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Abstract
Thirty million people worldwide consume each day nonsteroidal anti-inflammatory drugs (NSAIDs),

a heterogeneous group of pharmaceuticals used for its analgesic, antipyretic, and anti-

inflammatory properties. Recent studies report high NSAID concentrations in wastewater treat-

ment plant effluents, in surface, ground, and drinking water, and in sediments. NSAIDs are also

known to induce toxicity on aquatic organisms. However, toxicity in natural ecosystems is not usu-

ally the result of exposure to a single substance but to a mixture of toxic agents, yet only a few

studies have evaluated the toxicity of mixtures. The aim of this study was to evaluate the toxicity

induced by diclofenac (DCF), ibuprofen (IBP), and their mixture on a species of commercial inter-

est, the common carp Cyprinus carpio. The median lethal concentration of IBP and DCF was

determined, and oxidative stress was evaluated using the following biomarkers: lipid peroxidation

and activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxi-

dase. Cyto-genotoxicity was evaluated by micronucleus test, comet assay, and the specific activity

of caspase-3. Results show that DCF, IBP, and a mixture of these pharmaceuticals induced free

radical production, oxidative stress and cyto-genotoxicity in tissues of C. carpio. However, a

greater effect was elicited by the mixture than by either pharmaceutical alone in some biomarkers

evaluated, particularly in gill.

K E YWORD S

caspase-3, comet assay, Cyprinus carpio, micronuclei, nonsteroidal anti-inflammatory drugs, oxida-

tive stress

1 | INTRODUCTION

In recent years, there has been growing concern about trace concen-

trations of pharmaceuticals in aquatic environments and their potential

effects.1,2 Some pharmaceuticals are metabolized after administration

while others remain intact when being excreted. Thus, a mixture of

these agents and their metabolites enters municipal sewage and waste-

water treatment plants.3 Depending on their polarity, water solubility,

and persistence, some of these compounds are not completely

Abbreviations: CAT, catalase; COX, cyclooxygenase; CYP, cytochrome P450;
DCF, diclofenac; GPx, glutathione peroxidase; IBP, ibuprofen; LC50, median
lethal concentration; LOAEL, lowest observed adverse effect level; LPX, lipid
peroxidation; MDA, malondialdehyde; MEC, molar extinction coefficient; MNi,
micronuclei; MS, mass spectrometer; NPX, naproxen; NSAID, nonsteroidal
anti-inflammatory drug; PAR, paracetamol; pNA, p-nitroanilide; ROS, reactive
oxygen species; SOD, superoxide dismutase; TBA, thiobarbituric acid; TCA,
trichloroacetic acid; WWTP, wastewater treatment plant.
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removed by treatment processes, and the unaltered pharmaceutical

and/or their metabolites may re-enter surface water. These products

can also enter the environment as a result of the disposal of unused or

expired medications, or through pharmaceutical industry discharges.4

Once in the environment, these compounds are considered emerging

contaminants. Richardson et al.5 define these as unregulated com-

pounds that can pose a risk to aquatic ecosystems.

These pollutants include nonsteroidal anti-inflammatory drugs

(NSAIDs), which is one of the most commonly used groups of pharma-

ceuticals. Takagi et al.6 report that this group accounts for more than

70 million prescriptions annually in Britain, Spain, and Japan. They are

also the sixth best-selling group of medications in the world, with an

annual production of several thousand tons.7 In Mexico, sales of 201

million dollars (USD) were reported in 2012 and an average annual

growth rate of 1.3% is expected to occur from 2013 to 2017.8 NSAIDs

have diverse anti-inflammatory, analgesic, and antipyretic properties.

They are a heterogeneous group and share diverse therapeutic actions

and adverse effects.9 Their mechanism of action is through inhibition

of the cyclooxygenase (COX) enzymes: COX-1 and COX-2, which con-

vert arachidonic acid to prostaglandins and thromboxanes, mediators

involved in diverse homeostatic processes throughout the body.7,9,10

The most common members of this group of pharmaceuticals in terms

of consumption and biological action are naproxen (NPX), paracetamol

(PAR), diclofenac (DCF), ibuprofen (IBP), and acetylsalicylic acid.11

Environmentally, the importance of NSAIDs lies in their inherent

properties of persistence, bioaccumulative nature, water solubility, low

volatility, and low tendency for adsorption by organic matter, which

enable them to remain in the aquatic environment for extended peri-

ods,12,13 favoring their uptake and bioconcentration by hydrobionts.

IBP and DCF have been detected in water bodies worldwide at con-

centrations ranging from lg L21 to ng L21.14–17 In Mexico, several

studies have reported their presence in effluents and water systems.

Siemens et al.18 found IBP and DCF at concentrations of 0.12–2.30 lg

L21 in Mexico City effluent in the Mezquital Valley; Gibson et al.19

detected 742–4824 ng L21 in wastewater from the Tula Valley; while

Felix-Ca~nedo et al.20 recorded 25–100 ng L21 in surface water and

1–5 ng L21 in ground water in tributaries of the Lerma-Cutzamala sys-

tem, one of the largest water supply networks in Latin America.

Trace concentrations of these compounds have been reported to

induce toxicity in diverse aquatic organisms. DCF induces kidney dam-

age and affects reproduction and growth in Daphnia magna and

D. longispira.21–23 It also induces damage on kidney, gill, and other tis-

sues in Salmo trutta f. fario,24 while IBP significantly affects the growth

of several bacterial and fungal species.25 Furthermore, previous studies

have reported that NSAIDs such as DCF, IBP, NPX, and PAR induce

oxidative stress and genotoxicity in D. magna, Hyalella azteca, and

Cyprinus carpio.26–30

Controlled production of free radicals and maintenance of redox

homeostasis are essential for the physiological health of organisms.

The formation of reactive oxygen species (ROS) is induced by internal

and external factors such as phagocytes, enzymes—for example, cyto-

chrome P450 (CYP) monooxygenases—radiation, and exogenous chem-

ical agents. Similarly, ROS production can be decreased or reversed by

several enzymes, called antioxidant enzymes, such as superoxide dis-

mutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)31.

Endogenous ROS act as a second messenger in signal transduction and

are thought to be important in ion transport, host immune defenses,

DNA transcription, and cellular apoptosis.32,33 However, ROS can also

elicit damage by binding covalently or irreversibly to cellular macromo-

lecules. Oxidative stress, an imbalance between ROS production and

the antioxidant defense mechanisms of a cell or tissue, elicits the irre-

versible oxidation of proteins, lipids, and DNA, leading to the inactiva-

tion of many enzymes and cell death. It can also affect gene expression

by interfering with the activity of redox-sensitive transcription factors

as well as signal transduction by oxidation of thiols.34

Bioindicators can be used to evaluate the toxic impact of contami-

nants in water bodies. Toxicity studies in fish are one of the most

effective methods for understanding the deleterious effects of environ-

mental contaminants in aquatic systems. Fish play a major role in

aquatic food webs where they generally occupy an intermediate or

higher position: not only are they fed upon by a variety of aquatic

predators, they are also a major food source for humans around the

world.35 The common carp Cyprinus carpio is frequently used as a bio-

indicator species36 since cyprinids are quantitatively the most impor-

tant group of teleost fish cultured worldwide for commercial purposes

and are also very resistant and easy to maintain.

Toxicity in natural ecosystems is not usually due to exposure to a

single substance; it is the result of exposure to a mixture of several

toxic agents. Thus, it is necessary to understand the impact and poten-

tial toxicity of pollutants in combination, particularly if pollution is con-

sidered to be chronic. However, very few studies have examined the

effects of mixtures.37–39 Therefore, this study aimed to evaluate the

toxicity induced by sublethal concentrations of IBP and DCF in isolated

form and as a mixture on diverse tissues of C. carpio, using oxidative

stress and cytogenotoxicity biomarkers in order to assess the potential

risk posed by a waterborne mixture of these pharmaceuticals to the

physiology and survival of aquatic organisms. We choose DCF and IBP

because they are among the most consumed NSAIDs worldwide and it

has been reported that these pharmaceuticals have shown greater tox-

icity for aquatic organisms, plus in regard to Mexico, in 2012, was

reported sales of 201 million dollars (mdd) and is expected to have a

rate average annual growth of 1.3% from 2013 to 2017,8 because of

this, is very important to determine if this represents a risk for

organisms.

2 | MATERIALS AND METHODS

2.1 | Test substances

IBP C13H18O2 (CAS Number 15687-27-1, >98% purity) and DCF

C14H11Cl2NO2 (CAS number 15307-86-5, >99% purity), were pur-

chased from Sigma-Aldrich (Toluca, Mexico; henceforth SIAL/T). Stock

solutions were prepared by dissolving 1 g IBP or DCF in 500 mL of

deionized water.
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2.2 | Specimen procurement and maintenance

Three-month-old common carp (C. carpio) juveniles 18.460.31 cm

long and weighing 50.767.8 g were obtained from the aquaculture

facility in Tiacaque (State of Mexico), transported to the laboratory in

polyethylene bags containing oxygenated water, stocked in a large tank

with dechlorinated tap water (previously reconstituted with salts; see

Section 2.3) and acclimated for 30 days prior to the experiment. During

acclimation, carp were fed Pedregal SilverTM fish food and 3/4 of the

tank water was replaced every 24 h. The physicochemical characteris-

tics of tap water reconstituted with salts were maintained, that is, tem-

perature 20628C, oxygen concentration 80%–90%, pH 7.5–8.0, total

alkalinity 17.867.3 mg L21, total hardness 18.760.6 mg L21. A natu-

ral light/dark photoperiod (12:12 h) was maintained. During the aqua-

culture period, fish were not exposed to any pharmaceuticals.

All procedures were performed in accordance with the ethical pro-

tocols of care, use, and management of the species used in the testing

of the Universidad Aut!onoma del Estado de M!exico. The specifications

mentioned in the corresponding Official Mexican Standards were also

considered (NOM-062-ZOO- 1999, Technical specifications for the

production, care, and use of laboratory animals).

2.3 | Median lethal concentration (LC50)

Test systems (120 3 80 3 40-cm glass tanks) filled with water recon-

stituted with the following salts: NaHCO3 (174 mg L21, SIAL/T),

MgSO4 (120 mg L21, Sigma-Aldrich, St. Louis MO; henceforth SIAL/S),

KCl (8 mg L21, Vetec, SIAL/S), and CaSO4!2H2O (120 mg L21, SIAL/S)

were maintained at room temperature (208C628C) with constant aera-

tion and a natural light/dark photoperiod (12:12 h). Static systems

without renewal of test solutions were used. Fish were not fed during

exposure.

To determine the LC50 of IBP and DCF, seven exposure systems

with different nominal concentrations of IBP (9.5, 18.9, 37.7, 75.2,

150.0, 300.8, and 600 mg L21) and six with DCF (9.5, 18.9, 37.7, 75.2,

300.8, and 600 mg L21) plus a NSAID-free control system were set up,

and 10 randomly selected carp were placed in each. The assay was per-

formed in triplicate, using a total of 420 fish.

Duration of exposure was 96 h, at the end of which the number of

dead specimens in each system was counted. The 96-h LC50 of IBP

and DCF and their corresponding 95% confidence limits (P<0.05)

were estimated by Probit analysis v3.3 (US-EPA, 2013). These data

were used to estimate the test concentrations to be used in sublethal

toxicity assays. The concentration-response curve in the acute toxicity

assay was constructed and the lowest concentration with a statistically

significant effect was assumed to be the LOAEL (lowest observed

adverse effect level).

2.4 | Sublethal toxicity assays

NSAIDs were added at a nominal concentration equal to the LOAEL (i.

e., 17.6 mg IBP L21 and 7.10 mg DCF L21) in isolated form or as a mix-

ture to five exposure systems with six carp each. A time dependent

exposure set up was performed for the following exposure periods: 12,

24, 48, 72, and 96 h. An NSAID-free control system was set up for

each period. Assays were performed in triplicate, using a total of 360

fish.

At the end of the exposure period, fish were removed from the

systems and placed in a tank with 50 mg L21 of clove oil as an anes-

thetic40. Anesthetized specimens were placed in a lateral position and

blood was collected with a heparinized 1-mL hypodermic syringe by

puncture of the caudal vessel performed laterally near the base of the

caudal peduncle, at mid-height of the anal fin and ventral to the lateral

line. Six hundred microliters of blood samples were collected in hepari-

nized tubes, placed in PBS and ultrasonicated, and used for the oxida-

tive stress determinations. Of the remaining blood 200 lL were used

immediately in the micronucleus test and comet assay, and 100 lL

were placed in PBS (complete to 1 mL) and stored at 2708C prior to

analysis of the specific activity of caspase-3.

After puncture, specimens were sacrificed by cervical dislocation

and placed in an ice bath. The gill, liver and brain were removed for

evaluation of oxidative stress, placed in phosphate buffer solution

(PBS) [0.138 M NaCl (SIAL/T); 0.0027 M KCl] pH 7.4 and separately

homogenized. The homogenate was centrifuged at 12,500 rpm and

248C for 15 min. Tissue samples were stored at 2708C prior to analy-

sis. The following oxidative stress biomarkers were evaluated: lipid per-

oxidation (LPX) and SOD, CAT, and GPx activity. These bioassays were

performed on the supernatant of the tissues or ultrasonicated blood

and the assay was performed in triplicate.

2.4.1 | Determination of oxidative stress

2.4.1.1 | Determination of LPX

LPX was determined by B€uege and Aust41 method. To 100 mL of

supernatant (of the tissues) or blood was added Tris-HCl buffer solu-

tion pH 7.4 (SIAL/S) until a 1 mL volume was attained. Samples were

incubated at 378C for 30 min; 2 mL TBA-TCA reagent [0.375% thiobar-

bituric acid (TBA, Fluka, SIAL/T) in 15% trichloroacetic acid (TCA, SIAL/

S)] was added prior to shaking in a vortex. Samples were then heated

to boiling for 45 min, allowed to cool, and the precipitate removed by

centrifugation at 3,000 rpm for 10 min. Absorbance was read at

535 nm against a reaction blank. Malondialdehyde (MDA) content was

calculated using the molar extinction coefficient (MEC) of MDA (1.56

3 105 M cm21). Results were expressed as mMMDA mg21 protein.

2.4.1.2 | Determination of SOD activity

SOD activity was determined by Misra and Fridovich42 method. To 40

mL of supernatant (of the tissues) or blood in a 1-cm cuvette was added

260 mL carbonate buffer solution (50 mM sodium carbonate, 0.1 mM

EDTA) pH 10.2 and 200 mL adrenaline (30 mM); all reagents were

obtained from SIAL/S. Absorbance was read at 480 nm after 30 s and

5 min. Enzyme activity was determined by interpolating the data on a

type curve and results were expressed as IU SOD mg21 protein.

2.4.1.3 | Determination of CAT activity

CAT activity was determined by Radi et al.43 method. To 20 mL of

supernatant (of the tissues) or blood was added 1 mL isolation buffer

solution [0.3 M saccharose (Vetec), 1 mL EDTA, 5 mM HEPES, 5 mM
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KH2PO4 (Vetec)] and 0.2 mL of a hydrogen peroxide solution (20 mM,

Vetec); all reagents SIAL/S. Absorbance was read at 240 nm after 0

and 60 s. The absorbance value obtained for each of these times was

substituted in the formula: CAT activity5 (A02A60)/MEC), where the

MEC of H2O2 is 0.043 mM cm21, and results were expressed as lM

H2O2 min- mg21 protein.

2.4.1.4 | Determination of GPx activity

GPx activity was determined by Gunzler and Flohe-Clairborne44

method as modified by Stephensen et al.45 To 100 lL of supernatant

(of the tissues) or blood was added 10 lL glutathione reductase (2 U

glutathione reductase, SIAL/S), 290 lL reaction buffer [50 mM

K2HPO4 (Vetec), 50 mM KH2PO4 pH 7.0, 3.5 mM reduced glutathione

(Fluka), 1 mM sodium azide, 0.12 mM NADPH (all SIAL/T)] and 100 mL

H2O2. Absorbance was read at 340 nm after 0 and 60 s. Activity was

estimated using the equation: GPx activity5 (A02A60)/MEC), where

the MEC of NADPH56.2 mM cm21. Results were expressed as mM

NADPH min21 mg21 protein.

2.4.1.5 | Determination of total protein content

Total protein content was determined by Bradford46 method. To 25 lL

of supernatant (of the tissues) or blood was added 75 lL deionized

water and 2.5 mL Bradford’s reagent [0.05 g Coommassie Blue dye,

25 mL of 96% ethanol, and 50 mL H3PO4 (all reagents SIAL/T), in

500 mL deionized water]. The test tubes were shaken and allowed to

rest for 5 min prior to reading absorbance at 595 nm and interpolating

on a bovine albumin curve (SIAL/T). Total protein content of each sam-

ple was determined and used to express the results of oxidative stress

biomarkers and the specific activity of caspase-3.

2.4.2 | Evaluation of cyto-genotoxicity

2.4.2.1 | Micronucleus test

A smear of blood from each specimen was fixed in pure ethanol for 5

min, then stained with 10% Giemsa (SIAL/T) for 9 min. A total of 1000

cells from each sample were examined with a light microscope and fre-

quency of micronuclei (MNi) was expressed as the total number of

micronucleated cells per 1000 cells.47 Criteria used to determine pres-

ence of MNi were non-linkage of small ovoid or round nuclei with

main nucleus, color, and staining intensity similar to main nucleus,48

and diameter 1/5–1/20 of main nucleus.49

2.4.2.2 | Comet assay

DNA damage was evaluated by comet assay as proposed by Tice

et al.50 and Lankoff et al.51 Fully frosted slides were prepared 1 h

before the sample was obtained. Slides were initially coated with a

200-mL layer of 1% agarose. Then 10 mL blood was mixed with 75 mL

of 0.75% agarose. To extract DNA, slides were placed in a Coplin jar

with lysis solution (2.5 M NaOH, 10 M EDTA, 10 mM Trizma base,

10% DMSO, 1% triton X-100) pH 10, for 1 h at 48C. All reagents and

gels were obtained from SIAL/S.

Slides were placed in the electrophoresis chamber for 20 min with

an alkaline solution (300 mM NaOH, 1 mM EDTA) pH 13. Electropho-

resis was performed at 300 mAmp, 25 V, and pH >13 for 20 min, and

was stopped with a neutralization buffer (0.4 M Trizma base, pH 7.4).

The DNA was stained with 50 mL ethidium bromide (SIAL/S) and

examined with a Zeiss Axiophot KS400 epifluorescence microscope

equipped with a 510–560 nm filter and attached to an image analyzer

with a program for measurement of the cell nucleus. A total of 100

measurements per replicate were made and the damage index (per-

centage of DNA damage in the tail) was obtained.

2.4.2.3 | Specific activity of caspase-3
2.4.2.3.1 | Cellular extract preparation. Jurkat cells (ATCC # TIB-152)

were grown in RPMI-1640 medium containing 10% fetal bovine seru-

min a humidified, 5% CO2 incubator at 378C, as recommended by

ATCC. The cell density was adjusted to 106 cells mL21, and 50 ng

mL21 of anti-Fas mAb (clone #CH-11, MBL International, Cat. # SY-

001) was added to the Jurkat cells as a positive (induced apoptosis)

control. For inhibited apoptosis samples, 125 lL Z-VAD-FMK [carbo-

benzoxy-valyl-alanylaspartyl-(O-methyl)-fluoromethylketone] inhibitor

(20 mM) was added to the cells at the same time as the anti-Fas mAb.

Samples were incubated overnight for 16 h at 378C in a humidified, 5%

CO2 atmosphere. Cells were harvested by centrifugation at 4503g and

48C for 10 min. The cell pellet was maintained on ice, then washed

with ice-cold PBS and resuspended in Cell Lysis Buffer at a concentra-

tion of 108 cells mL21. Cells were lysed by freeze–thaw, then incu-

bated on ice for 15 min. Cell lysates were centrifuged at 15,0003g and

48C for 20 min and the supernatant fraction was collected.

2.4.2.3.2 Colorimetric assay. A colorimetric assay kit (CaspACETM,

Promega, Madison, WI), the substrate of which binds to the enzyme,

releasing p-nitroaniline (pNA), and an UltraCruzTM microplate with

flat-bottom wells were used. A reaction blank was prepared using

32 lL of caspase buffer [312.5 mM HEPES, pH 7.5; 31.25%

sucrose; 0.3125% CHAPS (3- [(3-cholamido-propyl)-dimethylammo-

nio]-1-propane-sulfonate)], 2 lL DMSO, 10 lL dithiothreitol (DTT;

100 mM), and 54 lL deionized water. The following were used: for

the control and exposure groups, 32 lL caspase buffer, 2 lL

DMSO, 10 lL DTT, 20 lL blood, and 54 lL deionized water; for

the positive control, 32 lL caspase buffer, 2 lL DMSO, 10 lL DTT,

20 lL cellular extract, and 34 lL deionized water; for inhibited apo-

ptosis samples, 32 lL caspase buffer, 2 lL DMSO, 10 lL DTT, 20

lL cellular extract, and 34 lL deionized water. After all solutions

had been transferred, 2 lL of substrate DEVD-pNA was added to

each well. The microplate was covered with parafilm and incubated

for 4 h at 378C. Absorbance was read at 405 nm and the specific

activity of caspase-3 was calculated. Results were expressed as

nMfree pNA h21 lg protein21. Total protein content was deter-

mined by the Bradfordmethod.46

2.5 | IBP and DCF quantification by liquid
chromatography-tandem mass spectrometry
(LC-MS/MS)

Six carp were placed in each of five exposure systems similar to those

described in Section 2.3 and a concentration equal to the LOAEL of

IBP (17.6 mg L21), DCF (7.10 mg L21), or a mixture of both was added,

also the NSAID-free control system used in the determinations were
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FIGURE 1 Biomarkers of oxidative stress evaluated in in brain, blood, liver, and gill of Cyprinus carpio exposed to ibuprofen and diclofenac
in isolated form and as a mixture: (a) Lipid peroxidation, (b) Superoxide dismutase activity, (c) Catalase activity, and (d) Glutathione
peroxidase activity. Values are the mean6SE. *Significantly different from control group. Lowercase letters indicate a significant difference
relative to specimens exposed to aibuprofen, bdiclofenac, and cthe binary mixture (P<0.05), ANOVA and Bonferroni
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placed in order to ensure no exposure to pharmaceuticals occurred in

the control group. Systems were maintained at room temperature with

a natural light/dark photoperiod and provided with constant aeration.

A time dependent exposure series was run for the following exposure

periods: 12, 24, 48, 72, and 96 h. At the end of the exposure period,

IBP and DCF were quantified in exposure system water.

IBP and DCF concentrations were determined using an Agilent

1290 Infinity HPLC unit (Santa Clara CA). The Eclipse Plus C18 RRHD

(2.1 3 50 mm, 1.8 lm) chromatographic column was maintained at

408C. The mobile phase employed was a 60:40 v/v (IBP) and a 50:50

v/v (DCF) mixture of acetonitrile and ammonium formate (10 mM,

SIAL/S). Flow rate was 0.3 mL min21, run time 1.8 min and injection

volume 2 mL, IBP and DCF were identified and quantified with an Agi-

lent 6430 Triple Quadrupole mass spectrometer (MS) equipped with

electrospray ionization (ESI). The ESI positive mode was used through-

out. Electrospray voltage operated at 4000 V as the MS collected data

in the negative ion mode. MS optimization was conducted by direct

infusion of a 10 lg mL21 standard solution of IBP or DCF; thereafter,

the ionization mode and precursor ion mode were selected.

Five-milliliter water samples from exposure glass tanks were col-

lected in glass sample vials and refrigerated at 48C for subsequent mea-

surement of test concentrations. The results are expressed as time-

weighted average concentrations of IBP and DCF. Samples were acidi-

fied with 1M HCl and extraction with 5 mL (111) (v/v) hexane/ethyl

acetate was conducted to extract IBP and DCF from 1-mL water sam-

ples. These samples were centrifuged at 18003g for 10 min, and then

the upper organic layer was re-extracted. Extraction was repeated until

the organic layers combined and evaporated to dryness.

2.6 | Statistical analysis

In the acute toxicity assays (96-h LC50 of IBP and DCF), Probit analysis

was performed and significance assessed by the degree of 95% LC50

overlap (EPA Analysis Program v3.3; US-EPA, 2013).

TABLE 1 Additive interaction values calculated using ibuprofen and diclofenac in isolated form, and the corresponding actual values deter-
mined with each biomarker in different tissues of C. carpio after exposure to a mixture of these pharmaceuticals

Biomarkers Tissue

Time (h)

24 48 72 96

Additive
interaction

Actual
value

Additive
interaction

Actual
value

Additive
interaction

Actual
value

Additive
interaction

Actual
value

LPX (mM MDA/
mg protein)

Brain 20.057 "38.039 22.162 "27.554 26.439 45.156 25.582 #10.886

Blood 33.146 27.070 20.178 45.783 17.200 "31.477 16.790 5.940
Liver 65.345 #28.634 98.208 #10.399 120.256 10.679 37.037 #7.588
Gill 31.010 61.737 37.109 "153.790 30.451 62.260 30.495 0.356

SOD activity
(IU SOD/mg protein)

Brain 11.453 "20.324 11.048 11.603 12.863 "15.534 17.243 26.567

Blood 9.095 1.958 10.841 3.437 7.918 13.086 10.320 #4.633
Liver 41.155 #7.880 33.011 7.602 76.764 2.753 15.378 #13.406
Gill 20.490 31.114 24.650 "56.657 15.648 "39.057 10.504 "32.005

CAT activity (mM
H2O2/mg protein)

Brain 8973.679 1195.003 14508.806 #1454.124 4976.454 #1090.770 13188.581 2241.322

Blood 4660.100 #318.900 5352.400 #925.600 4175.700 #600.500 4437.600 116.600
Liver 46700.264 219.300 54483.800 130.100 119631.100 313.700 22044.473 #1284.330
Gill 12120.900 #510.700 21118.770 670.800 16536.700 535.900 15096.700 #3119.200

GPx activity
(mM NADPH/
mg protein)

Brain 0.001 0.006 0.003 #0.001 0.006 "0.026 0.001 0.004

Blood 0.001 #0.001 0.001 0.022 0.001 0.002 0.001 0.003
Liver 0.005 "0.000 0.016 #0.001 0.078 #0.001 0.004 "0.002
Gill 0.002 0.012 0.004 "0.030 0.005 "0.020 0.002 0.016

Micronucleus test
(Micronuclei/
1000 cells)

Blood 82.667 164.333 122.667 107.333 359.667 120.667 116.333 #33.667

Comet Assay
(damage index)

Blood 2.482 #1.395 2.773 1.513 3.111 #1.621 2.979 1.608

Caspase-3
((nM free pNA/h)/
mg protein)

Blood 1090.641 305.338 605.161 #306.278 331.277 140.716 790.636 277.824

LPX5 lipid peroxidation, MDA5malondialdehyde, SOD5 superoxide dismutase, CAT5 catalase, GPx5 glutathione peroxidase, pNA5 p-nitroanilid;
Additive interaction is the calculated value and result of the sum of the effect determined for the DCF and IBP by themselves, the actual value is the
effect produced by the mixture DCF-IBP and experimentally determined in the study. ANOVA and Bonferroni. Up arrow and down arrow indicates a
decrement or increment respect to additive interaction.
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Results of oxidative stress biomarkers, MNi, comet assay and

the specific activity of caspase-3 were evaluated by one-way anal-

ysis of variance (ANOVA) and differences between means were

compared using the Bonferroni multiple comparisons test, with P

set at <0.05. Pearson’s correlation analysis was used to examine

potential correlations between IBP and DCF concentrations present

in water from binary mixture exposure systems and the bio-

markers evaluated in different tissues of the mixture IBP-DCF.

Statistical determinations were made with SPSS v10 (SPSS, Chi-

cago IL).

3 | RESULTS

3.1 | Determination of LC50

The 96-h LC50 of IBP in C. carpio was 175.6 mg L21 with a 95% confi-

dence interval of (107.31–334.05 mg L21). The corresponding values

for DCF were 70.98 mg L21 and (51.66–98.14 mg L21). The v2 linear

adjustment test was not significant at P<0.05.

3.2 | Sublethal toxicity assays

3.2.1 | Evaluation of oxidative stress

3.2.1.1 | LPX

A significant increase in LPX compared to the control group

(P<0.05) occurred with IBP alone in blood at 24 and 48 h, in liver

at 24, 48, and 72 h, and in gill at 48 and 96 h. In specimens

exposed to DCF alone, LPX increased in liver at 24 h and in gill at

48 and 72 h, while in those exposed to the mixture LPX increased

in liver at 24 and 96 h, and in brain and blood at all exposure

times, the highest values of LPX occurring in gills of the binary mix-

ture at all time period. A significant reduction in LPX was found

with IBP in brain at 24 h; with DCF in brain at 24 h, in blood at

24, 72, and 96 h, and in liver at 96 h; and with the mixture in liver

at 48 and 72 h (Figure 1).

3.2.1.2 | SOD activity

Significant increases with respect to the control group (P<0.05)

occurred with IBP alone in blood and liver at 24 h, and in gill at 24, 48,

and 96 h; with DCF alone in liver at 24 h, and in gill at 24 and 48 h;

FIGURE 2 Blood levels of micronuclei in C. carpio exposed to ibuprofen and diclofenac in isolated form and as a mixture. Values are the
mean6SE. *Significantly different from control group. Lowercase letters indicate a significant difference relative to specimens exposed to
aibuprofen, bdiclofenac, and cthe binary mixture (P<0.05), ANOVA and Bonferroni

FIGURE 3 DNA damage determined by comet assay in C. carpio exposed to ibuprofen and diclofenac in isolated form and as a mixture.
Values are the mean6SE. *Significantly different from control group. Lowercase letters indicate a significant difference relative to
specimens exposed to a ibuprofen, bdiclofenac, and cthe binary mixture (P<0.05), ANOVA and Bonferroni
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and with the binary mixture in brain and gill at all exposure times, in

blood at 72 h, and in liver at 24 and 96 h. Significant reductions were

observed with DCF in brain at 48 h, and with the mixture in liver at

72 h (Figure 1). The activity of the gills in the binary mixture signifi-

cantly increased for all time periods

3.2.1.3 | CAT activity

Significant increases (P<0.05) compared to the control group were

found with exposure to IBP alone in liver at 24 and 96 h, and in

gill at 96 h; and with exposure to DCF alone in liver at 72 h and in

gill at 48 h; while in carp exposed to the mixture significant

decreases occurred in brain at 24, 48 and 72 h, in blood at 24, 72,

and 96 h, in liver at 24, 48, and 72 h, and in gill at 24, 48, and

72 h (Figure 1).

3.2.1.4 | GPx activity

Significant increases with respect to the control group (P<0.05)

occurred with DCF alone in liver at 72 h; and with the binary mix-

ture in brain at 24, 72, and 96 h, and in blood at 48 h, the highest

increases being observed in gill of the mixture at all exposure times.

Significant reductions were found with IBP in liver at 24 h; with

DCF in gill at 96 h; and with the mixture in liver at 24, 48, and

72 h (Figure 1).

Table 1 shows the additive interaction values (calculated using IBP

and DCF in isolated form) and the actual values obtained with each

biomarker in specimens exposed to the binary mixture. In most oxida-

tive stress biomarkers, actual values were higher than additive interac-

tion values at all exposure times while in biomarkers of cyto-

genotoxicity a time-dependent reduction in actual values was found

relative to additive interaction values.

3.2.2 | Evaluation of cyto-genotoxicity

3.2.2.1 | Micronucleus test

MNi frequency results are shown in Figure 2. Carp exposed to

DCF alone evidenced a significant increase in this biomarker at

72 h (P<0.05) compared to the control group, while in fish

exposed to the binary mixture this increase occurred at 24, 48,

and 72 h. No significant differences were found with exposure to

IBP alone.

3.2.2.2 | Comet assay

A significant increase in the damage index compared to the control

group (P<0.05) was found at all exposure times in specimens exposed

to IBP and DCF in isolated form and as a mixture. This increase was

higher with IBP than DCF, while the mixture induced an even higher

increase at 24, 48, and 96 h (Figure 3).

3.2.2.3 | Specific activity of caspase-3

Results of the specific activity of caspase-3 are shown in Figure 4. A

significant increase with respect to the control group (P<0.05)

FIGURE 4 Specific activity of caspase-3 in blood of C. carpio exposed to ibuprofen and diclofenac in isolated form and as a mixture. Values
are the mean6 SE. pNA5 p-nitroanilide. *Significantly different from control group. Lowercase letters indicate a significant difference rela-
tive to specimens exposed to aibuprofen, bdiclofenac, and cthe binary mixture (P<0.05), ANOVA and Bonferroni

TABLE 2 Ibuprofen and diclofenac concentrations at the different exposure times in water from single pharmaceutical and binary mixture
exposure systems

Time
(h)

Single pharmaceut.
IBP (mg L21)

Single pharmaceut.
DCF (mg L21)

Binary mixture
IBP (mg L21)

Binary mixture
DCF (mg L21)

0 17.566 0.98 7.1060.35 17.566 0.02 7.106 0.05

24 13.176 1.08 1.7760.13 11.396 0.02* 3.556 0.05*

48 12.296 0.79 1.6160.06 11.016 0.02* 3.316 0.05*

72 11.416 0.56 1.5260.06 10.646 0.02 2.596 0.05*

96 10.536 0.91 1.3960.06 2.636 0.02* 2.016 0.05

Values are the mean of five replicates6 SE. IBP5 ibuprofen, DCF5diclofenac. *Significantly different from single pharmaceutical exposure systems
(P<0.05), ANOVA, and Bonferroni.
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occurred only with IBP alone at 24 h; values in specimens exposed to

DCF alone or to the binary mixture did not differ significantly from

control group values.

3.3 | IBP and DCF quantification

Table 2 lists IBP and DCF concentrations in water from exposure

systems containing these pharmaceuticals in isolated form or as a

mixture. In systems with either pharmaceutical alone, NSAID con-

centration decreased over time. A similar behavior was observed in

systems with the binary mixture; however, at 96 h, IBP concentra-

tion was markedly lower in binary mixture systems than in those

with IBP alone. In the control group DCF and IBP was not

observed.

Table 3 shows correlation results between biomarker values in tis-

sues of specimens exposed to the binary mixture of IBP and DCF, with

the IBP and DCF concentrations in water from binary mixture exposure

systems, at the various exposure times. As can be seen, very close cor-

relations exist between biomarker values and pharmaceutical concen-

trations in water from exposure systems.

4 | DISCUSSION

The 96-h LC50 of IBP in C. carpio was 175.56 mg L21 in this study

while the corresponding value for DCF was 70.98 mg L21. In other

fish species, the LC50 of IBP has been reported as 173.0 mg L21 in

Lepomis macrochirus2 and 142 mg L21 in Cirrhinus mrigala, while the

LC50 of DCF in juvenile Danio rerio ranged from 156.8 to 176.4 mg

L2152. In our study and in others in which different species were

used, DCF LC50 values are lower than those of IBP. Therefore, DCF

can be considered to be more toxic than IBP. This difference may be

due to different biotransformation metabolites; in various studies, it

has shown that IBP and DCF may undergo suffer biotic and abiotic

reactions. In fish, diverse P450 enzymes in the smooth endoplasmic

reticulum of cells in the liver, kidneys, gills, gut, brain, heart, and

gonads, among other organs, are able to biotransform xenobiotics.53

In humans, the CYP2C9 family is known to mediate the biotransfor-

mation of IBP and DCF by hydroxylation to 2- or 3-

hydroxyibuprofen and 4-hydroxydiclofenac, respectively,54,55 while

the families CYP2C8, CYP2C18, CYP2C19, and CYP2B6 mediate

DCF biotransformation to 5-hydroxydiclofenac.56 Gomez et al.57

noted that 2-hydroxyibuprofen was the major metabolite identified

TABLE 3 Pearson’s correlation between biomarker values in the different tissues of C. carpio exposed to the mixture and ibuprofen and
diclofenac concentrations in water from binary mixture exposure systems, at the various exposure times

Biomarkers
determinated
in the mixture Tissue

IBP
concentration in water from binary mixture
exposure systems

DCF concentration in water from binary mixture
exposure systems

24 h 48 h 72 h 96 h 24 h 48 h 72 h 96 h

LPX Brain 0.927 20.693 20.866 0.998 0.927 20.693 20.897 0.998
Blood 0.908 20.839 20.956 0.908 0.908 20.840 20.681 0.908
Liver 0.874 0.927 20.680 20.844 0.875 0.927 20.225 20.844
Gill 0.936 0.998 0.927 21.000 0.936 0.998 0.990 21.000

SOD
activity

Brain 20.931 20.885 20.879 20.853 20.931 20.885 20.999 20.853

Blood 0.889 20.815 0.880 20.862 0.836 0.889 20.815 0.999
Liver 0.327 0.879 20.860 20.858 0.327 0.879 20.999 20.858
Gill 0.921 0.985 0.985 20.485 0.921 0.985 0.939 1.000

CAT
Activity

Brain 0.588 20.795 0.240 20.857 0.588 20.795 20.277 20.857

Blood 0.777 20.993 0.465 0.961 0.777 20.993 20.401 0.961
Liver 0.601 20.655 20.327 0.682 0.601 20.655 20.756 0.682
Gill 20.945 0.997 0.240 1.000 20.945 1.000 20.277 1.000

GPx
Activity

Brain 0.993 0.913 20.844 1.000 0.993 0.913 20.999 1.000

Blood 0.433 20.397 20.997 0.577 0.433 20.397 20.822 0.577
Liver 0.676 20.572 20.153 20.964 0.676 20.572 0.362 20.096
Gill 20.101 0.115 0.554 20.240 20.101 0.115 0.896 20.240

Micronuclei Blood 0.322 20.056 0.101 20.915 0.322 20.558 0.585 20.915

Comet Assay Blood 0.943 20.983 20.936 0.999 0.496 0.894 0.553 0.999

Caspase-3 Blood 0.885 20.173 0.575 0.218 0.885 20.173 20.449 0.218

Significant correlations (P<0.05) are shown in bold. A minus sign denotes a positive correlation (high values in one set correlate with high values in
the other); its absence denotes a negative correlation (low values in one set correlate with high values in the other). Values near zero indicate that fac-
tors are unrelated. IBP5 ibuprofen, DCF5 diclofenac, LPX5 lipid peroxidation, SOD5 superoxide dismutase, CAT5 catalase, GPx5 glutathione
peroxidase..
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in in vitro metabolism studies on fish, while Hoeger et al.24 showed

that DCF inhibits COX activity and therefore prostaglandin E2 syn-

thesis in brown trout head kidney macrophages in vitro, thus confirm-

ing the existence in fish of the same mode of action reported

previously in mammalian species. Also, IBP and DCF-derived acyl glu-

curonides have been shown to form covalent bonds with both intra-

and extracellular proteins, with toxicological consequences.58 In addi-

tion to biotic transformations, in water bodies, these pharmaceuticals

may be photodegraded in the presence of light or biodegraded by

micro-organisms to smaller, more hydrophobic and more toxic mole-

cules. The main metabolites of IBP resulting from these processes

include 4-isobutylacetophenone, 1-(6-methoxy-2-naphthyl) ethanol

and 2-acetyl-6-methoxynaphthalene while those of DCF are 5,40-

dihydroxydiclofenac, 3-dihydroxydiclofenac, 40-dihydroxymethyldi-

clofenac, 30-hydroxymethyl-diclofenac, 40-hydroxydiclofenac and 50-

hydroxydiclofenac.59 The latter two are oxidized to benzoquinone

imine intermediates, compounds that are highly toxic to aquatic

organisms,30 and therefore, the high DCF toxicity in this study could

be the result this intermediates.

As can be seen in Table 2, IBP and DCF concentrations in our

study decreased over time in water from single pharmaceutical expo-

sure systems. However, in water from binary mixture exposure sys-

tems, IBP concentration decreased faster and reaches a lower

concentration than in the single pharmaceutical system, while DCF

concentration decreased more slowly, suggesting that these NSAIDs

may have interactions in the mixture that favor the loss of IBP in the

system. Furthermore, as evidenced in Table 3, these concentrations in

water exposure systems can be correlated with the results obtained for

different biomarkers evaluated.

A state of oxidative stress occurs when exist an excess of pro-

oxidants that cannot be counteracted by antioxidants systems. LPX

impairs biomembrane function, decreases membrane fluidity, inacti-

vates membrane-bound enzymes and receptors, and can change selec-

tive permeability to calcium ions60, it involves a chain of redox

reactions, particularly in polyunsaturated fatty acids, which are highly

sensitive to ROS-induced oxidation due to the presence of double

bonds in their structure61. In Figure 1, the amount of MDA produced

was higher in specimens exposed to the binary mixture than in those

exposed to IBP or DCF alone; brain and gill being the tissues with the

most LPX-induced damage. Increased LPX particularly in brain and gill

was also found by Nava-!Alvarez et al.62 in C. carpio exposed to a mix-

ture of DCF and acetaminophen. In phase I, biotransformation of

NSAIDs, CYP produces an oxygenated intermediate—the oxy-

cytochrome P450 complex [P450 (Fe31) O2
2 ]—with subsequent release

by reaction decoupling of superoxide anion, an oxidant species that

damages membrane lipids,63 besides the generation of the aforemen-

tioned reactive metabolites and intermediates, on the other hand, since

NSAIDs affect the mitochondrion and therefore oxidative phosphoryla-

tion, increased ROS production may occur, particularly of O·
22, and as a

result, an increase in LPX, and these processes may be explained the

increase found. To mitigate the negative effects of ROS, fish—like other

vertebrates—possess an antioxidant defense system. Antioxidant

defenses are induced by environmental contaminants under prooxidant

conditions. The main enzymatic antioxidant is SOD, these include the

manganese-complexed enzyme in mitochondria (MnSOD) and the cop-

per/zinc-complexed enzyme (CuZnSOD) present in the cytosol and

extracellular surfaces.64 SOD catalyzes the conversion of superoxide

anion (O:
2) to hydrogen peroxide (H2O2),

65 which is metabolized to O2

FIGURE 5 Proposed mechanisms of ibuprofen- and diclofenac-induced toxicity in C. carpio. CAT: catalase; DCF: diclofenac; GSH: glutathi-
one; HSP: heat shock protein; IAP: inhibitor of apoptosis protein; IBP: ibuprofen; SOD: superoxide dismutase
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and water by CAT, associated primarily with peroxisomes and detoxifi-

cation,66 and GPx.35 In our study, the binary mixture of IBP and DCF

induced a higher increase in SOD activity than either pharmaceutical

alone (Figure 1). It is therefore inferred that, particularly in brain and

gill, SOD counteracts LPX-induced damage. The increased SOD activity

found may be explained by the fact that both IBP and DCF oxidative

metabolism favor formation of the anion radical O2*.63 Similar results

were obtained in the freshwater bivalve Dreissena polymorpha exposed

to a mixture of DCF, IBP, and PAR. In our study (Figure 1), CAT activity

decreased in groups exposed to the mixture, the lowest values being

recorded in liver. This decrease may be due to overproduction of

H2O2. GPx is a cytosolic enzyme and the most important peroxidase

that reacts with H2O2, reducing it to H2O and alcohol using GSH as a

reducing agent.67,68 In this study, GPx activity was highest in gill and

brain (Figure 1), as was also the case with SOD activity (Figure 1), pos-

sibly showing that these enzymes act at the cytosol of cells reducing

H2O2 formed from the reaction of SOD. Bagnyukova et al.69 report

that LPX products are apparently involved in the regulation of antioxi-

dant enzymes. Thus, increased ROS production in this study may also

explain the increased SOD, CAT, and GPx activity observed.

Monitoring of clastogenic effects of pollutants is of primary inter-

est in aquatic environmental mutagenesis for determining the

pollution-related stress in living organisms.70 MNi test with fish has

been shown to be a useful in vivo technique for genotoxicity testing,

MNi are chromosome fragments or whole chromosomes that are not

included in the main nucleus, and are seen as small nuclei in the cyto-

plasm of cells in interphase.71 MNi arise in peripheral blood erythro-

cytes as a result of DNA damage to cells mainly in the S-stage of

interphase. In our study, the binary mixture induced significant

increases in MNi at 24, 48, and 72 h, although peak values were

recorded with DCF alone at 72 h (Figure 2). This behavior—i.e., MNi

values increasing during early exposure times and decreasing there-

after—has been observed in other species exposed to different geno-

toxic agents. A decrease in MNi numbers after a phase of increase

depends on the type of genotoxic concentration used, manner of

administration, and genetic response in each species.47,72,73 The

increase in MNi found in this study may be due to breakage of DNA

and/or chromosome mis-segregation, events resulting from aneugenic

and clastogenic effects elicited by ROS and some xenobiotics, including

DCF and IBP.74 ROS production has been shown to induce single-

strand breaks and base modifications,75 which may explain the

increased MNi frequency and damage index results found in the pres-

ent study. On the other hand, the decrease observed at 96 h in MNi

could be due to an increased antioxidant activity, mainly of SOD and

GPx activity, of the organisms in response to oxidant damage, which is

evident in Figure 1. Comet assay results in this study show that signifi-

cant damage was induced in all exposed groups at all exposure times, a

higher rate of damage being induced by the mixture (Figure 3). In the

DNA molecule, the nucleophilic groups of deoxyribose and nitrogenous

bases are exposed to electrophilic attack by ROS which reach the cell

nucleus and are formed as a result of external agents or cellular meta-

bolic processes.76 Different types of oxidative DNA damage have been

reported, including single or double-strand breaks in the sugar-

phosphate backbone, modification of nitrogenous bases (thymine ring

saturation and fragmentation) and formation of DNA–protein or DNA–

DNA crosslinks through diverse mechanisms: modification of DNA

bases—OH radical action leads to over 20 modifications, the most com-

mon being 8-hydroxy-20-deoxyguanosine (8-OHdG) which has high

mutagenic potential like 5-hydroxymethyl-20-deoxyuridine—

depurination of DNA bases (apurinic or apyrimidinic sites formed by

cleavage of the glycosidic bond, which may result from OH! radical
attack on sugar), and strand breaks (due to cleavage of the phosphodi-

ester bond, occurring frequently by free radical attack on deoxyribose

of the DNA backbone).77

Cytotoxicity is a change in basic cell functions leading to damage

that can be detected. Apoptosis or programed cell death is an ATP-

dependent active process, characterized by breaking of the cell into

apoptotic bodies, nuclear condensation, and caspase activation, which

does not affect neighboring cells. There are two main routes to apopto-

tic death: the extrinsic pathway, initiated by the binding of specific cell

membrane receptors and resulting in activation of caspase-8 which

begins the cascade activation of other molecules leading to cell death;

and the intrinsic pathway, initiated by rupture of the mitochondrial

membrane and formation of pores through which caspase-9 activating

factors (cytochrome c) are released, initiating the cascade leading to

death by apoptosis; it should be noted that both pathways in turn lead

to the activation of the main effector caspase, caspase 3, which

degrades other protein substrates into the cells to trigger apoptotic

processes.78 In our study (Figure 4), IBP alone at 24 h was the only fac-

tor inducing a significant increase in the specific activity of caspase 3.

Since COX inhibition is the mechanism of action of NSAIDs, it has

been suggested that decreased cellular levels of prostaglandin E2

(PGE2) and increased levels of arachidonic acid may be involved in inhi-

bition of cell proliferation and induction of apoptosis.79 An increase in

the cellular concentration of arachidonic acid can alter mitochondrial

membrane permeability and elicit cytochrome c release, leading to apo-

ptosis.80,81 Arachidonic acid also increases the production of ceramide,

a potent apoptosis inducer.82 Diverse studies suggest that increased

ROS formation, a deficit in antioxidant defenses, decreased DNA repair

mechanism efficiency, proteolysis and loss of immune system regula-

tion contribute to increased oxidative stress.83 Also, protein changes

such as carbonylation, nitration, and protein–protein crosslinking are

generally related to loss of function and can lead on the one hand to

splitting and degradation of damaged proteins and on the other to for-

mation of aggregates resulting in protein accumulation, cytoplasmic

inclusions, and eventual cell death84. Any stressful stimulus (exposure

to ROS, DNA damage, or increased extracellular calcium induced by

prostaglandin inhibition) can initiate the intrinsic pathway of apoptosis,

inducing changes in mitochondrial membrane permeability and edema

leading to reduced membrane potential and release of cytochrome c,

which binds to Apaf-1, which in turn uses ATP to activate caspase 9.

The latter activates the effector caspase 3, which hydrolyzes specific

substrates leading eventually to cell death. All of these, may explain the

increase observed in the specific activity of caspase 3 during early
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exposure times in our study; while the decrease may be due to the fact

that the cell also possesses anti-apoptotic proteins (Bcl-2), inhibitor of

apoptosis proteins (IAPs) and heat shock proteins (HSPs), which act at

different levels of the apoptosis cascade preventing its activation; addi-

tion to antioxidant enzymes that prevent oxidative damage in cells

whose increase can also be seen at different exposure times.

Based on the results observed in this study, we can assume that

the IBP and DCF in contact with C. carpio, are biotransformed, espe-

cially by the family of cytochrome CYP2, generating ROS, which if not

counteracted by different cellular mechanisms of antioxidant protec-

tion, can generate a state of oxidative stress, which may result in oxida-

tive damage and adducts at DNA, lipid, and protein level, causing

dysfunction in cell membranes, DNA damage, and antioxidant defense

system lesions. If damage to the membrane or the DNA is severe, it

can activate the intrinsic pathway in the mitochondria which subse-

quently initiates the cascade that leads to the activation of the main

effector caspase, caspase 3, and cell death by apoptosis, which can

be inhibited, or possibly repaired by different cellular mechanisms

(Figure 5).

5 | CONCLUSIONS

Our results show that may be a correlation between the loss of NSAID

concentrations in water systems and biomarkers evaluated over expo-

sure time. It is therefore proposed that DCF and IBP both in isolated

form and as a mixture induce free radicals, oxidative stress, and cyto-

genotoxicity in tissues of C. carpio. Induced effects are greater with the

binary mixture than with either pharmaceutical alone, particularly in

gill, and it is possible to infer that potentiation interactions take place

between DCF and IBP, while antagonistic interactions occur in bio-

markers of cyto-genotoxicity This study provides evidence of oxidative

stress and cyto-genotoxicity as a result of sublethal exposure to

NSAIDs in the common carp.

ACKNOWLEDGMENTS

This study was made possible by support from the Secretaria de

Investigaci!on y Estudios Avanzados de la UAEM (Project 3722/

2014CID).

REFERENCES

[1] Daughton C, Ternes T. Pharmaceuticals and personal care products
in the environment: agents of subtle change? Environ Health Per-
spect. 1999;107:907–938.

[2] Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, L€utzhøft
HC, Jørgensen SE. Ocurrence, fate and effects of pharmaceutical
substances in the environment – a review. Chemosphere. 1998;36:
357–393.

[3] K€ummerer K. 2004. Pharmaceuticals in the Environment: Sources,
Fate, Effects and Risks. 2nd ed. New York: Springer; 2004.

[4] Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK,
Reissman DB. Persistence of pharmaceutical compounds and other
organic wastewater contaminants in a conventional drinking-water-
treatment plant. Sci Total Environ. 2004;329:99–113.

[5] Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM.
Occurrence, genotoxicity, and carcinogenicity of regulated and
emerging disinfection by-products in drinking water: a review and
roadmap for research. Mutat Res. 2007;636:178–242.

[6] Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon
GL. A provisional biopharmaceutical classification of the top 200
oral drug products in the United States, Great Britain, Spain and
Japan. Mol Pharmacol. 2006;3:631–643.

[7] Parolini M, Binelli A, Cogni D, Riva C, Provini A. An in vitro bio-
marker approach for the evaluation of the ecotoxicity of non-
steroidal anti-inflammatory drugs (NSAIDs). Toxicol Vitro. 2009;23:
935–942.

[8] Secretaría de Economía. Industria Farmac!eutica Unidad de Inteligen-
cia de Negocios. 2013; http://www.promexico.gob.mx/work/mod-
els/comercio/Resource/127/1/images/FC_Farmaceutica_ESP.pdf.
Accessed January 17, 2016.

[9] Hardman JG, Limbird LE, Goodman A. Las Bases Farmacol!ogicas De La
Terap!eutica. 10th ed. Mexico DF: McGraw-Hill Interamericana; 2003.

[10] Morrow JD, Roberts LJ. Lipid-derived autacoids: eicosanoids and
platelet-activating factor. In: Hardman JG, Limbird LE, eds. Goodman
and Gilman’s the Pharmacological Basis of Therapeutics. New York:
McGraw-Hill; 2001:669–686.

[11] Katzung B. Farmacología B!asica Y Clínica. 9th ed. Mexico DF: Man-
ual Moderno; 2007.

[12] Bendz D, Pax!eus NA, Ginn TR, Loge FJ. Occurrence and fate of
pharmaceutically active compounds in the environment, a case
study: H€oje River in Sweden. J Hazard Mater. 2005;122:195–204.

[13] Carlsson C, Johansson A, Alvan G, Bergman, Kuhler T. Are pharma-
ceuticals potent environmental pollutans? Part I: Environmental risk
assessment of selected active pharmaceuticals ingredients. Sci Total
Environ. 2006;364:67–87.

[14] Ferrari B, Pax!eus N, Giudice RL, Pollio A. Ecotoxicological impact of
pharmaceuticals found in treated wastewaters; study of carbamaze-
pine, clofibric acid, and diclofenac. Ecotoxicol. Environ Safe. 2003;
55:359–370.

[15] Kolpin DW, Furlong ET, Meyer MT, et al. Pharmaceuticals, hor-
mones, and other organic wastewater contaminants in US streams,
1999-2000: a national reconnaissance. Environ Sci Technol. 2002;36:
1202–1211.

[16] Santos LH, Ara!ujo AN, Fachini A, Pena A, Delerue-Matos C, Monte-
negro MCBSM. Ecotoxicological aspects related to the presence of
pharmaceuticals in the aquatic environment. J Hazard Mater. 2010;
175:45–95.

[17] Ternes TA, Meisenheimer M, McDowell D, et al. Removal of phar-
maceuticals during drinking water treatment. Environ Sci Technol.
2002;36:3855–3863.

[18] Siemens J, Huschek G, Siebe C, Kaupenjohann M. Concentrations
and mobility of human pharmaceuticals in the world’s largest waste-
water irrigation system, Mexico City-Mezquital Valley. Water Res.
2008;42:2124–2134.

[19] Gibson R, Dur!an-!Alvarez JC, Le!on-Estrada K, Ch!avez A, Jim!enez-
Cisneros B. Accumulation and leaching potential of some pharma-
ceuticals and potential endocrine disruptors in soils irrigated with
wastewater in the Tula Valley, Mexico. Chemosphere. 2010;81:
1437–1445.

[20] F!elix-Ca~nedo TE, Dur!an-!Alvarez JC, Jim!enez-Cisneros B. The occur-
rence and distribution of a group of organic micropollutants in Mex-
ico City’s water sources. Sci Total Environ. 2013;454/455:109–118.

[21] Brun L, Bernier M, Losier R, Doe K, Jackman P, Lee H. Pharmaceuti-
cally active compounds in Atlantic Canadian sewage treatment plant

12 | ISLAS-FLORES ET AL.



effluents and receiving waters and potential for environmental
effects as measured by acute and chronic aquatic toxicity. Environ
Toxicol Chem. 2006;25:2163–2176.

[22] Marques CR, Abrantes N, Gonçalves F. Life-history traits of stand-
ard and autochthonous cladocerans: I. Acute and chronic effects of
acetylsalicylic acid. Environ Toxicol. 2004;19:518–526.

[23] Marques CR, Abrantes N, Gonçalves F. Life-history traits of stand-
ard and autochthonous cladocerans: II. Acute and chronic effects of
acetylsalicylic acid metabolites. Environ Toxicol. 2004;19:527–540.

[24] Hoeger B, Dietrich D, Schmid D, Hartmann A. Distribution of intra-
peritoneally injected diclofenac in brown trout (Salmo trutta f. fario).
Ecotox Environ Safe. 2008;71:412–418.

[25] Pomati F, Castiglioni S, Zuccato E, Fanelli R, Vigetti D, Calamari D.
Effects of a complex mixture of therapeutic drugs at environmental
levels on human embryonic cells. Environ Sci Technol. 2006;40:
2442–2447.

[26] G!omez-Oliv!an LM, Neri-Cruz N, Galar-Martínez M, et al. Assessing
the oxidative stress induced by paracetamol spiked in artificial sedi-
ment on Hyalella azteca. Water Air Soil Pollut. 2012;223:5097–5104.

[27] G!omez-Oliv!an LM, Galar-Martínez M, García-Medina S, Vald!es-Ala-
nís A, Islas-Flores H, Neri-Cruz N. Genotoxic response and oxidative
stress induced by diclofenac, ibuprofen and naproxen in Daphnia
magna. Drug Chem Toxicol. 2014;37:391–399.

[28] Islas-Flores H, G!omez-Oliv!an LM, Galar-Martínez M, Colín-Cruz A,
Neri-Cruz N, García-Medina S. Diclofenac-induced oxidative stress
in brain, liver, gill and blood of common carp (Cyprinus carpio). Eco-
toxicol Environ Safe. 2013;92:32–38.

[29] Islas-Flores H, G!omez-Oliv!an LM, Galar-Martínez M, García-Medina
S, Neri-Cruz N, Dubl!an-García O. Effect of ibuprofen exposure on
blood, gill, liver, and brain on common carp (Cyprinus carpio) using
oxidative stress biomarkers. Environ Sci Pollut Res. 2014; DOI
10.1007/s11356-013-2477-0.

[30] Oviedo-G!omez DGC, Galar-Martínez M, García-Medina S, Razo-
Estrada C, G!omez-Oliv!an LM. Diclofenac-enriched artificial sedi-
ment induces oxidative stress in Hyalella azteca. Environ Toxicol
Pharmacol. 2010;29:39–43.

[31] Kovacic P, Jacintho JD. Reproductive toxins: pervasive theme of
oxidative stress and electron transfer. Curr Med Chem. 2001;8:863–
892.

[32] Dennery PA. Effects of oxidative stress on embryonic development.
Birth Defects Res C Embryo Today. 2007;81:155–162.

[33] Lander HM. An essential role for free radicals and derived species
in signal transduction. Faseb J. 1997;11:118–124.

[34] Sahambi SK, Hales BF. Exposure to 5-bromo-2’-deoxyuridine induces
oxidative stress and activator protein-1 DNA binding activity in the
embryo. Birth Defects Res Part a-Clin Mol Teratol. 2006;76:580–591.

[35] Van der Oost RB, Vermeulen JNPE. Fish bioaccumulation and bio-
markers in environmental risk assessment: a review. Environ Toxicol
Pharmacol. 2003;13:57–149.

[36] Huang DJ, Zhang YM, Song G, Long J, Liu JH, Ji WH. Contami-
nants-induced oxidative damage on the carp Cyprinus carpio col-
lected from the Upper Yellow River, China. Environ Monit Assess.
2007;128:483–488.

[37] Cleuvers M. Mixture toxicity of the anti-inflammatory drugs diclofe-
nac, ibuprofen, naproxen and acetylsalicylic acid. Ecotoxicol Environ
Safe. 2004;59:309–315.

[38] Cleuvers M. Initial risk assessment for three beta-blockers found in
the aquatic environment. Chemosphere. 2005;59:199–205.

[39] Silva E, Rajapakse N, Kortenkamp A. Something from “nothing” –
eight weak estrogenic chemicals combined at concentrations below

NOECs produce significant mixture effects. Environ Sci Technol.
2002;36:1751–1756.

[40] Yamanaka H, Sogabe A, Handoh IC, Kawabata Z. The effectiveness
of clove oil as an anaesthetic on adult common carp, Cyprinus carpio
L. J Anim Vet Adv. 2011;10:210–213.

[41] B€uege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol.
1979;52:302–310.

[42] Misra P, Fridovich I. The role of superoxide anion in the autoxida-
tion of epinephrine and a simple assay for superoxide dismutase.
J Biol Chem. 1972;247:3170–3175.

[43] Radi R, Turrens J, Chang Y, Bush M, Capro D, Freeman A. Detec-
tion of catalase in rat heart mitochondria. J Biol Chem. 1991;226:
22028–22034.

[44] Gunzler W, Flohe-Clairborne A. Glutathione peroxidase. In: Green-
Wald RA, ed. Handbook of Methods for Oxygen Radical Research.
Boca Raton: CRC Press; 1985:285–290

[45] Stephensen E, Svavarsson J, Sturve J, Ericson G, Adolfsson-Ena M,
Forlin L. Biochemical indicators of pollution exposure in shorthorn
sculpin (Myoxocephalus scorpius), caught in four harbours on the
southwest of Iceland. Aquat Toxicol. 2000;48(4):431–442.

[46] Bradford MM. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein dye
binding. Anal Biochem. 1976;72:248–254.

[47] Cavas T, Ergene-G€oz€ukara S. Induction of micronuclei and nuclear
abnormalities in Oreochromis niloticus following exposure to petro-
leum refinery and chromium processing plant effluents. Aquat Toxi-
col. 2005;74:264–271.

[48] Ii-Yong K, Chang-Kee H. Comparative evaluation of the alkaline
comet assay with the micronucleus test for genotoxicity
monitoring using aquatic organisms. Ecotoxicol Environ Safe. 2006;
64:288–297.

[49] Bolognesi C, Perrone E, Roggieri P, Pampanin DM, Sciutto A.
Assessment of micronuclei induction in peripheral erythrocytes of
fish exposed to xenobiotics under controlled conditions. Aquat Toxi-
col. 2006;78:S93–S98.

[50] Tice R, Anderson D, Burlinson D, et al. The single cell gel/comet
assay: guidelines for in vitro and in vivo genetic toxicology testing.
Environ Mol Mutagen. 2000;35:206–221.

[51] Lankoff A, Banasik A, Duma A, et al. A comet assay study reveals
that aluminium induces DNA damage and inhibits the repair of
radiation-induced lesions in human peripheral blood lymphocytes.
Toxicol Lett. 2006;161:27–36.

[52] Praskova E, Voslarova E, Siroka Z, et al. Assessment of diclofenac
LC50 reference values in juvenile and embryonic stages of zebrafish
(Danio rerio). Pol J Vet Sci. 2011;14:545–549.

[53] Stegeman JJ, Livingstone DR. Forms and functions of cytochrome
P450. Comp Biochem Physiol C-Pharmacol Toxicol Endocrinol. 1998;
121:1–3.

[54] Blanco G, Martínez C, García-Martín E, Ag!undez JA. Cytochrome
P450 gene polymorphisms and variability in response to NSAIDs.
Clin Res Regul Aff. 2005;22:57–81.

[55] Zanger UM, Turpeinen M, Klein K, Schwab M. Functional
pharmacogenetics/genomics of human cytochromes P450 involved
in drug biotransformation. Anal Bioanal Chem. 2008;392:1093–
1108.

[56] Tang W. The metabolism of diclofenac – enzymology and toxicol-
ogy perspectives. Curr Drug Metab. 2003;4:319–329.

[57] Gomez C, Constantine L, Moen M, Vaz A, Huggett DB. Ibuprofen
metabolism in the liver and gill of rainbow trout, Oncorhynchus
mykiss. Bull Environ Contam Toxicol. 2011;86:247–251.

ISLAS-FLORES ET AL. | 13



[58] Boelsterli UA. Mechanistic Toxicology. The Molecular Basis of How
Chemicals Disrupt Biological Targets. 2nd ed. Boca Rat!on, FL: CRC
Press; 2007.

[59] Deng A, Himmelsbach M, Zhu QZ, et al. Residue analysis of the
pharmaceutical diclofenac in different water types using ELISA and
GC-MS. Environ Sci Technol. 2003;37:3422–3429.

[60] Bast A. Oxidative stress and calcium homeostasis. In: Halliwell B,
Aruoma OI, editors. DNA and Free Radicals. London: Ellis Horwood;
1993:95–108.

[61] Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on
malondialdehyde as toxic molecule and biological marker of oxida-
tive stress. Nutr Metab Cardiovasc Dis. 2005;15:316–328.

[62] Nava-!Alvarez R, Razo-Estrada AC, García-Medina S, G!omez-Olivan
LM, Galar-Martínez M. Oxidative stress induced by mixture of
diclofenac and acetaminophen on common carp (Cyprinus carpio).
Water Air Soil Pollut. 2014;225:1873

[63] Doi H, Iwasaki H, Masubuchi Y, Nishigaki R, Horie T. Chemilumines-
cence associated with the oxidative metabolism of salicylic
acid in rat liver microsomes. Chem-Biol Interact. 2002;140:
109–119.

[64] McCord JM, Fridovich I. Superoxide dismutase. An enzymic func-
tion for erythrocuprein (hemocuprein). J Biol Chem. 1969;22:6049–
6055.

[65] Filho DW. Fish antioxidant defenses – a comparative approach.
Braz J Med Biol Res. 1996;29:1735–1742.

[66] Hai DQ, Varga I, Matkovics B. Organophosphate effects on antioxi-
dant system of carp (Cyprinius carpio) and catfish (Ictalurus nebulo-
sus). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1997;
117:83–88.

[67] Ahmad I, Hamid T, Fatima M, et al. Induction of hepatic antioxidants
in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper
mill effluent exposure. Biochim Byophis Acta. 2000;1523:37–48.

[68] Rajamanickam V, Muthuswamy N. Biochemical changes of antioxi-
dant enzymes in common carp (Cyprinus carpio L.) after heavy metal
exposure. Turk J Vet Anim Sci. 2009;33:273–278.

[69] Bagnyukova TV, Chahrak OI, Lushchak VI. Coordinated response of
goldfish antioxidant defenses to environmental stress. Aquat Toxicol.
2006;78:325–331.

[70] Kim I-Y, Hyun C-K. Comparative evaluation of the alkaline comet
assay with the micronucleus test for genotoxicity monitoring using
aquatic organisms. Ecotox Environ Safe. 2006;64:288–297.

[71] Al-Sabti K, Metcalfe CD. Fish micronuclei for assessing genotoxicity
in water. Mutat Res Genet Toxicol. 1995;343(2):121–135.

[72] Palhares D, Grisolia CK. Comparison between the micronucleus fre-
quencies of kidney and gill erythrocytes in tilapia fish, following
mitomycin C treatment. Genet Mol Biol. 2002;25:281–284.

[73] Torres deLemos C, Milan R€odel P, Regina Terra N, D’avila de Oli-
veira NC, Erdtmann B. River water genotoxicity evaluation using
micronucleus assay in fish erythrocytes. Ecotoxicol Environ Safe.
2007;66:391–401.

[74] Canistro D, Melega S, Ranieri D, et al. Modulation of cytochrome
P450 and induction of DNA damage in Cyprinus carpio exposed in
situ to surface water treated with chlorine or alternative disinfec-
tants in different seasons. Mutat Res-Fundam Mol Mech Mutagen.
2012;729:1): 81–9. (

[75] Lo YYC, Wong JMS, Cruz TF. Reactive oxygen species mediated
cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem.
1996;271:15703–15707.

[76] Shi X, Jiang H, Mao Y, Ye J, Saffiotti U. Vanadium (IV)-mediated
free radical generation and related 2’-deoxyguanosine hydroxylation
and DNA damage. Oncology. 1996;106:27–38.

[77] Reid TM, Fry M, Loeb LA. Endogenous mutations and cancer. Prin-
cess Takamatsu Symp. 1991;22:224–229.

[78] Gulbins E, Dreschers S, Bock J. Role of mitochondria in apoptosis.
Exp Physiol. 2003;88:85–90.

[79] Chan TA, Morin PJ, Vogelstein B, Kinzler K. Mechanisms underlying
nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl
Acad Sci. 1998;95(2):681–686.

[80] Cao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM.
Intracellular unesterified arachidonic acid signals apoptosis. Proc
Natl Acad Sci. 2000;97(21):11280–11285.

[81] Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P. Arachidonic
acid causes cell death through the mitochondrial permeability tran-
sition: implications for tumor necrosis factor-a apoptotic signaling.
J Biol Chem. 2001;276(15):12035–12040.

[82] Hannun YA. Functions of ceramide in coordinating cellular
responses to stress. Science. 1996;274(5294):1855–1859.

[83] Olanow CW, Arendash GW. Metals and free radicals in neurode-
generation. Curr Opin Neurol. 1994;7:548–558.

[84] Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G.
Proteins as biomarkers of oxidative/nitrosative stress in diseases:
the contribution of redox proteomics. Mass Spectrom Rev. 2005;24:
55–99.

How to cite this article: Islas-Flores H, Manuel G!omez-Oliv!an L,

Galar-Martínez M, et al. Cyto-genotoxicity and oxidative stress

in common carp (Cyprinus carpio) exposed to a mixture of ibu-

profen and diclofenac. Environmental Toxicology. 2017;00:1–14.

doi:10.1002/tox.22392.

14 | ISLAS-FLORES ET AL.


