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An approach to calculate high-frequency bulk and shear moduli of two-dimensional (2D) weakly

screened Yukawa fluids and solids is presented. Elastic moduli are directly related to sound veloci-

ties and other important characteristics of the system. In this article, we discuss these relations and

present an exemplary calculation of the longitudinal, transverse, and instantaneous sound velocities

and derive a differential equation for the Einstein frequency. Simple analytical results presented

demonstrate good accuracy when compared with numerical calculations. The obtained results can

be particularly useful in the context of 2D colloidal and complex (dusty) plasma monolayers.
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I. INTRODUCTION

In this article, we propose a simple and reliable approxi-

mation to evaluate high-frequency (instantaneous) elastic

moduli of two-dimensional (2D) weakly screened Yukawa

fluids and solids. Yukawa systems are of considerable signifi-

cance in physics, because the Yukawa interaction potential

can often be used as a reasonable first approximation to

describe actual interactions between charged particles

immersed in a neutralizing medium (e.g., colloidal suspen-

sions, conventional plasmas, and complex or dusty plas-

mas).1–6 Elastic moduli are directly related to the sound

velocities and contain important information about the sys-

tem. For example, measurements of sound velocities in 2D

complex plasma (screened Coulomb) crystals have been used

to determine the screening parameter and the charge of the

particles.7–9 Many studies have previously addressed the

important topic related to the thermodynamics and dynamics

of 2D Yukawa crystals and fluids.10–21 Most of these studies

considered only one phase (either crystal or fluid). The pur-

pose of this work is to present a physically motivated unified

approach to evaluate elastic moduli and the related properties

of 2D Yukawa systems, which represents a good approxima-

tion in the strongly coupled fluid regime and becomes exact

in the limit of an ideal crystalline lattice. The approach results

in simple analytical expressions, very convenient for practical

applications. The results can be particularly useful in the con-

text of laboratory experiments with complex plasmas, where

the condition of weak screening is usually satisfied.

II. BACKGROUND INFORMATION

A. Yukawa systems

The two-dimensional Yukawa systems considered here

are characterized by the repulsive pair-wise interaction

potential of the form

/ðrÞ ¼ ðQ2=rÞ exp �r=kð Þ; (1)

where Q is the particle charge, k is the screening length, and

r is the separation between two particles. The static proper-

ties of Yukawa systems are determined by two dimensionless

parameters: the coupling parameter, C¼Q2/aT, and the

screening parameter j¼ a/k. In the above definitions, T is

the temperature measured in energy units, a¼ (pq)�1=2 is the

2D Wigner-Seitz radius, and q is the number density. The

coupling parameter is roughly the ratio of the potential

energy of interaction between two neighboring particles to

their kinetic energy. The system is usually said to be strongly

coupled when this ratio is large, that is C� 1. The screening

parameter is the ratio of the mean interparticle separation to

the screening length. Yukawa systems are considered as

weakly screened when j is about unity or below. Strong

screening occurs when j is much larger than unity.

In the strongly coupled regime, the system forms a

strongly coupled fluid phase, which can crystallize and form

a triangular (hexagonal) lattice at a certain C¼Cm (“m” tra-

ditionally refers to melting). The value of Cm depends on the

screening parameter j, and the approximations for Cm (j)

have been proposed in the literature.14 In the limit j¼ 0, the

system reduces to the 2D one-component-plasma (OCP)

with / 1/r interaction (note that the “true” 2D Coulomb

interaction, defined as the solution of the 2D Poisson equa-

tion, is the logarithmic one22,23). In this case, the fluid-solid

phase transition occurs at Cm ’ 140.23–25

The nature of the fluid-solid phase transition in 2D

systems is an important research topic. According to the cel-

ebrated Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-

Young (BKTHNY) theory,26 melting in 2D is a two-stage

process. The crystal first melts by dislocation unbinding to

an anisotropic hexatic fluid and then undergoes a continuous

transition into the isotropic fluid. This scenario has been con-

firmed experimentally, in particular, for a system with

dipole-like, /(r) / 1/r3, interactions.27–29 One of the most

sensitive tests of BKTHNY theory is the numerical simula-

tions by Kapfer and Krauth30 who studied the phase diagram

of two-dimensional particle systems interacting with the
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repulsive inverse power-law (IPL, / 1/rn) and Yukawa inter-

action potentials. They found that the melting scenario

depends critically on the potential softness. For sufficiently

soft long-range interactions (n � 6 for IPL and j � 6 for

Yukawa), melting proceeds via the BKTHNY scenario.

However, for steeper interactions, the hard-disk melting sce-

nario with first order hexatic-liquid transition holds.31–33 We

note that a simplified version of BKTHNY theory has been

applied to estimate the location of the melting line Cm(j) in

Ref. 10.

In this study, we consider weakly-screened Yukawa sys-

tems with interparticle separations comparable to or less

than the screening length. To be concrete, we mostly limit

consideration to the regime (j � 2). This is the regime par-

ticularly relevant to 2D plasma crystals and fluids in labora-

tory experiments.4,5,9,34,35

B. Elastic moduli

The high-frequency (instantaneous) elastic moduli of

simple (monoatomic) fluids can be expressed in terms of the

pair-interaction potential /(r) and the radial distribution func-

tion (RDF) g(r). A detailed derivation for three-dimensional

(3D) fluids was presented by Zwanzig and Mountain.36 The

corresponding two-dimensional (2D) analogues are37

K1 ¼ 2qT � pq2

4

ð1
0

drr2gðrÞ /0ðrÞ � r/00ðrÞ
� �

; (2)

and

G1 ¼ qT þ pq2

8

ð1
0

drr2gðrÞ 3/0ðrÞ þ r/00ðrÞ
� �

; (3)

where K1 is the high frequency bulk modulus and G1 is the

high frequency shear modulus. The explicit state-dependence

of the RDF, g(r; j, C), has been omitted for simplicity.

Particularly, simple derivation for the high-frequency bulk

modulus for simple 3D and 2D fluids can be found in Ref. 38.

Recently, it has been demonstrated that the expressions relat-

ing K1 and G1 to /(r) and g(r) only work for sufficiently

soft interactions and fail when the interaction potential

approaches the hard-sphere limit.39 Nevertheless, for the

inverse-power-law (IPL) family of potentials /(r)/ r–n, this

failure occurs only at n’ 20 (in 3D).39 This implies that for

most of actual interactions occurring in nature, Eqs. (2) and

(3) are still reliable. In particular, they are clearly reliable for

weakly screened Yukawa systems studied here.

The energy U and the pressure P (or compressibility Z)

of 2D monoatomic fluids can be calculated using the integral

equations of state40,41

U ¼ NT 1þ pq
T

ð
/ðrÞgðrÞrdr

� �
;

Z � PV=NT ¼ 1� pq
2T

ð
/0ðrÞgðrÞr2dr

� �
:

(4)

Analyzing the structure of Eqs. (2) and (3), it is easy to

recognize that a certain combination of K1 and G1 can be

constructed so that /00ðrÞ cancels out under the integral. This

implies that K1, G1 and P are related by the linear equation.

Namely,

K1 � 2G1 ¼ 2ðP� qTÞ (5)

represents the generalized Cauchy identity for two-dimen-
sional systems with two-body central interactions, an ana-

logue of the 3D generalized Cauchy identity derived in Ref.

36. This identity applies to arbitrary pair-interaction poten-

tials, provided they are soft enough so that Eqs. (2) and (3)

are reliable.

C. Sound velocities

The elastic longitudinal and transverse sound velocities

are directly related to the high-frequency elastic moduli. In

the 2D case, we have

mqC2
L ¼ K1 þ G1; mqC2

T ¼ G1; (6)

where m is the atomic (particle) mass and CL=T is the longi-

tudinal/transverse sound velocity. The generalized Caushy

identity (5) can be expressed in terms of the elastic sound

velocities as

C2
L � 3C2

T ¼ 2v2
TðP� qTÞ; (7)

where vT ¼
ffiffiffiffiffiffiffiffiffi
T=m

p
is the thermal velocity. Note that Eq. (7)

also applies to the 3D case, if only potential contribution to

the sound velocities is retained42 (this is a good approxima-

tion for dense fluids and solids).

Two more quantities to be introduced are the instanta-

neous (high-frequency)43 sound velocity related to the

instantaneous bulk modulus

C2
1 ¼ K1=mq; (8)

and the conventional adiabatic sound velocity44

C2
s ¼

1

m

@P

@q

� �
S

¼ KS

mq
; (9)

where KS is the adiabatic bulk modulus. The general inequal-

ity KS �K1 was established by Schofield.43 It has also been

demonstrated that KS is, in fact, extremely close to K1 for

various systems, provided that the interaction potential is

soft. This includes, for instance, IPL melts in 3D,39 as well

as dipole-dipole (IPL3),37 Yukawa,42 and logarithmic (2D

one-component plasma)45 interactions in 2D. For weakly

screened Yukawa fluids and melts in 3D, the longitudinal

elastic velocity CL is known to be only slightly higher than

the adiabatic sound velocity Cs.
17,46–48

III. EVALUATION OF ELASTIC MODULI IN THE
WEAKLY SCREENED REGIME

Let us now elaborate on the specifics of the Yukawa

interaction potential (1). Using the reduced distance x¼ r/a,

introducing the nominal 2D frequency x2
0 ¼ 2pqQ2=ma and

recognizing that C ¼ x2
0a2=2v2

T, we obtain from Eq. (4) for

the excess energy and pressure (contributions associated

with the potential interactions)
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uex � U=NT � 1 ¼ C
ð1

0

e�jxgðxÞdx;

pex � Z � 1 ¼ 1

2
C
ð1

0

e�jxð1þ jxÞgðxÞdx:

(10)

In the limit j ! 0, we get pex ¼ 1
2

uex, as expected for /1/r
potential in 2D. Reduced elastic moduli can be expressed in

a similar way, and the emerging expressions are

K1=qT ¼ 2þ C
4

ð1
0

e�jxðj2x2 þ 3jxþ 3ÞgðxÞdx; (11)

and

G1=qT ¼ 1þ C
8

ð1
0

e�jxðj2x2 � jx� 1ÞgðxÞdx: (12)

In the regime of weak screening, we propose to use the

following two simplifications to evaluate elastic moduli, as

well as other related thermodynamic quantities of strongly

coupled fluids. First, we observe that in the weakly screening

regime, the RDF g(r; j, C) is not very sensitive to j. For 3D

Yukawa systems, such an observation was made earlier by

Farouki and Hamaguchi50 (see, in particular, Fig. 6 from

their paper). For 2D Yukawa systems, this property is illus-

trated in Fig. 1. This property allows us to neglect the depen-

dence of g(x; j, C) on j when differentiating the excess

energy over j. This results in the following series of useful

relations:

ð1
0

e�jxgðxÞdx ¼ uex=C ¼ f0ðjÞ;ð1
0

jxe�jxgðxÞdx ¼ � j=Cð Þ @uex=@jð Þ ¼ f1ðjÞ;ð1
0

j2x2e�jxgðxÞdx ¼ j2=C
� �

@2uex=@j
2

� �
¼ f2ðjÞ:

(13)

In the above equations, we have implicitly used the sec-

ond simplification. In the weakly screened regime, the excess

energy only weakly depends on the actual structural proper-

ties of the system. This is a general property of soft long-

ranged repulsive potentials. Physically, for such potentials,

the cumulative contribution from large interparticle separa-

tions provides dominant contribution to the excess energy.

This makes the excess energy insensitive to the actual short-

range order. For crystals and fluids not too far from the solid-

fluid phase transition, the corresponding lattice sum becomes

an adequate measure of the excess energy. Mathematically,

this can be expressed as

uex ’ MC; (14)

where M(j) is the Madelung coefficient of the triangular lat-

tice. The latter has been evaluated previously.13,21,51 The

results can be conveniently fitted by the expression21

M ¼ �1:1061þ 0:5038j� 0:11053j2 þ 0:00968j3 þ 1

j
:

(15)

This fit is constructed in such a way that if the contribution

to the excess energy from the neutralizing background is

added (which amounts to –C/j) and the limit j ! 0 is con-

sidered, the excess energy reduces to that of the 2D OCP

with 3D Coulomb (/1/r) interaction,24,52 uex ’ �1:1061C.

Thus, the j-dependent Madelung coefficient fully defines the

function f0(j) � M. Other functions f1(j), f2(j), etc. can be

trivially obtained when f0(j) is specified.

Finally, it is not difficult to recognize that the two simpli-

fications designed to evaluate elastic moduli and the related

quantities of weakly screened strongly coupled Yukawa fluids

become exact in the special case of cold crystalline solid. In

the latter case, the RDF g(x) consists of well-defined delta-

peaks corresponding to the given lattice structure and is thus

fixed as long as the lattice is fixed. Mathematically, the func-

tion g(x; j, C) does not anymore depend on j and C in this

limit. Moreover, the reduced excess energy is uex ¼MC þ 1,

and thus is given exactly by the corresponding lattice sum in

the limit T! 0 (C!1).

Therefore, the method we propose is expected to be a

good approximation for strongly coupled fluids and exact in

the limit of an ideal crystalline lattice. The main results of

applying this method to Yukawa fluids and solids are sum-

marized below.

IV. RESULTS

The first obvious emerging expression is that for the

excess pressure

pex ¼
C
2

f0ðjÞ þ f1ðjÞ½ �: (16)

Its accuracy serves as an important check of the reliability of

the proposed approximation. A comparison between the cal-

culation using formula (16) and accurate MD results for the

pressure of 2D Yukawa fluids tabulated by Kryuchkov

et al.21 is shown in Fig. 2. As expected, the agreement

FIG. 1. Radial distribution functions g(x) corresponding to the strongly cou-

pled 2D Yukawa fluids with C¼ 100 for several different screening parame-

ters. Some weak dependence on j is present. There are special curves in the

phase diagram, usually referred to as isomorphs, along which the structure

and dynamics in properly reduced units are invariant to a good approxima-

tion. These isomorphs are approximately parallel to the melting curve.49

RDFs are quasi-invariant on isomorphs, but not on isotherms with constant C.
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between MD results and Eq. (16) is very good at weak

screening (j � 1), but worsens as j increases. At a given j,

the agreement improves as coupling increases. Overall, the

provided comparison justifies the application of the proposed

approximation to dense fluids not too far from the fluid-solid

phase transition, provided the screening is sufficiently weak.

In the limit C!1, Eq. (16) becomes exact.

The expressions for the elastic moduli follow directly

from Eqs. (11) and (12). We find it useful to express them in

terms of sound velocities. We get

C2
1=v

2
T ¼ 2þ C

4
f2ðjÞ þ 3f1ðjÞ þ 3f0ðjÞ½ �; (17)

C2
L=v

2
T ¼ 3þ C

8
3f2ðjÞ þ 5f1ðjÞ þ 5f0ðjÞ½ �; (18)

and

C2
T=v

2
T ¼ 1þ C

8
f2ðjÞ � f1ðjÞ � f0ðjÞ½ �: (19)

In the strongly coupled regime, the first (kinetic) terms are

numerically very small compared to the potential terms and

can be neglected. Then, C1, CL, and CT can be expressed as

a velocity scale C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=ma

p
multiplied by certain func-

tions of a single parameter j. The ratios of the sound veloci-

ties also solely depend on j. This serves as a basis behind

important methods to estimate the particle charge Q and the

screening parameter j in experiments with complex plasma

monolayers.8,9 The results obtained within our approxima-

tion are plotted in Fig. 3.

One more important quantity is the Einstein frequency,

XE. The Einstein frequency was shown to be an important

characteristic of particle dynamics in strongly coupled com-

plex (dusty) plasmas.53 Experimental measurements of the

ratio XE/x0 have been reported recently.54 Here, we derive a

practical expression for this ratio emerging within the pre-

sent approximation. The generic expression for the Einstein

frequency in 2D is

X2
E ¼

q
2m

ð
drD/ðrÞgðrÞ; (20)

where D/ðrÞ ¼ /00ðrÞ þ /0ðrÞ=r. This expression applies to

both solid and fluid phases, in which case the RDF is isotro-

pic g(r)¼ g(r). We keep this notation also for the crystalline

lattice for simplicity and arrive at

X2
E ¼

x2
0

2

ð1
0

gðxÞdx

x2
e�jx 1þ jxþ j2x2ð Þ: (21)

In the limit j! 0, we get

X2
E ¼

x2
0

2

ð1
0

gðxÞdx

x2
:

For an ideal crystalline lattice, the integral
Ð1

0
gðxÞdx=x2

denotes nothing, but the lattice sum for the dipole-dipole

(/1/r3) interaction. For the triangular lattice, this sum was

evaluated previously,37,55,56 MIPL3’ 0.798512. Hence, in the

limit of 2D OCP with the / 1/r interaction, we get

X2
E ¼ 0:399256x2

0: (22)

This exact proportionality coefficient is very close to that of

0.39925, quoted by Donko et al.57 Differentiating X2
E with

respect to j yields

@X2
E

@j
¼ x2

0

2

ð1
0

gðxÞdx

x2
e�jx 1� jxð Þ; (23)

which can be further rewritten as

@X2
E

@j
¼ �x2

0j
3

2C
@

@j
uex

j

� �
: (24)

FIG. 2. Reduced pressure Z¼P/qT as a function of the coupling parameter

C for 2D Yukawa fluids. Symbols are the results of MD simulations tabu-

lated in Ref. 21. Curves correspond to Eq. (16). Three cases correspond to

the weakly screening regime with j¼ 0.5, 1.0, and 1.6.

FIG. 3. Longitudinal (CL) and transverse (CT) elastic sound velocities of

strongly coupled 2D Yukawa systems versus the screening parameter j. The

instantaneous sound velocity C1 is very close, but slightly below CL in the

considered weakly screened regime. Symbols correspond to the adiabatic

sound velocity Cs of 2D Yukawa melts (fluid at C¼Cm), calculated using

the approach of Ref. 16. As expected, to a very good accuracy, C1 and Cs

coincide. All velocities are expressed in units of C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=ma

p
. The upper

curve corresponds to the ratio CL/CT.
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This is the exact relation. Approximation (15) can be used to

derive the explicit analytical expression for XE. The result is

plotted in Fig. 4 along with numerical calculations of the lat-

tice sums involved (crosses). Also shown are the results for

XE in the strongly coupled fluid regime (circles),57 indicating

that the Einstein frequency does not change much across the

fluid-solid phase transition. This is consistent with a recently

reported experimental measurement.54

V. CONCLUSION

We have proposed a simple and reliable approximation

to evaluate high-frequency (instantaneous) bulk and shear

moduli of 2D weakly screened Yukawa systems. The

approach delivers good accuracy in the strongly coupled

fluid regime and becomes essentially exact for an ideal crys-

talline lattice. As an example of approach application, elastic

longitudinal and transverse, as well as the instantaneous,

sound velocities have been calculated. Similarly to other soft

interactions, the longitudinal sound velocity is slightly higher

than the instantaneous, while the latter is extremely close to

the conventional adiabatic sound velocity. In addition, we

have derived a simple differential equation for the Einstein

frequency of 2D Yukawa systems. The solution to this equa-

tion reproduces very well the results of numerical calculation

of the corresponding lattice sums. The Einstein frequency is

only slightly higher for a fluid than for an ideal crystal.
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