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Abstract— In this paper, we propose a novel method for the
control of human-robot co-manipulation that takes into account
the ergonomic requirements for the human co-worker. The
robot uses a whole-body model of the human to optimise for
the position of the co-manipulation task in the workspace. In
this configuration, the overloading joint torques, i.e. the effects
of an external load in human body joints, are minimised. In
addition, the optimisation process includes several constraints,
such as human arm manipulability properties, to ensure that
the human has a good manipulation capacity in the given
configuration. The main advantage of this approach is that the
robot can potentially help to reduce the work-related strain and
increase the productivity of the human co-worker. We validated
the proposed method with experiments in two co-manipulation
tasks: human using a device to polish an object that is delivered
by the robot and a human-robot object handover.

I. INTRODUCTION

Driven by the goal of adding a certain level of flexibility
in manufacturing systems, human-robot collaboration (HRC)
has become one of the central research directions in past
years [1]–[3]. In such scenarios, humans and robots come
together and interact as pairs, which usually requires that the
execution speed is limited [4]. Therefore, an important factor
to demonstrate the economical sustainability of the robotic
solutions in cage-free environments is to minimize the risks
that cause further performance degradation. Health-related
issues and the injuries caused in the workplaces are among
the most critical to be considered, and a unified framework
to guarantee workers well-being is highly needed.

The safety from the human point of view is often ad-
dressed by avoiding potential collisions [5], [6] and excessive
impact forces with sophisticated control strategies [7], [8],
or adhoc mechanisms [9]. Other studies proposed to use
human demonstrations in an attempt to achieve a seamless
collaborative behaviour of the robot [10]–[13]. However,
as it is well known [14], [15], a common cause of injury
during manipulating or carrying heavy objects, or performing
repetitive tasks (e.g. drilling, polishing, etc.) is the me-
chanical overloading of body joints such as ankle, knee,
and sacroiliac. Although such overloadings in workplaces
are unavoidable, they are smaller in some configurations
compared to the others [16], [17]. This work explains a

1HRI2 Lab, Department of Advanced Robotics, Istituto Italiano di Tec-
nologia, Genoa, Italy, Email: luka.peternel@iit.it, wan-soo.kim@iit.it

2Department of Automation, Bio-cybernetics and Robotics, Jožef Stefan
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Fig. 1: Concept illustration: repetitive co-manipulation tasks can be per-
formed in suitable human body poses that minimise the effect of overloading
joint torque and maximise the human manipulation capacity.

potential way to keep the human in those configurations (see
the illustration of the concept in Fig. 1).

To alleviate potential injury or chronic pathology risks due
to the excessive mechanical overloadings of the joints, col-
laborating robots (CoBots) must be equipped with dynamic
human state monitoring systems and anticipatory behaviours
to guide the human counterparts towards more comfortable
and ergonomic body poses. In this direction, we recently
proposed a HRC framework that used a human body model
and various sensory measurements to account for the over-
loading joint torques [18] in static poses of the human. The
algorithm was based on the variations of the human Centre
of Pressure (CoP), calculated from the difference between
an off-line calibrated model and the measured one using an
external force plate. The limitations of this approach is the
static body-pose assumption and the need for an external
force-plate.

To address the above-mentioned issues, in this paper we
propose a novel dynamic human-robot collaboration control
method to encourage and guide the human co-worker to
perform the tasks in the most ergonomic way possible. To
do so, a dynamic model of the human whole-body CoP is
introduced. The model can automatically integrate the effect
of an external mass (or interaction forces) from the robot end-
effector measurements to estimate for the variations of the
dynamic CoP in real-time. This consideration eliminates the
need for an external force plate and makes the approach more
practical. Finally, since the object co-manipulation tasks are
considered in this study, the manipulation capacity of the
human is taken into account in the optimisation procedure.

To validate the proposed method we performed exper-
iments on a setup that included a KUKA Lightweight



Robot arm and Pisa/IIT Softhand. We considered one co-
manipulation task, where the human had to used a hand-held
machine to polish an object delivered by the robot, and one
handover task1, where the robot had to handover an object
to the human in a convenient location.

II. METHOD

A diagram of the proposed approach is shown in the
right side of Fig. 2. The core of our approach is an on-line
optimisation process that finds a human body configuration
where the overloading joint torques2 are minimised. To do
so, we perform a joint torque estimation that is based on
on-line measurements of the human body configuration and
a whole-body model of the human co-worker (see left side
of Fig. 2), where parameters of the model are pre-estimated
off-line.

The human arm manipulability is used as a constraint in
this optimisation to ensure that the human arm has a good
manipulation capacity in an optimised working position. In
addition, other constraints related to a workspace limits of
human and robot and the centre of pressure (CoP) restriction
are used to ensure safety and stability of the collaboration.

A. Optimisation

The proposed optimisation process can be formalised as

min
qh

∥∥∆τττ
TW∆τττ

∥∥ ,

subject to



qh ∈
[
qL, qU

]
CP ∈ εεεs

pob j(qh) ∈ ptask

wmin ≤ w = |det(Ja(qa))|,

(1)

where qh is the human joint angle vector, ∆τττ is a vector
of overloading human joint torques and W can be used to
weight the importance of joints. To calculate the overloading
human joint torques ∆τττ we used a human whole-body model
based on a modified statically equivalent serial chain (SESC)
[18]. The details are explained in subsections II-B and II-
C. We used the ALGLIB optimisation library to solve the
optimisation problem in (1).

The optimisation process (1) includes several constraints.
The human joint angles qh are constrained by upper and
lower bounds qL and qU . The CoP CP ∈ R2 of human is
contained within the stable region εεεs (i.e. within the support
polygon of feet). The position of the object pob j(qh) held
by the robot is constrained within the feasible workspace of
both the human and the robot ptask.

Humans tend to exploit the configuration of their body
and limbs to maximise kinematic and dynamic properties for
the given task execution. Manipulability measures provide
the information about the velocity and force production
capacity of the limb endpoint in different configurations [19].
Directions of the best velocity and force axes can be obtained

1Handover can be considered as a special case of co-manipulation task.
2The overloading joint torque refers to the torque induced into the human

joint by an external load.

from eigenvectors and eigenvalues of arm Jacobian Ja. For
example, if we need to produce or sustain high forces in
a certain direction, the highest force manipulability vector
can be aligned with that direction. In the opposite case, if
we need to move the manipulated object fast in a certain
direction, the highest velocity manipulability vector can be
aligned with that direction. If a task requires a more complex
manipulation that involves movements of the endpoint in
many different directions, ideally the task should be per-
formed around the configuration where the manipulability
ellipsoid is isotropic. Hence, in our work, the position of the
object that is co-manipulated is constrained by the human
arm endpoint manipulability measure w = |det(Ja(qa))| that
is defined by the human arm Jacobian Ja ∈ Rm×l , where m
is the size of Cartesian space and l is number of considered
joints in the arm qa. The manipulability constraint is enforced
by the threshold wmin. If wmin = 1, the method will search
for the optimal minimum overloading joint torques within
human arm endpoint positions, where the manipulability
ellipsoid is isotropic. In other cases, it will search within
some region around isotropy.

B. Human Whole-Body Model

The human and the robot models are shown in the left side
of Fig. 2. The human floating base frame Σ0 was positioned
at the pelvis link and connected from the inertial frame ΣW
by a 6 virtual degrees of freedom (DoF) chain. We assumed
the links are rigid and are articulated through n revolute joints
and defined a local reference frame Σi at each joint. The robot
base frame ΣB was defined at the base link of the robot. The
endpoint of the human was at the human hand frame ΣH and
the endpoint of the robot is at the robot tool frame ΣT , both
of which are connected to the external objects; e.g., tool,
work pieces, etc.

The overloading joint torque can be defined in relation
between the ground reaction forces (GRF) with and without
the effect of an interaction force, and the CoP displacement
due to the external load. The relation between nk contact
points and the resultant contact force can be expressed by
the Lagrangian based equation of motion with respect to ΣW

M(q)q̈+C(q, q̇) q̇+G(q) = ST
τττ +

nk

∑
i=1

Jpi(q)
T fi, (2)

where M, C, and G represent the inertia matrix, the vector of
centrifugal and Coriolis forces, and the vector of the gravity
force, respectively. The generalised coordinates of the system
are defined as q =

[
xT

0 θθθ
T
0 qT

h

]T ∈ R6+n, where n is the
number of DoF in the model. x0 ∈R3 and θθθ 0 ∈R3 represents
the position and orientation of Σ0 with respect to ΣW , while
qh ∈ Rn are angular positions of human joints. In addition,
S = [0n×6 In×n] ∈ Rn×(n+6) is the actuation matrix, τττ ∈ Rn

is the vector of applied joint torques, and Jpi(q) is the contact
Jacobian at the point pi, where the contact forces fi are
applied with respect to ΣW .

In our approach, we calculate the CoP using whole-body
centre of mass (CoM) position and acceleration that are
obtained from the human model. In the static condition,



O
nline

𝜟𝝉 < Safe Margin

Identification of 
human whole-body 

model [20]

Moving the robot with 
optimised 𝜹𝒑	

O
ffline

Yes

No

O𝐩𝐭𝐢𝐦𝐢𝐬𝐚𝐭𝐢𝐨𝐧	Eq. (1)

Estimation of
Overloading torque 𝜟𝝉

Eq.(10)

x
y

z

𝚺𝑾

Inertial 
Frame

6 virtual 
DOFs

𝚺𝟎

Human
Base Frame

𝚺𝑩

Robot
Base Frame

𝚺𝑯

𝚺𝑻 ∆𝜏 ↓

𝑪>?

𝑪?

∆𝑪>?

𝛿𝑝

Fig. 2: The floating base whole-body model of the human, the robot model (left) and block diagram of the proposed method (right).

the ground-projected CoM corresponds to the CoP. In the
dynamic condition, it is known that the difference between
the CoP and the projected whole-body CoM highly correlates
with the angular acceleration of the body [20]. Deriving
from this, we can obtain the CoP components on the contact
surface in the dynamic condition as [21]

CPx =CMx−
(CMz−CPz)

C̈Pz +g
C̈Mx

and
CPy =CMy−

(CMz−CPz)

C̈Pz +g
C̈My, (3)

where g is gravitational constant, CPx and CPy are positions
of the CoP in x and y axis, CPz is the height of ground and
CM = [CMx CMy CMz]

T ∈R3 is CoM vector. If the ground
is flat and not moving with respect to ΣW , then CPz and
C̈Pz become zero. Therefore, we only consider the second
derivative of the CoM vector and g in order to determine the
CoP of the human body. In order to get the acceleration of
the CoM vector, we use the Kalman filtering approach [22].

The whole-body CoM CM of any branched chain (e.g.,
leg, arm, etc.) can be defined by geometric parameters (i.e.
CoM, mass and length of each link) of the original whole-
body structure using the SESC technique as [23]

CM = x0 +BΦΦΦ, (4)

where matrix B =
[
A0 · · · An

]
∈ R3×3(n+1) contains i-th

link rotation matrices Ai ∈ SO(3) with respect to ΣW . Matrix
ΦΦΦ=

[
φφφ

T
0 · · · φφφ

T
n
]T ∈R3(n+1) includes the vector of SESC

parameters φφφ i ∈ R3, which refer to mass distribution of the
human model. In order to identify subject-specific geometric
parameters Φ̂ΦΦ, we use classical least-square approach same
as in [18]. By using CM from (4) in (3), we can get a real-
time estimation of CoP vector ĈPwo ∈ R2.

The overloading joint torque vector can be calculated
from the difference between the CoP ĈPwo estimated solely
from the SESC model and the measured CoP CPwt that
also includes the external load, as in [18]. However, in
this case an external sensory devices, such as force plate
or sensorised insoles, are required to obtain the measured
CoP. To reduce the complexity and increase the applicability

of our approach in human-robot co-manipulation tasks, we
propose an extension of SESC parameters that describes the
external object manipulated by the human. Based on this
parameter we can calculate the CoP of human body with
the external load and use it instead of the measured CoP.
This approach is feasible when the robot can estimate the
parameters of an unknown external object by its own sensory
system (i.e. before handover), or when the used tool in co-
manipulation is known in advance due to the predefined
production process and therefore its parameters can be pre-
estimated.

Modified SESC parameters Φ̂ΦΦM ∈ R3(n+1) can be ex-
pressed as

Φ̂ΦΦM =
M

M+me

(
Φ̂ΦΦ+meDe

)
, (5)

De =
[
dT

k 01×3k dT
k+1 · · · dT

k+l cT
e 01×r

]T
, (6)

where the total mass M is represented by the sum of the
whole-body link masses and me is the external object mass.
De represents the forward kinematics of the external object,
where di ∈ R3 is the i-th link length vector with respect to
the previously connected local reference frame, k refers to an
index of the local reference frame of the branch (i.e. arm) and
l is the number of links in this branch. The position vector
of CoM for the external object ce ∈ R3, which extends the
original branch, is represented with respect to ΣH . r is the
number the links unrelated to the manipulation of the external
object (e.g., legs, etc.). In order to estimate the CoP with
externally loaded condition ĈPwt we perform the calculation
of (4) and (3) with the extended model Φ̂ΦΦM from (5).

C. Overloading Joint Torques

To estimate overloading joint torques, we use the differ-
ence between the estimated CoP ĈPwo from the human body
model without the external object and the CoP ĈPwt from
body model with the external object. The condition without
the external object produces a torque vector

ST
τττwo = τττb−

n f

∑
i=1

JĈPwoi
(q)T fwo,i (7)



where τττb ∈ Rn+6 is the joint torque vector of human body
without any external contact (i.e. without the ground contact
as well) and fwo is the vertical GRF (vGRF) in this condition,
which can be estimated by the human body mass. n f ∈
{0, · · · , f ≤ 2} is the number of ground contact points at the
foot. On the other hand, the condition with the external object
produces a torque

ST
τττwt = τττh−

n f

∑
i=1

JĈPwt i
(q)T fwt,i−

nh

∑
j=1

Jah j(q)
T fh, j. (8)

where fwt is the vGRF in this condition, which can be
estimated by the combined mass of the human body and the
external object. nh ∈ {0, · · · ,h≤ 2} is the number of contact
points where the interaction forces are applied.

The relationship between the interaction force fh and
vGRF variation ∆fw,i = fwt,i− fwo,i can be defined as

∆F =

n f

∑
i=1

∆fw,i =−
nh

∑
j=1

fh, j. (9)

We consider an approximate distribution gain for vGRF
and interaction forces (0 ≤ ζi, η j ≤ 1). Each gain can be
distributed according to the body configuration over the
number of contact points n f and nh, receptively [24]–[26].
Deriving from (7), (8) and (9), the overloading joint torque
can be defined as

∆τττs =
nh

∑
j=1

Jah j(q)
T

η j∆F−
n f

∑
i=1

(
J∆CPi(q)

T fwo,i +JĈPi
(q)T

ζi∆F
)
,

(10)
with the Jacobian of the CoP displacement defined as
J∆CPwoi = JĈPwt i

−JĈPwoi
. It is important to note that τττb does

not affect the overloading joint torque vector ∆τττs in any
configuration.

D. Robot Control

By using (10) in the optimisation process (1) the robot
can calculate the optimised configuration of the human. This
configuration is then used by the robot to control the location
of co-manipulation or handover task execution. The robot
was controlled by a Cartesian impedance controller [27].
The translational stiffness was set to 1500 N/m in all axes.
The rotational stiffness was set to 150 Nm/rad in all axes.
These values provide a reasonable trade-off between the
robot tracking performance and the achieved end-effector
compliance, in case of a collision.

III. EXPERIMENTS

In the experiments we focused on co-manipulation and
handover tasks. In these tasks the robot should adapt its
behaviour in a way that the working conditions are as optimal
as possible for the human co-worker to prevent any excessive
joint load and maximise the arm manipulation capacity. In
the co-manipulation task, the human arm should ideally work
around the configurations where joint torques are low, and
at the same, where the manipulability is high enough to
facilitate an effective manipulation. In the handover task,
the robot should choose the handover location in a way to
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Fig. 3: Results of co-manipulation experiments. The sequence of the photos
on the top shows the progress of the experiment: unoptimised state (A),
transition (B) and optimised state (C). The first plot shows estimated
overloading joint torques in the human arm. The second plot shows muscle
activity in the arm as measured by EMG. The third plot shows the human
arm manipulability.

minimise the stress on the human joints after the transfer of
an object with heavy weight. The manipulability constraint
was set to wmin = 0.99. This ensured that the co-manipulation
location was selected within the area where the human
arm endpoint had close-to-isotropic manipulability ellipsoid,
which facilitated a good force and velocity production ca-
pacity in all directions. Please refer to the supplementary
multimedia file for a video of experiments.

One subject participated in the experiments (mass = 77 kg
and height = 178 cm). For these experiments we used 5 DoF
model and focused on sagittal plane. Note that more DoF in
3D space can be used within the existing framework if more
complexity is required. Subject-dependent model parameters
were estimated before experiments and were then used for
the on-line estimation and optimisation during experiments
(details of the identification experiment can be seen in
[18]). To measure the human kinematics on-line we used a
wearable MVN Biomech suit (Xsens Technologies BV) that
is composed of seventeen inertial measurement units (IMU).
To compare the muscular effort during the task execution
between the proposed method and the unoptimised condition,
we also measured the muscle activity in the human arm
by electromyography (EMG) using Delsys Trigno Wireless
system. We measured Anterior Deltoid (AD) and Biceps
Brachii (BB), which are related to shoulder and elbow flexion
and are stressed the most in the selected tasks. The EMG
signals were processed by rectification and low-pass filtering
and were normalised to maximal voluntary contraction.



A. Co-Manipulation Task

The task of the human in this experiment was to use
a hand-held polishing device to polish an object with a
complex surface (L-shaped object with a groove, see Fig.
3). The task of the robot was to hold the object and move it
to the location where it is the most efficient for the human to
perform the polishing. The location was determined by the
optimisation process in (1) based on the reduced overload-
ing joint torques and human arm manipulability constraint.
The overloading joint torques and the manipulability were
calculated based on the tool end-effector by including the
tool into the extended model by (5). The mass of the tool
was 3 kg and the length was 20 cm. Since the tools used
in the production process are usually known, including the
tool into the model beforehand is feasible. We performed the
task three times.

The results of experiments are shown in Fig. 3. The
left photo (A) in the first row depicts the unoptimised
configuration. In the middle photo (B) the human retracted
the tool to allow the robot to move to the optimised po-
sition. In the right photo (C) the robot moved the object
in the optimised configuration and the human performed
the polishing task. The subsequent plots show the estimated
overloading human joint torques and the measured muscle
activity of human arm, respectively. The plot in the last row
shows the human arm endpoint manipulability w measure
throughout the experiment. The average overloading torques
in the unoptimised condition were: 13.9±0.02 Nm in the
shoulder and 10.5±0.01 Nm in the elbow. In the optimised
condition the torques were: 9.7±0.7 Nm in the shoulder and
9.1±0.4 Nm in the elbow. The average muscle activities in
the unoptimised condition were: 21.5±2.1 % in AD and
14.2±1.6 % in BB. In the optimised condition the activities
were: 3.4±2.0 % in AD and 6.0±1.1 % in BB. While the
manipulability was in this particular case high in both config-
urations (A and C), the reduction of the shoulder and elbow
joint torque were average for 30.3 % and 13.3 % respectively,
in the optimised configuration (C) compared to the initial
configuration (A). In the meantime, the muscle activity of
AD and BB reduced for 84.2 % and 57.6 % respectively,
thus providing more ergonomic working conditions for the
human co-worker. Note that the manipulability temporarily
decreased when the human retracted the tool in the transition
phase (B).

B. Handover Task

The task of the human in this experiment was to take
an object from the robot and transport it to a predefined
place. The task of the robot was to bring the object to the
human and hand it over in a location where the predicted
overloading human joint torques caused by the object will be
minimised according to (1). The mass of the object was 2 kg
and it was estimated on-line by the robot force/torque sensory
system. Contrary to co-manipulation task example, where
the tool is normally defined and can be pre-measured, the
unknown objects in a handover task can vary and therefore
it is beneficial if the robot can estimate their properties
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Fig. 4: Results of handover experiments. The sequence of the photos on
the top shows the progress of the experiment. The photos in the first row
show the handover in the unoptimised condition (A), while the photos in the
second row show the handover in the optimised condition (B). The graphs in
the bottom row show the average overloading joint torque, muscle activity
and arm manipulability of the human, respectively. The blue bars show
results for the unoptimised condition, while the yellow bars show results
for the optimised condition.

on-line. After the robot measured the object properties, it
also included it into the extended model (5). We performed
two trials for this task. In the first trial the robot handed
over the object in the unoptimised location. In the second
trial the robot used the proposed method to estimate the
appropriate handover location where the human joint torques
were minimised and the arm manipulability was maximised.
Each trial was repeated three times.

The results of experiments are sown in Fig. 4. The
sequence of photos in the first row shows the handover
task execution in the unoptimised location (A), while the
sequence of photos in the second row shows the task exe-
cution in the optimised location (B). The plots in the third
row show the average overloading joint torques, the average
muscles activity and average arm manipulability between
unoptimised and optimised conditions. We can see that joint
torques and arm muscle activity were significantly decreased
by the use of the proposed method. The average overloading
torques in the unoptimised condition were: 17.8±0.3 Nm
in the shoulder and 10.1±0.2 Nm in the elbow. In the
optimised condition the torques were: 6.7±2.1 Nm in the
shoulder and 8.0±0.9 Nm in the elbow. The average muscle
activities in the unoptimised condition were: 24.3±2.6 % in
AD and 16.1±4.3 % in BB. In the optimised condition the
activities were: 1.5±0.3 % in AD and 7.2±1.7 % in BB.
The overloading joint torques decreased on average by 62.3
% in the shoulder and 20.6 % in the elbow. The muscle



activity decreased on average by 93.6 % in AD and 55.1 %
in BB. In addition, the human arm endpoint manipulability
was increased compared to the unoptimised location.

IV. DISCUSSION

The results of experiments show that the proposed method
can be successful in providing more ergonomic working
conditions for the human co-worker in human-robot co-
manipulation and handover tasks. The robot was able to
find a configuration of the human body where overloading
joint torques were decreased and the human arm endpoint
manipulability was reasonably high to enable a good manip-
ulation capacity. The muscle activity as measured by EMG
confirmed the decrease of overloading joint torque. However,
there was some difference between reduction rate of the
overloading torques and the muscle activity. This difference
can probably be attributed to arm being actuated by a large
amount of muscles, while we measured only the muscles that
have a dominant role in the selected tasks.

One potential limitation of the proposed approach is that
it requires identification of human model parameters for
each worker. However, this process has to be done only
once and the identified parameters can be reused if there
are no considerable changes to the human body. Another
potential limitation is that the robot has to measure the
human kinematics. In these experiments we used relatively
expensive and complex motion capture system. However, the
motion capture system can be replaced with more affordable
and less complex systems (e.g., Microsoft Kinect).

In future, we will extend the current work to include
a more complex model of the human arm manipulability,
which takes into account non-linear characteristics of human
muscles [28]. In addition, we will perform experiments on
multiple subjects executing even more complex motion in
3D space.

REFERENCES

[1] D. Agravante, A. Cherubini, A. Bussy, P. Gergondet, and A. Kheddar,
“Collaborative human-humanoid carrying using vision and haptic
sensing,” in Robotics and Automation (ICRA), 2014 IEEE Intl. Conf.
on, May 2014, pp. 607–612.

[2] K. Kosuge and N. Kazamura, “Control of a robot handling an object
in cooperation with a human,” in Robot and Human Communication,
6th IEEE Intl. Workshop on, Sep 1997, pp. 142–147.

[3] P. Donner and M. Buss, “Cooperative swinging of complex pendulum-
like objects: Experimental evaluation,” IEEE Transactions on Robotics,
vol. 32, no. 3, pp. 744–753, June 2016.

[4] A. Bicchi and G. Tonietti, “Fast and” soft-arm” tactics [robot arm
design],” IEEE Robotics & Automation Magazine, vol. 11, no. 2, pp.
22–33, 2004.

[5] V. Magnanimo, S. Walther, L. Tecchia, C. Natale, and T. Guhl,
“Safeguarding a mobile manipulator using dynamic safety fields,” in
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on. IEEE, 2016, pp. 2972–2977.
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