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Abstract. Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-

European Space Agency and DLR-German Aerospace Center) are critically discussed regarding 

solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The 

samples are investigated during solidification using a containerless technique in the 

Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based 

and microgravity experimental investigations [2], the kinetics of primary dendritic solidification 

is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on 

board of the International Space Station) and Electrostatic Levitator on Ground  are employed. 

The solidification kinetics is determined using a high-speed camera and applying two evaluation 

methods: “Frame by Frame” (FFM) and “First Frame – Last Frame” (FLM). In the theoretical 

interpretation of the solidification experiments, special attention is given to the behavior of the 

cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on 

solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite 

growth. 

1.  Introduction 

A valuable progress in the investigation of glass forming metals and alloys has been made since their 

discovery by Turnbull [3]. The development of containerless processing techniques, especially using 

different methods of levitation, provided a new ability to reach deep undercoolings and to investigate 

solidification into the crystalline or glassy state [1]. A favourable advantage of the containerless methods 

is the prevention of heterogeneous nucleation, which in turn allows for a better investigation of the 

effects of high undercoolings and rapid growth conditions on the solidification of metals and alloys.  

The present work is devoted to a systematic view on recent results obtained regarding solidification 

of the congruently melting and glass forming Cu50Zr50 alloy. Wang et al. [4] showed that CuZr exhibits 

a maximum growth velocity at an undercooling of 200 K and a steep decline at higher undercoolings, 

with the according deviation from the Arrhenius law in the dynamic viscosity where the structure of the 
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liquid changes, as pointed out by Kelton et al. [5]. Furthermore, Kobold [6] finds an additional growth 

path with lower velocities than the ones found by Wang et al., with the question arising where this comes 

from. Motivation for the present research is that a theoretical model provided by H. Wang et al. [7] for 

solidification kinetics does not sufficiently explain all experimental data points obtained by Q. Wang et 

al. [4] and thus the need for a more accurate model arises. In order to study the peculiarities of Cu50Zr50, 

ground-based and microgravity experiments have recently been carried out in parabolic flights. 

 

2.  Experimental methods 

Electrostatic and electromagnetic levitation techniques, where the heterogeneous nucleation may 

effectively be prevented (at least from the outer surface of the sample), are employed to investigate the 

kinetics of dendritic solidification under the conditions of normal gravitational forces (1g) and 

microgravity (μg).  

Electromagnetic levitation [8] is used in terrestrial laboratories at DLR Köln and Jena University 

(see Figure 1). The temperature is measured contactless by a two-colour pyrometer with an accuracy of 

±5 K. An alternating electromagnetic field is causing both a levitation force and heating of the sample 

due to eddy currents. No extra heating source is required. Levitation and heating cannot be controlled 

separately. Therefore, a helium gas stream is needed to transfer the heat from the sample to the 

environment. 

The limitation of coupled heating and levitating is overcome if electromagnetic levitation is applied 

in microgravity. Using the concept of two independently working coil systems, a quadrupole field for 

positioning, and a dipole field for heating, positioning and heating can be controlled separately at an 

increase of the efficiency from 1 to 30 % [9]. An Electromagnetic Levitator (EML) is in use on board 

the International Space Station. 

To measure the dendrite growth velocity, a high-speed camera is used that records the advancement 

of the intersection line of the solidification front with the sample surface with 500 frames/sec [10]. 

 

 
Figure 1. Experimental setup of electromagnetic levitation facility at Otto Schott Institute of Materials Research 

at Friedrich Schiller University Jena. (a) A general view of EML device. (b) Sample holder with a cooling system 

and an alternating current coil. 
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3.  Methods of evaluation of solidification kinetics  

 

The experimental solidification velocity for an initial undercooling is evaluated by recalescence 

fronts. Under fronts of recalescence we understand an envelope of growing dendrite tips, nucleation 

points or corners of crystalline patterns having specific crystallographic orientation.  Figure 2 shows 

snapshots of a propagating recalescence front, defined by an envelope of the dendrite growth area.  

Two different methods for evaluation of crystal growth kinetics are used. These are: evaluation with 

the Frame-by-Frame Method (FFM) and the First Frame-Last Frame Method (FLM). The FLM 

measures the growth velocity as a function of droplet radius R and the time interval ∆ttot from the 

beginning of dendrite growth until its end: 

 vFLM =
2R

Δttot
 . (1) 

Proper measurement is achieved by setting up the camera and a mirror to record images of a large part 

of the surface area of the sample. Details can be further examined by mapping these images onto a 3d 

spherical model [6]. Therefore, the FFM is used for the estimation of growth velocity as a function of 

the evolving growth area Δr (estimated as a spherical area) during the interval between two frames ∆tfr: 

 vFFM =
Δr

Δtfr
 . (2) 

One can obviously suppose that the calculated growth velocities using FLM and FFM should be 

(almost) the same if only one nucleation center is observed (as shown in Fig. 2). Four videos with 

recalescence occuring at various undercoolings were analyzed. As shown in Table 1, indeed, 

measurements with just one recalescence (nucleation) center give approximately the same growth 

velocity measured by these two methods. In contrast, three recalescence centers yield a large difference 

in the measured velocities. 

Table 1. Data of microgravity investigations: measured dendrite growth velocities (evaluated by FLM and FFM)  

in undercooled Cu50Zr50 alloy samples processed in the Electromagnetic Levitator during parabolic flights. 

No. experiment Undercooling 

(K) 

Recalescence  centers 

(nuclei points) 

Velocity by 

FLM (mm/s) 

Velocity by 

FFM (mm/s) 

00 95 1 8,61 9,77 

01 170 1 13,61 11,50 

04 145 1 21,85 17,68 

05 195 3 31,71 11,69 

 

4.  Results 

Data sets for dendrite growth velocities in CuZr samples have been obtained under microgravity 

conditions in parabolic flights (Airbus A310 Zero-G). During these flights, the airplane is accelerating 

periodically until it reaches an angle of 47 degrees, then stopping acceleration and starting the descent 

and microgravity phase for about 20 seconds. This flight pattern results in parabolae - hence the name - 

with microgravity phases persisting for each parabola between the reversal points of the flight curve. As 

a result, during every 20-22 seconds, measurements of dendrite growth velocity are obtained.  
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Figure 2. Different stages of solidification front evolving from one nucleation center (bright spot on top left) at 

an undercooling of 145 K. Top left: a few milliseconds after the start of growth. Top right: after 7 ms. Bottom left: 

after 76 ms. Bottom right: after 84 ms. 

The growth velocities obtained via FLM and FFM are compared with previous studies in Fig. 3. 

Wang et al. [4] and Kobold [6] find a maximum in velocity for Cu50Zr50 at undercoolings in the region 

of 200 K as well as a steep decline of velocities at undercoolings above 250 K. Furthermore, Kobold [6] 

obtained a second growth regime (see blue squares for the low velocity sequence of data in Fig. 3) which 

is also confirmed by our present measurements (see three points obtained by both FLM and FFM in the 

region of undercooling 170-195K). Therefore, to explain this second behavior, the model of the 

diffusion-limited growth should be extended for prediction of metastable phase formation taking into 

account the process of phase selection.      

For the undercooling of 95 K, FLM and FFM agree with other data points. This also applies to FFM 

at 145 K, although the FLM value appears to be somewhat too high. At 170 K, both values reside near 

the lower growth regime. At the undercooling of 195 K there is a strong deviation between FLM and 

FFM. The FLM value is nearly three times as high as the FFM value. Evaluation of the corresponding 

video shows three recalescence centers that lead to assuming too fast solidification if FLM is utilized. 

However, using the FFM, the recently measured velocity is close to the lower data points (see blue 

squares in Fig. 3).  

Experimental data on growth kinetics represent a special interest for our theoretical advancement in 

solidification kinetics. Using a dendrite growth model based on the diffusion-limited approach to glass 

forming alloys, Wang et al. [7] provided a comparison of their calculation with experimental data. Figure 

3 shows this comparison (see the solid line as predicted by Wang et al.). It can be seen that the modeling 

results describe the experimental data quite well up to the maximum velocity around the undercooling 

of 210-220 K. The velocity maximum in Fig. 3 is consistent with the point where gradual freezing of 

atoms and the decrease of their mobility starts such that the transition to sluggish growth kinetics occurs.    
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Figure 3. Solidification kinetics in Cu50Zr50. Experimental data for dendrite growth velocity were obtained by 

different authors (see insert). Theoretical model is given by Wang et al. [7] using a diffusion-limited approach. 

Results of the present work have been obtained using high-speed camera in an Electromagnetic Levitator under 

microgravity conditions during parabolic flights. They are shown for two different evaluation methods of 

recalescence fronts velocities: Frame by Frame Method (FFM) and First Frame-Last Frame Method (FLM). The 

critical undercooling ∆𝑇𝑎𝑏  (or range of undercooling around ∆𝑇𝑎𝑏) shows the undercooling where an abrupt 

decrease of the solidification velocity in experimental data occurs – other than in the theoretical curve showing 

monotonic and gradual decrease of the velocity. 

As is shown in Fig. 3, at undercoolings above the one with the velocity peak, the theoretical curve 

increasingly overestimates the experimental data of Wang et al. [4]. At the undercooling ∆𝑇𝑎𝑏 ≈ 320𝐾, 

experimentally measured velocities abruptly decrease. Note that such an abrupt transition has also been 

confirmed in other glass-forming Zr-Cu-Ni alloys with primary solidification of the CuZr-phase [11].  

5.  Discussion 

As we have shown in the previous section, the solidification kinetics of the glass forming CuZr alloy 

exhibits several distinguished features that are not described theoretically so far (see Fig. 3). These 

features are related to the clearly observable velocity peak, the second sequence of experimental data 

for lower velocity values (in comparison with the main and complete data for the upper velocity 

sequence), and the abrupt decrease of the velocity at very high undercoolings. In the present section, we 

only discuss them in the light of experimental and modeling data for the dynamic viscosity. Theoretical 

predictions on the basis of these data will be presented and discussed in forthcoming publications. 
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Figure 4. Cluster structures in Cu50Zr50 melt obtained via molecular dynamics simulations and Voronoi 

tesselation analysis [12]. Top: ”uncon.” structures are represented by unconnected single Zr or Cu atoms (left) and 

by single clusters (right). Middle: IC structures are represented by interpenetrating clusters – five atoms are shared 

between two shells. Bottom: non-IC structures are represented by vertex-, edge- or face-sharing clusters with a) 

pinning and/or b) bridging connection. Note that icosahedral clusters are unique structural elements of every non-

IC-structure which thus is represented by a net of interpenetrating clusters.   

5.1.  Viscosity behaviour 

Figure 4 depicts atomistic structures obtained in molecular dynamics simulations [12]. They are 

represented by isolated atoms or clusters that one can consider as a completely disordered structure of 

the overheated to slightly undercooled Cu50Zr50 melt (top of Fig. 4). In the deeply undercooled Cu50Zr50 

melts, in Ref. [12] a double-connected or multiple-connected cluster structure was found (middle and 

bottom row of Fig. 4). These connected structures already show features of the ordering process in the 

undercooled melt, with a gradual transition from a ”strong” liquid phase to ”fragile” liquid phase (so-

called fragility transition). Dominant structures in the liquid states are of controversy. If a coordination 

number of 12 is set, then icosahedral clusters as Kelton et al. via molecular simulations [12] suggest can 

be presumed present. This however was not confirmed experimentally by Holland-Moritz et al. [13] 

who find the nearest-neighbor coordination number ZNN to be 13,8 and therefore the corresponding 

structure cannot be of icosahedras primarily but an aggregate of different other polyhedral structures. 

For the present consideration, it is not important which type of cluster structure exists in the undercooled 

melt. The present analysis takes into account clusterization and net of cluster construction as a process 

leading to glass formation. Critical points for beginning, developing and freezing of net of clusters are 

important for our understanding of the viscosity behaviour and kinetics of solidificiation. 

Figure 5 (top) shows the structural ordering in CuZr melts as a content in percent amongst clusters. 

These results were obtained using molecular dynamic simulations in different states, particularly the 

overheated state T>Tl state, at the melting temperature T=Tl, in the supercooled state T<Tl and in a 

glassy state, T≤Tg by Kelton et al. [12]. These authors found three distinguishable structures, which are 

a) unconnected structures constantly building and collapsing from Cu and Zr atoms, b) interpenetrating 

clusters, where five atoms coincide on two shells (IC) and c) vertex-, edge-, or face-sharing polyhedrals 

with a pinning and/or bridging connections between Cu atoms (non-IC). 

 



7

1234567890

STPM2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 192 (2017) 012028 doi:10.1088/1757-899X/192/1/0120281234567890

STPM2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 192 (2017) 012028 doi:10.1088/1757-899X/192/1/012028

 

 

 

 

 

 

 
Figure 5. Top: structural ordering in the Cu50Zr50 melt obtained via molecular dynamics simulations and Voronoi 

tesselation analysis [12]. Uncon.- IC, non-IC, pinning and/or bridging connected structures are shown in Fig. 4. 

Middle: viscosity data by Kelton and Laggagio, fitting curves calculated using the cooperative shear model and 

Vogel-Fulcher-Tamman equation (VFT) and sketch of Arrhenius behavior (dashed line). Bottom: dendrite growth 

velocity as a function of undercooling. Groups of points (obtained in EML under different conditions) clearly show 

upper and lower branches in solidification kinetics. 
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Overheated and slightly undercooled liquid, i.e. in the temperature range Tstruct<T<Tl, is characterized 

by a gradual decrease of the number of unconnected clusters and single atoms. The number of 

interconnected clusters, IC, gradually increases in this region. At T=Tstruct, the intensity of cluster 

formation drastically changes, exhibiting a breakpoint from which IC forms more readily. 

Interconnected clusters (IC) rapidly form a cluster net, which results in a structural transition from a 

strong liquid (atomically disordered liquid) to a fragile liquid (atomically ordered liquid). This fragility 

transition ends at the glass temperature Tg at which a transition from the liquid state to the amorphous 

state occurs.   

These structural changes strongly influence the viscosity as a function of temperature. Indeed, Kelton 

et al. [14] and Lagogianni et al. [15] studied the viscosity behavior in superheated and supercooled CuZr 

melts. In a modeled fit to their data sets [14,14], Lagogianni et al. applied the viscosity data most 

accurately in the whole temperature range of the viscosity change. With a cooperative shear model for 

the glass transition the derive a double-exponential dependence of viscosity from temperature (non-

Arrhenius behavior) according to  

 

   
η(T)

η0
= exp {

VCCG

kT
 exp [(2 + λ)αTTg (1 −

T

Tg
)]}        (3) 

 

with 𝜂0 being a normalisation constant set by the high temperature limit of 𝜂, 𝑉𝐶 being the characteristic 

atomic volume, 𝐶𝐺 the shear modulus value at the glass transition temperature 𝑇𝑔, 𝜆 a variable expressing 

all salient features of interatomic interactions and containing the effect of repulsion steepness, and 𝛼𝑇 

the anharmonicity. A plot of Eq. (3) is shown in Fig. 5(middle), fitting the data sets of the groups of 

both Lagogianni and Kelton.  

Taking into account Fig. 5(top) and evaluating the changes in behavior for unconnected / connected 

clusters / IC, the temperature for the beginning of the structural changes can be estimated as  

Tstruct≈1100 K. At T=Tstruct, a change from Arrhenius behavior to super-Arrhenius behavior of viscosity 

may occur as suggested by Eq. (4) and as drawn in Fig. 5 (middle). The change in behavior can be 

displayed more clearly when plotting ln
η

η0
 over 1000/T as an Arrhenius plot; the temperature below 

which a deviation from Arrhenius behavior occurs can then clearly be seen1. Such structural changes 

may drastically influence the solidification kinetics of the undercooled Cu50Zr50 alloy melts.  

The transition to the glassy state in Fig. 5 is shown as a shaded region of temperatures ranging from 

651 K to 770 K. The existence of a temperature range for the transition is not surprising, because the 

temperature Tg  characterizes a freezing of the non-equilibrium state which may vary due to different 

solidification conditions into the non-ergodic glassy state. Therefore, we have just marked the 

temperature interval in which various authors found the amorphous phase in solidification of Cu50Zr50 

melts [4,15,17,18,19].   

5.2.  Solidification kinetics 

The described changes in the liquid cluster structure and the viscosity behavior of liquids drastically 

influence the kinetics of dendritic growth in the undercooled Cu50Zr50 melts. This follows 

straightforwardly from the solidification growth velocity V described in Ref. [20] 

 

 

V = βk [1 − exp (−
∆G

RT
)],              (4) 

 

                                                      
1 Kelton et al. [16] have estimated this significant temperature as Tcoop ≈ 1283 K, 183,72 K higher 

than Tstruct and indicating that the change in the cluster behavior proceeds at higher temperatures.  
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where the Gibbs free energy change upon solidification, ∆G, has been estimated by Thompson and 

Spaepen [21] as 

    ∆G(T) =
∆Hm∆T

Tl
(

2T

Tl+T
)              (5) 

 

with the undercooling ∆T = Tl − 𝑇. As stated by Jäntsch [21], the kinetic growth coefficient  βk is 

inversely proportional to the dynamic viscosity η, i.e. βk ∝ 𝜂−1. For the diffusion-limited process of 

atom attachment to the solid through the solid-liquid interface, Orava and Greer suggest the following 

expression [20]: 

             βk =
kT

3πa2η
,                   (6) 

 

where a is an effective atom diameter. As a result, cluster evaluation and viscous behavior give a 

qualitative answer on the non-linear relationship velocity vs. undercooling for the dendrite growth 

kinetics in undercooled melts of Cu50Zr50.  

Figure 5 (bottom) further demonstrates dendrite growth velocities as a function of undercooling in 

consistence with the transitive temperature intervals of the cluster changes and viscosity behavior. The 

undercooling ∆Tstruct is marked at which the deviation from the linear behavior V = βk∆T begins. 

Comparing with the marked temperature T=Tstruct, one should state that the beginning of the sharp 

increase of connected clusters, Fig. 5 (top), and the beginning of super-Arrhenius law in viscosity, Fig. 

5 (middle), are directly related to the beginning of non-linearity in the solidification velocity by the full 

equation (4).  

At undercoolings below the one that correlates with the velocity maximum (see short explanations 

for Fig. 3), Fig. 5 (bottom) also exhibits the second critical undercooling ∆Tab which shows an abrupt 

decrease of the solidification velocity (also marked in the diagram “velocity-undercooling” of Fig. 3). 

This abrupt drop of the growth velocity at the largest undercooling has also been observed in 

Zr50Cu30Ni20 [11] and in Ni40Al60 [23]. Considering that this drop occurs at a temperature close to the 

glass temperature (≈ 60 K + Tg), it can be attributed to the fact that in this temperature region the single 

atom movement changes to a cooperative movement of atoms according to the mode coupling theory 

[24]. This is consistent with the fact that also the temperature dependence of the self-diffusion coefficient 

shows deviations from an Arrhenius-like behavior in this temperature range [25]. To describe this steep 

decrease at ∆Tab, the model of diffusion-limited growth [7] should be expanded.           

6.  Conclusions 

In the present work, a systematic review of experimental data on solidification of Cu50Zr50 alloy melts 

is presented. The data are collected from results of droplet solidification in different levitators (EML 

and ESL) used on Ground-based research and during parabolic flights in the TEMPUS facility. 

Structural changes of clusters in the melt drastically change dynamic viscosity and dendrite growth 

velocity in the undercooled melt. Theoretical models of solidification and amorphization can be 

developed using the present analysis of clustering and structural changes in undercooled glass forming 

alloy melts. In this perspective, the model of the diffusion-limited growth [7] should be expanded 

concerning two issues: first, the model should incorporate metastable phase formation, taking into 

account phase selection; second, the model should include the specific processes at Tstruct and Tab to 

describe the abrupt decrease of the growth velocity at high undercoolings.  
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