2

3 21 4 7 7

4 223 18 21 101
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Table 6 Execution times (in seconds) for the problem of (16)

n BB S-2 M T T-N LG

1 101.484 1.94 2.544 1.416 1.572 1.907

2 Error 78.696 27 min > 1 d Error 1.902

4 – Error Error – – 1.968

250 – – – – – 2.151

2500 – – – – – 8.087

LinGraph plans have 4 levels

We consider two different instances of this domain, one
where all products are converted into final products, and
another where there are leftover products. The first problem
instance is encoded by the LGPL goal formula

!MakeS1 � !MakeS2 � !MakeP � !MakeFP

�
(

C4n
1 ⊗ C4n

2 ⊗ M8n
)

� (FP n ⊗ M8n) , (16)

wherein all initial 4n components are converted into prod-
ucts, which are then assembled into n final products. Table 6
shows execution times for this problem.

The second problem instance in this domain is encoded
by the LGPL formula

!MakeS1 � !MakeS2 � !MakeP � !MakeFP

�
(

Cn
1 ⊗ Cn

2 ⊗ M2n
)

� (P m ⊗ FP r ⊗ M2n) , (17)

where from the initial n components, and the resulting n

products, not all are converted into final products, resulting
in m leftover products P such that 4r + m = n. Table 7
shows execution times for this problem instance.

These results show that when trivial parallelism is not
possible, LinGraph is still capable of generating feasible
plans whereas the computational complexity of planners
that consider different instances of such objects as distinct
individuals quickly becomes impractical. This remains the
case even when numerical fluents are used to manually
aggregate identical objects.

Table 7 Execution times (in seconds) for the problem of (17)

n/m/r BB S-2 M T T-N LG

5/1/1 Error 3.908 8.884 Error 13.69 1.847

6/2/1 – 8.676 49.84 – 203.1 1.910

9/1/2 – 243.7 > 1d – Error 1.997

19/3/4 – Error – – – 2.054

1200/400/200 – – – – – 4.804

LinGraph plans have 4 levels

6.3 Domain-3: cooperative multi-robot assembly

In this section, we introduce and investigate a new domain
where wheel and body parts are transported into a central
station to be assembled into bicycles. As shown in Fig. 18,
there are three stations in this example, two supply stations
l1 and l2 containing wheel and body parts respectively, and
a third base station l0 for hosting transportation robots and
performing bicycle assembly. More general instances of this
domain can of course be considered, but this example was
chosen to illustrate distinguishing features of LinGraph.

Robots can move between locations connected with
traversable paths. Objects can only be moved when they
are picked up and carried by robots. As usual, our LGPL
encoding for this domain begins with defining proposi-
tional atoms encoding components of the problem state, and
individual actions for transforming state. Figure 19 summa-
rizes these components, together with LGPL definitions and
descriptions for all actions.

The desired final state for our example requires the base
station to contain all n fully assembled bicycles and all
r robots. Since LGPL currently lacks quantifiers, actions
defined in Fig. 19 must be, as usual, explicitly instantiated
for each location or location pair in the goal statement. In
particular, Movexy actions are instantiated only for pairs of
locations connected by traversable paths.

Choosing n = 1 and r = 7, LinGraph finds the solu-
tion shown in Fig. 20 that minimizes the plan make-span.
Even though this is the simplest instance of the problem
with only a small number of functionally identical objects,
only BlackBox and sequential planners Symba-2 and Metis
were capable of finding feasible solutions, with TFD failing
with errors. As shown in Table 8, beyond n = 3 and r = 21,
only LinGraph continues to find solutions as a result of its
aggregation of functionally identical objects.

To go further, when the required plan length is extended
to 9 steps from 5 steps by decreasing the number of avail-
able robots, the execution times detailed in Table 9 show that
all temporal planners fail, whereas the sequential planners
Symba-2 and Metis can only find solutions for the simplest
case, with execution times substantially larger than those of
LinGraph. In summary, these examples show that LinGraph
is much more capable than existing automated planners
in exploiting symmetries in concurrent planning problems
with large numbers of functionally identical objects in ways
that are not possible with current methods for symmetry
reduction including the use of numerical fluents.

7 LinGraph, multiset rewriting and linear logic

In this section, we present a formalization of the connec-
tion between LinGraph and multiset rewriting, enabling us
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Fig. 18 The cooperative multi-robot domain with two supply stations, l1 and l2 and a base station l0. This figure also illustrates the initial state
for our examples, with 2n wheels, n body parts and r robots in their corresponding stations. Arrows indicate traversable routes

to prove soundness and completeness with respect to the
LGPL fragment of linear logic. We show that LinGraph con-
struction provides a sound and complete method for proof
construction in this logic by first interpreting LinGraph as
a multiset rewriting system, then using the well-known cor-
respondence between such systems and theorem proving in
linear logic [7, 41, 58].

We begin by adapting and reviewing key definitions on
multiset rewriting systems from [58]. Given a set of propo-
sitions P , a finite multiset over P is a function M : P → N

such that M(p) gives the multiplicity of the proposition
p in the multiset. We write p ∈ M if M(p) �= 0. As
noted in [35], a multiset [p1, ..., pk] over P can also be
associated with the product expression (p1 ⊗ ... ⊗ pk). As
such, multiplicative conjunction of two product expressions
corresponds to the additive multiset union of two multi-
sets M1 and M2 over P , which is the multiset defined by
(M1  M2)(p) := M1(p) + M2(p).

A multiset rewriting rule R is an ordered pair of multi-
sets, R = (M1, M2) over the set of propositions P , where
M1 and M2 are called the preset and the postset, respec-
tively. A rule R = (M1, M2) is said to be applicable on

Fig. 19 LGPL encoding for the cooperative multi-robot assembly
example, detailing propositions encoding state components and LGPL
formulae encoding actions

a multiset M if ∀p ∈ P,M1(p) ≤ M(p) encoding the
requirement that the preset M1 of R is a submultiset of M .
In such cases, the application of the rule R on the multi-
set M generates a new multiset Mnew = (M \ M1)  M2

where \ denotes multiset difference. Based on this defini-
tion, a multiset rewriting system (MRS) is simply a set of
rewriting rules, R = {R1, ..., RN } which, in the context of
problems in task planning, can be used to represent possible
actions in a domain to transform system state.

Definition 1 (Multiset of a LinGraph Node) Given a Lin-
Graph L with r nodes, and a solution vector [s1, ..., sr ]
satisfying all of its constraints, each node ni having the type
encoded by the propositional atom Pi uniquely defines an
associated multiset Mnd(ni) := {Pi, ..., Pi} consisting of si
copies of the proposition Pi .

Definition 2 (Multiset of a LinGraph level) Given a Lin-
Graph L with r nodes, l levels and a solution vector
[s1, ..., sr ] satisfying all of its constraints, every level j ≤ l

in L uniquely defines an associated multiset Mlvl(j) :=
Mnd(ni1)  ...  Mnd(nim), where i1 through im denote
indices of all LinGraph nodes that belong to level j .

Since every action formula Fa = p1 ⊗ ... ⊗ pk �
q1 ⊗ ... ⊗ qt can be associated with the multiset rewrit-
ing rule RFa = ({p1, ..., pk}, {q1, ..., qt }), every LinGraph
instance defines a corresponding MRS, consisting of rewrit-
ing rules associated with all of its actions, together with
rules corresponding to trivial “copy” actions p � p for
all propositions p. We will denote this MRS with RL.
The following theorem is a key step in establishing that
every LinGraph, when considered together with a particu-
lar solution with its constraints, encodes a valid sequence

Fig. 20 Solution to the multi-robot example with n = 1 and r = 7,
generated by the LinGraph planner
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Table 8 Execution times (in seconds) for different planners in solving
increasingly large instances of the multi-robot planning example

n/r BB S-2 M T T-N LG

1/7 38 min 50 min 445.6 Error Error 0.130

2/14 Error Error Error – – 0.130

3/21 – – – – – 0.131

4/28 – – – – – 0.130

128/896 – – – – – 0.130

LinGraph extends to level 6 in all cases, corresponding to 5 steps.
Other planners are unable to solve any of the problem instances

of rewriting rule applications starting from its initial level,
ending with its last level.

Theorem 1 (LinGraph Expansion) Given a LinGraph L

with r nodes, two successive levels i and i + 1 and a solu-
tion vector [s1, ..., sr ] satisfying all of its constraints, there
exists a (not necessarily unique) sequence of rewriting rules,
[R1, ..., Ru] with ∀j ≤ u, Rj ∈ RL, with an associated
sequence of intermediate multisets [M0, ...,Mu] such that
M0 = Mlvl(i), ∀j ≤ u, Mj is generated by Rj from Mj−1

and Mu = Mlvl(i + 1).

Proof The proof proceeds by iteration through action nodes
connecting level i to level i + 1 in L. Consider an ordering
of these actions, A = [FA1 , ..., FAk

]. As a result of sibling
constraints and the structure of L, all resources in the final
multiset Mlvl(i+1) can be associated with their correspond-
ing generating actions. Consequently, if a proposition p ∈
Mlvl(i + 1), then we have sp > 0 and by construction, there
exists an action FA ∈ A has p in its postconditions. More-
over, as a result of the sibling constrains being satisfied,
Mlvl(i+1) is also guaranteed to have a consistent number of
propositions corresponding to all the postconditions of this
action. This ensures that Mlvl(i + 1) ⊆ Mu.

On the other hand, dependency constraints between node
multiplicities ensure that exactly the number of available
resources in level i are consumed by the application of

Table 9 Execution times (in seconds) for different planners on the
multi-robot planning example with fewer manipulators

n/r BB S-2 M T T-N LG

1/5 > 1 d 30.986 41.15 Error Error 1.524

2/10 – > 1 day Error – – 3.846

4/20 – – – – – 3.846

128/640 – – – – – 4.350

LinGraph extends to level 10 in all cases (9 steps). Other planners abort
with errors beyond a certain problem size

actions connecting level i to level i + 1. Consequently, the
multiset Mlvl(i) is entirely replaced by the postconditions
of all the actions in A. This ensures that only nodes in level
i + 1 can be in the corresponding multiset, meaning that
Mu ⊆ Mlvl(i + 1). This proves that Mu = Mlvl(i + 1). The
multisets M1 through Mu−1 are then generated by succes-
sive application of rewriting rules associated with actions
in A.

In order to establish the soundness of LinGraph
with respect to LGPL semantics, we first review stan-
dard proof theoretic semantics for the LGPL lan-
guage, adapted from [47]. We use a sequent calculus
formulation, with the corresponding sequent definition
Γ ; Δ ⇒ FG, where Δ is a multiset of atomic resources and
Γ is a multiset of action formulae. This sequent states that
the goal formula FG can be proven using the single-use
resources in Δ and unlimited use propositions in Γ . Sequent
calculus is generally used to formalize proof construction
for logical languages, wherein “left” and “right” inference
rules capture how occurrences of connectives as assump-
tions or goals, respectively, can be refined to recursively
construct a valid proof. Sequent calculus rules for LGPL

are detailed in Fig. 21, where we also follow the conventions
of [47].

All together, these inference rules enforce the require-
ment that all resources appearing in Δ on the left hand side
of a sequent must be used exactly once in the associated
proof, thereby allowing their interpretation as consumable
resources [14]. This property, combined with our choice of
an intuitionistic fragment of linear logic make it possible to
associate each proof for LGPL goal formulae with a valid
plan.

Theorem 2 (Soundness of LinGraph) Given a goal formula
FG in LGPL, the corresponding completed LinGraphLwith
r nodes, its last level l matching the decomposed goal from
Section 5.1.2 and a valid solution vector [s1, ..., sr ] satisfy-
ing all of its constraints, there exists a proof in the system of
Fig. 21 for FG.

Fig. 21 Sequent calculus proof rules for LGPL
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Proof LGPL formulae have the form shown in (1). Prov-
ing the validity of this formula corresponds to proving the
sequent (FA1 , ..., FAa ); (FR1 , ..., FRb

) ⇒ FRg in the system
of Fig. 21, following straightforward elimination of impli-
cations and exponentials using the rules � L, ⊗L and
!L. In the LinGraph initialization phase, all resource for-
mulae in the linear context, FR1 through FRb

are converted
into nodes, forming the first layer of the graph. Together
with associated initial constraints described in Section 5.1.2,
these ensure that the multiset Mlvl(1) exactly corresponds to
the linear context in this sequent. Similarly, the goal formula
FRg is converted into a set of goal nodes which, through
the use of goal check constraints satisfied in the last stage
of LinGraph construction ensure that the multiset Mlvl(l)

associated with the last level of L exactly corresponds to
the desired goal formula FRg . Iterative application of The-
orem 1, shows that there is a finite sequence of multiset
rewriting rule applications connecting the initial multiset to
the final multiset associated with the goal formula. Finally,
this sequence of rules can be transformed into a proof in the
multiplicative Horn fragment of linear logic, establishing
soundness [58].

Theorem 3 (Completeness of LinGraph) Given a goal for-
mula FG in LGPL, provable in the system of Fig. 21,
the algorithm described in Section 5.1 is guaranteed to
terminate and produce a valid LinGraph for FG.

Proof Without loss of generality, the proof of the formula
FG in (1), can be assumed to start with the elimination of
implications and exponentials, thereby having a subproof
for the sequent

(FA1 , ..., FAa ); (FR1 , ..., FRb
) ⇒ FRg , (18)

Since this sequent is free of exponentials, the correspond-
ing proof will be in the multiplicative Horn fragment of
linear logic, and hence can be transformed into a sequence
S = [R1, ..., Ru] of multiset rewriting rule applications cor-
responding to left rules for actions, (FA1 , ..., FAa ), starting
from the initial multiset associated with the initial context
I = (FR1 , ..., FRb

) [58]. By construction, action nodes in a
particular LinGraph level capture all possible applications
of available multiset rewrite rules, each of which corre-
sponding to a particular solution for the cumulative set of
constraints associated with the LinGraph.

The sequence S defined above can be permuted to collect
all mutually independent applications related to the initial
multiset I to the beginning of the sequence due to their
inherent concurrency [7]. By construction, each such rule
applied to the initial multiset, will then have a corresponding
action node in the LinGraph, with the subsequent level hav-
ing nodes associated with the elements in the postset of the

rule. Once all rules applicable to the initial set are exhausted,
the second level of the LinGraph will be formed, and the
construction will proceed recursively until all the rules in
S are covered. Finally, since the last level in the LinGraph
constructed in this fashion will have nodes corresponding to
all components of FRg , the goal check is guaranteed to suc-
ceed, ensuring termination of LinGraph construction, with a
valid solution for all constraints in the LinGraph.

8 Conclusion and future work

In this paper, we introduced LinGraph, a new, model-based,
domain-independent automated planner based on a frag-
ment of propositional intuitionistic Linear Logic (LGPL),
and a graph-based strategy for plan generation. Our plan-
ner benefits from the non-monotonicity of linear logic
to allow simple and effective encoding of dynamic state.
Our novel graph-based method implements forward proof-
search within the LGPL fragment of linear logic, providing
an effective means of automated plan construction. The
intuitionistic nature of LGPL preserves strict correspon-
dence between valid proofs and plans, admitting the use of
this system as an automated planner.

A distinguishing feature of LinGraph is its ability
to eliminate irrelevant combinatorial nondeterminism in
plan search when there are multiple, functionally identical
objects within a problem. Our graph-based search strat-
egy aggregates multiple instances of such indistinguishable
components of the state, admitting efficient plan search for
problems that are otherwise intractable. We illustrate both
the basic operation of the planner, as well as its performance
on increasingly complex instances of a simple assembly
planning domain incorporating multiple identical instances
of different types of components and manipulators. In this
context, we provide a comparison of execution times for
LinGraph with four planners: Blackbox, Symba-2, Metis
and the Temporal Fast Downward (TFD) system, using the
TFD system first with a simple encoding treating objects as
unique, and a second using numerical fluents to more effi-
ciently encode equivalent object multiplicity. We show that
even though our unoptimized implementation of LinGraph,
with its current blind search strategy, does not necessarily
outperform existing planners for small concurrent problems
or long sequential problems, it is much more scalable and
maintains its ability to identify feasible plans for increased
problem sizes.

In addition to a presentation of LinGraph and these
experimental results, we provided a brief analysis of algo-
rithmic properties of LinGraph, followed by theoretical
results establishing the soundness and completeness of Lin-
Graph’s plan construction with respect to a standard proof
theory for the LGPL fragment of intuitionistic linear logic.
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This was accomplished by interpreting LinGraph instances
as multiset rewriting systems, which are known to corre-
spond to Petri Nets and also proofs in Horn fragments
of propositional linear logic. These results provide a for-
mal connection between LinGraph generated plans and the
semantics of goal formulae in the LGPL fragment of linear
logic.

Possible extensions to our work can be categorized
in three directions. First, different sources of complexity
in LinGraph construction can be addressed. In particular,
defining a concept of state node equivalence, and introduc-
ing the ability to combine equivalent nodes during graph
expansion might substantially reduce LinGraph size and
allow longer plans to be generated. This could be extended
with the detection of loops wherein the effects of an action
are completely reversed by a subsequent action. Methods
in existing planning literature focusing on state equiva-
lence and loop detection could be applicable to LinGraph to
address these issues.

The second category of improvements involve the
action creation and goal check stages. Currently, LinGraph
expands the graph in a strict layered structure, performing
blind, breadth-first search. Incorporating effective heuris-
tics to properly guide graph generation would substantially
improve performance on sequential problems. Similarly,
the current LinGraph implementation uses an uninformed
constraint solver during the goal check, and partial usage
counts for action creation. A new instance of the con-
straint solver is invoked for every check, discarding previous
work that might have helped eliminate assignments that are
altogether infeasible. A tighter integration with graph gener-
ation and an incremental constraint solver could improve the
performance of both graph generation and the goal check.

The third and final direction for future work involves
extensions to the expressivity of the LGPL language, which
currently only allows discrete actions with no explicit sup-
port for conditional statements or nondeterminism. On the
other hand, linear logic introduces additive connectives
an other components that could potentially provide richer
expressivity for encoding planning problems. Such more
expressive uses of linear logic for planning problems has not
been sufficiently explored in previous literature, but could
allow more uniform modeling of more advanced planning
structures such as hierarchical plans, dynamic management
of available actions and nondeterminism. In addition to the
semantic formulation of the connection between these logi-
cal connectives and the planning domain, both the structure
and the construction of LinGraph would need to be extended
to correctly handle proof construction in the presence of new
connectives. Other possible extensions include the incorpo-
ration of continuous constraint expressions into linear logic
as was proposed in [54], allowing native modeling of hybrid
systems.
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18. Eyerich P, Mattmüller R, Röger G (2009) Using the context-
enhanced additive heuristic for temporal and numeric planning.
In: Proceedings of the international conference on automated
planning and scheduling



LinGraph: a graph-based automated planner for concurrent task planning based on linear logic 933

19. Fox M, Long D (1999) The detection and exploitation of sym-
metry in planning problems. In: Proceedings of the international
journal conference on artificial intelligence, pp 956–961

20. Fuentetaja R, de la Rosa T (2015) Compiling irrelevant objects
to counters. Special case of creation planning. AI Commun:1–33.
Preprint

21. Geffner H, Bonet B (2013) A concise introduction to models and
methods for automated planning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 7(2):1–141

22. Gent IP, Jefferson C, Miguel I (2006) MINION: a fast, scalable,
constraint solver. In: Proceedings of the european conference on
artificial intelligence, pp 98–102

23. Girard J-Y (1987) Linear logic. Theor Comput Sci 50(1):1–102
24. Helmert M (2006) The fast downward planning system. J Artif

Intell Res 26:191–246
25. Helmert M, Geffner H (2008) Unifying the causal graph and addi-

tive heuristics. In: Proceedings of the international conference on
automated planning and scheduling, pp 140–147

26. Hickmott SL, Rintanen J, Thiébaux S, White LB (2007) Planning
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