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Effectiveness factors have great relevance in multiphase reactors modeling since they are the conven-
tional way of incorporating the effects of intra-particle resistance reaction rate. This work determines
the description level effect of catalytic pellet microstructure on mass and energy effective transport
coefficients prediction, isothermal and no isothermal. For such a purpose some results about on eval-
uation of the effective diffusivity and conductivity with the methodology of volume averaging were
applied. The obtained results along with a Langmuir-Hinshelwood/Hougen-Watson kinetic expression
were applied to establish the concentration and temperature fields in a catalytic particle. The evalua-
tion of concentration field and effectiveness factors were developed using two different models: pseudo-
homogeneous mass and energy transport model for a catalytic particle with reaction in all domain, and
heterogeneous mass and energy transport model with fluid-catalytic surface interphase reaction for a
realistic porous structure model. The results show the differences in concentration and temperature pro-
files between both models and consequently in effectiveness factors. This could be ascribed to the form of
evaluation of effective transport coefficients used in the pseudo-homogeneous model, and presumably
to the simple shape of the unit cells used for the solution of the closure problem for the average transport
equations with homogeneous reaction.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The development of modeling techniques for the description
of diffusion and reaction in heterogeneous catalysis represents a
challenge, mainly due to the limitations of the classical pseudo-
homogeneous representations [1-3]. These macroscopic models
for diffusion-reaction processes can only implicitly account for the
geometrical features of real pore spaces [3-5]. For instance, the
standard modeling approach is to consider the catalyst particle as
a pseuhomogeneous system where reactants and products can dif-
fuse (molecular or Knudsen diffusion) and react according to a given
effective transport coefficient and an intrinsic reaction mechanism.
Effective transport coefficients are then required for the evaluation
of concentration and temperature fields and transport process that
take place in complex porous media. Actually, these coefficients
are of paramount importance to characterize the mass and
energy transport towards and inside the catalyst. Its experimental
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determination, however, is still challenging. In addition, such mea-
surements are relatively expensive and time-consuming. It has
also been recognized that effectiveness factors exhibit a complex
dependence on the pore-level structure of the media [6]. Since the
details of the pore-scale flow-pattern in the porous medium can-
not be captured due to the macroscopic nature of the experimental
approach, numerical and theoretical approximations have been
reported with complex pore geometries that resemble more closely
the real porous-media structures, i.e. ordered or random pack-
ing of different geometric configurations, such as square blocks,
spheres, cylinders and parallelepipeds [7-11]. These geometries
have been used to reconstruct the pore structure. In addition, Sapo-
val and co-workers [3] found that one can erroneously estimate
the effectiveness factor of a catalyst if the geometrical homo-
geneities of the active surface are not properly considered. It is
worth mentioning that in that study, the analysis of only one pore
was considered, for which a complex geometry through fractal
structures was built up. A revealing study [12] shows the impor-
tance of a realistic representation of the complex structure of
the porous medium in the determination of effective transport
coefficients. In such a work it was concluded that the porous
media whose micro-structure was represented with regular unit
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cells does not describe the dispersion in a real porous medium.
In studies related to theoretical prediction of effective transport
coefficients [8-11] based on the volume averaging methodology,
the periodic representation of the micro-structure of the porous
medium has been found to be important. This representation of
porous structure is motivated by computational limitations, and
therefore it is desirable to develop a representation that cap-
tures the relevant aspects of the medium, as simple as possible
though.

Despite the attempts [12-16] too make use of more realistic
representations of the porous medium for the evaluation of trans-
port coefficients, in some way or another it has been appealed
to significant simplifications. In this sense, the used periodic uni-
tary cells cannot be so complex because this makes difficult to
maintain the periodicity condition and in the case of complex geo-
metric representations of porous media, it has been appealed to
the study of small portions for the analysis of transport processes
with reaction in porous media, as it is the case of the analysis of
a single catalytic pore or a portion of the catalyst represented as
a pore network built from fractal structures. Therefore, the eval-
uation of the effect of more real porous micro-structure in the
catalytic particles on effective transport coefficients is a not com-
pleted task yet [12]. In this context, there is a rigorous methodology
that makes possible, at least in part, the understanding and anal-
ysis of phenomena that involve different scales, this is the volume
averaging method [17]. By this methodology different systems have
been studied, as the diffusion-reaction in a catalytic particle prob-
lem [8,9] and the energy and momentum transport in a porous
medium problem [9,10]. By using this methodology is possible
to develop effective means equations that are valid in the entire
domain from equations that are only valid in each of the indi-
vidual phases. The existing literature regarding volume averaging
methodology usually deals only with the deduction and presenta-
tion of the equations of transport of effective medium along with
the conditions under which they are applicable. More recently,
volume averaging methodology has aided to establish adequate
boundary conditions for transport equations [18]. It is not diffi-
cult neither to find the effective transport coefficients evaluation
by means of such a methodology. In this context, what is scarce,
however, is the application of these developments [19]. In this
work, we intend to use the information of the effect of the porous
micro-structure through the effective coefficients of transport on
the effectiveness factors for catalytic pellets in which a hydrodesul-
phurization (HDS) reaction of light gasoil takes place. Evidently,
the effectiveness factors have great relevance on the HDS reac-
tors modeling and their value strongly influences the behavior of
the reactor since they are the conventional form of incorporat-
ing the effects of intra-particle resistances to the reaction rate.
For the case of Langmuir-Hinshelwood/Hougen-Watson’s kinetic
rate expressions (LHHW) of a HDS process, the effectiveness fac-
tors dependence is usually described in terms of the denominated
corrected Module of Thiele [20]. The interest of accurate prediction
of catalyst effectiveness factor of the gas oil hydrodesulphurization
process has been previously reported [21]. This has been mainly
pursued by approximate analytical methods [22,23], by establish-
ing more accurate kinetic models of the HDS reaction, as LHHW
[24,25] models, and by taking into account the geometry effect
on effectiveness factors [26]. Regarding the effect of the micro-
structure on effectiveness factors, network pores built from fractals
structures have been employed [14,15,27,28]. The kinetics used in
most of these studies has been rather simplistic (power law model)
though and a realistic porous structure to determine the effective
transport coefficients has not been employed. Thus, this work aims
to evaluate the isothermal and no isothermal effectiveness factors
for a spherical catalytic particle by means of a heterogeneous mass
and energy model with reaction at the solid-fluid interphase at

Table 1
Kinetic experimental parameters for an HDS process.

k =koe~(EIRT) [pa h]~!

ko=0.53 [Pah]1

E=65.95 x 10-3 ]/mol

ka = k9e(@/RD) ppm-1

ky = k9e(@i/RD) = 2,004 x 107® Pa-!

K9 =5.66 x 10> ppm™!
Q4 =-60.96 ]/mol

K9 =1.01x8Pa!
Qu=-179.76]/mol

pore scale and pseudo homogeneous mass and energy model with
reaction at all catalyst pellet using a realistic microstructure.

2. Theory
2.1. Kinetic model

In this work, we evaluate an effectiveness factor that involves a
HDS process for light Gasoil following a previously reported LHHW
kinetics [29],

(ra)Y = k(Ca, )Y (Pm,)¥ 1)

(1 +ka(Ca))V)(1 + kn(pm,)7)

This kinetic model considers that both the sulfurated species and
the hydrogen chemisorb on different active sites. The Table 1 shows
the used parameters [29]. In the previous expression (r4)? is reac-
tion rate, (Cy,)? is sulphureted species concentration, (py,)? is
partial pressure of hydrogen, k, k4 and ky are the rate and the
adsorption constants for sulfurated species and hydrogen, respec-
tively.

In Table 1, ko, kg and kg are the pre-exponential factor for
reaction constant and pre-exponential factor for adsorption con-
stant for sulfurated species and the hydrogen respectively; E, Q4
and Qg are the activation energy and the characteristic energy of
the adsorption constant for sulfurated species and the hydrogen,
respectively

In Table 2, (a)AV)V, X, Y and (®) are the dimensionless con-
centration, dimensionless characteristics lengths and the Thiele
modulus for pseudo-homogeneous model; while, ws, and ® are
the dimensionless concentration and the Thiele modulus for the
heterogeneous model.

The concentration and temperature fields are obtained from the
solution of 2D mass and energy transport equations, by means
of two different models, (a) the mass and energy with reaction
in the whole domain (pseudo-homogeneous model), (b) the mass
and energy transport heterogeneous model with reaction in the
interface fluid-catalyst (y — k).

2.2. Pseudo-homogeneous transport model

The mass and energy transport equations at spherical catalytic

particle scale are [30],
0 0 9(Ca,)Y 0(Ca, )Y
(8><eX+33/ey) . |:81,Deff- ( 8; e+ 8; eyﬂ = (ra)
(2)

Table 2
Dimensionless parameters and variables.
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d 0 (1) o(T) o
(aex-i-a—yey) |:Keﬂr~ ( i ex+8—yey>:| = —(AH)(ra) (3)

where Egs. (2) and (3) are for arbitrary domain. The boundary con-
ditions are given by the following equations,

9(Ca,, )Y 9(Ca, )Y
Ca) gy Do o,
ox ady
oT) oT) “)
We)(“ra—yey =0 at r=0.
(G =Cy . (T =(T)*at =Ry (5)

where Rj is the radius of the spherical catalytic particle. Here Deg
and K, are the effective diffusivity and thermal conductivity, &y is
the porosity, —AH is the reaction heat, (T) is the variable tempera-
ture, Cf‘y and (T)S are the temperature and concentration at catalytic

surface condition.
2.3. Heterogeneous transport model

In this model, at pore scale, the catalytic pellet is assumed to
be constituted by liquid y and solid « phases, and the reaction

takes place on the fluid-solid interphase y — k. The mass transport
is given by [17],

o’ch, dcC
D, ( Yy Z ) o y — phase (6)

Ox2 dy?

The heterogeneous energy transport equation with reaction on the
catalytic surface A, at pore scale is

o’T, O°T

0’1, 9T,
ka(@xz * 8y2> =0

y — phase;

o — phase.

The Eqgs. (6) and (7) are subjected to the pertinent boundary condi-
tions at Ay,

ach BZCA
y y _
-y, Dy, <_8x2 ey + _8y2 e | =ra,

2 2
T. T
—ny, -k, <3 Y e+ 9 Vey> = (=AH)ry,

W (8)
ny, -k, (ﬂe + @ey> = —ny -k (@e + azie)
a2 dy? e e T e )
T, = To.
and also we have at Ay;:
b =G, ©)
To =Ty (10)

Here Dy, is the bulk diffusivity of the sulfurous species in the mix-
ture, k) and k, are the fluid y and solid o thermal conductivities,
Ca, is the local sulphureted species concentration, T, and T, are
the local temperatures for the solid and fluid phases respectively,
n,; is the normal unitary vector pointing from y-phase toward the
o-phase, 14 is the surface reaction rate, and A, is the entrance area
to the phase &.

The kinetic expression of the pseudo-homogeneous model is
related to the interfacial kinetics of heterogeneous model at pore
scale by means of the following expression [17],

(ra)Y = avra (11)

where a, =Ay,[V is the ratio of the fluid-catalyst interfacial area to
volume average [17]. The kinetics was adapted from that obtained
in a pseudo-homogenous media [29]. This is coherent with the
model of reaction at the interface.

2.4. Realistic geometrical model of the porous structure

At pore scale, the vectored model of a real porous media Fig. 1
was built up from a micrograph found in literature [31]. This was
adapted in order to replicate parameters comparable to typical val-
ues of HDS systems such as pore diameter dp =20-200 nm [32,33]
and porosity 0.3 <&, <0.6 [34]. According to this, a more realistic

0.45 0.5 0.55 0.6

Fig. 1. Vectored micrograph of a model of pore distribution.
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Fig. 2. View of ] catalytic pellet showing both phases, built from realistic model of
pores medium at scale 4:1.

geometrical model than the one based on cubic cells was built for
a catalytic particle of 1 mm of diameter, at scales of 4:1 and 2:1 of
the real scale Fig. 2.

2.5. Evaluation of the transport effective coefficients

The pseudo-homogeneous model, Egs. (2)-(5), requires the
accurate evaluation of the effective diffusion and effective conduc-
tivity coefficients. The theoretical way to evaluate these coefficients
through the method of volume averaging can be found in literature
[17]. Such studies already suggest the dependence of such param-
eters with the porous structure and is accepted that a simplified
representation of the porous media is enough to capture necessary
information of the porous structure and how it can be transported
to another length-scale. Fig. 3 depicts the type of periodic repre-
sentative unitary cells (RUC) used to represent the complex porous
media.

Expressions that allow us to evaluate the transport effective
coefficients, which is a boundary value problem for the closure
vector by, are a result of the averaging process of valid punctual
transport equations in individual phases, of decomposition of scales
[35] of the local transport equations Eq. (15) and a proposal of a
solution to the problem for the deviations field Cy,, expressed in
terms of the source that appears in the boundary value problem
for the deviations. Eqs. (12) and (13) show the superficial averag-
ing operator and the intrinsic average operator, respectively, used
for spatial smoothing of the transport equations previously men-
tioned. The Eq. (14) shows the relationship between the average
surface operator and the operator intrinsic average. The Eq. (15)
represents the aforementioned decomposition of scales [35].

1
(W) lx = V/ v, |X+Yy dv (12)
Vy(x)
W) b = / W [xiy, dV (13)
Vy(x) Vyx)
(‘Ijﬂ Ix = Sy(“pﬂy Ix (14)
b, =W, + (W)Y (15)

In the previous expressions, the variable x represents the position
vector that locates the centroid of the average volume V, y, is a
vector relative to the vector x used to locate any points inside the
average volume and V), is the volume occupied by the fluid phase.
From Eqs. (12) or (13) is clear that the right side term inside the
integral depends on x +y, while the left side quantity only depends
on X, that is, the application of the average operator produces a
spatial smoothing [17]. The expressions that allow us to evaluate
the effective diffusivity Do and effective thermal conductivity are
Keff [17],

1
Dey =Dy, (l + V_V/A nygbydA> (16)
yo

K _
kif = (&) + k)l + -«
Y

n,obgdA (17)
Ayo

where k=ks/ky, is the quotient of conductivity of solid phase to
fluid pahse, Iis the identity tensor and &, is the fractions volume of
the solid phase. The transport coefficients required by the mass and
energy effective medium balances, are obtained from the respective
closure problem, which are shown below.

2.5.1. Boundary value problem for closure vector bg

The boundary value problem for the closure of the mass aver-
aged transport equations with reaction at all domains [17] is as
follows:

V?b, =0 (18)
with the following boundary conditions:

—Nyo-Vby, =Ny at Ay (19)

by(r+1)=b,(r) for i=1,2,3,... (20)

The boundary value problem for the closure of the energy averaged
transport equations with generation of energy by reaction at all
domains is:
V’bg =0, V’b, =0 (21)

with the following boundary conditions:

bﬂ = bg; (22)
—nyg-Vbﬂ = —ﬂﬁU-ICVba+nﬂa(1 —k) at Ayo'
bg(r +1;) = by(r); 23)

b (r +1;) = bs(r)

fori=1,2,3,...

Here b, and bg are the closure vectors corresponding to the fluid
phase and is convenient to distinguish them because the first one
corresponds to the solution of the Eqgs. (18)-(20), while the sec-
ond one corresponds to the solution of the Egs. (21)-(23). The b,
vector is the closure vector for solid phase. Also, ny; =ng, is the
normal unitary vector to the fluid-solid interface, r is the posi-
tion vector that locates any points in the average volume, and ;
represent the three non-unique lattice vectors that are required to
describe a spatially periodic porous medium [36].
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Fig. 3. (a) The x-component of the vector field b, in a centered square RUC CC. (b) The x-component of the vector field b, in a square alternate RUC CA. (c) The x-component

of the vector field b, in a rectangular alternate RUC RA.

2.6. Effectiveness factor

The effectiveness factor can be evaluated by the following
expression [30],

1
= — r,dW 24
1 WcrAIs/A ‘ -

In related effectiveness factors studies, an analysis by means of
dimensionless parameters and numbers is usually carried out in
order to evaluate the effectiveness factors and is a common practice
to dimensionless the transport equations. The 7 variable is the
effectiveness factor, W is the catalyst weight and r/, is the reaction
rate in mol(kgcats—1!).

Table 2 shows the dimensionless variables and parameters def-
inition used in this work. It is important to mention that in the
dimensionless process of the transport equations at both scales,
the Thiele modulus was pursued to be independent of temperature
(®i0) and in the same way consistency was also pursued in the
non-isothermal effectiveness factor evaluation with the isothermal
case.

Table 3 shows physical parameters fed to solve the model,
whereas Table 2 shows the used dimensionless parameters. In par-
ticular, Table 4 shows the relationship between the Thiele modulus
(®) and the Thiele modulus ®;5, independent from the temperature
for the case of the pseudo-homogeneous transport as for Table 5
the same relationship ® and ®j, is shown, but for the heteroge-
neous transport; while 8 and (f) are the Prater number defined for

Table 3
Transport and physical parameters used in models.

P} = 7580.0 kPa & = vty =0.5465

C?)” = 84.41 molm=3 a, = fowvn —23191.6m™!
— AHy=—4, 33, 436]/mol Dyy=1.4629 x 10-5 m2 s~

(
(€
(
(T)S =598 K

ky =4.2 x 104 cal/(scm°C)
ks =0.508 cal/(scm°C)

D, =3.3817 x 10> m2s!
Ker=2.61 x 1073 cal/(s cm°C)

Table 4
Relationship between Thiele modulus (®) and Isothermal Thiele modulus (®;s,) for
the pseudo-homogenous model.

(d)iso)z (Cb)Z

kr R?
(q)isa)z = (Z‘ls)%jf) = $1+1

kr, = k(¢ + 1) kr = k2ot

1 1
$o = ( Cay kas 1 = ((P,.V,VkHs)
k9 = koe~7e (Ph)Y = kOe e

Table 5

Relationship between Thiele modulus ® and Isothermal Thiele modulus ®;, for
pseudo-homogenous model, and 8 parameter in both pseudo-homogenous and
heterogeneous models.

Rk
2 _ s . \2 _ @2 ( RawDy
<I>iso ~ aDy (q)ISO) = (SVDeff )
B —AH-Dy ()Y s By = P g

= ky ()7 Is = ReDy
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Fig. 4. (a) The x-component of the vector field b, in a 4x4 coupling of RUC CC. (b) The x-component of the vector field b, in a 4 x 4 coupling of dimensionless RUC CA. (c)

The x-component of the vector field b, in a 4x2 coupling of RUC RA.

both, heterogeneous and pseudo-homogeneous models; Also Vy is
the solid phase volume, and kg, and kr are both, isothermal and
no-isothermal dimensionless constant rates, repectively.

3. Results and discussion

For the realistic model construction of the porous struc-
ture a pore size distribution previously reported [32,33] of
CoMo/y — Al,03 was taken into account. According to this ref-
erence, 65% of the pores are in a range of d,=20-200nm, and
5% dp> 200nm [33]. Due to computing resources limitations a
pellet diameter of d,=2.5x10"7m was chosen. The vectored
model adjustment [31] to pore diameter values with the order
of dp~2.5 x 10~7 m, leads to &, =0.5465. The superficial area of a
spherical catalyst with radius R=0.5 mm built from the vectored
model at scale 2:1 is Ay =458.348 m? and at the scale of 4:1 is
Ay =88.975m?2.

It is worth noticing that the built porous structure pro-
posed in this study incorporates geometrical complexity of the
porous medium through the minimum characteristics established
in previous theoretical models based on the volume averaging
methodology [7,17,37-39]. Albeit considering some characteris-
tics (i.e. porosity and pore diameter) of a HDS catalyst, the effect
of the spatial porous structure was not captured in the model yet.
This may imply some degree of uncertainty that at this stage can-
not be ruled out. Therefore is advisable to deepen in the study
of this variable so that the importance of its effect can be estab-
lished in order to decide whether or not to include it in future

models. Different RUC’s were built Fig. 3, and these were adjusted
in such a way that d,=2.5x 10~7m and &, =0.5465. With these
RUC’s different couplings were arranged with them Fig. 4, the whole
porous structure of a pellet with radius R=0.5 mm Fig. 5 was built
up.

The evaluation of the boundary values for vector by, Egs.
(18)-(20), in the different RUC’s depicted in Fig. 3 was carried out
with the help of the commercial software COMSOL Multiphysics,
while the same equations evaluation on the various couplings of
the RUC’s is shown in Fig. 4.

The same evaluation in pellets reconstructed with RUC's and
with our realistic model of the porous structure is shown in Fig. 5.
With closure vector field b, evaluation, we evaluate the effective
diffusivity coefficients according to equation Table 6 shows the esti-
mated values of the effective diffusion coefficient through all the
mentioned schemes.

The RUC CC was taken as reference and the deviations of the of
values of D, were evaluated by the other schemes. The difference
between the RUC CC and the RUC CA is 7.2% for the x component
and 1.2% for the y component, while between the RUC CC and the
RUC RA the difference is 10% for the x component and 9.7% for the y
component. It can be observed that the variation of the coupled
RUC&rsquo; s is not significant, with a slight variation between
RUC CA and their couplings of only 2%. This is in concordance with
literature where has been stated that is not necessary to build up
the whole porous medium with couplings RUC&rsquo; s since one
periodic RUC gives results equivalent to those obtained by several
couples [9-11].
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Fig. 5. (a) A partial view of the x-component for the vector field b, in a catalyst pellet built with RUC CC. (b) The x-component of the vector field b, in a catalyst pellet built

with realistic porous media.

Itis worth noticing that the difference between evaluated values
of Dggy for the RUC CC used as reference and the values obtained with
our realistic model of the porous microstructure is about 50.4 % for
the x component and 66% for the y component. This implies strong
variation. This result is in concordance with the literature [12,16]
that suggests the complex microstructure of porous medium has a
significant effect on the effective transport coefficients.

Regarding model 2:1 and model 4:1, it should be noted that
the variation was less than 1%. Therefore, due to computational
resources reasons only the model at scale 4:1 will be studied in
more detail. Table 6 also shows the values predicted by the the-
oretical models previously reported [40-42]. It is important to
highlight that the changes with respect to the reference model
are in the order of 14% for the model of Maxwell [40], which

considers the porous media as a dilute suspension of spheres; and
20% for the model of Wakao [42], whose expression is for a macro-
pore system.

The estimated Dy values allows to solve the mass pseudo-
homogeneous transport model expressed by Eqgs. (2)-(5) and the
heterogeneous transport model expressed by Egs. (8) and (9); and
finally the effectiveness factor for non-isothermal case by means of
Eq. (24). The Fig. 6a and b shows the concentration fields obtained
with the COMSOL Multiphysics software, corresponding to the
pseudo-homogeneous model and to the heterogeneous model,
respectively.

Fig. 6¢c shows a comparison between concentration profiles
obtained for a 1 mm diameter spherical catalyst pellet where
a HDS reaction takes place, employing D, values obtained for

Table 6
Dy values evaluated with RUC’s, RUC's coupled, literature methods and our realistic porous media.

Study % % % relative error (respect to reference value)

RUC RUC CC 0.3602 0.3602 7.184 1.207
RUC CA 0.336075 0.36462 9.985 9.7
RUCRA 0327516 0.328368
RUC CC
2x2 0.361+0.005 0.361+0.001 0.750 0.75
4x4 0.361+£0.005 0.361+0.001 1.023 1.023
8x8 0.361+0.005 0.361+0.001 1.024 1.024
16 x 16 0.361+0.005 0.361+0.001 1.551 1.551

RUC coupled RUC CA
2x2 0.338+1x1073 0.365+4 x10°3 6.55 1.71
4x4 0.338+1x1073 0.365+4 x1073 5.59 2.38
8x8 0.338+1x1073 0.365+4 x1073 5.59 2.38
16 x 16 0.338+1x1073 0.365+4 x1073 5.59 2.38
RUC RA 0.33021+5 %106 0.33004+1x107°
2x2 0.338+1x1073 0.365+4 x1073 9.085 9.14
4x4 0.338+1x1073 0.365+4 x103 9.071 9.117
8x8 0.338+1x1073 0.365+4 x10°3 9.07 9.116
16 x 16 0.338+1x1073 0.365+4 x1073 9.07 9.116
RUC CC 0.366211 0.366196 1.636 1.632

Pellet built with RUC CA 0.340584 0.369287 5.765 2.456
RUCRA 0.330906 0.331066 8.858 8.06
Realistic 0.239539 0.21701 50.38 65.99
Porous
media
Maxwell 0.445492 0.445492 19.141 19.141

Literature models Weisberg 0.419709 0.419709 14.174 14.174
Smith 0.298668 0.298668 20.68 20.68

Model
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Fig. 6. (a) Dimensionless concentration field of a spherical catalyst from pseudo-homogeneous model,(®;;,)=0.3331. (b) Dimensionless concentration field of a spherical cat-
alyst from heterogeneous model in 4:1 scale, (®j5,)=0.3331. (c) Dimensionless concentration field of a spherical catalyst from heterogeneous model at 4:1 scale, (®;5,)=0.3331
(d) Zoom in of dimensionless concentration field of a spherical catalyst from heterogeneous model at 4:1 scale, showing a zone (red circle) of more accessibility and a zone
(black circle) of less accessibility,®;s, = 0.3331. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

diverse RUCs, also with models from literature presented in Table 6,
and through our realistic model of the porous structure. It also
presents the concentration profile corresponding to the hetero-
geneous model. As can be seen, the concentration profile using
the value of D,y corresponding to the RUC CC, is very different
to that when Deg from the model of the complex microstructure
is employed. This result highlights the importance of the effect of
the porous medium complex structure on the behavior of the cat-
alytic pellet. Fig. 6d depicts a zoom in of the concentration field
of the heterogeneous model solution, the asymmetry in concen-
tration field is pointed out with two dashed circles, one shows
an area with smaller accessibility and other shows an area with
smaller easiness accessibility for the diffusive transport, the above-
mentioned is in agreement to that observed by other authors
[3-5].

Fig. 7a shows a comparison of isothermal effectiveness factor
evaluated from the pseudo- homogeneous model of mass transport,
using the different values of D calculated from the different RUC’s,
with the models from literature summarized in Table 6 and from
the porous structure are. The effective diffusivity coefficient value
for the porous structure was considered constant D= (Dxx + Dyy)/2
in the transport model. In Fig. 7a, it is also shown the obtained
effectiveness factor components of Dy, considering the effective
diffusion coefficient as a tensor.

Finally, the effectiveness factor obtained from the hetero-
geneous model of transport by diffusion with surface catalytic
reaction is also shown by considering the porous microstruc-
ture.

It can be noticed that the effectiveness factor from the het-
erogeneous model is far from the factors obtained by simplified
representations of the porous structure. Even more, although in
less impact, the effectiveness factor with D as a tensor, by consid-
ering the structure porous realistic, is significantly different from
the heterogeneous mass transport model. Finally, Fig. 7b shows
more clearly the difference between the values of the effective-
ness factor from heterogeneous transport model and the values
obtained from the pseudo-homogeneous models. In this figure two
zones can be distinguished. The first one at ¢ <0.4 is where the
difference between the factors for both models is greater, and the
second at ¢>0.4 is where the difference decreases. It is necessary
to mention that the model with greater proximity to the hetero-
geneous model corresponds to the pseudo homogeneous with Dy
considered as a tensor and including the complexity of the porous
structure.

Also, the fields for the vectors by and bg corresponding to the
closure problem of transport of energy (Eqs. (21) and (22)) were
evaluated. Fig. 8a shows the x-component of vector bg in a RUC
CA, whileFig. 8b shows the same result, only that for our realistic
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structure.

model of the porous structure. The Keff values are obtained by Eq.
(17) using the vector by fields from the two RUC's and our realistic
model. It was found for the RUC CC, Kxx/kg=2.4 and Kyy/kg=2.3,
while for the RUC CA Kxx/kg = 2.5 and Kyy [kg =3.07; finally, the value
from the realistic model is Kxx/kg =7.2 and Kyy kg =8.55.

It is important to highlight that the boundary for the closure
vectors for the heat transfer problem presents a rather difficult
convergence. Table 7 shows values for the convergence of the RUC
CC. It was not possible to establish a concrete value for the RUC
RA and thus it was eliminated of this study. The simulations of
the realistic model show a strong dependence on the number of
mesh nodes. Around 1.3 x 106 mesh elements were required by the
larger simulations that we were able to perform with the available
computational resources.

From the effective conductivity values, it is possible to proceed
to solve in a simultaneous way the mass and energy transport
equations for the heterogeneous and pseudo-homogeneous model,
using for the latter the obtained K, values in this work. Fig. 9a
and b shows the temperature fields from the solution for the
heterogeneous and pseudo- homogeneous model, respectively.
In the comparison of the temperature and concentration fields
it is observed that there are significant differences between the
solutions of both models, for equivalent specifications in them
reinforces the observation of the effect of the micro porous struc-
ture being from great importance. With the temperature and
concentration fields for the catalytic pellet, we can proceed to
obtain the non-isothermal effectiveness factors.

i,
>
e
x107 &
%107
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¥ -29.163 [ — ] A 29163
-29.163 -29.163

(a)

Fig. 10a shows a comparison of the temperature and concentra-
tion fields for the non-isothermal case. These were obtained from
the pseudo-homogeneous model, where the effective coefficients
came from the RUCS and from the proposed model of the porous
structure. Fig. 10b also depicts the fields obtained from the het-
erogeneous model. The series referred as Maxwell, correspond to
the fields of temperature and concentration obtained with the
pseudohomogeneous model, using the diffusivity and conductiv-
ity effective coefficients obtained with the theoretical pattern of
Maxwell [40]. The RUC CC and RUC CA series correspond to the
fields of temperature and concentration coming from the pseu-
dohomogeneous pattern, using the diffusivity and conductivity
effective coefficients coming from the solution of the field of the
closure vector in the centered square unitary cells (Figs. 3a and 8a)
and square alternate unitary cell (Fig. 3b). The fields of temper-
ature and concentration coming from the heterogeneous pattern
are also shown. These were produced by using the diffusivity and
conductivity effective coefficients coming from the solution of the
field of the closure vector in the realistic model (Figs. 5a and 8b).
The parameters used in the evaluation of the temperature and
concentration fields were determined using the properties and
kinetic parameters shown in Tables 1 and 3 and according to the
definitions in Table 5. Fig. 10b shows that the complexity of the
geometry is not captured in an appropriate way by representa-
tions as simple as the RUC’s. Fig. 10b shows a comparison of the
non-isothermal effectiveness factors from pseudo-homogeneous
and pseudo-homogeneous models and can be appreciated how
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-40°
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Fig. 8. (a) Vector bg, x-component field in a RUC CC. (b) Vector bg, x-component field in a realistic porous structure.
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Table 7
Statistics of the K5 convergence in a RUC CC.

Mesh element number Iteration number

Simulation time (h)

% Relative error (Kyy) % Relative error (Kyy)

568 - 1.9 11.99 5.22
1160 2.042 1.7 7.78 10.06
2428 2.093 3.8 345 8.72
5230 2.15 8.2 1.18 2.19

10589 2.046 16.7 0.98 0.81
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Fig. 9. (a) Dimensionless Temperature field of a spherical catalyst from heterogeneous model, (®;;,)=0.3331 and 8=0.7. (b) Dimensionless Temperature field of a spherical

catalyst from pseudo-homogeneous model, (®;;,)=0.3331 and 8=0.7.
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Fig. 10. (a) Temperature and concentration fields from non isothermal mass and energy transport model (®;;,)=0.3331. (b) No isothermal effectiveness factor comparison

for pseudo-homogeneous and heterogeneous models (®;5,)=0.3331.

they differ one from another and this is evidence of the micro-
structure influence over non-isothermal effectiveness factors. It is
worth pointing out that these differences become more significant
when Thiele modulus increases (i.e. by increasing particle diam-
eter). Despite the incorporation of further characteristics of the
porous structure like complex geometry and anisotropy, it should
not be left out that this study is based on 2D modeling and this
still may imply certain degree of inaccuracy. It is worth mention-
ing, however, that in the context of averaging volume methodology
the differences between effective transport coefficients values cal-
culated from 2D and 3D models are expected to not be significant
[37].

4. Conclusions

A realistic geometric model of the porous microstructure for a
spherical catalyst pellet was developed. In such a porous medium
the mass and energy effective coefficients of transport were cal-
culated and the effect of the structure complexity on these c
coefficients was evaluated. It can be concluded that these trans-
port coefficients can be up to 65% different depending on whether
a simple or complex porous structure is used. In addition, the con-
centration and temperature fields were evaluated using a pseudo-
homogeneous model and a heterogeneous one. Furthermore, the
isothermal and non-isothermal effectiveness factors for a HDS
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process were evaluated and it was concluded that the microstruc-
ture has important impact on their values. These were higher when
obtained through pseudo-homogeneous models. The use of non-
isothermal effectiveness factors leads to multiplicity of stationary
states that are expected for exothermic reactions. Finally, a rather
simplistic geometric model of the porous structure does not show
adequacy to represent the mass and energy transport in catalytic
pellet and thus a more realistic geometric model of the porous
structure is required.

Acknowledgements

To Eymi Vargas, Alicia Vicenttin, Aurora Catalan and Enrique
Blanco for writing assistance.

References

[1] R.B. Bird, W.E. Stewart, E.N. Lighfoot, Transport phenomena, Wiley, New York,
1960.
[2] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Cat-
alysts, Clarendon Press, Oxford, 1975.
[3] BJ. Sapoval, S. Andrade, M. Filoche, Chemical Engineering Science 56 (2001)
5011-5023.
[4] M. Adler Pierre, Porous Media: Geometry and Transports, Butterworth-
Heinemann, Boston, 1992.
[5] M. Sahimi, . Appl. Math. Mech. 76 (1996) 230.
[6] H. Davarzani, M. Marcoux, M. Quintard, Int. ]. Heat Mass Transfer 53 (2010)
1514-1528.
[7] Jin-Hwan Kim, ]. Alberto Ochoa, Stephen Whitaker, Diffusion in anisotropic
porous media, Transport Porous Media 2 (1987) 327-356.
[8] J.A. Ochoa-Tapia, P. Stroeve, S. Whitaker, Chem. Eng. Sci. 41 (1986) 2999-3013.
[9] 1. Nozad, R.G. Carbonell, S. Whitaker, Chem. Eng. Sci. 40 (1985) 843-855.
[10] S. Whitaker, Flow in porous media i: A theoretical derivation of darcy’s law,
Transport Porous Media 1 (1986) 3-25.
[11] D. Buyuktas, W. Wallender, Heat Mass Transfer 40 (2004) 261-270.
[12] A.M.Sales-Cruz, O.A.Luévano Rivas, ].A. Ochoa-Tapia, XXXII Encuentro Nacional
y 1¢" Congreso Internacional de Ingenieria Quimica, 2011, p. 2136.
[13] L. Zhang, N.A. Seaton, Chem. Eng. Sci. 47 (1994) 41-50.

[14] M.O. Coppens, G.F. Froment, Eng. Sci. 50 (1995) 1013-1026.

[15] T.E. Koha, S. Moshe, D. Avnir, Eng. Sci. 46 (1991) 2787-2798.

[16] Z.S. Lui, D. Mu, C. Huang, N. Djilali, Microfluidics Nanofluids 4 (2008) 257-260.

[17] S. Whitaker, The Method of Volume Averaging, Kluwer Academic Publishers,
Netherlands, 1999.

[18] FJ. Valdés-Parada, B. Goyeau, J.A. Ochoa-Tapia, Transport Porous Media 78
(2009) 459-476.

[19] M. Ehrhardt, Coupled Fluid Flow in Energy, Biology and Environmental
Research, volume 1, Bentham Science Publishers, Germany, 2012.

[20] J.B. Rawlings, J.G. Ekerdt, Chemical Reactor Analysis and Desing Fundamentals,
vol. 2, Nob Hill Publishing, Winsconsin, 2002.

[21] K.G. Mittal, ].R. Rai, K.M. Murad, Indian Chem. Eng. 9 (1977) 18-23.

[22] J. Lee, D.H. Kim, Chem. Eng. Sci. 62 (2007) 2179-2186.

[23] Y.P.Sun, S.B. Lui, S. Keith, Chem. Eng. J. 102 (2004) 1-10.

[24] J. Hong, W.C. Hecker, T.H. Fletcher, Proceedings of the Combustion Institute,
2000, pp. 2215-2223.

[25] S. Shokri, S. Zarrinpashne, Petroleum Coal 48 (2006) 27-33.

[26] MJ. Macias, R.D. Morales, A. Ramirez-Lépez, Int. ]. Chem. Reactor Eng. 7 (2009)
21.

[27] R. Gutfraind, M. Sheintuch, Chem. Eng. Sci. 47 (1992) 4425-4433.

[28] S.R.Karur, P.A. Ramachandran, AlChe J. 42 (2004) 383-390.

[29] C. Botchwey, Syntheses, Characterization and Kinetics of Nickel-Tungsten
Nitride Catalysts for Hydrotreating of Gas Oil, Department of Chemical Engi-
neering, University of Saskatchewan, Saskatoon, 2010 (Ph.D. Dissertation).

[30] G.F. Froment, K.B. Bischoff, Chemical Reactor Analysis and Desing, John Wiley
& Sons, New York, 1979.

[31] M. Auset, A.A. Keller, Water Resour. Res. 40 (2004) 13.

[32] M.S. Rana, J. Ancheyta, P. Rayo, S.K. Maity, Rev. Mexicana Ing. Qui m. 5 (2006)
227-235.

[33] K. Muramatsu, B. Gémez, A. Zarate, L.M. Judrez, ].F. Rodriquez, .. Menéndez,
Tecnol. Cien. Educ. 1 (1989) 49-55.

[34] V.V. Ranade, R.V. Chaudhari, P.R. Gunjal, Trickle Bed Reactors, Elsevier, Spain,
2011.

[35] W.G. Gray, Chem. Eng. Sci. 30 (1975) 229-233.

[36] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic
Media, North-Holland Publishing Company, Amsterdam, 1978.

[37] J.A. Ochoa-Tapia, P. Stroeve, S. Whitaker, Chem. Eng. Sci. 49 (1994).

[38] E.A. Saez, ].C. Perfetti, I. Rusinek, Transport Porous Media 6 (1991) 143-158.

[39] M. Quintard, S. Whitaker, Transport Porous Media 14 (1993) 163-177.

[40] ]J.C. Maxwell, Treatise on Electricity and Magnetism, Clarendon Press, Oxford,
1954.

[41] L. Weissber, J. Appl. Phys. 34, 2636-2639.

[42] N. Wakao, ].M. Smith, Chem. Eng. Sci. 17 (1962) 347-825.



