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The influence of charge-gradient force, associated with variations of the particle charge in response

to external perturbations, on the propagation of low-frequency waves in weakly coupled complex

(dusty) plasmas is investigated. The magnitude of the effect is compared with that due to polariza-

tion force, studied previously in the literature. Numerical estimates are presented for the regime,

where the orbital motion limited approach to particle charging is relevant. Published by AIP
Publishing. https://doi.org/10.1063/1.5023480

A complex plasma represents an ionized gas containing

electrons, ions, neutral atoms or molecules, and massive dust

particles. The charged dust grains embedded into a plasma

not only change the electron–ion composition and thus affect

conventional wave modes (e.g., ion–acoustic waves), but

also introduce new low-frequency modes associated with the

microparticle motion, alter dissipation rates, give rise to

instabilities, etc.1–3 Moreover, the particle charges vary in

time and space, resulting in important qualitative differences

between complex plasmas and usual multi-component plas-

mas.4,5 The focus of this brief communication is on the influ-

ence of the plasma background and grain charge variability

on linear waves in weakly coupled unmagnetized complex

plasma.

In the long-wavelength limit, collective excitations of

the particle component exhibit acoustic-like dispersion and

are therefore called the “dust acoustic waves” (DAWs). The

dispersion relation of DAWs for an ideal isotropic complex

plasma was originally derived by Rao et al.6 In the original

derivation of the DAW dispersion relation, a simplest fluid

description of multicomponent plasmas was used. Several

important effects were neglected, including charge variations

and specific forces acting on the charged particles (such as,

for example, ion, electron, and neutral drag forces). One of

the forces which can affect particle transport (also neglected

originally) is the so-called “polarization” force, discussed by

Hamaguchi and Farouki.7,8 This force was originally related

to the presence of the density gradient in the plasma sur-

rounding the particle. In most practical cases, the polariza-

tion force is small as compared to other forces present in the

system. However, it was pointed out later that the polariza-

tion force can significantly affect propagation of the dust

acoustic linear and non-linear waves.9–11 This topic is pres-

ently under active investigation, for some relevant examples

see Refs. 12–15 and references therein.

Recently, it has been demonstrated that the polarization

force can contain a term proportional to the gradient of the

particle charge, if the charge is not assumed fixed.16 The

derivation is straightforward. The energy of an individual

point-like test charge Q immersed in an ideal plasma is

U ¼ Q

2
/ðrÞ � Q

r

� �
r!0

¼ � Q2

2kD
; (1)

where /ðrÞ ¼ Q exp ð�r=kDÞ=r is the screened Coulomb

(Debye-H€uckel) potential, kD is the linearized Debye radius,

kD ¼ kDi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkDi=kDeÞ2

q
, kDiðeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TiðeÞ=4pe2niðeÞ

q
, and

TiðeÞ and niðeÞ are ion (electron) temperature (expressed in

energy units) and density, respectively. If the charge is con-

stant and the plasma is non-uniform, the particle will be

acted by the force ðF ¼ �rUÞ

Fpol ¼ �
Q2

2

rkD

k2
D

; (2)

which is known as the polarization force.7,8 It pushes the par-

ticles into the region where the Debye radius is smaller (that

is where the temperature is lower and/or plasma density is

higher). If the charge is allowed to vary, there is another con-

tribution to the force

FQ ¼
QrQ

kD
: (3)

This force is proportional to the gradient of the particle

charge and we call it in the following the “charge-gradient

force”. The charge-gradient (CG) force pushes positively

(negatively) charged particles to the region where their

charge is higher (lower). The purpose of this work is to

report on the effect of this charge-gradient (CG) force on the

linear dust acoustic waves. In particular, we will be inter-

ested in its relative magnitude, as compared to the conven-

tional polarization force.

In the following, we consider the most simple situation

in order to single out the effects associated with the polariza-

tion and charge-gradient forces. We neglect all processes

that can be neglected in this study and employ all reasonable

simplifications. The consideration is to some extent similar

to that of Ref. 9.a)Electronic mail: khrapak@mail.ru
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The particle component is described by the continuity

and momentum equations

@nd

@t
þrðndvdÞ ¼ 0; (4)

@vd

@t
þ ðvd � rÞvd ¼ �

Q

md
ruþ FR

md
; (5)

where vd and md are the grain velocity and mass, u is the

potential of the electric field acting on the particles, and FR is

the sum of all other forces. For the sake of simplicity, below

we consider only the polarization (2) and charge-gradient (3)

forces. Note that we have also omitted the pressure term

in Eq. (5). We further assume that the wave propagation

results in small perturbations, na ¼ na0 þ na1 ða ¼ e; i; dÞ;
Q ¼ Q0 þ Q1; u ¼ u1, vd ¼ vd1, etc. If the perturbations are

small (linear regime), the densities of electrons and ions sat-

isfy the Boltzmann relations17,18

ni1 ¼ �ni0
eu1

Ti
; ne1 ¼ ne0

eu1

Te
: (6)

In the long-wavelength limit (where the dispersion relation is

acoustic) the densities of charged components satisfy the

charge neutrality condition

ni � ne þ Znd ¼ 0; (7)

where Z¼Q/e is the particle charge number (note that Z is

negative for a negatively charged particle). Since the particle

charge is not fixed, the system should be supplemented by

the charging equation. In a rather general form, the charging

equation is2

@Z1

@t
þ XchZ1 ¼ J0

ni1

ni0
� ne1

ne0

� �
; (8)

where Z1 is a variation of the particle charge number, X ch is

the characteristic charging frequency, and J0 is the equilib-

rium flux of ions/electrons that the particle collects from the

surrounding plasma. The equilibrium charge Q, associated

with the equilibrium (floating) surface potential of the parti-

cle, is determined from the flux balance condition

Ji¼ Je¼ J0. Quite generally, particle charging in a plasma is

a very fast process2,4 and its characteristic frequency scale is

much higher than frequency scales related to particle dynam-

ics (e.g., DAW frequency scale). Therefore, we can write

Z1 ¼
J0

Xch

ni1

ni0
� ne1

ne0

� �
: (9)

The system of equations (4)–(9) is linearized following

a standard procedure, i.e., assuming the � exp ðikr� ixtÞ
dependence for all perturbations. In addition, we make one

more simplification assuming that the electron temperature is

much higher than the ion temperature, as it is in most com-

plex plasmas occurring in gas discharges. This implies

kDe � kDi, that is kD ’ kDi, and jni1=ni0j � jne1=ne0j. After

some simple algebra, we obtain the dispersion relation of the

form

x2 1þ nd0

ni0

J0

Xch

� �
¼ x2

dk
2
Dk2 1þRpol þRQð Þ; (10)

where

Rpol ¼
Qe

4kDTi
(11)

and

RQ ¼
J0e2

kDXchTi
: (12)

Equation (10) represents the long-wavelength dispersion

relation of low-frequency waves in the considered system. It

is the main result of this study, and its detailed analysis will

follow.

First, if charge variations are neglected and the particle

charge is fixed, which corresponds to the formal limit

Xch !1, the dispersion relation is reduced to

x2 ¼ x2
dk

2
Dk2 1þRpolð Þ; (13)

which essentially coincides with the long-wavelength limit

of the expression derived in Ref. 9. Since the particle charge

is usually negative in gas discharges, the quantity Rpol is

also negative. Thus, the actual dust-acoustic (sound) velocity

is reduced compared to the conventional DAW velocity

(CDAW ¼ xdkD) by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þRpol

p
. For very large

grains, jRpolj can even approach unity. In this case, the net

force on the grains is no longer a restoring force, and then,

the dispersion relation (13) admits a transition from propa-

gating DA waves to aperiodically growing perturbations.

The effect of the charge-gradient force is expressed by the

termRQ in the right-hand side of Eq. (10). This term is obvi-

ously positive and thus, it reduces the effects associated with

the polarization force. The directions of the forces can also

be verified as follows. For the polarization component, we

have

Fpol / �rkD / rni / �ru;

and it acts in the direction of the electric field. For the CG

component, we have on the other hand

FQ / QrQ / Qrni / �Qru:

For a negatively charged particle, FQ is directed opposite to

the electric field and thus opposite to Fpol. The sum of two

contributions is

Rpol þRQ ¼
Qe

4kDTi
1þ J0

Xch

e

Q

� �
: (14)

The factor 1þ nd0

ni0

J0

Xch

� �
in the left-hand side of Eq. (10)

is associated with charge variations; it appears also in the

case when both polarization and charge-gradient forces are

neglected.2

Let us next compare the magnitudes of various terms in

a special exemplary situation. We consider as an example a

weakly collisional (low neutral gas pressure) gas discharge
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with electrons that are much hotter than ions. To describe

particle charging in these conditions, the orbital motion lim-

ited (OML) theory19 is applicable. In this regime, the relation

between charging frequency and ion/electron flux (under the

additional assumption Te � Ti) is2

Xch ’ J0

1þ z

z

e2

aTe
; (15)

where the reduced charge z ¼ jQje=aTe has been introduced.

The relative importance of polarization and charge gradient

forces is

jRpol=RQj ’ ð1þ zÞ=4: (16)

Since typical values of z are between ’ 2 and ’ 4 within the

OML theory,2,20 these two components of the forces are of

comparable magnitude. In the special case z¼ 3, the two

effects would completely cancel each other. In the weakly

collisional regime, the ion flux to the particle can be

enhanced due to ion-neutral charge exchange collisions in

the vicinity of the particle.21,22 As a result, the charge tends

to more positive values and the reduced charge z can drop to

values below unity.23–25 This would indicate that CG contri-

bution dominates. However, Eqs. (9), (15), and, hence, (16)

should also be modified in this case. This regime would thus

require careful additional consideration, which is beyond the

scope of this brief communication.

Finally, we demonstrate that the factor in the left-hand

side of Eq. (10) associated with charge variations is normally

close to unity in the considered case. Using Eq. (15), it is

easy to get

nd0

ni0

J0

Xch

¼ 1

1þ z

jZjnd0

ni0
: (17)

The ratio Pi ¼ jZjnd0=ni0 (which can be termed the ion

Havnes parameter) can approach unity only in rather extreme

situation when all negative charge in the systems is residing

on the particle component and the electron population is

completely depleted. Under more typical conditions, Pi is

well below unity and thus, direct contribution from the

charge variations to the real part of the dispersion relation is

insignificant.

To conclude, we have investigated the effect of the

charge-gradient force, associated with the charge variability

in complex plasmas, on the propagation of low-frequency

dust-acoustic waves. It has been demonstrated that the

charge-gradient and polarization forces can be of comparable

magnitude in collisionless plasmas with hot electrons, but

act in the opposite directions. The charge-gradient effect can

dominate for lower charges, while the polarization effect

becomes more important at higher charges. This should be

properly taken into account when describing the dispersion

of low-frequency dust acoustic waves in weakly coupled

unmagnetized plasma.

This work was supported by Presidium RAS program No.

13 “Condensed Matter and Plasma at High Energy Densities”.

The work at Aix-Marseille-University was supported by

A*MIDEX project (No. ANR-11-IDEX-0001–02) funded by

the French Government “Investissements d’Avenir” program

managed by the French National Research Agency (ANR).

1V. N. Tsytovich, Phys.-Usp. 40, 53 (1997).
2V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F.

Petrov, Phys.-Usp. 47, 447 (2004).
3P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25 (2009).
4V. E. Fortov, A. Ivlev, S. Khrapak, A. Khrapak, and G. Morfill, Phys. Rep.

421, 1 (2005).
5G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
6N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).
7S. Hamaguchi and R. T. Farouki, Phys. Rev. E 49, 4430 (1994).
8S. Hamaguchi and R. T. Farouki, Phys. Plasmas 1, 2110 (1994).
9S. A. Khrapak, A. V. Ivlev, V. V. Yaroshenko, and G. E. Morfill, Phys.

Rev. Lett. 102, 245004 (2009).
10P. Bandyopadhyay, U. Konopka, S. A. Khrapak, G. E. Morfill, and A. Sen,

New J. Phys. 12, 073002 (2010).
11P. Bandyopadhyay, K. Jiang, R. Dey, and G. E. Morfill, Phys. Plasmas 19,

123707 (2012).
12R. L. Merlino, J. R. Heinrich, S.-H. Kim, and J. K. Meyer, Plasma Phys.

Controlled Fusion 54, 124014 (2012).
13R. P. Prajapati and S. Bhakta, Phys. Lett. A 379, 2723 (2015).
14P. Sharma and S. Jain, EPL 113, 65001 (2016).
15K. Bentadet and M. Tribeche, IEEE Trans. Plasma Sci. 45, 736 (2017).
16S. A. Khrapak and H. M. Thomas, Phys. Rev. E 91, 033110 (2015).
17A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of

Plasma Electrodynamics (Springer, New York, 1984).
18V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, A. P.

Nefedov, O. F. Petrov, and V. M. Torchinsky, Phys. Plasmas 7, 1374

(2000).
19J. E. Allen, Phys. Scr. 45, 497 (1992).
20S. A. Khrapak, A. V. Ivlev, and G. Morfill, Phys. Rev. E 64, 046403

(2001).
21A. V. Zobnin, A. P. Nefedov, V. A. Sinel’shchikov, and V. E. Fortov,

J. Exp. Theor. Phys. 91, 483 (2000).
22M. Lampe, R. Goswami, Z. Sternovsky, S. Robertson, V. Gavrishchaka,

G. Ganguli, and G. Joyce, Phys. Plasmas 10, 1500 (2003).
23S. Ratynskaia, S. Khrapak, A. Zobnin, M. H. Thoma, M. Kretschmer, A.

Usachev, V. Yaroshenko, R. A. Quinn, G. E. Morfill, O. Petrov, and V.

Fortov, Phys. Rev. Lett. 93, 085001 (2004).
24S. A. Khrapak, S. V. Ratynskaia, A. V. Zobnin, A. D. Usachev, V. V.

Yaroshenko, M. H. Thoma, M. Kretschmer, H. H€ofner, G. E. Morfill, O. F.

Petrov, and V. E. Fortov, Phys. Rev. E 72, 016406 (2005).
25S. A. Khrapak, P. Tolias, S. Ratynskaia, M. Chaudhuri, A. Zobnin, A.

Usachev, C. Rau, M. H. Thoma, O. F. Petrov, V. E. Fortov, and G. E.

Morfill, EPL 97, 35001 (2012).

034502-3 A. G. Khrapak and S. A. Khrapak Phys. Plasmas 25, 034502 (2018)

https://doi.org/10.1070/PU1997v040n01ABEH000201
https://doi.org/10.1070/PU2004v047n05ABEH001689
https://doi.org/10.1103/RevModPhys.81.25
https://doi.org/10.1016/j.physrep.2005.08.007
https://doi.org/10.1103/RevModPhys.81.1353
https://doi.org/10.1016/0032-0633(90)90147-I
https://doi.org/10.1103/PhysRevE.49.4430
https://doi.org/10.1063/1.870608
https://doi.org/10.1103/PhysRevLett.102.245004
https://doi.org/10.1103/PhysRevLett.102.245004
https://doi.org/10.1088/1367-2630/12/7/073002
https://doi.org/10.1063/1.4773194
https://doi.org/10.1088/0741-3335/54/12/124014
https://doi.org/10.1088/0741-3335/54/12/124014
https://doi.org/10.1016/j.physleta.2015.08.007
https://doi.org/10.1209/0295-5075/113/65001
https://doi.org/10.1109/TPS.2017.2677203
https://doi.org/10.1103/PhysRevE.91.033110
https://doi.org/10.1063/1.873954
https://doi.org/10.1088/0031-8949/45/5/013
https://doi.org/10.1103/PhysRevE.64.046403
https://doi.org/10.1134/1.1320081
https://doi.org/10.1063/1.1562163
https://doi.org/10.1103/PhysRevLett.93.085001
https://doi.org/10.1103/PhysRevE.72.016406
https://doi.org/10.1209/0295-5075/97/35001

	d1
	d2
	d3
	l
	n1
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	l
	d14
	d15
	d16
	d17
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25

