
Computing the Clique-width

of Cactus Graphs

J. Leonardo González-Ruiz1,2 J. Raymundo Marcial-Romero3,
J. A. Hernández-Serv́ın 4

Universidad Autónoma del Estado de México
Facultad de Ingenieŕıa

Toluca, México

Abstract

Similar to the tree-width (twd), the clique-width (cwd) is an invariant of graphs. A well known relationship

between tree-width and clique-width is that cwd(G) ≤ 3 · 2twd(G)−1. It is also known that tree-width of
Cactus graphs is 2, therefore the clique-width for those graphs is smaller or equal than 6. In this paper, it
is shown that the clique-width of Cactus graphs is smaller or equal to 4 and we present a polynomial time
algorithm which computes exactly a 4-expression.

Keywords: Graph theory, Clique-width, Tree-width, Complexity.

1 Introduction

The clique-width has recently become an important graph invariant in parameter-

ized complexity theory because measures the difficulty of decomposing a graph in a

kind of tree-structure, and thus efficiently solve certain graph problems if the graph

has clique-width at most k. A decomposition of a graph G, to compute its clique-

width, can be viewed as a finite term, Courcelle et al. [5] define a term based on a

set of four operations such as: 1) the creation of vertices, 2) disjoint union of graphs,

3) edge creation and 4) re-labelling of vertices. The number of labels (vertices) used

to build the graph is commonly denoted by k. A well defined combination of these

operations, called k-expression, are necessary to build the graphs, which in turn

defines clique-width. The clique-width or the corresponding decomposition of the

1 The author would like to thank CONACYT for the scholarship granted in pursuit of his doctoral studies.
2 Email:leon.g.ruiz@gmail.com
3 Email:jrmarcialr@uaemex.mx
4 Email:xoseahernandez@uaemex.mx

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 328 (2016) 47–57

1571-0661/© 2016 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.11.005

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad Autónoma del Estado de...

https://core.ac.uk/display/154795432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailito:leon.g.ruiz@gmail.com
mailito:jrmarcialr@uaemex.mx
mailito:xoseahernandez@uaemex.mx
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.11.005
http://dx.doi.org/10.1016/j.entcs.2016.11.005
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

graph is measured by means of a k-expression [12]. As the clique-width increases

the complexity of the respective graph problem to solve increases too, in fact for

some automata that represent certain graph problems (according to the scheme

in Courcelle’s main theorem), computation runs out-of-memory, see [16] for some

examples of graphs with the clique-width 3 or 4 .

It is important to look for an alternative graph decomposition that can be applied

to a wider classes than to those of bounded tree-width and still preserve algorithmic

properties. Tree decomposition and its tree-width parameter of a graph, are among

the most commonly used concepts [7]. Therefore, Courcelle and Olariu proved that

the clique-width can be seen as a generalization of tree-width in a sense that every

graph class of bounded tree-width also have bounded clique-width [6].

In recent years, clique-width has been studied in different classes of graphs show-

ing the behavior of this invariant under certain operations; the importance of the

clique-width is that if a problem on graphs is bounded by this invariant it can be

solved in linear time. For example Golumbic et al. [8] show that for every distance

hereditary graph G, the cwd(G) ≤ 3, so the following problems have linear time

solution on the class of distance-hereditary graphs: minimum dominating set, min-

imum connected dominating set, minimum Steiner tree, maximum weighted clique,

maximum weighted stable set, diameter, domatic number for fixed k, vertex cover,

and k−colorability for fixed k. On the other hand the following graph classes and

their complements are not of bounded clique–width: interval graphs, circle graphs,

circular arc graphs, unit circular arc graphs, proper circular arc graphs, directed

path graphs, undirected path graphs, comparability graphs, chordal graphs, and

strongly chordal graphs [8].

Another major issue in graphs of bounded clique-width is to decide whether

or not a graph has clique-width of size k, for fixed k. For graphs of bounded

clique-width, it was shown in [3] that a polynomial time algorithm (O(n2m)) exists

that recognize graphs of clique-width less than or equal to three. However, as the

authors pointed out the problem remains open for k ≥ 4. On the other hand, it is

well known a classification of graphs of clique-width ≤ 2, since the graphs of clique-

width 2 are precisely the cographs. There are, however, some results in general. In

[9] the behaviour of various graph operations on the clique-width are presented. For

instance, for an arbitrary simple graph with n vertices the clique-width is at most

n−r if 2r < n−r where r is rank [13]. In [10], it is shown that every graph of clique-

width k which does not contain the complete bipartite graph Kn,n for some n > 1

as a subgraph has tree-width at most 3k(n − 1) − 1, whereas in [9] is shown that

the clique-width under binary operations on graphs behaves as follows, if k1, k2 are

the clique-width of graphs G1, G2, respectively, then cwd(G1 ⊕G2) = max(k1, k2),

cwd(G1[v/G2]) = max(k1, k2) where G1[v/G2] means substitute vertex v in G1 by

G2. Similar results are presented for the joint, composition, substitution and some

other important graph operation such as edge contraction, among others.

Regarding our present work, we are interested in the class of graphs, called

cactus, which consist of non-edge intersecting fundamental cycles [11]. This class

belongs to the class of bounded tree-width. These graphs have already a tree like

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–5748

structure, thus we can apply a well known result by Courcelle et al. [6], for any

graph G, which is cwd(G) ≤ 2twd(G)+1 + 1. Thus we can obtain a quote for the

clique-width of cactus graphs. This result was further improved by Corneil and

Rotics in [4] showing that cwd(G) ≤ 3 · 2twd(G)−1. It is also known that the tree-

width of Cactus graphs is 2, so by using the latter inequality, the bound clique-width

smaller or equal to 6 is obtained. Therefore, our main result in this paper is to show

that the clique-width of Cactus graphs is smaller or equal to 4 improving the best

known bound and also we present a polynomial time algorithm which computes the

4-expression.

This paper is organized as follows. In Section 2, we recall the definitions of

graphs and clique-width. In Section 3, we show that the clique-width of cactus

graphs is smaller or equal than 4. In Section 4, we discuss the time complexity

of the algorithm which is the main result reported in this paper. In Section 5, we

present an example of the application of the algorithm. In Section 6, we give some

conclusions.

2 Preliminaries

All graphs in this work are simple i.e. finite with no self-loops nor multiple edges

and are undirected. A graph is a pair G = (V,E) where V is a set of elements called

vertices and E is a set of unordered pairs of vertices. As usual we let |A| denote
the cardinality of a set A. An abstract graph is an isomorphism class of a graph.

A path from v to w is a sequence of edges: v0v1, v1v2, . . . , vn−1vn such that v = v0
and vn = w and vk is adjacent to vk+1, for 0 ≤ k < n. The length of the path

is n. A simple path is a path where v0, v1, . . . , vn−1, vn are all distinct. A cycle is

a non-empty path such that the first and last vertices are identical, and a simple

cycle is a cycle in which no vertex is repeated, except the first and last that are

identical. A graph G is acyclic if it has no cycles. Pn, Cn, Kn denote respectively,

a path graph, a simple cycle, and the complete graph, all of those graphs have n

vertices.

Given a graph G = (V,E), let G′ = (V ′, E′) be a subgraph of G, if V ′ ⊆ V and

E′ contains every edge {v,w} ∈ E where v ∈ V ′ and w ∈ V ′, then G′ is called an

induced graph of G. A connected component of G is a maximal induced subgraph

of G, a connected component is not a proper subgraph of any other connected

subgraph of G. Note that, in a connected component, for every pair of its vertices

x, y, there is a path from x to y.

A spanning tree of a graph on n vertices is a subset of n−1 edges that form a tree.

Given a graph G, let TG be one of its spanning trees. The edges in TG are called tree

edges, whereas the edges in E(G)\E(TG) are called fronds. Let e ∈ E(G)\E(TG) be

a frond edge, the union of the path in TG between the endpoints of e with the edge

e itself forms a simple cycle, such cycle is called a basic (or fundamental) cycle of

G with respect to TG. Each frond e = {x, y} holds the maximum path contained in

the basic cycle that it is part of.

The graphs consisting of independent cycles are known as Cactus Graphs and

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–57 49

they appeared in the scientific literature more than half a century ago under the

name of Husimi trees [11]. Cactus graphs have many applications, for example,

in the modelling of wireless sensor networks [1] and in the comparison of genomes

[17]. These graphs can be used in telecommunications when considering feeder for

rural, suburban and light urban regions [15] and in material handling network when

automated guided vehicles are used [14]. The cactus graphs can be syntactically

recognized as connected graphs in which no edge lies in more than one simple

cycle. Consequently, each part of a cactus graph is either an edge or a simple cycle.

Nowadays, cactus graphs have attracted attention because some NP-hard resource

allocation problems were found to be solved in polynomial time for this class of

graphs.

We now introduce the notion of clique-width (cwd, for short).

Let C be a countable set of labels. A labeled graph is a pair (G, γ) where γ

maps V (G) into C . A labeled graph can be defined as a triple G = (V,E, γ) and

its labeling function is denoted by γ(G). We say that G is C − labeled if C is finite

and γ(G)(V) ⊆ C. We denote by G (C) the set of undirected C − labeled graphs. A

vertex with label a will be called an a− port.

We introduce the following symbols:

• a nullary symbol a(v) for every a ∈ C and v ∈ V ;

• a unary symbol ρa→b for all a, b ∈ C , with a �= b;

• a unary symbol ηa,b for all a, b ∈ C , with a �= b;

• a binary symbol ⊕.

These symbols are used to denote operations on graphs as follows: a(v) creates a

vertex with label a corresponding to the vertex v, ρa→b renames the vertex a by b,

ηa,b creates an edge between a and b, and ⊕ is a disjoint union of graphs.

For C ⊆ C we denote by T (C) the set of finite well-formed terms written with

the symbols ⊕, a, ρa→b, ηa,b for all a, b ∈ C, where a �= b. Each term in T (C) denotes

a set of labeled undirected graphs. Since any two graphs denoted by the same term

t are isomorphic, one can also consider that t defines a unique abstract graph.

The following definitions are given by induction on the structure of t. We let

val(t) be the set of graphs denoted by t.

If t ∈ T (C) we have the following cases:

(i) t = a ∈ C: val(t) is the set of graphs with a single vertex labeled by a;

(ii) t = t1 ⊕ t2: val(t) is the set of graphs G = G1 ∪ G2 where G1 and G2 are

disjoint and G1 ∈ val(t1), G2 ∈ val(t2);

(iii) t = ρa→b(t
′) : val(t) = {ρa→b(G)|G ∈ val(t′)} where for every graph G in

val(t′), the graph ρa→b(G) is obtained by replacing in G every vertex label a

by b;

(iv) t = ηa,b(t
′) : val(t) = {ηa,b(G)|G ∈ val(t′)} where for every undirected labeled

graph G = (V,E, γ) in val(t′), we let ηa,b(G) = (V,E′, γ) such that

E′ = E ∪ {{x, y}|x, y ∈ V, x �= y, γ(x) = a, γ(y) = b};

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–5750

1 2 3 4 5 6 7 13

12 8 9 10 11 14 15

16

Fig. 1. A unicycle graph where the dashed vertices denote the joining vertices from C8 to three trees.

For every labeled graph G we let

cwd(G) = min{|C||G ∈ val(t), t ∈ T (C)}.

A term t ∈ T (C) such that |C| = cwd(G) and G = val(t) is called optimal

expression of G [6] and written as |C|-expression.

In other words, the clique-width of a graph G is the minimum number of different

labels needed to construct a vertex-labeled graph isomorphic to G using the four

mentioned operations [2].

3 Computing cwd(G) when G is a Cactus Graph

Let G = (V,E) be a connected graph with n = |V |, m = |E| and such that Δ(G)≥
2. Let C be the set of fundamental cycles of G. If two distinct fundamental cycles Ci

and Cj from C have common edges then we say that both cycles are intersected, that

is, Ci	Cj forms a new cycle, where 	 denotes the symmetric difference operation

between the set of edges in both cycles. In fact, Ci	Cj = (E(Ci) ∪ E(Cj)) −
(E(Ci) ∩ E(Cj)) constitutes a composed cycle. If two cycles are non-intersected,

we say that they are independent, i.e. two independent cycles (Ci, Cj) satisfy

(E(Ci)∩E(Cj)) = ∅. A unicyclic graph G is one where C consists of a singleton e.g.

G contains a single independent cycle. A cactus graph G is one where C consists of

independent cycles.

In this section we show that the clique-width of cactus graphs is smaller or equal

than 4. We firstly show how to compute the clique-width of unicyclic graphs and

then we extend the algorithm for cactus graphs.

Definition 3.1 Let {Gi}i∈I be a family of graphs, a joint v �∈ {Gi}i∈I is a vertex

such that Gv = (V ({Gi}i∈I) ∪ {v}, E({Gi}i∈I) ∪ {vvi}) for at least one vi in each

{Gi}i∈I . In other words Gv is built from the family {Gi}i∈I and a new vertex v.

An unicyclic graph can be seen as the join of vertices in a cycle Cn and a family

of trees (paths) {Ti}i∈I ’s. Figure 3 shows an example of an unicyclic graph where

the dashed vertices are the joints.

Lemma 3.2 If G is a unicyclic graph then cwd(G) ≤ 4

Proof. Let G = Cn

⋃
{Ti}i∈I for some family {Ti}i∈I of trees. Compute the k-

expression for each {Ti}i∈I without the joining vertex to Cn. It is well known that

cwd({Ti}i∈I) ≤ 3 for each Ti, i ∈ I. Relabel the k-expression of each {Ti}i∈I in order

to use exactly two labels. One label for the root and the other label for the rest of

the vertices of the tree. It is also well known that cwd(Cn) ≤ 4. We show how to

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–57 51

combine the labels in order to compute the clique-width of G. Assume that a and

b are used as labels of the root and the rest of the vertices of each tree respectively.

Let c and d be the free allowed labels to be used. We built the k-expression of Cn

beginning with a joint vertex v. Make a label c(v).

* Built the disjoint union of c(v) and each tree {Ti}i∈I for which v is joint that is

c(v)
⊕
{Ti}i∈I . Make an edge between c and the root label of each tree {Ti}i∈I

for which v is joint, that is ηc,a. Relabel the root vertex of each {Ti}i∈I by b, i.e

ρa→b. That means that the available labels are a and d. Since c(v) is the label of

the initial vertex of Cn it must have a unique label to close the cycle. We rename

c by d, i.e. ρc→d, so we have the free labels a and c. We use a and c to built

the path from d to the next joint vertex, it can be done by alternating the labels

and making an edge between them, those vertices whose unique edge in the cycle

have been built are relabeled by b. There are two possible labels for the next joint

vertex a or c. In any case we can relabel the joint vertex such that it is always c

(if it is c there is nothing to be done, if it is a we change c by b and a by c).

We repeat the process from * to joint the new trees {Ti}i∈I . When the last joint

vertex c(v) is reached, the k-expression from c(v) to d is built, using the labels a,b

and c. �

Algorithm 1 shows the procedure to compute the k-expression of an unicyclic

graph.

We now describe how to compute the clique-width when G is Cactus. A depth

first search spanning tree is a spanning tree built using the depth-first traversal

algorithm, also a depth first search graph is defined. Let G = (V,E) be a connected

graph, and TG a depth first search spanning tree whose set of fundamental cycles C
are independent, then an enumeration of C is computed as follows:

(i) Choose (arbitrarily) an element C1 ∈ C.

(ii) For each C ∈ C, C �= C1 compute min{|path(v,w)| | ∀v ∈ C1,∀w ∈ C} where

path(v,w) are the edges in the path from v to w in TG.

Sort the elements of C by its minimal path with respect to C1. Elements of C
with the same minimal path can be sorted randomly.

A partition of G into unicyclic graphs is defined as follows:

Definition 3.3 Let G be a cactus graph, a family of subgraphs {{Gi}i∈I} of G is

built as follows:

(i) A depth first search graph is built over G, choosing an x ∈ C1 as the root node,

starting the search, for instance, with the node x with minimum degree, and

selecting among different potential nodes to visit, the node with lowest degree

first and with lowest index in its label as a second criterion. Then, we obtain a

unique depth first search graph G′ (in the set of all possible depth-first graphs),

which we denote here as G′ = dfs(G).

(ii) For each Ci ∈ C

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–5752

Algorithm 1 Procedure that computes k-expression(G) when G is unicyclic.

1: procedure k-expression(G)

2: let (C be the unique cycle of G)

3: for each tree {Ti}i∈I \ C of G {paths are included} do

4: {Ti}i∈I = {Ti}i∈I -expression({Ti}i∈I) {it is well known that cwd({Ti}i∈I) ≤
3}

5: Relabel the root of {Ti}i∈I by a and relabel the remaining vertices by b

6: end for

7: k = ∅
8: for each joint vertex v of C {the join is given with some trees {Ti}i∈I} do

9: c(v){Make a new node label}
10: k = c(v)

⊕
{Ti}i∈I

⊕
k

11: ηc,a(k) {Make an edge from the node of the cycle to each tree {Ti}i∈I who is

joined with}
12: ρa→b(k) {Relabel a by b in the new graphs to free a label}
13: if v is the first joint vertex then

14: ρc→d(k) {Relabel c by d in the new graph to remember the initial node of

the cycle}
15: end if

16: add to k the k-expression of path(v,w)\w where w is the nearest joint vertex

of v {Use the labels a and c to build the edges and b to rename the interior

vertices of path(v,w) \ w, such that the last vertex is label with a and the

other vertices with b they are enough since cwd(Pn) ≤ 3}
17: end for

18: ηc,d(k) {Close the cycle}

Gi = Ci

⋃

v∈Ci

{path(v,w) | (w is a leaf or w ∈ Cj ∈ C, i �= j) and

� ∃x ∈ Ck, x ∈ path(v,w), k �= j}

Lemma 3.4 If G be a cactus graph, then the family of subgraphs {Gi}i∈I over G

by Definitions 3.3 forms a set partition of E(G).

Proof. Let X,Y ∈ ∪{Gi}i∈I ,X �= Y , then by definition X ∩ Y = ∅. If X or Y are

unitary, assuming X = {e}, e is not member of Y because cycle(e) is independent

in G and has no common edges with any other cycle in G. If X and Y are not

unitary then they have no common edges because in other case, we can build S

with the common edges of X and Y and S holds the condition in Definition 3.3,

and then X = Y .

Due to each element e ∈ E(G) belong to a unique partition then ∪{Gi}i∈I = G.

� �

Lemma 3.5 Let G be a cactus graph and {Gi}i∈I a family of subgraphs over G

as specified in Definitions 3.3. For each pair of graphs Gk, Gj in {Gi}i∈I , either
V (Gk) ∩ V (Gj) = ∅ or V (Gk) ∩ V (Gj) = {v} is a singleton.

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–57 53

Proof. By contradiction suppose that V (Gk)∩V (Gj) �= ∅ and V (Gk)∩V (Gj) �= {v}
it means that there are at least two vertices, let say v1, v2 in the intersection, that

the edge e = (v1, v2) belongs to the intersection, contradicting the hypothesis that

Gk and Gj have a set of disjoint edges. � �

Lemma 3.6 Each {Gi}i∈I is an unicyclic graph.

Proof. Definition 3.3, construction step 2. �

We call the set of vertices in pairwise
⋂

V ({Gi}i∈I), the joining vertices of the

set of unicyclic graphs.

Algorithm 2 computes cwd(G) where G is a cactus graph. The input of the

algorithm is the partition detailed above.

Algorithm 2 Procedure that computes cwd(G) when G is a cactus graph, from

the set of unicycle graphs Gj such that G =
⋃

Gj .

1: procedure cwd(G)

2: for each Gj who has exactly one joint vertex v {select the j where Cj has

maximal path with respect to C1} do

3: kj = k-expression(Gj \ v)
4: end for

5: for each Gj who has more than one joint vertex do

6: for each joint vertex v{we assume without loss of generality that the sub-

graphs Gj who have v as a joint vertex have been computed} do

7: k =
⊕

kj-expression(Gj)

8: c(v){Make a new node label}
9: ηc,a(k){we assume that each graph Gj has two labels: a is the label of each

vertex to be joint, b is the label of the other vertices}
10: ρa→b(k){Relabel a by b in the joined graphs to free a label}
11: k = k-expression(path(v,w)) where w is the next joint vertex{label of v =

d, labels of the vertices �= w can be set to b and label w = c}
12: end for

13: end for

The correctness of Algorithm 2 is supported by the following theorem.

Theorem 3.7 If G is a cactus graph then Algorithm 2 computes cwd(G) ≤ 4.

Proof. Let G =
⋃

Gj where each Gj is unicyclic. The clique-width of each Gj is

smaller of equal to 4, i.e cwd(Gj) ≤ 4. Line 2 of algorithm 2 begins with the Gj who

have exactly one joint vertex v. So the k-expression of each Gj \ v can be rewritten

with two labels, one is used for the vertices to be joint with v and the other for

the rest of the vertices. The next steps in the construction of the k-expression is

similar to the one of unicyclic graphs substituting trees {Ti}i∈I for unicyclic graphs

{Gi}i∈I who has more than one joint vertex. �

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–5754

4 Time Complexity Analysis

We discuss the time complexity of Algorithm 2 which is the main result reported in

this paper. The complexity of Algorithm 2 is given by the two embedded procedure

loops (lines 5 and 6) together with the call to Algorithm 1 (lines 7 and 11). The first

loop (line 2) is outside the embedded loops so its complexity is considered apart.

The loop which begins at line 5 and ends at line 13 of Algorithm 2 has complexity

|C| which is the number of independent cycles of the graph. Since the graph is cactus

and simple (neither loops nor parallel edges are in the graph), in the worst case there

are �n2 � independent cycles. The loop between lines 6-12, takes each joining vertex.

Due to the fact that in the worst case there is a joint for each pair of unicycles, there

are at most �n4 � joining vertices. Lines 7 and 11 call k-expression({Gi}i∈I) whose

computation is linear with respect to the number of vertices of the unicyclic graph.

The worst case time complexity of Algorithm 1 is |V ({Gi}i∈I)| = n when there is

a unique unicyclic. Considering the embedded loops and the calls to Algorithm 1,

the worst case time complexity is �n2 � × �
n
4 � × n which is O(n3).

5 Example

We present an example of the application of Algorithm 2. Let us consider the graph

G:

1 2 3 4 5 6 7

8 9 10

According to the partition procedure, the graph is partitioned in the three sub-

graphs shown below:

1 2 3 , 3 4 5 , 5 6 7

G1 8 9 G2 10 G3

The k-expression of G3 \ {5} is: ρc→a(ηa,c(ηb,a(b(7) ⊕ a(6)) ⊕ c(10))), then the

k-expression of G3
⋃

G2 \ {3} is given by:

ρc→a(ρd→a(ηd,c(ρc→d(ρa→b(ηc,a(kG3\{5})⊕ c(5))) ⊕ c(4)))).

Finally, the k-expression of G is:

k = ρa→b(ηc,a(ρc→a(ηd,c(ρc→d(ρa→b(ηa,c(kG3∪G2\3 ⊕ c(3)))) ⊕ c(8))) ⊕ c(9)))

k-expresion(G) = ηc,a(ρd→b(ρa→b(ηd,c(ηc,a(ρc→a(k)⊕ c(2))))) ⊕ a(1))

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–57 55

As can be seen 4 labels are only used. The next figure shows the labels assigned

to each vertex.

a(1) c(2) b(3) b(4) b(5) b(6) b(7)

b(8) b(9) b(10)

6 Conclusions

Computing the clique-width of a graph G is a classic NP-complete problem for

general graphs. We establish that if the depth-first graph of a given graph G has no

intersected cycles, e.g. it is Cactus then the computation of cwd(G) is a tractable

problem. Even more cwd(G) ≤ 4.

Notice that those conditions for computing cwd(G) efficiently do not impose

restrictions on the degree of the graph, but rather, it depends on its structure.

A further work will be the computation of the clique width of graphs which

intersect on some edges. We already have a result for the computation of the clique

width of what are called polygonal trees which are defined as an array of polygons

of k sides that follows the structure of a tree where instead of nodes we have k-gons

(polygons of k sides), and any two consecutive k-gons share exactly one edge.

References

[1] Boaz Ben-Moshe, Amit Dvir, Michael Segal, and Arie Tamir. Theory and Applications of Models
of Computation: 7th Annual Conference, TAMC 2010, Prague, Czech Republic, June 7-11, 2010.
Proceedings, chapter Centdian Computation for Sensor Networks, pages 187–198. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[2] Flavia Bonomo, Luciano N. Grippo, Martin Milanic, and Martn D. Safe. Graph classes with and without
powers of bounded clique-width. Discrete Applied Mathematics, 199:3 – 15, 2016. Sixth Workshop on
Graph Classes, Optimization, and Width Parameters, Santorini, Greece, October 2013.

[3] Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce Reed, and Udi Rotics. Polynomial-time
recognition of clique-width ≤ 3 graphs. Discrete Applied Mathematics, 160(6):834 – 865, 2012. Fourth
Workshop on Graph Classes, Optimization, and Width Parameters Bergen, Norway, October 2009Bergen
09.

[4] Derek G. Corneil and Udi Rotics. Graph-Theoretic Concepts in Computer Science: 27th
InternationalWorkshop, WG 2001 Boltenhagen, Germany, June 14–16, 2001 Proceedings, chapter On
the Relationship between Clique-Width and Treewidth, pages 78–90. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[5] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph grammars.
Journal of Computer and System Sciences, 46(2):218 – 270, 1993.

[6] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied
Mathematics, 101:77 – 114, 2000.

[7] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of clique-width
parameterizations. SIAM Journal on Computing, 39(5):1941–1956, 2010.

[8] Martin Charles Golumbic and Udi Rotics. Graph-Theoretic Concepts in Computer Science: 25th
International Workshop, WG’99 Ascona, Switzerland, June 17–19, 1999 Proceedings, chapter On the
Clique—Width of Perfect Graph Classes, pages 135–147. Springer Berlin Heidelberg, Berlin, Heidelberg,
1999.

[9] Frank Gurski. Graph operations on clique-width bounded graphs. CoRR, abs/cs/0701185, 2007.

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–5756

[10] Frank Gurski and Egon Wanke. Graph-Theoretic Concepts in Computer Science: 26th International
Workshop, WG 2000 Konstanz, Germany, June 15–17, 2000 Proceedings, chapter The Tree-Width
of Clique-Width Bounded Graphs without Kn,n, pages 196–205. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2000.

[11] Andreas Gbel, Leslie Ann Goldberg, and David Richerby. Counting Homomorphisms to Cactus Graphs
Modulo 2, pages 350–361. Schloss Dagstuhl Leibniz-Zentrum Informatik, 2014.

[12] Sang il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514 – 528, 2006.

[13] Öjvind Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition -
relationships and results for random graphs. Congr. Numer, 1998.

[14] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems. i: The p-centers.
SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.

[15] W. L. G. Koontz. Economic evaluation of loop feeder relief alternatives. The Bell System Technical
Journal, 59(3):277–293, March 1980.

[16] Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar. Practical algorithms for {MSO}
model-checking on tree-decomposable graphs. Computer Science Review, 1314:39 – 74, 2014.

[17] Benedict Paten, Mark Diekhans, Dent Earl, John St. John, Jian Ma, Bernard Suh, and David Haussler.
Research in Computational Molecular Biology: 14th Annual International Conference, RECOMB 2010,
Lisbon, Portugal, April 25-28, 2010. Proceedings, chapter Cactus Graphs for Genome Comparisons, pages
410–425. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

J.L. González-Ruiz et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 47–57 57

	Introduction
	Preliminaries
	Computing cwd(G) when G is a Cactus Graph
	Time Complexity Analysis
	Example
	Conclusions
	References

