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Abstract

In this paper we present the global Forest/Non-Forest Map derived from TanDEM-X bistatic interferometric synthetic
aperture radar (InSAR) data. The global TanDEM-X dataset has been acquired in stripmap single HH polarization
mode and covers a time span from 2011 up to 2016. The volume correlation factor (or volume decorrelation), Yvol,
derived from the interferometric coherence, quantifies the coherence loss due to multiple scattering within a volume, a
mechanism which typically occurs in presence of vegetation. For this reason, the v, has been used as main indicator
for the identification of forested areas. Quicklook images, a multi-looked version of the original full-resolution data at
a ground resolution of 50 m x 50 m, have been used as input for the generation of the global product. The mosaicking
process of multiple acquisitions is discussed as well, together with the identification of additional information layers,
such as urban areas or water bodies. The resulting global forest/non-forest map has been validated using external
reference information, as well as with other existing classification maps, and an overall agreement typically exceeding
90% is observed. The global product presented in this paper is intended to be released to the scientific community for

free download and usage.

1 Introduction

Forests cover about 30% of the Earth’s landmasses, rep-
resent the dominant terrestrial ecosystem, and are of ex-
treme importance for all living species. Indeed, they play
a key-role in climate change dynamics, by continuously
absorbing, storing, and converting atmospheric carbon
dioxide (COs) into free oxygen and terrestrially bound
carbon, a process which helps for the reduction of at-
mospheric greenhouse gases concentration. In addition,
plants and trees in forested areas mitigate soil erosion,
catch rainwater, and are natural watersheds preventing
from flood events. Last but not least, forests represent
an essential source of energy (such as biomass), food,
jobs, and livelihoods in general for many populations on
Earth, and serve as natural habitat to a large variety of an-
imal species, preserving biodiversity and healthy ecosys-
tems. However, the existence of forests is nowadays
in danger due to alarming degradation and deforestation
rates, which have been severely accelerated in the mid-
twentieth century, leading to a permanent loss of plants
and animal habitats, a reduction in forest carbon stocks,
and to an accelerated soil erosion.

For all these reasons, an up-to-date assessment and mon-
itoring of forest resources becomes of crucial impor-
tance and, in this scenario, spaceborne remote sensing
represents a unique instrument for providing consistent,
timely, and high-resolution data at a global scale. Among
a number of global forest classification products, which
have been released in the last decades (mainly from op-
tical remote sensing systems operating in the visible and
near-infrared frequency range), it is worth highlighting
the global forest tree cover map produced in 2013 from

mosaics of Landsat sensor data at a spatial resolution of
30 m [1], and the global forest/non-forest classification
map provided by the L-band SAR sensor ALOS PAL-
SAR at a posting of 25 m [2].

In this paper we present the first global forest/non-forest
classification map derived from TanDEM-X InSAR data
at X band [3]. The paper is organized as follows: an
overview of the proposed method for the detection of
forested areas, based on a multi-clustering fuzzy ap-
proach applied on the coherence-derived volume corre-
lation factor, is recalled in Section 2. Section 3 fo-
cuses on the mosaicking of multiple available observa-
tions and on the identification of additional information
layers (such as urban settlements or water bodies), de-
rived from TanDEM-X data as well as from external data
sources. The resulting global forest/non-forest classifica-
tion map at 50 m x 50 m spatial resolution is then pre-
sented. The product validation with external reference
data and further comparisons with existing land cover
maps is discussed in Section 4. Further applications,
such as the generation of high-resolution (12 m x 12 m)
forest/non-forest maps, and the opportunity of exploiting
such products for deforestation monitoring, are presented
in Section 5, demonstrating the unique potentials offered
by the TanDEM-X bistatic system for a broad range of
commercial and scientific applications. The paper is con-
cluded in Section 6.

2  Multi-Clustering Classification

For the generation of the global forest/non-forest map
from TanDEM-X interferometric data, a classification
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Figure 1: Flowchart of the developed method for the de-
termination of a complete set of cluster centers.

method based on a fuzzy clustering algorithm has been
developed. For each input scene, it is applied to the
volume correlation factor and the algorithm settings are
adapted to the specific acquisition geometry. The pro-
posed method consists of different steps, which are sum-
marized in the flowchart in Fig. 1. The output is a com-
plete set of cluster centers, which takes into account the
dependency of the volume correlation factor vy, on the
acquisition geometry. Hence, the classification procedure
assigns a different set of cluster centers to each vy, value
to be classified, depending on the input height of ambi-
guity h,mp and local incidence angle 6),.. This is the
reason why we refer to a multi-clustering classification
algorithm for the generation of forest/non-forest maps.

In a general sense, clustering indicates the task of group-
ing a set of objects coming from N input observations
Y = [yx] (k = 1,...,N), each one characterized by
a set of P features, depending on how similar they are to
each other. The input observations are divided into ¢ non-
empty subsets, called clusters. In the present scenario,
c =2 (i.e. the forest and non forest classes), whereas the
volume correlation factor is the only feature exploited for
classification (P = 1). Then, fuzzy-clustering has been
introduced in order to allow a certain amount of over-
lap between different clusters. A well-established al-
gorithm for classification purposes is the c-means fuzzy
clustering algorithm [4], which introduced the concept of
membership: according to it, for each input observation
a membership function U is defined, which is basically
determined by the Euclidean distances between the k-th
observation and the set of ¢ cluster centers, and describes
the probability of an observation to belong to each clus-
ter (U = [@] € [0,11, 7 = 1,...,c). Starting from i,
we then introduce the concept of weighted membership
Uy, for which the membership is opportunely scaled by
the a priori probability of a given observation (y;) be-
longing to the i-th cluster. Such a likelihood information
is estimated from the distribution of the input observa-
tions used for the data training process (see next section).
The results are finally ¢ fuzzy partitions of the input ob-
servation dataset, each of them containing observations
characterized by a high intracluster similarity and a low
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Figure 2: Cluster centers (vr, vnr) of the volume corre-
lation factor 7y, for tropical (a), temperate (b), and bo-
real (c) forests, respectively, as a function of the height
of ambiguity h,mp, for near, mid, and far range (depicted
with different colors).

extracluster one. As discussed above, the volume corre-
lation factor vy, represents the only input feature used
for classification purposes. Indeed, the v, term must
be estimated from the interferometric coherence by com-
pensating for all decorrelation contributions, as

~y
YVol = Y
YSNRYQuant YAmb YRange YAzimuthYTemp

The impact and the evaluation procedure of each decor-
relation contribution from TanDEM-X data is discussed
in detail in [5]. Since the specific acquisition configura-
tion (namely the incidence angle and the interferometric
baseline) directly affects the amount of coherence loss
induced by volume scattering, a multi-clustering fuzzy
classification approach has been considered. For clas-
sification purposes, a training of the input TanDEM-X
observables is carried out by means of the Landsat tree
cover map [1], and the sample expectations of the corre-
sponding ~yy, distributions for forested and non-forested
areas, respectively, are finally taken as corresponding
cluster centers vr and vnp, which are shown in Fig. 2,
for tropical, temperate, and boreal forests, respectively.
The curves are evaluated as a function of the height of



ambiguity h,n,, and for different incidence angle inter-
vals, divided in near (6; < 35°), mid (35° < 6; < 45°),
and far range (6; > 45°). Over bare areas, the volume
correlation factor does not depend on the particular com-
bination of incidence angles and baselines [6]. For our
classification algorithm, a constant value vxp = 0.98 has
been selected, represented by the brown horizontal line
in the figure (non-forest). An example of the resulting
forest/non-forest classification for a TanDEM-X acquisi-
tion over temperate forest in Germany is shown in Fig.
3. Areas detected as forest and non-forest are depicted in
dark green and in white in the map on the right-hand side,
respectively. On the left-hand side, the optical image of
the area is given for comparison. The two different land
cover types are overall correctly discriminated, and even
single lines of trees around agricultural fields are detected
(zooms in Fig. 3 (c) to 3 (f)).

3 Mosaicking of Overlapping Ac-
quisitions and External Informa-
tion Layers

Once the weighted membership map has been derived for
each bistatic scene, the next step for the generation of a
global product consists in properly combining and mo-
saicking together the large amount of available acquisi-
tions from the TanDEM-X global data set. Typically, at
least two global and up to ten regional coverages over
mountainous terrain, forests, and sandy desert regions are
available; overall, more than 500,000 bistatic scenes have
been considered for the current work. For each scene, ex-
tending 30 km by 50 km, the weighted membership ma-
trix is used as input data for the mosaicking process.

Moreover, other available information at scene level, such
as layover and shadow layers or the local incidence angle
and height of ambiguity are used in the mosaicking pro-
cess, too. In order to further improve the final classifica-
tion accuracy, additional information layers are applied
by exploiting external maps in a final post-processing
step, which are shortly summarized in the following:

e Urban Areas: identified by means of the
Global Urban Footprint (GUF), derived from full-
resolution TanDEM-X data backscatter informa-
tion [7]. The GUF is a binary classification map
(city/non-city) and is freely available at a resolu-
tion of 2.8 arcsec (75 m - 85 m).

o Water Bodies: filtered by using the freely available
global map of open permanent water bodies, ob-
tained from the Land Cover (LC) project of the Cli-
mate Change Initiative (CCI), provided by ESA, at
a resolution of 150 m [8].

e Tree Line: the tree line corresponds to the virtual
altitude limit at which trees can grow. We derived a
global tree line map exploiting the digital elevation
information provided by TanDEM-X in combina-
tion with the CCI-LC map [8]. Furthermore, over

mountainous regions, areas affected by geometri-
cal distortions are identified by means of a scene-
based geometry mask.

e Deserts: in order to avoid misclassification over
sandy areas (characterized by poor backscatter lev-
els), desert regions are separately filtered out by us-
ing the ESA CCI-LC map [8].

The final TanDEM-X global binary forest/non-forest
map is shown in Fig. 4. It has a spatial resolution
of 50 m x 50 m and is divided into geocells of 1° by
1° in latitude and longitude, in accordance with the
TanDEM-X global DEM format. Forested and non-
forested areas are depicted in green and white, respec-
tively. After applying the external layers, urban areas are
depicted in black and water bodies in light blue.

4 Validation and Comparisons

To validate the global classification product we have
used as reference a highly accurate lidar-optic forest map
available for the state of Pennsylvania (USA) [10]. Eight
geocells have been considered in an area extending from
40°N to 42°N in latitude and from 77°W to 81°W in lon-
gitude, and for all validated geocells the obtained accura-

(e) ®

Figure 3: (a), (b) GoogleEarth optical image and
TanDEM-X forest/non-forest classification map of an
area located in Germany. (c), (d) Zoom in of the area
within the light blue rectangle in (a) and (b); the area ex-
tends by about 3 km x 2 km. (e), (f) Zoom in of the
area within the light blue rectangle in (c) and (d); the area
extends by about 1 km x 1 km.



Figure 4: Global TanDEM-X forest/non-forest map at 50 m x 50 m sampling. Forested regions are depicted in green,
non-forested areas in white, urban settlements in black, and water bodies in light blue.

Figure 5: Confusion map for three geocells located in Pennsylvania (USA), between the TanDEM-X forest/non-forest
map and the lidar-optic binary map used for validation. TP (i.e. both forest) are depicted in green, TN (both non-
forest) in white, FP (TanDEM-X only forest) in red, and FN (TanDEM-X only non-forest) in blue. Classification errors
are highly clustered: false positives (in red) are mainly located in correspondence of densely to sparse built-up areas,
whereas false negatives (in blue) are clustered in correspondence of small water bodies and of areas affected by rugged
terrain, such as slopes and valleys. The resulting accuracy is 91%, 92%, and 93%, respectively.

cy is in the range between 85% and 93%. Fig. 5 shows
for three geocells the binary comparison between the
TanDEM-X forest/non-forest map and the Pennsylvania
tree density map, where the true positive (TP), true neg-
ative (TN), false positive (FP), and false negative (FN)
pixels are depicted with different colors. It can be no-
ticed that the classification errors are highly clustered. In
particular, false positives (in red) mainly occur in corre-
spondence of dense to sparse built-up areas, whereas false
negatives (in blue) are concentrated over narrow rivers,
small lakes and ponds, or rugged terrain, such as slopes
and valleys, which cause the occurrence of geometric dis-
tortions. Such remaining error sources would be further
mitigated by employing an urban and a water mask at
higher resolution, as well as by means of a larger stack of
acquisitions with different viewing geometry.

We have additionally compared the TanDEM-X

forest/non-forest map to other available forest maps, such
as the Copernicus High Resolution Layers (HRL) forest
density map [11]. Fig. 6 shows the agreement for 145
geocells over Europe. The horizontal light blue line in-
dicates the mean value of agreement, which is of about
86%. By considering mountainous regions only (i.e. the
Alps and Southern Germany), a mean agreement of 84%
is obtained (red line). Over flat regions (yellow line), the
agreement is of about 90%. Moreover, a comparison to
the Landsat tree cover map [1] has been carried out for
about 70 geocells in the Amazon rainforest, and the re-
sulting agreement between both maps is shown in Fig. 7.
The mean agreement of 90% (solid line) is partially af-
fected by forest changes observed between the two maps
(mainly due to deforestation activities), which explains
the large deviation (dashed lines), and in particular the
lower values (around 80%) obtained in few cases.
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Figure 6: Agreement between TanDEM-X and Coper-
nicus HRL forest density for 145 analyzed geocells lo-
cated in Germany and Eastern Europe. The light blue line
shows the overall average agreement, the red and yellow
lines show the average agreement for the Alpine and flat
regions, respectively.

5 Further Applications

High-resolution forest/non-forest maps from TanDEM-X
data can be exploited to further improve the classification
detail and accuracy, opening new opportunities for the
monitoring of forested areas. In particular, the high accu-
racy and reliability offered by the TanDEM-X forest clas-
sification map can be exploited for the monitoring of for-
est changes. This goal is accomplished by using stacks of
repeated acquisitions (time series), especially over areas
characterized by illegal deforestation activities. As an ex-
ample, in Fig. 8 (a) the vegetation map provided by Land-
sat is shown for a region located in the state of Rondonia,
in Brazil, extending by about 30 km x 20 km. This map
was generated using data acquired in 2009, i.e. before the
launch of TanDEM-X. Fig. 8 (b) depicts the forest map
over the same area generated using TanDEM-X data ac-
quired in 2011 and processed at an interferometric resolu-
tion of 12 m. First logging activities (the narrow "tracks"
in the middle of the scene) are already noticeable. In
Fig. 8 (c) the same map is obtained from TanDEM-X data
acquired in 2013 (resolution is again 12 m), and the in-
crease of deforested areas is clearly visible. Fig. 8 (d)
shows in red the forest losses that occurred between the
two TanDEM-X acquisitions (corresponding to an area
of about 20 km?), verifying the great potentials of ex-
ploiting X-band single pass SAR interferometry for the
monitoring of forested areas. Finally, Fig. 8 (e) shows
the confusion matrix between the Landsat map of 2009
(Fig. 8 (a)) and the TanDEM-X one of 2013 (Fig. 8 (¢)).
New deforested areas are indicated in blue, while green
and white areas correspond to stable forested and non-
forested regions. This example demonstrates the poten-
tials for exploiting multi-sensor data fusion in order to
monitor changes in the forest cover occurred over larger
time spans.

The use of alternative processing strategies, such as, e.g.,
the nonlocal filtering method, to further improve the res-
olution as well as the classification accuracy are currently
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Figure 7: Agreement between TanDEM-X and Landsat
for about 70 geocells located in the Amazon rainforest,
Brazil. The solid and the dashed horizontal lines indicate
the mean and the standard deviation of the agreement dis-
tribution, respectively.

being investigated [12] and will be objective of future
publications.

6 Conclusions and Outlook

In this paper we present the first global Forest/Non-Forest
Map derived from the TanDEM-X InSAR data set. Given
its sensitivity to the presence of vegetation, the volume
correlation factor has been used as input for a multi-
clustering classification algorithm based on fuzzy logic.
For global classification purposes, so-called quicklooks
images at a ground pixel spacing of 50 m x 50 m have
been used. The final product has been compared and
validated with existing vegetation maps and by means
of external land cover classification data. An accu-
racy/agreement typically around 90% has been obtained
for a variety of forest types and terrains. Potentials for
high-resolution forest mapping and monitoring have been
presented as well. The global TanDEM-X classification
mosaics presented in this paper will be released to the
scientific community for free download and usage.
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