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four aquatic macrophytes
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Nelly Gonz�alez-Rivasb, and Miguel �Angel Balderas-Platac

aDepartamento de Farmacia, Facultad de Qu�ımica, Universidad Aut�onoma del Estado de M�exico, Toluca, Estado de M�exico, M�exico; bCentro Conjunto
de Investigaci�on en Qu�ımica Sustentable, Universidad Aut�onoma del Estado de M�exico, Toluca, Estado de M�exico, M�exico; cFacultad de Geograf�ıa,
Universidad Aut�onoma del Estado de M�exico, Toluca, Estado de M�exico, M�exico

ABSTRACT
In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia
crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy
metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses
were performed for 7 days of exposure at five different treatments of the metals mixture (CuC2, HgC2,
PbC2, and ZnC2). The production of chlorophyll and carotenoids was determined at the end of each
treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations
after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals
mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and
M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn
0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53%
of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of
Zn. The obtained results suggest that these two species of macrophytes could be used for the
phytoremediation of this mixture of heavy metals from the polluted water bodies.
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Introduction

Among the main water pollutants, heavy metals are dangerous
because they are persistent and have the tendency to accumu-
late in sediments and in the tissues of living organisms. Metals
such as Hg, Cd, Ni, Pb, Cu, Zn, and Cr are highly toxic either
in its elemental form or as soluble. In addition, their presence
in the atmosphere, soil, and water, even in trace, could cause
serious health problems to animals and plants. (Jadia and Fule-
kar 2009). Heavy metals can form complexes with organic mat-
ter present in water and sediments, which increases their toxic
effects on fish and crustaceans (M�arquez et al. 2008). Also, it
has been reported that through the trophic networks, the heavy
metals tend to bioaccumulate and biomagnify (Rajeshkumar
and Munuswamy 2011). In areas with high anthropogenic pres-
sure, it has been found that heavy metals such as Cd, Cu, Pb,
Cr, Zn, and Ni, at levels that exceed the maximum permissible
limits, could cause serious problems to the organisms (Ali et al.
2013).

Concentrations of heavy metals in the environment increase
with time, e.g., the Belgian and Dutch countrysides that cover
an area of 700 km2 are diffusely contaminated with atmo-
spheric deposition of Cd, Zn, and Pb (Meers et al. 2010). In
China, the overexploitation of mines has caused the destruction
of 2,880,000 ha of land (Xia 2004). In Mexico, the National

Water Commission reported that based on the monitoring of
chemical oxygen demand in 2006, 17.6% of water had accept-
able quality, 11.3% of water was contaminated, and 5.4% of
water was heavily contaminated. They also recognized that dis-
charges from agriculture, deforestation, and poor waste man-
agement cause 70% of pollution in water bodies in the country
(Comisi�on Nacional del Agua 2007).

Conventional techniques used to remove metals from waste-
water include physicochemical methods such as precipitation,
neutralization, ion exchange, filtration, reverse osmosis, electro-
chemical treatments, oxide/reduction, electrodialysis, activated
carbon adsorption, and recovery by evaporation. Usually, these
processes are effective in removing most of the metals from
wastewater with concentrations from moderate to high. How-
ever, chemical processes produce a large amount of sludge,
making the recovery of the metal difficult. Moreover, after the
treatment of the effluent, the amounts of total dissolved solids
are often unacceptably high. On the other hand, when these
techniques are applied to highly diluted wastewater with metal
ions at low concentrations, these methods are either inefficient
or unprofitable. Also, these methods require highly skilled
operational workers and have a lack of selectivity in the treat-
ment process (Ali et al. 2013; Ca~nizares 2000; Guangyu and
Thiruvenkatachari 2003; Guo et al. 2010).
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The urgent need to clean the waste water and fresh water
contaminated with metals, has led to the development of more
friendly alternatives using organisms to prevent or restore the
damage caused by anthropogenic actions that contaminate differ-
ent water bodies. In this regard, the bioremediation technologies
that use both natural biological and genetically engineered sys-
tems to degrade, transform, or eliminate organic and inorganic
hazardous substances in soil, water, and air have received
increased importance in recent years. These technologies allow
removing contaminant concentrations that are undetectable or
are below the acceptable limits by the environmental regulations
(Audet and Charest 2007; De Olivera 2004).

Within bioremediation, phytoremediation has been pro-
posed as a promising, profitable, and environmentally friendly
technology. In phytoremediation, the natural characteristics of
plants or other species provided by genetic engineering are
utilized to remove, transfer, stabilize, and degrade pollutants
present in soil, sediment, and water, thereby cleaning up con-
taminated environments (Padmavathiamma and Li 2007).

Hyperaccumulator macrophytes are herbaceous or woody
plants that can tolerate and accumulate high concentrations of
heavy metals without any visible symptoms of damage. For
being considered as hyperaccumulators, the plants must have
the ability to accumulate of 0.1% to 1.0% of the metals concen-
tration to which are exposed, determined in dry tissue. Plants
have internal mechanisms of tolerance to metal toxicity, which
makes them useful to humans as a tool in the new technologies
of phytoremediation (Llugany et al. 2007).

Aquatic plants absorb elements through the roots and/or
shoots; some species show a differential behavior in their ability to
accumulate metals in the roots, stems, and leaves (Kumar et al.
2008). Studies in macrophytes of the genera Eichhornia, Typha,
and Myriophyllum, showed accumulation of Cu and Zn in the
root, whereas Pb was translocated to the leaves (Fawzy et al. 2012).
Moreover, Arenas and collaborators (2011) determined that the
macrophyte Lemna minor presented a mercury removal efficiency
of 30% based on an initial concentration of 0.13 mg L¡1 in 22 days
of treatment. The aim of this study was to analyze the tolerance
and hyperaccumulation of a mixture of metal ions (CuC2, PbC2,
HgC2, and ZnC2) by the aquatic macrophytes Typha latifolia,
Lemna minor, Eichhornia crassipes, and Myriophyllum aquaticum
to propose a system with selective bioaccumulation, enabling effi-
cient bioremediation of polluted water bodies.

Materials and methods

Biological material

Macrophytes L. minor, T. latifolia, E. crassipes, and M. aquati-
cum were collected from the Ignacio Ram�ırez dam (19�270400N
99�480700W), in the municipe of Almoloya de Ju�arez, in the
State of M�exico. Macrophytes were collected manually; plastic
containers were used to keep a certain amount of water to
transport the species to the laboratory.

Cultivation of macrophytes
The macrophyte samples were first washed with running tap water
followed by distilled water to remove extraneous matter. After
washing, the plants were poured in plastic containers for their

acclimation and cultivation, using 20 L of deionized water and
1 mL L¡1 of Murashige y Skoog (MS) nutritional m�edium (Mura-
shige and Skoog 1962). The temperature was maintained at 20 §
2�C and pH was maintained between 6.5 and 7, in natural periods
of light/dark.

Determination of tolerance to mixture of heavy metals

The experiments were carried out using eight test systems under
similar conditions in which the plants were cultivated, using 3.5-L
plastic containers with 1 L of solution containing 1 mL L¡1 of
nutritional medium at pH of 5.8§ 2, and the temperature was set
to 20§ 2�C. The average biomass in each system was 76.78 § 5 g
for E. crassipes, 15.68§ 3 g forM. aquaticum, 75.0§ 2 g for T. lati-
folia, and 2.0 § 0.2 g for L. minor. A mixture of CuC2 (CuSO4

5H2O), Pb
C2 (Pb (NO3)2), Hg

C2 (HgCl2), and ZnC2 (ZnSO4

7H2O) was added to the systems 1–6. The concentrations used in
the experiments are presented in Table 1. The experiments 7 and 8
were used as control: experiment 7, control without metal (WM)
and experiment 8, control without macrophytes (WP). Each treat-
ment was performed for 7 days, observing the plants every day and
recovering the water lost to evaporation and transpiration. All the
tests were carried out in triplicate.

Determination of pigments

The production of carotenes and chlorophyll was used as an indica-
tor of the health of plants. For a given exposed macrophyte, a sam-
ple of 0.344 g of biomass was taken, macerated with 5 mL of a 9:1
solution of ammoniumnitrate and acetone at 80%, and refrigerated
for 2 hours. Finally, 5 mL of 80% acetone was added to the sample.
Then the sample was centrifuged at 3200 rpm for 20 minutes, and
2 mL of supernatant was taken and poured into 8 mL of 80% ace-
tone. The solution mixture was analyzed for chlorophyll a
(668 nm), chlorophyll b (640 nm), and carotenes pair (470 nm) in
an UV/Vis GENESYS brandModel 10S Thermo spectrophotome-
ter (EPA 1997). By using Equations (1)–(3), the amounts of pig-
ments were calculated:

mg=mL chlorophyll að ÞD 12:7�Abs663ð Þ ¡ 2:69� Abs 645ð Þ
(1)

mg 6 mL chlorophyll bð ÞD 22:9 �Abs645ð Þ ¡ 4:68� Abs 663ð Þ
(2)

mg 6 mL carotenesð ÞD 3:775�Abs470ð Þ ¡ 0:21� chlorophyll bð Þ
(3)

Table 1. Concentrations (mg/L) of the mixtures of heavy metals at which the mac-
rophytes were exposed.

Treatment (mg/L)

Metal 1 2 3 4 5 6

Cu2C 0.5 2 5 10 20 100
Hg2C 0.25 1 2.5 5 10 50
Pb2C 0.25 1 2.5 5 10 50
Zn2C 0.25 1 2.5 5 10 50
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For measuring the concentration at which each macrophyte
was tolerant to the mixture of metals, a one-way analysis of var-
iance (ANOVA) with 95% confidence level was performed, fol-
lowed by a multiple range test of least significant difference
(LSD).

Kinetics of removal of heavy metals mixture

For the macrophytes most tolerant to the exposure to metals,
the kinetics of removal of the mixture of four heavy metals was
analyzed. The selected concentration for the experiments was
an intermediate value between the lowest values at which the
plants were tolerant (treatments 1 and 2 in Table 1). The
experiments were performed under experimental conditions
similar to those described for acclimation and tolerance.

The plants were exposed to concentrations of Cu—1.0 mg/L
and Pb, Zn, and Hg—0.5 mg/L at different periods of time, 1, 3, 5,
and 7 days of treatment, using one system as control. All the experi-
ments were carried out in triplicate using 1 L of solution with the
mixture of heavy metals, imposing a pH value between 5.8 and 6,
under a temperature of 21 § 2�C in natural periods of light/dark.
The used biomass was 39.96 § 0.15 g for E. crassipes and 21.89 §
0.45 g for M. aquaticum. During the experiments, all the evapo-
rated water was recovered, and the viability of the macrophytes
was checked by bare eye.

Quantification of heavy metals

In the days of the determination of the kinetics, samples of water
were taken in plastic bottles, which were washed, treated with nitric
acid at 5%, and rinsed with deionized water. The samples were
acidifiedwith nitric acid, and preserved in cooling for later determi-
nation of heavy metals by atomic absorption spectrophotometry.
On the other hand, the plant parts were separated and oven-dried
at 65�C for 2 weeks. The dried plants were then smashed and pow-
dered by an electric mill, IKAmodel MF 10 BS1, at 3500 rpm. 0.5 g
of each powdered sample was predigested using 10 mL of nitric
acid, J. T. Baker, for 24 hours. The mixture was placed in a micro-
wave oven,MarsmodelMars Xpress, for its full digestion. The final
solution was filtered and graduated to 25 mL with deionized water.
The determination of each metal was carried out in an atomic
absorption spectrophotometer, Thermo, model S Series. Hydrides
generator Thermo VP100model was used for the determination of
mercury. Calibration curves were performed using standard atomic
absorption samples HYCEL grade for each of the quantified heavy
metals (Cu 1, 2, 3, and 4 mg/L; Zn 0.2, 0.4, 0.8, and 1 mg/L; Pb 0.2,
0.6, 0.8, and 1mg/L; andHg 3, 6, 15, 30, and 60mg/L).

Calculation of bioconcentration and translocation factors

With the obtained data from the heavy metals determination,
the bioconcentration factors (BCFs) were calculated using
Equation (4) proposed by Olivares and Pe~na (2009), in both
the root and the aerial part of E. crassipes andM. aquaticum:

BCF D Cmetin vegetal tissue 6 Cmetfrom water (4)

where Cmet Dmetal concentration.

Translocation factors (TFs) to the aerial part of the macro-
phytes were calculated according to Equation (5) proposed by
Zhang et al. (2006) and Olivares and Pe~na (2009):

TF D Cmetaerial part 6 Cmetroot (5)

where Cmet Dmetal concentration.
Values of BCFs and TFs show whether macrophytes are tol-

erant (BCF and TF of 0.1–1), accumulator (BCF>1 and
TF>1), or hyperaccumulator, if in addition the concentrations
of metals in the plant exceed 0.1% by weight of dry plant (Baker
and Brooks 1989).

Results and discussion

Determination of tolerance to the mixture of heavy metals

The concentration–response relation showed that for the high-
est concentrations (Table 1, treatment 6), macrophytes died
after 24 hours of being exposed to the mixture of metals. In
treatment 5, macrophytes survived until day 4, except L. minor
that turned out to be the most sensitive species and no longer
survived to any of the concentrations of metal mixture after
72 hours of exposure. For this reason, this species was excluded
as a candidate in the treatment of the particular mixture of
heavy metals studied in this work. However, some authors have
found that L. minor is tolerant to high concentrations of heavy
metals, e.g., Armendariz et al. (2008) reported that L. minor
can tolerate up to 100 mg/L of CuC2. On the other hand,
L. minor has demonstrated to be an alternative for removing
concentrations of 0.13 mg/L of Hg from water in 22 days of
treatment, with an efficiency of 30% (Arenas et al. 2011).

Basile et al. (2012) determined that L. minor can be sub-
jected to treatment for 7 days in the presence of Zn 10¡4 M
and can accumulate up to 58,800 mg/g of metal in tissue; for
Pb at the same concentration (10¡4 M), the plant can accu-
mulate 22,533 mg/g of metal in tissue. For this reason, this
macrophyte was proposed as a good candidate for remedia-
tion of wastewater. Keith et al. (2007) exposed L. minor to
aqueous solutions of Cu 125, Cr 220, and As 205 mg/L in
independent form and in mixtures. Their reported results
showed that the plant can remove 60% of Cu, Cr, and As
when they are mixed, but when Cu (60 mg/L) is the single
species in solution the plant can remove up to 85% of Cu, in
a period of 7 days. In the present work, the most probable
reason why the macrophyte did not survive at lower concen-
tration of heavy metals than those reported is because of the
nature of the tested mixture, which can lead to synergism
increasing its toxicity considerably.

T. latifolia was found to be tolerant only to the lowest
tested concentration, since it presented significant differen-
ces with respect to the control plants, both in the produc-
tion of chlorophyll (ANOVA p < 0.05) and in the
chlorophylls/carotenoids ratio (ANOVA p < 0.05) starting
in treatment 2. Some authors have shown that this plant is
a good accumulator of heavy metals, e.g., when T. latifolia
was exposed to water from a stream of the mining industry
with concentrations of 23.60 and 0.309 mg/L of Zn and Cd,
respectively, it was able to remove 70% of Zn and 90% of
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Cd after 7 days of treatment (Ruiz et al. 2010). Mays and
Edwards (2001) showed that T. latifolia is an accumulator
of Cd, Cu, Ni, and Zn, present in natural and artificial wet-
lands, where acidic water is poured from a mine.

E. crassipes showed no significant differences in the produc-
tion of chlorophyll when exposed to four treatments with
respect to the control experiment, but evidenced to be sensitive
in chlorophylls/carotenoids ratio, obtaining significant differ-
ences (ANOVA p < 0.05) from the concentration of treatment
1. Kumar and Tripathi (2009) found that E. crassipes could sur-
vive in concentrations up to 20 mg/L ZnC2 for 11 days without
morphological signs of toxicity.

It was observed that for M. aquaticum, in terms of the
most sensitive biomarker, the chlorophylls/carotenoids
ratio, no significant differences (ANOVA p > 0.05) were
found in any of the treatments compared to the control. It
has been reported that this macrophyte can survive in
water of the river Xanaes in Cordoba, Argentina, which
presents concentrations of Mn, Zn, and Fe ranging from
100 to 300 mg/L for each of the metals (Harguinteguy
et al. 2013).

Kinetics of removal of heavy metals mixture

E. crassipes and M. aquaticum were tolerant to the concentra-
tions of treatments 1 and 2, as indicated in Table 1; therefore, an
intermediate concentration was considered for the experiments
of removal kinetics (Cu 1.0 and Pb, Zn, and Hg 0.5 mg/L). In
Figure 1a, the removal percentages per day are displayed for
each of the metals in the mixture for E. crassipes; it can be
observed that on day 5, the removal of the metals reached its
maximum value. The highest percentage of removal was for cop-
per (99.8%), followed by mercury (99.6%), lead (97.9%), and zinc
(94.37%); for copper and zinc, on day 7, a decrease in removal
rate was observed, suggesting that there is a desorption of the
metals due to the saturation of root of the plants. For M. aquati-
cum, in Figure 1b, it is noticeable that the highest percentage of
removal of metals is reached on day 7. Mercury (98.2%) has the
highest efficiency; followed by copper (95.2%), lead (94.3%), and
zinc (86.5%); for the latter metal, on day 5, 91.9% of removal is
observed. The removal percentages were calculated based on the
obtained concentration of metals in the control system without
plants, after 7 days of observation under the same experimental
conditions, in order to include the amount of metals eliminated
for reasons unrelated to the treatment.

In both the macrophytes, the removal of copper occurs from
24 hours to be in contact with the solution. Moreover, it is
noticeable that E. crassipes has a better capacity to remove the
metal because it has a root more abundant with higher contact
surface that M. aquaticum. In this work, the percentage of
removal of zinc for E. crassipes was better than that reported by
Hadad et al. (2011); in that study, the macrophyte was treated
with zinc solution at a concentration of 1 mg/L obtaining 70%
of removal. Both the macrophytes were efficient in removing
the mixture of metals especially for mercury, similar to the
results reported by Kamal et al. (2004), in the treatment of solu-
tion mercury with concentration of 0.5 mg/L by M. aquaticum,
obtaining a 99.8% removal of metal after 21 days of treatment.

Translocation

The obtained results in the determination of the mobility of
metals in plants were consistent with those of the analysis in
the removal kinetics. As shown in Figures 2a, b and 3a, b, the
control plants contained a significant amount of copper and
zinc (3.02–178.6 and 0.6–1435 mg/kg in dry tissue weight,
respectively), since they are essential elements for growth
mainly the root. E. crassipes presented the highest concentra-
tion of metals compared withM. aquaticum.

The heavy metals, lead and mercury, were found as a source
of pollution in the control plants, to concentrations of 1.2 to
18.15 and 1.78 to 3.64 mg/kg in dry tissue weight, respectively.
Lead was mainly found in the root of M. aquaticum, and mer-
cury was distributed in homogeneous form in the whole plant
of E. crassipes. These concentrations were taken into account
during the calculation of the TFs.

In both the macrophytes, the mixture of metals is mainly
accumulated in the root. In E. crassipes, the concentrations
of all the metals were higher in roots than in the aerial
part, obtaining superior TFs for mercury and zinc as shown
in Table 2. For M. aquaticum also, high levels of copper,
lead, and mercury were found in the root, but in the case
of zinc, on days 1 and 7, the concentrations were greater in
root, showing an opposite behavior on days 3 and 5 during
which the metal was more concentrated in the aerial part.
TFs show that for M. aquaticum translocates greater
amounts of copper and lead but lower for mercury and
zinc, and it is also noticeable that E. crassipes translocate
less amounts of all the metals.

Figure 1. Average percentage of removal of metals from the mixture in water for
Eichhornia crassipes (Mart.) Solms-Laubach (a) and Myriophyllum aquaticum (Vell.)
Verdc (b) at different days. The bars indicate the standard error.
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Hyperaccumulation

In Table 3, a BCF> 1 was found for copper in both the aerial
part and the roots of E. crassipes and M. aquaticum when the
plants are exposed to a Cu concentration of 1.0 mg/L. In the
roots, BCF values calculated for E. crassipes have the order of
Cu > Pb > Hg > Zn, whereas in the aerial part, the obtained
order was Cu > Hg > Zn > Pb. The BCF value of 0.2342 in the
aerial part of E. crassipes for zinc is similar to that found by
Hadad et al. (2011), i.e., 0.275. However, the value found in the
root (0.5552) is approximately eight times lower than that
reported by the same authors (4.059). These differences may be
due to the fact that they used a solution of a single heavy metal
with twice a concentration as that of zinc (1.0 mg/L) compared
with the solution used in this work (0.5 mg/L).

On the other hand, BCF values found for M. aquaticum
have the order of Cu > Hg > Pb > Zn in both the root and the
aerial part as shown in Table 3. The percentage of metals in the
dry biomass has shown that the most retained heavy metal is
copper, followed by zinc, lead and at the end mercury. Never-
theless, E. crassipes showed the highest capacity for retaining all
the metals studied in the present work, as shown in Table 4.

To consider a macrophyte as a hyperaccumulator, it must
satisfy the following conditions: BCF � 1 and TF � 1 for the
studied metal, and also a metal percentage in dry plant tissue �
0.1% (Baker and Brooks 1989; Llugany et al. 2007). The results
obtained in this work showed that both the macrophytes have
TFs less than 1. The values of the BCF were 18.75 (Cu) and 4.1
(Pb) and 1.0 or less for Zn and Hg with E. crassipes and in the
case of M. aquaticum, 8.67 (Cu), 2.0 (Pb) and 2.61 (Hg). Simi-
lar to the percentage of the metal in dry biomass, the obtained
values are lesser than the recommended ones, except for mer-
cury in E. crassipes. These data suggest that the macrophytes

Figure 2. Concentration of Cu (a) and Zn, Pb, and Hg (b) in Eichhornia crassipes
(Mart.) Solms-Laubach biomass over time. The bars indicate the standard error.

Figure 3. Concentration of Cu (a) and Zn, Pb, and Hg (b) in Myriophyllum aquati-
cum (Vell.) Verdc biomass over time. The bars indicate the standard error.

Table 2. Translocation factor from the root to the aerial part of metals in the
macrophytes.

Translocation factor

Metal
Eichhornia crassipes
(Mart.) Solms-Laubach

Myriophyllum aquaticum
(Vell.) Verdc

Cu 0.051 0.299
Zn 0.272 0.253
Pb 0.034 0.208
Hg 0.455 0.260

Table 3. BCF of the mixture of heavy metals (Cu, Zn, Pb, and Hg) in the aerial and
root parts of macrophytes.

BCF

Metal (mg/L) Aerial part (mg/kg) Root (mg/kg) Aerial part Root

Eichhornia crassipes (Mart.) Solms-Laubach
Cu 1.0 46.74 490.68 1.3978 17.3574
Zn 0.5 4.6003 16.9097 0.2342 0.5552
Pb 0.5 1.0914 31.2175 0.2258 4.1935
Hg 0.5 0.5834 1.2801 0.4214 0.5930

Myriophyllum aquaticum (Vell.) Verdc
Cu 1.0 47.475 158.45 1.1897 7.4886
Zn 0.5 2.38 9.405 0.0347 0.2592
Pb 0.5 4.83 23.115 0.1968 1.8031
Hg 0.5 1.185 4.553 0.3175 2.3006
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are not hyperaccumulators for the mixture of heavy metals pro-
posed in the present work. Nevertheless, even with the rela-
tively low values of the factors, these species of macrophytes
could be considered as viable alternatives in the treatment of
water polluted with this particular mixture of heavy metals.

Conclusions

The macrophytes L. minor and T. latifolia are sensitive to
the mixture of metals tested in this study, even to the low-
est investigated concentration (0.5 Cu and 0.25 Zn, Pb, and
Hg in mg/L). E. crassipes and M. aquaticum are tolerant to
the mixture of metals at concentrations of 10 mg/L for Cu
and 5 mg/L for Zn, Pb, and Hg, making these species good
candidates for bioremediation of polluted water bodies that
contain this particular mixture of heavy metals. E. crassipes
shows higher removal capacity of heavy metals that M.
aquaticum, probably for its larger surface contact. The per-
centage of remotion after 5 days of exposure for E. crassipes
was 97.9% (§3.5), and for M. aquaticum, it was 94.9%
(§3.0), starting with a concentration of 1 mg/L of Cu and
0.5 mg/L of the other metals.

The macrophytes E. crassipes and M. aquaticum exposed to
the mixture of metals Cu, Zn, Pb, and Hg present values <1 for
the TF. Moreover, the percentage of metals in dry tissue is
lower than 0.1%; for these reasons, these macrophytes cannot
be considered as hyperaccumulators.
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