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Abstract 
We propose to determine the underlying causal structure of the elements of happiness from a set 
of empirically obtained data based on Bayesian. We consider the proposal to study happiness as a 
multidimensional construct which converges four dimensions with two different Bayesian tech-
niques, in the first we use the Bonferroni correction to estimate the mean multiple comparisons, 
on this basis it is that we use the function t and a z-test, in both cases the results do not vary, so it is 
decided to present only those shown by the t test. In the Bayesian Multiple Linear Regression, we 
prove that happiness can be explained through three dimensions. The technical numerical used is 
MCMC, of four samples. The results show that the sample has not atypical behavior too and that 
suitable modifications can be described through a test. Another interesting result obtained is that 
the predictive probability for the case of sense positive of life and personal fulfillment dimensions 
exhibit a non-uniform variation. 
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1. Introduction 
Bayesian networks emerged about three decades ago as alternatives to conventional systems-oriented decision- 
making and forecasting under uncertainty in probabilistic terms [1]. A Bayesian network is a statistical tool that 
represents a set of associated uncertainties given conditional independence relationships established between 
them [2] [3]. 

The rule Bayes is a rigorous method for interpreting evidence in the context of previous experience or know-
ledge. The Bayes rule has recently emerged as a powerful tool with a wide range to applications which include: 
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genetics, image processing, ecology, physics and engineering. The essential characteristics of Bayesian methods 
are their explicit use of probability for quantifying uncertainty in inferences base on statistical data analysis. A 
Bayesian probability interval for an unknown quantity of interest can be directly regarded as having a high 
probability of containing the unknown quantity, in contrast to a frequentist confidence interval which may 
strictly be interpreted only in relation to a sequence of similar inferences that might be made in repeated prac-
tice. 

Using Bayesian networks as a tool for data analysis is not widespread in the context of Psychology. However, 
the benefits of using this tool in all areas of psychology are identified in several ways: on the economic front 
with Bayesian networks could develop systems to make judgments appropriate chance to improve diagnosis and 
psychological treatment. On the scientific level, Bayesian networks cannot be overlooked if psychology strives 
to clarify the mechanisms by which people evaluate, decide and make inferences; as they may serve as analyti-
cal and theoretical reference in the development of models of reasoning, learning and perception of uncertainty 
[3].  

In psychology, the area’s most prolific work in the use of Bayesian networks has been the causal learning 
[4]-[7], where they test the hypothesis that people represent causal knowledge similarly to as it does a Bayesian 
network. Other theoretical developments have made possible to extend the use of Bayesian network outside the 
domain of causal knowledge, for instance, on inductive generalization of concepts and learning words [8]. 
Another facet of Bayesian networks which have proved useful tools is in market research [9]. Others found that 
a Bayesian network classifies customers of a company relative to the perspective of long-term purchases [10]. 
On the other hand, it analyzed the nature of human emotions and the negative behavior resulting from over-
crowding during mass events. Utilizing the Bayesian network, his model shows the dependence structure be-
tween different emotions and negative behaviors of pilgrims in the crowd [11].  

Finally, by its shaping power, the Bayesian networks could be used to generate more and better models of 
how organizations, groups or social aggregate which is the subject of study for psychology. Thus the aim of this 
study was to determine the underlying causal structure of the elements of happiness from a set of empirically 
obtained data. It is considered a Bayesian statistical parameter, which is inferred as an uncertain event, in this 
study the knowledge about happiness is not accurate and is subject to uncertainty, therefore happiness can be 
described by a probability distribution. Whereby the Metropolis algorithm used is a specific type of process 
Monte Carlo, which generates a random way so that every step along the way is completely independent of the 
previous steps of the current position and generates Markov chains. Process in each step has not memory of the 
previous states. This is known as Markov Chain Monte Carlo (MCMC) 

Happiness has been defined as an entity that can be described by a specific set of measures [12], [13], a men-
tal state that people can gain control over in a cognitive way to perceive and conceive both themselves and their 
world as an experience of joy, satisfaction or positive welfare [14]. Unfortunately, terms like happiness have 
been used frequently in daily discourse and may now have vague and somewhat different meanings.  

The difficulty of defining happiness has led pioneer psychologists in the study of happiness propose the term 
subjective well-being (SWB). SWB refers to people's evaluations of their own lives and encompasses both cog-
nitive judgments of satisfaction and affective appraisals of moods and emotions. This conceptualization empha-
sizes the subjective nature of happiness and holds individual human beings to be the best judges of their own 
happiness [15]-[17]. 

There is empirical evidence indicating that well-being is a much broader construct than stability of emotions 
and subjective judgment about life satisfaction; e.g. situational models consider that the sum of happy moments 
in life results in the satisfaction of people [18], that is, a person exposed to a greater amount of happy events will 
be more satisfied with his or her life. People briefly react to good and bad events, but in a short time they return 
to neutrality. Thus, happiness and unhappiness are merely short-lived reactions to changes in people [19] and it 
depends strongly on intentional activity [20], [21]. But also it has been identified the temperament is suggested 
to influence happiness [22], [23] and other personality traits such as optimism and self-esteem [24]-[26], the 
self-determination [27]. 

Scholars have noticed that happiness is not a single thing, but it can be broken down into its constituent ele-
ments. Considering this information, Alarcón [28] proposes to study happiness as a multidimensional construct 
which converges satisfaction of what has been achieved, positive attitudes toward life, (experiences that reflect 
positive feelings concerning one’s self and life) personal fulfillment, and joy of living.  

Happiness Scale of Lima (HSL) [28], consists of 27 items and reported item-scale correlations were highly 
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significant and high internal consistency (∝ = 0.92). The factorial analysis of principal components and varimax  
rotation, revealed that happiness is a multidimensional behavior, consisting of four dimension: 1X  Sense posi-
tive of life, 2X  Satisfaction with life, 3X  Personal fulfillment and 4X  Joy of living. 

2. The Model 
Definition 1 
The σ-algebra is used for measured definition. A probability measure is a mapping [ ]: 0,1→   that as-

signs a probability ( ) [ ]0,1A ∈  to any event, with the properties ( )Ω 1=  and ( ) ( )1 1n nn n
A A∞ ∞

= =
= ∑

   

whenever k lA A = ∅ . A real value random variable is a mapping : ΩX R→  and ( )Xω ω  
Definition 2 
A random variables es given by : ΩX →   where 𝐴𝐴 is measurable and subset of  , we denote by 

{ }X A∈  then the event is { } ( ){ }Ω :X A X Aω ω∈ = ∈ ∈ . 

Definition 3 
The random samples, say { }1 1 , ,i niX X X=  , { }2 2 2, ,i iX X X=  , { }3 3 3, ,i iX X X=   y { }4 4 4, ,i iX X X=  , 

have the same underlying distribution. 
We assume that we have four data samples { }1 2 3 4, , ,X X X X . If the data have the same distributions, then 

1 2 3 4X X X X   . Uncertainty about the true value of parameter it described by a measurement Π condi-
tional observed datasets. The posterior predictive distribution, is defined as 

( ) ( )ΘΘΩ Ω ΠX XP A P A∈ = ∈∑                           (1) 
Lema 1. 
Let   be a probability measure on ( )1 2 3 4 1 2 3 4Ω Ω Ω Ω ,x x x ⊗ ⊗ ⊗     such that 

{ } ( )( ) ( )1 2 3 4, , , : 1 1 1, 2,3, 4i i i iI I iω ω ω ω ω = = = =   

The probability for 1 2 3 4X X X X    denoted ( )1 2 3 4X X X X    is equal to the joint probability 

( )1 2 3 41, 1, 1, 1I I I I= = = =  for any fixed 1 2 3 4X X X XP P P P∧ ∧ ∧ , the probability is bounded by  

{ } ( )1 2 3 4 1 2 3 4 1 2 3 4max 0, 4 1X X X X X X X XP P P P X X X X P P P P∧ ∧ ∧ − ≤ ≤ ∧ ∧ ∧      (2) 

Consider the problem of selecting independent samples from several populations for the purpose of be-
tween-group comparisons, either through hypothesis testing or estimation of mean differences. A companion 
problem is the estimation of within-group mean levels. Together, these problems form the foundation for the 
very common analysis of variance framework, but also describe essential aspects of stratified sampling, cluster 
analysis, empirical Bayes, and other settings. Procedures for making between-group comparisons are known as 
multiple comparisons methods. The goal of determining which groups have equal means requires testing a col-
lection of related hypotheses [29]. 

Consider independent samples from l normally distributed populations with equal variances (3a y 3b)  

( )1

2
11 12 1 1, , , ~ ,nX X X N µ σ                              (3a) 

( )2
1 2, , , ~ ,

ll l ln lX X X N µ σ                              (3b) 

Then ( ),a b
a bH µ µ→ =  for each ( ),a b  then there is ( )1 2l l −  tests. For example, for two sample there is 

1 test, for three sample there is 3 test, and 4 there is 6 test. When two or more means are taken as equal, we 
merely combine all relevant samples into one. 

Let nY  denote the observed data. Assume that nY  is to be described using a model kM  selected from a set 
of candidate models { }1, , lM M . Assume that each kM  is uniquely parameterized by kθ , an element of the 
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parameter space ( )kΘ . In the multiple comparisons problem, the class of candidate models consists of all 

possible mean level clustering. Each candidate model is parameterized by the mean vector ( )1, , lµ µ µ=   and 

the common variance 2σ , with the individual means restricted by the model defined clustering of equalities. 
That is, each model determines a corresponding parameter space where particular means are taken as equal. 

Let ( ) ( )
1 1 1| , , |X k k nL Y L Yθ θ , where θ  take values in a d-dimensional parameter space Θ , be likelihood 

[30]-[33] functions associated with the samples and ( )kπ  denote a prior density on Θ  over the model 

{ }1, , lM M . Then ( )|kg kθ  denote a prior on kθ  given the model kM . The posterior probability for kM  
and kθ  can be written as 

( ) ( ) ( ) ( )
( ) ( )1

| |
|

k

k k k n
n n n

k M kk

k g k L Y
M Y

M p Y

π θ θ

=

=
∑




                           (4) 

( ) ( ) ( )ˆln | dim lnk n kB L Y nθ θ= − +                             (5) 

You can write the posterior probability (4) y (5) as,  

( ) ( ) ( ) ( ) ( )1| | | d
k

k n n k k n kk Y h Y k g k L Yπ π θ θ θ−

Θ
= ∫                        (6) 

We use a uniform prior for 
1

k k
L

π = ∀  (6) it can be written as 

( ) ( ) ( )1| | d
k

k n n k n kk Y h Y L Yπ θ θ−

Θ
= ∫  

( ) ( )
( )

|
| d

k

k n
k n k

n

L Y
k Y

h Y
θ

π θ
Θ

= ∫  

we using equations (5,6) and the previous development, we write the following relationship 

( ) ( )2 ln | 2 ln | dk n k n k nk Y L Y cπ θ θ− = − +∫                            (7) 

Definition 4 
The Taylor series of a real or complex-valued function ( )f x  that is infinitely differentiable at a real or 

complex number𝑎𝑎is the power series 

( ) ( )
0 !

n
n

n

d ff a x a
n

∞

=

= −∑  

Then, applying the definition 4 to (7), we obtain 

( ) ( ) ( )2ˆ ˆln | ln |
ˆ | dˆ

k n k n
k n k n

k k k

L Y L Y
L Y c

θ θ
θ θ

θ θ θ

 ∂ ∂
 − + + + +
 ∂ ∂ ∂
 
∫                      (8) 

The Fisher information [30] is a way of measuring the amount of information that an observable random va-
riable X carries out unknown parameter θ. 

( )log ; | 0E f X θ θ
θ
∂  = ∂ 

                                 (9) 

Applying (9) to (8), is obtained 

( ) ( ) ( ) ( ) ( )
2 ˆln |

ˆ ˆ| d | exp dˆ2
k n

k n k k n k k k k k
k k

L YnL Y L Y
θ

θ θ θ θ θ θ θ θ
θ θ

  ∂  ≈ − − −  ∂ ∂   
∫ ∫  

https://en.wikipedia.org/wiki/Real-valued_function
https://en.wikipedia.org/wiki/Complex-valued_function
https://en.wikipedia.org/wiki/Infinitely_differentiable_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Power_series
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( ) ( ) ( ) ( ) ( ) 1 2
2

dim 2
ˆln |

| d | 2π ˆ
k k n

k n k k n
k k

L Y
L Y L Y nθ θ
θ θ θ

θ θ

∂
≈

∂ ∂∫                     (10) 

taken 

( ) ( ) ( ) ( )ˆ2 ln | ln | dim lnn k n kk Y L Y nπ θ θ− = − +  

( ) ( ) ( )ˆln | dim lnk k n kB L Y nθ θ= − +  

Then 

( )| exp
2

k
n

Bk Yπ  ≈ − 
 

                                 (11) 

With respect to the candidate model class { }1 2 , ,, lM M M , we obtain, the posterior model probabilities 

( )
1

exp
2|

exp
2

k

n
L l
l

B

k Y
B

π

=

 − 
 ≅
 − 
 

∑
                               (12) 

Many clever methods have been devised for constructing and sampling from arbitrary posterior distributions. 
Markov chain simulation (also called Markov chain Monte Carlo, or MCMC) is a general method based on 
drawing values of θ from approximate distributions and then correcting those draws to better approximate the  
target posterior distribution, ( )|p yθ  [34] [35]. The sampling is done sequentially, with the distribution of the 
sampled draws depending on the last value drawn; hence, the draws form a Markov chain. (As defined in proba-
bility theory, a Markov chain is a sequence of random variables 1 2, , ,θ θ   for which, for any t, the distribution  
of 1tθ −  given all previous θ’s depends only on the most recent value) The key to the method’s success, however, 
is not the Markov property but rather that the approximate distributions are improved at each step in the simula-
tion, in the sense of converging to the target distribution [35]. 

A z-statistic should be calculated when the standard deviation of the population(s) is known. If the standard 
deviation is not known, then the standard error must be estimated using the standard deviation of the sample(s). 
Due to this estimation, we must use the t-distribution which is thicker in the tails to account for estimating the 
standard error with the sample standard deviation [34]. 

0z
n

x µ
σ
−

=                                      (13) 

0t
n

x
s

µ−
=                                      (14) 

Until now, we have built the theory to apply to the case of four sample data, now what we will do, will be a 
particular case study, and see that Lema and definitions 1, 2 y 3 are applied naturally like the Equation (14) 

Example particular case 
Suppose 0 1 2 3 4:H µ µ µ µ= = = . Select a random sample of size in . From ith group ( )1, 2,3, 4i =  so sam-

ple sizes are ( )1 2 3 4, , ,n n n n  

1

in
ij

i
j i

x
x

n=

= ∑  

x  is the sample mean for the observations in all group combined 
4

1 1

1 2 3 4

in
iji j

x
x

n n n n
= ==

+ + +
∑ ∑  
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1 1 2 2 3 3 4 4

1 2 3 4

n n n nx
n

x x
n

x x
n n

+ + +
=

+ + +
 

Variability in the data, the deviation of an individual observation  

( ) ( ) ( ) ( )ij ij i i ij i ixx x x x x xx x x− = − + − = − + −  

( ) ( ) ( )
4 4 42 2 2

1 1 1 1 1 1

i i in n n

ij ij i i
i j i j i j

x xx xx x
= = = = = =

− = − + −∑∑ ∑∑ ∑∑  

To test the null hypothesis that the population means are all the same, us the test statistic 

( ) ( ) ( ) ( ) [ ]
( ) ( ) ( ) ( )

2 2 2 2
1 1 2 2 3 3 4 4 1 2 3 4

2 2 2 2
1 1 2 2 3 3 4 4

4

3 1 1 1 1

n x n x n x n x n n n n
t

n s

x x x x

n s n s n s

 − + − + − + − + + + − =
 − + − + − + − 

 

Under 0H , this statistic has t distribution with k-1 and n-k degree freedom. 
Now four three 
Suppose 0 1 2 3:H µ µ µ= = . Select a random sample of size ni. From ith group ( )1, 2,3i =  so sample sizes 

are ( )1 2 3, ,n n n  

1
.

in
ij

i
j i

x
n

x
=

= ∑
 

3

1 1

1 2 3

.
in

iji j
x

x
n n n

= ==
+ +

∑ ∑  

1 1 2 2 3 3

1 2 3

.n n nx
n n n

x x x+ +
=

+ +
 

( ) ( ) ( )
3 3 32 2 2

1 1 1 1 1 1
.

i i in n n

ij ij i i
i j i j i j

x xx x x x
= = = = = =

− = − + −∑∑ ∑∑ ∑∑  

( ) ( ) ( ) [ ]
( ) ( ) ( )

2 2
1 2

2
1 2 3 1 2 3

2 2 2
2

3

1 1 2 3 3

3
.

2 1 1 1

n x n x n x n n n
t

n s n s n s

x x x − + − + − + + − =
 − + − + − 

 

Then 0 1 2:H µ µ=  

( ) ( ) [ ]
( ) ( )

2 2
1 21 2 1 2

2 2
1 1 2 2

2
.

1 1

n x n x n n
t

n s n

x

s

x − + − + − =
 − + − 

 

and 

0 1:H µ  

( ) [ ]
( )

2
1 1

2
1

1

1

1
.

1

n x n
t

n

x

s

 − − =
 − 

 

The principle of Bayes model is to compute posteriors bases on specified priors and the likelihood function of 
data, the four groups of size 1110. 

We began with a descriptive model of data from four groups, wherein the parameters were meaningful meas-
ures of central tendency, variance, and normality. Bayesian inference reallocates credibility to parameter values 
that are consistent with the observed data. The posterior distribution across the parameter values gives complete 
information about which combinations of parameter values are credible. In particular, from the posterior distri-
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bution we can assess the credibility of specific values of interest, such as zero difference between means, or zero 
difference between standard deviations. We can also decide whether credible values of the difference of means 
are practically equivalent to zero, so that we accept the null value for practical purposes.  

The Bayesian posterior distribution can also be used as a complete hypothesis for assessing power, that is, the 
probabilities of achieving research goals such as rejecting a null value, accepting a null value, or reaching a de-
sired precision of estimation. The power estimation incorporates all the information in the posterior distribution 
by integrating across the credible parameter values, using each parameter-value combination to the extent it is 
credible. Figure 1 shows histograms of data that are labeled with iX  on their abscissas, and these data are 
fixed at their empirically observed values.  

3. Bayesian Multiple Linear Regression  

( )1, ,i ikx x  now, we need to find an adjustment function for the above data. A linear regression model where 
more than one variable involved is called multiple regression model [36]-[38] 

0 1 1 2 2 k kY X X Xβ β β β ε= + + + + +                           (15) 

where, we have k regressors, parameters β  they are regression coefficients, then the Approach Bayesian Mul-
tiple Linear Regression is [36] [37]  

( ) ( )2 2| , , ~ , , nY X N Xβ σ β σ δ                              (16) 

The prior distribution of ( )2,β σ  is NIG (Normal-Inverse-Gamma) and it is given by ( )0 0 0 0, , ,b B n S  thus 

0 0 0 0, , ,b B n S  they are hyperparameters. 

( ) ( )2 2
1 1| , , ~ ,Y X N b Bβ σ σ                               (17) 

( ) ( )1 1 1 1| , ~ , .nY X t b S Bβ  

( )2 1 1 11| , , ~ , .
2 2
n n SY X IGσ β  

 
 

 

 

 
Figure 1. Posterior predictive probability dimensions.                                                           
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( )2 1 1 11| , ~ , .
2 2
n n SY X IGσ  

 
 

 

where IG (Inverse Gaussian) 
If we denote by ( ),Y Xω =  y ( ), , ,θ µ δ β γ=  
We can express the density function as 

( ) ( ) ( ) ( )( )4

1
exp .j jj

f w g h w tθ ϕ θ
=

= ∑                         (18) 

The conjugate prior distribution will be given by 

( ) ( ) ( )( )0 4

1
exp .a

j jj
p g aθ θ ϕ θ

=
≈ ∑                           (19) 

In the scheme MCMC 

( )1 1 1 1| ~ , .nNθ θY A C                                 (20) 

where 1A  is a matrix (n × p) and 1C  is the covariance matrix and 1θ  is a vector dimension p of regression 
coefficients to do Bayesian estimation. Assume the prior distribution of 1θ  is 

( )1 2 2 2~ , .pNθ θA C                                  (21) 

where 2A  and 2C  are matrices representing our beliefs about average and covariance of prior distribution. 
Take 2 =A I and using Bayesian approach, we obtain  

( )1 | ~ , .pNθ Y Dd D                                    (22) 
where 

1
1 2 21 2 .θ−′ ′= +d A C Y C A  

1 1 1
1 1 21 .− − −′= +D A C A C  

We can see that both matrices have two terms, one that only it depends on the prior and other that only it de-
pends of data. This is very useful because in each iteration. We have to update only the last term. The question 
to be dealt is the choice of hyperparameters 2C  y 2θ  

( )1| , ~ , .i i i i k i iy z N z zβ +′ +X X b  

( )~ ,iz IG γ δ  

Then, we can write the equation as follows [38] 

( ) [ ] [ ] ( ) ( )0
n

cov covj jj
y i x i x iβ β β= + +∑                           (23) 

Figures 2-5 show the range HDI, which means Higher Density Interval. Values inside HDI have a greater 
probability density (credibility) that values outside this. Therefore, the 95% HDI includes the most incredible 
parameters values. There is a way that the posterior 95% HDI could exclude zero even when the data have a 
frequency of zero. It can happen if the prior already excludes zero. This interval is useful as a summary of the 
distribution and decision tool. The decision rule is simple. Any value outside of the 95% HDI is rejected [38]. 

In all four cases the focus is on assessing if the predictors were differentially predictive, for which we ex-
amine the posterior distribution of the differences standardized regression coefficients, given that the compari-
son is based in the normalization using the single sample.  

As shown in Figure 2, the data to ( )1 2 3 4~ , , ,X f X X X  none of the coefficients are within the supposed. 
We observed than for X1 (sense positive of life) for differences in β  are out of interval to be credible, indicat-
ing than ( )1 2 3 4~ , ,X f X X X , cannot be a linear combination of the other dimensions. 

In Figure 4, the outcomes for dataset ( )2 1 3 4~ , ,X f X X X  where X2 (satisfaction with life) 2 3 0.301β β− = ,  
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Figure 2. Posteriori distribution for X1.                                                           

 

 
Figure 3. Posteriori distribution for X2.                                                           

 

 
Figure 4. Posteriori distribution for X3.                                                         
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Figure 5. Posteriori distribution for X4.                                                            

 
HDI goes from 0.209 to 0.391. Therefore X1 and X3 are equally costly and if we want to avoid double cost of 
measuring both, then, is probable to be more effective assess X2 than X3. 

In Figure 5 the outcomes for dataset ( )3 1 2 4~ , ,X f X X X , where X3 (personal fulfillment) 2 3 0.238β β− = ,  
HDI goes from 0.149 to 0.325. Therefore X1 and X2 are equally costly and if we want to avoid double cost of 
measuring both, then, is probable to be more effective assess X1 than X4. 

Figure 5 shows for dataset ( )4 1 2 3~ , ,X f X X X , where X4 (joy of living) 1 2 0.106β β− = , HDI goes from  
0.0205 to 0.191. Therefore X1 and X2 are equally costly, and if we want to avoid double cost of measuring both, 
then, is probable to be more effective assess X1 than X2. 

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text 
fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this 
template measures proportionately more than is customary. This measurement and others are deliberate, using 
specifications that anticipate your paper as one part of the entire journals, and not as an independent document. 
Please do not revise any of the current designations. 

4. Conclusions 
Bayesian methods have been developed as a tool for reasoning quantitatively in situations where arguments 
cannot be made with certainty. The focus recent developments of Markov chain Monte Carlo algorithms, in 
many situations the only way to integrate over the parameter space. The use of posterior predictive distributions 
makes the method robust to the choice of priors on the model parameters and enables the use of improper priors 
even when only very few observations are available. To measure the agreement between posterior predictive 
distributions, we derive a measure which has an intuitive probabilistic interpretation.  

Within the discussion of the results, we found that the sample has not atypical behavior, too, and that suitable 
modifications can be described through a test. Another interesting result obtained is that the predictive probabil-
ity for the case of X1 (sense positive of life) and X3 (personal fulfillment) dimensions exhibit a non-uniform vari-
ation, while other factors are uniform distribute. 

The hypotheses of work, was that if through sample analysis could infer that happiness, only one is affected 
by three dimensions X2 (sense positive of life), X3 (personal fulfillment) and X4 (satisfaction with life). In this 
context, we note that the hypothesis was tested, the marked tendency on distributions in recent factors was suffi-
cient to support this theory, on the other hand, through the Multilinear Regression Bayesian, also tested this hy-
pothesis. 

Due to recent revolutionary advances in Bayesian posterior computation via computer-intensive MCMC si-
mulation techniques, difficulties with posterior computations can be overcome. A Bayesian state-space model is 
readily implemented using standard Bayesian software such as JAGS, BUGS, NIMBLE and STAN. One can 
therefore avoid writing one-off programs in a low-level language. Any modifications, such as different prior 
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distributions, applications to different data sets, or the use of different sampling distributions, require the change 
of just a single line in the code. 
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