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This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium,
lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes
in parallel arrangement; the optimal conditions were current density of 8mA/cm2 and operating time of 180 minutes. For
phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the
coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural
concentrations of the plant used.

1. Introduction

The mining industry in Mexico is an important economic
activity that provides 4.9% of the National Gross Domestic
Product [1], being mostly metallic extraction of Cu, Pb,
Ag, Au, Fe, Zn, Mn, Cd, Mo, Bi, Sb, As, Sn, Se, and so
forth, through 902 mining complexes [2]. Although mining
is considered an important economic sector, it unfortunately
causes a high environmental impact with the emission of high
concentrations of toxic pollutants (hydrocarbons, mineral
salts, heavy metal leaching, particulate material, and acid
drainage), which can be dispersed in air, soil, and water with
the consequent dispersion towards surface and underground
water sources [3, 4].

In recent years, there has been an increasing interest in
the development of low cost and high efficiency technologies
for the removal of heavymetals inwastewater, which, because
of their varied nature, are difficult to eliminate, complicating
their treatment and raising their costs [5]. Currently, the elim-
ination is based on unit processes of physicochemical origin

such as advanced oxidation processes, adsorption, chem-
ical precipitation, ion exchange, membrane filtration, sol-
vent extraction, and oxidation/reduction methods [6]. These
treatments are efficient, but some concentrations remain and
can be treated by other systems, including biological treat-
ments, especially phytoremediation.

In this context, electrochemical coupled biologically sys-
tems for metal removals of solutions have the potential to
achieve high removal efficiencies [7, 8].

Electrocoagulation “EC” (electrochemically assisted
coagulation) is a clean technology that uses an electrolytic
cell as the basis for its operation and “electrolysis” as a
resultant reaction [9], to destabilize organic and inorganic
particles of contaminants that are suspended, emulsified,
or dissolved in an aqueous medium. Electrical current is
induced in the water through parallel metal plates of iron or
aluminum, allowing the generation of in situ species such
as Al3+, Fe2+, Fe3+, OH, Al(OH)3, and Fe(OH)3, capable of
coagulating some soluble or suspended particles forming
hydrophobic components that adhere to the “floc,” which
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subsequently precipitate, facilitating its removal [10–12]. The
aluminum hydroxide Al(OH)3(s) is an amorphous substance
of gelatinous character that exposes a large surface area with
absorbent properties and that is propitious for the processes
of attraction and absorption of the contaminating particles.
This is formed by three reactions that occur within the
electrocoagulation reactor [13, 14]:

Oxidation: Al3+ + 3e− (anode) (1)

Reduction: 3H2O + 3e
− 󳨀→ 3H2 + 3OH

−

(cathode)
(2)

Total reaction: Al+3(aq) + 3H2O 󳨀→ Al (OH)3(s)

+ 3H+(aq)
(3)

Phytoremediation is a set of technologies that reduce in situ
or ex situ concentrations of various organic and inorganic
pollutants from biochemical processes performed by plants
and microorganisms associated with them; they act as filters
and metabolize substances naturally [15]. Among the plants
recognized by their phytoremediation potential we have
the genus Typha that is commonly called toads, bulrush,
tule, or bejuco, which has been recognized for its ability
to evapotranspire groundwater, high growth rates, broad
root zone, ability to bioaccumulate organic and inorganic
contaminants, and tolerance to high and sometimes varied
concentrations of contaminants [16–18]. Typha latifolia L.
offers an effective option to treat heavymetals inwater; recent
works have verified its effectiveness in the removal of Zn,
Mn, Ag, Al, As, B, Cb, Cu, Cu, Cr, B, Fe, Ni, Co, and Se [19–
22], whether live collected in contaminated sites [23] or using
them as bioadsorbents [24].

The objective of the present study was the evaluation
of the removal efficiency of a coupled electrocoagulation
process using aluminum electrodes with phytoremediation
(Typha latifolia L.), for the treatment of simulated mining
water which has the four heavy metals that are commonly
present in mining wastewater.

2. Materials and Methods

2.1. Electrocoagulation

2.1.1. Preparation of SimulatedMiningWater. Aminingwater
sample of 2 Lwas prepared by treatment, based on the average
concentrations observed during a year in a body of water
adjacent to a mining shaft: Pb (16 ppm), Cu (119 ppm), Cd
(75 ppm), and Zn (156 ppm).

Sulphate and nitrate metal salts (Fermont) were dissolved
in distilled water; the pH was adjusted with H2SO4 to reach
a value around 5 ± 0.5; this pH value is characteristic in the
mining wastewater zone [25].

The purpose to use a simulated sample was to evaluate
the optimal conditions for efficiently eliminating the major
pollutants from the mining wastewater in study.

2.1.2. Electrochemical Reactor. A “batch” reactor was con-
structed, taking into account the optimum operating condi-
tions described by Rodŕıguez et al. [26] and Mercado et al.
[27]. This consists of 5 pairs of aluminum (10 ∗ 5 ∗ 0.03 cm).
The electrodes were connected to a power source that sup-
plied a direct current of 4A and 8V [28], during 180 minutes
and temperature intervals of 24±4∘C [29, 30] and the pHwas
5±1.8 [31]. During the treatment period, samples were taken
at different times to quantify concentrations of heavy metals
by atomic absorption spectrophotometry [29].

2.2. Phytoremediation

2.2.1. Collection and Acclimatization of Plants. The macro-
phyte, Typha latifolia L., was collected in the municipality
of Toluca, State of Mexico, at coordinates 19∘16󸀠04.1󸀠󸀠N
99∘41󸀠14.7󸀠󸀠W [32]. The macrophyte was collected manually,
placed in plastic containers to be kept in water, and trans-
ported to the laboratory, where it was grown in dark plastic
containers to prevent the formation of algae, with water and
Murashige and Skoog nutrient solution “MS” [33] at pH
6.4 ± 0.5. The plants were maintained at room temperature
of 20 ± 5∘C and light/dark photoperiod. The total period of
acclimatization lasted 14 days, after which they were used in
phytoremediation systems.

2.2.2. Phytoremediation System. Plastic containers with a
capacity of 2 liters of electrocoagulatedwater were distributed
in seven treatments systems: control (electrocoagulatedwater
and Typha latifolia + nutritional solution “MS” in water).The
remaining treatments had the following conditions: a dilution
of 12.5% electrocoagulated water, three plants with a biomass
of 90 ± 10 g, pH 6.4 ± 1, temperature ranges of 23 ± 3∘C, and
nutrient solution MS. The phytoremediation system lasted 7
days. During the treatment of phytoremediation, the levels of
concentration of heavy metals in solution were determined
[30] and the translocation factor, bioaccumulation factor
[34–36], and removal kinetics were calculated.

2.2.3. Tolerance to Exposure. To determine the health of
plants due to manipulation and exposure to the residual
concentration of the metals mixture after EC, chlorophyll
A, chlorophyll B, and carotenes were determined using the
spectrophotometric method established by the United States
Environmental Protection Agency [37]. The absorbance was
read at 663, 645, and 470 nm, respectively, and the concentra-
tions were calculated by the following:

mg/mL (chlorophyll A)

= (12.7 ∗ Abs 663) − (2.62 ∗ Abs 645) ,

mg/mL (chlorophyll B)

= (22.9 ∗ Abs 645) − (4.68 ∗ Abs 663) ,

𝜇g/mL (carotene)

= (3.775 ∗ Abs 470) − (0.21 ∗ chlorophyll b) .

(4)



International Journal of Electrochemistry 3

2.2.4. Determination of Metals Concentrations in Water and
Biomass. The metals concentration was analyzed by atomic
absorption spectrophotometry using Avanta GBC 3000
equipment. The liquid samples were filtered using Whatman
filter paper with 0.45𝜇m of pore size and it acidified with
concentrated HNO3. The biomass (roots and aerial part) was
weighed, dried, and ground to a particle size of 20mesh and
then were digested with H2SO4-HClO4 (4 : 1).

Analyze both the electrocoagulation and phytoremedi-
ation treatment (water and biomass) by atomic absorption
spectrophotometry using Avanta GBC 3000 equipment. The
liquid samples previously were filtered with filter paper with
0.45 𝜇m pore size and acidified with concentrated HNO3.
Regarding the biomass, the root and aerial part were weighed,
dried, and ground to a particle size of 20mesh and then
digested with H2SO4-HClO4 (4 : 1).

Translocation factor (FT) was calculated using (5) pro-
posed by Ali et al. [4] and Pandey et al. [21]. The bioaccu-
mulation factor (BCF) was calculated by (6) [38, 39].

FT:
𝐶met aerial part

𝐶met root
, (5)

BCF:
𝐶met plant tissue

𝐶met water
, (6)

where 𝐶met is concentration of the metal in plant (root and
aerial part) and water.

3. Results

3.1. Electrocoagulation

3.1.1. Reactions of Electrocoagulation System with Aluminum
Electrodes. During the electrocoagulation process, with alu-
minum electrodes, we have the in situ formation of the coag-
ulant by the corrosion of the sacrificial anode and the parallel
evolution of the hydrogen in the cathode that allows the
elimination of contaminants by flotation or sedimentation.
All this removal process is carried out in threemain reactions
[31, 40, 41].

(a) Anodic Oxidation Reaction

Al(s) 󳨀→ Al3+ + 3e− (7)

(b) Cathode Reduction Reaction

3H2O + 3e
− 󳨀→ 3H2(g) + 3OH

−
(aq) (8)

The ions Al3+ and OH− generated on the electrodes surface
react with the water to form the coagulating agent: amor-
phous aluminium hydroxide.

(c) Solution Reaction

Al3+(aq) + 3OH
−
(aq) 󳨀→ Al (OH)3(s) +H2(g) (9)

3.1.2. Effects of pH during Electrocoagulation. The pH influ-
ence is one of the most important parameters in electroco-
agulation processes, since this determines the ionic species

that will act as a coagulant [42–44], furthermore influencing
the current efficiency in the metal solubility process to form
hydroxides [45, 46]. To analyze this variable in the simulated
mining sample, the pH value is 5.27, which is characteristic of
mining wastewater [25]; pH was monitored throughout the
electrochemical treatment.

During the first treatment hour, a decrease in the pH
value caused by buffering processes betweenOH− production
and consumption was observed, in addition to the formation
of monomeric species. Through the Hydra-Medusa software
[47] the species present in the solution were calculated
by means of speciation diagrams from equilibrium con-
stants, pH (2–12), 5–60 minutes, [NO3

−]: 1.29mM, [SO4
2−]:

3.14mM, and [Al3+]: 2mM. Figure 1(a) shows a chemical
predominant speciation diagram at the first 5 minutes of
treatment. It is interesting to note that there are 5 species;
there are between themAl3+, AlSO4

−, AlOHSO4, Al(OH)3(s),
and Al(OH)4

− [46–48]. Figure 1(b) shows the mechanisms in
the chemical speciation diagram, when applying 60 minutes
of treatment. It can be observed that the predominant species
are Al3+ andAl(OH)3,(s); according to the diagram the forma-
tion of the coagulant agent exhibited a minimum solubility at
pH a from 3.5 to 10 [49, 50]. In both figures we can see the
formation of another polymorphic compound with values of
pH = 10, Al(OH)4

−, which may cause passivation of the
cathode [51].

To obtain the distribution diagrams of species of Figure 1,
the mass of Al was calculated with de Faraday Law in the
indicated times (see (10)). At the end, [Al3+] was quantified
by atomic absorption in the treated water, obtaining a value
below the analytic method quantification limit (0.03mg/L)
which coincides with the diagram, so we would not have
practically Al in solution, just in the sludge. In the end of the
treatment it losts approximately 10 g of the electrode; well the
production of sludge is around 29-30 g associated toAl(OH)3.
Mouedhen et al. [30] reported that during the early stages of
electrocoagulation the concentration of aluminum increases
and is subsequently reduced due to its precipitation by the
formation of polymorphic species that generate Al(OH)3(s).

𝑚 =
𝐼 ∗ 𝑡 ∗𝑀

𝑍 ∗ F
, (10)

where𝑀 ismolecularweight (gmol−1) of the dissolvedmetal,
𝐼 is current (A), 𝑡 is electrolysis time (s), 𝑍 is number of
electrons involved in the reaction, and Faraday is 𝐹 (96,485 C
mol−1).

3.1.3. Kinetics of Removal. The removal kinetics for Pb, Cu,
Cd, and Zn are presented in Table 1 and are fitted to a pseudo-
first-order model, and the equation describing this is

𝐶 (𝑡) = 𝐶0𝑒
−𝑘𝑡, (11)

where 𝐶0 is the rate of removal of heavy metal ions (mg
l−1), 𝑡 is the electrocoagulation time in hours, and 𝑘 is the
rate constant (h−1) [52]. The removal results obtained by
electrocoagulation in the simulated mineral water were 78.7
to 100%; for this reason, it is necessary to couple it to another
polishing treatment such as phytoremediation.
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Figure 1: (a) Speciation of polymorphicAl complexes calculated byMedusa-Hydra in the range of pHwas of 2 to 12, in 5min of treatmentwith
concentrations of [NO3

−] 1.29mM, [SO4
2−] 3.14mM, and [Al3+] 2mM. (b) Speciation of polymorphic Al complexes calculated by Medusa-

Hydra in a pH range of 2 to 12, in 60min of treatment with concentrations of [NO3
−] 1.29mM, [SO4

2−] 3.14mM, and [Al3+] 25mM.

Table 1: Predicted parameters for the pseudo-first-order removal
rate of the metal mixture in the electrocoagulation system [52].

Heavy metals CD (mA/cm2) First-order model 𝑘 (h−1)
Pb 8 1.080
Cu 8 1.372
Cd 8 0.483
Zn 8 1.658

In the heavy metals removal kinetic (Figure 2), it can be
noted that Cu and Zn follow a similar behavior with metal
hydroxide precipitation around the cathode [47, 49]. In the
case of copper (Figure 2(a)), its removal started from a pH
of 5.65 in the form of Cu(OH)2(c) [29]. While the removal of
Zn was in 3 h of treatment, the species formed are as follows
(Figure 2(b)): Zn2+, ZnSO4, ZnOH

+, and Zn(OH)2(c). Works
by Adhoum et al. [40] and Al-Shannag et al. [53] report
percentages of removal similar to this study [52].

Lead precipitated prior Heidmann and Calmano [47]
reported that some metals may exhibit this phenomenon
and that the concentration decrease will continue as pH
increases during electrochemical treatment. In Figure 2(c)
it is observed that the precipitation was present due to the
presence of the SO4 anion with which it becomes complexed.
The removal process involved the species formed of Pb2+,
PbSO4(c), PbOH

+, Pb(OH)2, Pb(OH)3
−, and Pb(OH)4

2−.
In the case of cadmium the maximum removal is around

80% (Figure 2(d)) in 3 hours of electrochemical treatment.
This can be explained using a Medusa-Hydra chemical
program (Figure 3) where it can be observed that Cd(OH)2(c)
require to increase the pH until 9.5.

The removal efficiency RE (%) in this system was cal-
culated as a function of electrocoagulation time by the
following:

RE (%) =
𝐶0 − 𝐶𝑓
𝐶0
∗ 100, (12)

where 𝐶0 is initial concentration of the metal and 𝐶𝑓 is final
metal concentration.

Figure 4 shows the percentage of removal of the metal
ions (Cu2+, Cd2+, Pb2+, and Zn2+) which was increased with
the time of electrocoagulation. Removal efficiencies were
obtained up to 98.3% for Cu, 78.7% for Cd, and 100% for
Zn in 3 hrs. In the case of Pb, a 96.9% removal was obtained
by precipitation prior to the electrocoagulation process and
the reduction made by the electrochemical treatment. The
concentration of the aluminum generated in the reactor
was calculated at 2680mg/l, which decreases during the
treatment; Mouedhen et al. [30] indicate that during the early
stages of electrocoagulation the concentration of aluminum
increases and subsequently reduces due to its participation
in the formation of polymorphic species that give rise to
Al(OH)3(s).

The energy consumed by electrochemical treatment was
determined using cell voltage (𝑈), current (𝐼), and electroco-
agulation time (𝑡) [47, 48, 54]. The energy consumed during
the electrocoagulation treatment was 26Kwh/m3.

𝐸 =
𝑈 ∗ 𝐼 ∗ 𝑡

𝑉
, (13)

where𝑈 is cell voltage (8V), 𝐼 is current (4A), 𝑡 is electrolysis
time (3 h), and 𝑉 is volume of solution (3 × 10−3m3).

3.2. Phytoremediation

3.2.1. Determination of Exposure Tolerance for Typha latifolia
L. For the tolerance analysis, the plants were exposed to 100%
and dilutions to 75, 50, 25, and 12.5% of electrocoagulated
water for 7 and 14 days,making daily observations. Significant
differences (𝑝 < 0.05, 𝑈 of Mann–Whitney) were obtained
for chlorophyll production at 14 days in all treatments.
At dilutions of >50% after 7 days, phytotoxic effects on
macrophytes were observed (Figures 5(a), 5(b), and 5(c)).
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The concentration of the electrocoagulated water metal
mixture to which the Typha was tolerant was at a dilution at
12.5% (mixture of 1.25mg/l of Cu, 9mg/l of Cd, 0.2625mg/l
of Pb, and Zn < the limit of quantification), after 7 days of
exposure. The concentrations at which no significant differ-
ences were found between the values obtained of chlorophyll,

carotene, and their relation to control plants, ANOVA (𝑝 <
0.05), are shown in Figures 6(a) and 6(b) [52].

Ruiz et al. [25] reported that Typha latifolia is tolerant
to concentrations of the mixture of 0.309mg/l of Cd and
23.60mg/l of Zn present in the wastewater of a mining com-
pany. Anning et al. [55] worked with a mixture of 0.31mg/l
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Figure 6: (a) Concentration of chlorophylls and carotenes in Typha latifolia. ∗ANOVA 𝑝 < 0.05 and Dunnett’s multiple range test [52]. (b)
Concentration of chlorophylls/carotenes in Typha latifolia. Both analyses were not significant at 𝑝 < 0.05 [52].

of Cu and 0.19mg/l of Pb present in municipal wastewater
and tested the tolerance of T. latifolia to these concentrations.
Both works indicate the potential of the macrophytes in the
removal of these four metals, all without showing any signs
of phytotoxicity (chlorosis or wilt).

3.2.2. Kinetics of Heavy Metal Removal. To the metal tolerant
mixture for the plant, the kinetics of removal were performed.

Figure 7(a) shows that Cu2+ had a reduction of 20% at day
1 and subsequently remained constant; similar results were
reported by Anning et al., 2013, with the removal of 33.84%
Cu present in wastewater by Typha latifolia. The reduction
of Pb concentration was gradual, obtaining a total removal
at 7 days of 61.9%, close to that observed by Oquendo [56]
when removing 62% lead solution at 2 ppm using the same
macrophytes.
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Figure 7: (a) Concentrations of Cu and Pb in phytoremediation systems with Typha latifolia [52]. (b) Concentration of Zn and Cd in Typha
latifolia [52].

In Figure 7(b) increases in concentrations of both Zn
and Cd (11mg/l and 5mg/l), respectively, are observed; this
may be due to desorption processes of both metals by
the plant; the days of greatest desorption for both metals
were day 5 for zinc and day 7 for cadmium. Probably the
increase of the concentration of both metals is because the
collect site of the Typha was contaminated with these heavy
metals; Kabata-Pendias [57] mentions that such metals are
associated in the soil with concentration range which can
reach up to 4832mg/kg for Zn and 222mg/kg for Cd. In the
phytoremediation system when exposed to the mixture with
other metals the root could be saturated, which would lead to
the desorption and increase of Zn-Cd in the water.

3.2.3. Translocation Factor (FT). To evaluate the ability of
plants to translocate heavy metals from the root to aerial
parts, the FT was calculated by aerial concentration/root
concentration [58]; we recall that the criterion for establishing
that a plant has the translocation capacity of the metal in the
vegetative structure is that FT > 1 metals [39]. During the
treatmentwith the electrocoagulatedmineral water the plants
showed high values of FT (Table 2) showing the following
trend of Pb > Zn > Cu > Cd translocation.

The higher values of lead in the treatment indicate an
efficient transport capacity of the root metal to the aerial
part of the plant and its probable accumulation in the plant
[34, 59], while Zn, Cu, and Cd presented a TF < 1, indicating
that the mechanism of accumulation of these metals is the
adsorption in the root [60].

3.2.4. Bioaccumulation Factor in Leaves and Roots (𝐵𝐶𝐹𝐴
and 𝐵𝐶𝐹𝑅). In this study, higher values of BCF than FT
were observed, indicating that the plant possesses phy-
toremediation and phytostabilization potential [61, 62]. The
concentrations of BCF > 1 in both leaves and root (Table 2),
same behavior as Ye et al. [16] and Sasmaz et al. [34]. The Pb

is the one with the greatest accumulation in the vegetative
structure.

The bioaccumulation factor in leaves (BCFA) of Typha
latifolia L. presented high accumulation of Pb despite being
cataloged of low mobility and accumulation in root [56, 63].
The tendency of observed bioaccumulationwas Pb>Cu>Cd
> Zn, very similar to that reported by Lyubenova et al. [64].

The bioaccumulation of the metals in the roots was
greater than those observed in the aerial parts, except for Pb
(Figure 8), as follows: Pb > Cu > Cd > Zn, behavior probably
due to a passive adsorption process and metal accumulation
in the rhizosphere, as reported by Chandra and Yadav [65]
and Hazra et al. [66].

3.3. Electrocoagulation-Phytoremediation Coupled System.
The electrocoagulation process used in the treatment of
simulated mineral water showed a good effectiveness in the
removal of the metal mixture. Residual concentrations were
treated by phytoremediationwithTypha latifolia L., achieving
on average an additional 2% removal (Table 3).

4. Conclusions

The mechanisms present in the removal of the Cu, Cd, Pb,
and Zn mixture from the simulated mining solution are as
follows: (1) In the cathode a reaction of reduction forming
metal hydroxides Cu(OH)2(c), Cd(OH)2(c), Pb(OH)3, and
Zn(OH)2(c) is performed, which were formed by electrolysis,
and (2) coprecipitated with aluminum hydroxide (flocs). The
removal rates during the 180 minutes of electrochemical
treatment achieved a 100% efficiency in Zn, 98.3% in Cu,
96.4% in Pb, and 78.7% in Cd at pH 5.27. The slower removal
of the Cd in comparison to the rest of the metals present
in the solution is attributed to a difference in the pH value
(9.5) required for this metal as evidenced in the speciation
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Table 2: Translocation and bioaccumulation factor of metals in the leaf and root of Typha latifolia [52].

Cu Cd Zn Pb
BCFA BCFR FT BCFA BCFR FT BCFA BCFR FT BCFA BCFR FT

D1 18 22 0.82 4.25 7 0.61 5.86 6 0.98 1485 1510 0.98
D3 10 29 0.34 3.09 6.27 0.49 2.73 2.80 0.98 1445 1365 1.06
D5 20 18 1.11 2.85 4.85 0.59 1.88 2.12 0.89 2820 2810 1.00
D7 13 22 0.59 2.43 5.07 0.48 1.44 2.38 0.61 2690 2570 1.05
Average 15.25 22.75 0.72 3.15 5.80 0.54 2.98 3.32 0.86 2110 2063 1.02
BCFA: bioaccumulation factor aerial/medium, BCFR: bioaccumulation factor root: root/medium, and FT: translocation factor: aerial/root.

Table 3: Efficiency in the removal of the heavy metals by the coupled process of electrocoagulation and phytoremediation [52].

Metal
Initial

concentration
(mg/l)

% removal with
Electrocoagulation

% removal with
Phytoremediation

% removal of
coupled system

Cu 119 98.3 20 99.2
Cd 75 78.7 11 81.3
Zn 156 100 — Desorption
Pb 16 96.9 43 99.4
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Figure 8: Bioaccumulation factor of Cu, Zn, Pb, and Cd in leaf and root of Typha latifolia L., during 7 days of treatment [52].
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diagram. The electrocoagulation process had a calculated
energy consumption of 26 kWh/m3.

In the present study it was shown that Typha latifolia L.
is tolerant to residual concentrations of the metals mixture
present in the electrocoagulated water, as evidenced by the
content of pigments (chlorophyll and carotene) in the plant.
The translocation factor values showed a tendency of the
pass of the metals from the root to the aerial part of the
plant in the following order: Pb > Zn > Cu > Cd. Likewise
the bioconcentration factor indicates that the root of this
macrophyte has the ability to perform the phytostabilization
and phytoaccumulation processes of the metals studied.

The coupled process electrochemical-phytoremediation
had a high removal efficiency of Cu (99.2%), Cd (82.7 to
89.3%), and Pb (99.4%) to the concentrations present in
mining wastewater. In this context such combination of
treatments is viable both environmentally and economically.
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Hernández, G. Roa-Morales, N. González-Rivas, and M. Á.
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