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Thermodynamics and dynamics of two-dimensional systems with dipolelike repulsive interactions
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Thermodynamics and dynamics of a classical two-dimensional system with dipolelike isotropic repulsive
interactions are studied systematically using extensive molecular dynamics (MD) simulations supplemented
by appropriate theoretical approximations. This interaction potential, which decays as an inverse cube of the
interparticle distance, belongs to the class of very soft long-ranged interactions. As a result, the investigated
system exhibits certain universal properties that are also shared by other related soft-interacting particle systems
(like, for instance, the one-component plasma and weakly screened Coulomb systems). These universalities are
explored in this article to construct a simple and reliable description of the system thermodynamics. In particular,
Helmholtz free energies of the fluid and solid phases are derived, from which the location of the fluid-solid
coexistence is determined. The quasicrystalline approximation is applied to the description of collective modes in
dipole fluids. Its simplification, previously validated on strongly coupled plasma fluids, is used to derive explicit
analytic dispersion relations for the longitudinal and transverse wave modes, which compare satisfactory with
those obtained from direct MD simulations in the long-wavelength regime. Sound velocities of the dipole fluids
and solids are derived and analyzed.

DOI: 10.1103/PhysRevE.97.022616

I. INTRODUCTION

Two-dimensional (2D) and quasi-two-dimensional interact-
ing particle systems attract great scientific interest, since they
play an important role in a broad range of phenomena operating
at fluid and solid surfaces and various interfaces [1,2]. Several
relevant examples include atomic monolayers and thin films
on a substrate, 2D electron gas on the surface of liquid helium,
vortices in thin-film semiconductors, metallic and magnetic
layer compounds, smectic liquid crystals, colloidal particles
at flat interfaces, and complex (dusty) plasma systems in
ground-based conditions.

In the context of colloidal systems, apart from techno-
logical applications of colloidally stabilized emulsions [3–5]
and bubbles [6,7] for synthesis of novel optical materials
[5,8–10], chemical sensors, and catalysis [11], many biolog-
ically important processes occur at interfaces. Importantly,
there is a way to control these processes by attaching colloidal
particles to soft matter interfaces.

When colloidal particles are trapped in oil-water or gas-
water interfaces, electrical dipoles are usually associated with
each interfacial particle [12]. As a result, the interaction
between colloidal particles is similar to that between vertically
oriented dipoles [13–17] and can be in the first approximation
described by a pairwise repulsive inverse-power-law (IPL)
potential decaying as ∼1/r3 with the interparticle separation
r . Direct experimental measurements of colloidal interaction
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potential in such systems by the laser tweezers method
[15,16,18] or using other approaches [19] generally confirm
this assumption, although it is also clear that actual interactions
can be very complicated, particularly in the regime where
the separation is comparable to the particle size [20]. A
similar shape of the interaction potential is observed in 2D
colloidal systems of paramagnetic particles exposed to an
external magnetic field [21–23]. 2D colloidal suspensions
in external electric fields represent another important class
of dipolelike interacting systems. An external electric field
polarizes the particles and ion clouds in the solvent around
them, inducing a (tunable) dipole-dipole interaction between
the particles. Depending on the orientation of the external
electric field with respect to the plane of particle confinement,
the dipolar interaction potential can be either attractive [24–27]
or repulsive [28–34].

In the context of plasma physics, it has been long known
that the effective potential of a point test charge immersed in
a flowing collisionless plasma is not screened exponentially,
but falls off as ∝1/r3, at large distances from the test charge
[35,36]. This can be relevant to complex (dusty) plasmas, a
collection of small solid particles in the neutralizing plasma
medium. In a typical laboratory dusty plasma experiment the
highly negatively charged identical micron-size particles form
a horizontal (quasi-2D) layer above the bottom negatively
biased electrode of a radio-frequency gas discharge, where
the electric force directed upwards is able to balance the
gravity force acting on the particles. A strong electric field
required to balance the gravity produces significant ion flow,
which makes electric potential distribution around the particles
highly anisotropic. Although the actual interactions between
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the particles in these conditions are quite sophisticated and
are governed by a competition between screening and plasma-
wake mediated effects [37–43], there is a certain parameter
regime where the IPL scaling ∝1/r3 is relevant [44–46] (see,
in particular, Fig. 3 in Ref. [46]).

Thus, dipolelike interactions occur in various 2D phys-
ical systems such as ions and colloidal particles trapped
at various interfaces, colloidal particles in external electric
fields, paramagnetic particles exposed to external magnetic
fields, electrical charges placed in a flowing collisionless
plasma, etc. Not surprisingly, structural and dynamical prop-
erties, thermodynamics, phase transitions, collective motion,
and related phenomena in classical systems with ∝1/r3

repulsion have been extensively studied (see, for instance,
Refs. [47–58] and references therein). The main purpose of this
work is to put strong emphasis on the fact that the considered
dipolar interaction belongs to the class of very soft long-
ranged interactions, the limit opposite to the celebrated hard
sphere interaction in three dimensions and hard disk interaction
in two dimensions. Based on this, a simple description of
thermodynamic and dynamic properties is possible, using
methods validated recently on other classical soft interacting
particle systems, mainly in the plasma-related context.

Systems of soft interacting particles exhibit certain uni-
versal properties, and there exist useful approximations that
are particularly suitable for this regime. In particular, the
Rosenfeld-Tarrazona (RT) scaling [59,60] of the thermal
component of the internal excess energy on approaching the
freezing transition allowed researchers previously to construct
a very simple practical approach to the thermodynamics of
weakly screened Yukawa systems in three dimensions [61–63].
An analog of the RT scaling also exists in the 2D case (although
of a quite different functional form), and this has been recently
used to construct a simple thermodynamic description of one-
component plasmas and weakly screened Yukawa systems in
two dimensions [64–67] with main applications to complex
(dusty) plasmas. Here we apply the same arguments to the 2D
system with 1/r3 dipolar interactions to put forward simple and
accurate expressions for the thermodynamic properties of the
liquid state, which are (by construction) in excellent agreement
with the MD simulation results. Combined with the accurate
calculation of the thermodynamic functions of the crystalline
solid (using MD simulations and the shortest graphs method,
proposed recently by some of the present authors) we are also
able to approximately locate the fluid-solid phase transition,
as well as the narrow coexistence region.

We also elaborate on the properties of collective modes
in 2D dipolar systems. Recent investigations demonstrated
that the quasicrystalline approximation (QCA) [68,69], also
referred to as the quasilocalized charge approximation (QLCA)
in the plasma-related context [70], is a good approximation to
describe elastic collective modes in dense fluids for the regime
of soft interactions (though it fails in the limit of very steep
hard-sphere or hard-disk interactions [71]). Previously, QLCA
has been applied with certain success to dipolelike systems
in two dimensions [53,72]. Here we go somewhat further
and derive simple analytic expressions, describing well the
dispersion relations of the longitudinal and transverse elastic
modes at sufficiently long wavelengths. The accuracy of these
dispersion relations is demonstrated by comparing with the

dispersions obtained from MD simulations. We demonstrate
how these results can be useful in estimating the free energy
of the crystalline solid. We also evaluate the high-frequency
elastic moduli of the considered system and discuss relations to
sound velocities operating in the strongly coupled fluid regime.

The rest of the article is organized as follows. In Sec. II
we describe in detail the system under investigation, provide
necessary details about the performed MD simulations, and
summarize main thermodynamic relations used in this work.
In Sec. III main results obtained for the fluid phase are
summarized, including accurate expressions for thermody-
namic quantities and detailed analysis of collective modes. In
Sec. IV topics related to the thermodynamics of the crystalline
phase are addressed. This includes thermodynamic functions,
location of the fluid-solid phase transition, and sound velocities
of an idealized lattice. Section V is focused on elastic moduli
and their relations to the sound velocities in a dense fluid phase.
This is followed by our conclusion in Sec. VI.

II. METHODS

A. System description

We investigate a classical system of pointlike particles in the
2D geometry, which are interacting via the pairwise repulsive
inverse-third-power (IPL3) potential of the form

φ(r) = ε(σ/r)3, (1)

where ε and σ are the energy and length scales of the
interaction. Phase behavior is conveniently described by the
dimensionless interaction (coupling) parameter �,

� = ε

T

(σ

a

)3
, (2)

where T is the temperature (in energy units), a = (πρ)−1/2 is
the 2D Wigner-Seitz radius, and ρ = N/V is the areal density
of N particles occupying the 2D volume (i.e., surface) V . The
coupling parameter � is roughly the ratio of the potential
energy of interaction between two neighboring particles to
their kinetic energy. The system is conventionally referred to
as strongly coupled when the potential energy dominates, that
is, when � � 1.

At very low � the system properties are similar to those
of an ideal gas in two dimensions. When coupling increases
the system forms a strongly coupled fluid phase, which can
crystallize upon further increase in �. The nature of the
fluid-solid phase transition in 2D systems depends consid-
erably on the potential softness [73]. For sufficiently steep
repulsive interactions the hard-disk melting scenario holds:
a first-order liquid-hexatic and a continuous hexatic-solid
transition can be identified [74–76]. For softer interactions
the liquid-hexatic transition is continuous, with correlations
consistent with the Berezinsky-Kosterlitz-Thouless-Halperin-
Nelson-Young (BKTHNY) scenario [2,73]. For the IPL family
of potentials ∝ r−n, the transition between the two regimes
occurs at about n � 6 [73]. The IPL3 system studied here
thus belongs to the soft interaction class, and the BKTHNY
melting scenario should apply. This indeed has been observed
both in numerical simulations [49] and colloidal experiments
[16,21,22,77]. However, the hexatic phase occupies a relatively
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narrow region on the phase diagram, and its properties will not
be addressed in this work.

B. Computational details

To obtain the accurate thermodynamic properties of IPL3
fluids and crystals in two dimensions, as well as necessary
information about the properties of collective modes, exten-
sive MD simulations have been performed using LAMMPS
package [78]. These MD simulations have been done in the
NV T ensemble at different temperatures using N = 4 × 104

particles in a simulation box with periodic boundary condi-
tions and the Nose-Hoover thermostat. The initial systems
configuration was chosen as an ideal hexagonal lattice, and
velocities were set according to the Maxwell distribution
with the temperature equal to 1.5 T and 2 T for the fluid
and crystal phases, respectively. The numerical time step of
�t = 2.4 × 10−4

√
ma2�/ε was chosen. All simulation runs

were performed for 6 × 105 time steps, where the last 4 × 105

steps were used for energy and pressure calculation based
on standard functions implemented in the LAMMPS package
(in the case of fluids, to guarantee that equilibrium was
reached, we performed three simulations with different initial
conditions for each examined state point). The cutoff radius
of the potential was set equal to 25ρ−1/2. The internal energy
and pressure were corrected accordingly, which resulted in a
relative error of about 2 × 10−5, sufficient for the range of
problems considered here.

C. Thermodynamic relations

The main thermodynamic quantities of interest in this
work are the internal energy U , Helmholtz free energy F ,
and pressure P of the system. The following thermodynamic
definitions are useful [79]:

U = −T 2

(
∂

∂T

F

T

)
V

= ∂(F/T )

∂(1/T )
|V , (3)

P = −
(

∂F

∂V

)
T

. (4)

In addition, U and P can be calculated using the integral
equations of state [80,81]

U = N

[
T + ρ

2

∫
dr φ(r)g(r)

]
,

PV = N

[
T − ρ

4

∫
dr rφ′(r)g(r)

]
,

(5)

where g(r) denotes the radial distribution function, which
is isotropic in gas and fluid phases and anisotropic in the
crystalline phase.

We will use conventional reduced units: u = U/NT , f =
F/NT , and p = PV/NT and divide the thermodynamic
quantities into the kinetic (ideal gas) and potential (excess)
contributions, so that u = 1 + uex (in two dimensions), f =
fid + fex, and p = 1 + pex. Finally, it is useful to operate with
the single coupling parameter �, instead of temperature and
density. Since � ∝ a−3T −1 ∝ ρ3/2T −1, the transformation of
standard thermodynamic relations to their dimensionless form

is governed by

∂X

∂ρ
= 3�

2ρ

∂X

∂�
,

∂X

∂T
= −�

T

∂X

∂�
,

(6)

where X is a thermodynamic function of interest. In addition,
a simple relation between the reduced excess pressure and
energy for the IPL3 interaction in two dimensions holds:

pex = 3
2uex. (7)

Other thermodynamic quantities can be readily evaluated when
the excess internal energy is known. We summarize the main
relations employed in this work in Appendix A.

III. FLUIDS

A. Thermodynamics of the fluid phase

The excess energy and pressure of the 2D IPL3 fluid have
been determined using MD simulations. Based on these results,
combined with our previous experience with thermodynamics
of soft interacting particle systems in 2D geometry (mostly
in the plasma-related context), simple and reliable analytical
approximations are derived.

In the strongly coupled regime it is helpful to divide the ther-
modynamic properties, such as energy and pressure, into static
and thermal contributions. The static contribution corresponds
to the value of internal energy when the particles are frozen
in a regular configuration and the thermal corrections arise
due to deviations of the particles from these fixed positions
(due to thermal motion). Here we relate the static energy to
the lattice sum of the triangular lattice (Madelung energy)
formed by particles interacting via the ∝1/r3 potential (this
relation is meaningful for both crystalline and fluid phases).
The corresponding lattice sum has been evaluated previously
with a very high accuracy [82,83]. The proportionality con-
stant between the static energy and the coupling parameter
(Madelung constant) is

M � 0.798512.

Thus, the excess internal energy in the fluid phase can be
expressed as

ufl = M� + uth. (8)

The usefulness of this approximation stems from the fact
that the ratio of the thermal-to-static contribution is small
for strongly coupled fluids with soft long-ranged interactions.
In this case the static part is dominated by the cumulative
contribution from large interparticle separations. This part is
not very sensitive to the actual short-range order in the system
since for large separations g(r) � 1. It also does not change
much across the fluid-solid phase transition, and thus the
Madelung energy is an appropriate characteristic for both solid
and fluid phases. Quantitatively, the static contribution is much
larger than the kinetic energy (M� � 1), by the definition of
strong coupling. On the other hand, the thermal contribution
comes from the particle thermal motion, and its magnitude is of
the order of the average particle kinetic energy (uth ∼ 1). This
implies that even moderately accurate approximations for uth
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FIG. 1. Thermal component of the reduced excess energy, uth, of a
strongly coupled IPL3 system in two dimensions versus the coupling
parameter �. Circles correspond to the results of MD simulations
performed in this work. Triangles are the results by Golden et al.
[54,55]. The curve is the analytical fit of Eq. (9).

result in a very accurate estimation of the total excess energy
ufl of strongly coupled fluids. The remaining step is therefore
to identify an appropriate approximation for uth.

Based on the previous results for other soft interacting
particle systems in two dimensions (such as one-component-
plasma [66,84] and weakly screened Yukawa systems [64,67]),
the thermal component of the excess energy is expected to
exhibit a certain scaling with � on approaching the fluid-solid
transition. This scaling is to some extent analogous to the
RT scaling of the thermal component of excess energy in
three dimensions [59,60] but has a quite different functional
form. The functional form suggested for 2D systems with soft
pairwise repulsive interactions is

uth = a ln(1 + b�). (9)

The validity of this functional form at sufficiently strong
coupling is documented in Fig. 1, where numerical data
from the present MD simulations along with those reported
previously [54,55] are plotted. The best fit of the MD data
obtained in this work yields a = 0.27284 and b = 2.2357. The
fit is valid in the range 1 � � � 70. Combining Eqs. (8) and
(9) we write for the excess energy of the strongly coupled fluid
phase

ufl = M� + a ln(1 + b�). (10)

It is easy to ascertain that the first term is indeed dominant at
strong coupling. For example, the ratio of the second to the
first terms in Eq. (10) is �0.4 at � = 1, it decreases to �0.1 at
� = 10, and further drops to �0.03 at � = 50.

Having a fit for the reduced excess energy, we can evaluate
the reduced excess Helmholz free energy from the relation

ffl =
∫ �

0
d�′ ufl(κ,�′)

�′ . (11)

However, one must pay some attention to the fact that expres-
sion (9) is not applicable all the way down to � = 0. Although
the actual contribution to the free energy from the weak

coupling regime is of minor importance at strong coupling,
we have accounted it in the following manner. At very weak
coupling, the virial expansion allows us to estimate the free
energy with a reasonable accuracy. The first order correction
to the ideal free energy is [79]

f1 = ρ

2

∫
[1 − e−φ(r)/T ]dr =

∫ ∞

0

[
1 − e−�/x3]

x dx, (12)

which can be evaluated analytically. The excess energy in
this regime is uex = 2

3f1. However, careful comparison with
the results from numerical simulations shows that Eq. (12)
is applicable only at very weak coupling, � � 0.05. On the
other hand, the strong coupling scaling (10) is justified only
for � � 1. An approximation for the intermediate regime,
basically based on an appropriate combination of Eqs. (10)
and (12) is described in Appendix B. Using this approximation
[Eq. (B1)] below � = 10 and Eq. (10) at higher values of �,
and performing integration in Eq. (11) we finally obtained a
simple and accurate analytical approximation for the fluid free
energy in the strong coupling regime, � � 10:

ffl = M� − aLi2(−b�) + 0.381, (13)

where Li2(x) is a polylogarithm function. It is the last constant
term, which is responsible for the contribution from the weak-
coupling regime. Clearly, the first two terms are dominant at
strong coupling.

Equations (10) and (13) represent our main results regarding
thermodynamics of the IPL3 fluids in two dimensions. We
will estimate below that the fluid-solid phase transition should
occur at � � 69, with a very narrow coexistence gap (see
Sec. IV). Some thermodynamic quantities of the IPL3 melt
(fluid just at the boundary of the fluid-solid coexistence)
obtained using the approach discussed here are summarized
in Appendix C.

B. Collective modes

It is well known that fluids can exhibit different collective
dynamics depending on the regime of coupling and corre-
lations [80,85–87]. In the regime of weak correlations the
dynamics is close to that in the ideal gas, and there exists only
the longitudinal collective mode. On the other hand, in dense
liquids not too far from the melting line, where interparticle
correlations are strong, the transverse mode [one mode in the
2D case and two modes in the three-dimensional (3D) case]
can also be excited in addition to the longitudinal mode. It is
this latter regime that will be mostly considered below.

A powerful theoretical approach to describe collective
motion in classical systems of strongly interacting particles
with soft pairwise interactions is the quasicrystalline ap-
proximation [68,69]. This approach can be considered as
either a generalization of the random phase approximation or,
alternatively, as a generalization of the phonon theory of solids
(the latter explains why it is often referred to as QCA). In the
context of plasma physics an analog of the QCA is known
as the quasilocalized charge approximation (QLCA). It was
initially proposed as a formalism to describe collective mode
dispersion in strongly coupled charged Coulomb liquids [70].
In recent years it was successively applied to strongly coupled
one-component plasma in both two and three dimensions
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[70] as well as 2D and 3D Yukawa fluids, mostly in the
context of complex (dusty) plasmas [88–95]. Application to
the 2D IPL3 system was described in Refs. [53,72]. Here
we discuss a procedure to derive simple explicit expressions
for the longitudinal and transverse dispersion relations. We
demonstrate that these dispersion relations are reasonably
accurate at long wavelengths using the comparison with the
results from MD simulations. Then we also briefly discuss how
the obtained results can be used to estimate the free energy of
the IPL3 solid.

Within the QCA approach, the dispersion relations of
elastic waves at strong coupling are directly expressed in
terms of the radial distribution function (RDF), g(r), and the
pair interaction potential φ(r). The compact expressions are
[68,69,96]

ω2
L = ρ

m

∫
∂2φ(r)

∂z2
g(r)[1 − cos(kz)]dr, (14)

ω2
T = ρ

m

∫
∂2φ(r)

∂y2
g(r)[1 − cos(kz)]dr, (15)

where ω is the frequency, k is the wave number, and z = r cos θ

is the direction of the propagation of the longitudinal mode (the
particles are confined to the zy plane). Here the subscripts “L”
and “T” correspond to the longitudinal and transverse modes,
respectively. The explicit expressions in the 2D case along
with the expressions for the special case of the IPL3 system
are provided in Appendix D for completeness.

In the long-wavelength (k → 0) regime the dispersion
relations of the IPL3 fluid exhibit acoustic dispersion, and the
longitudinal and transverse sound velocities can be introduced:

lim
k→0

ω2
L/T

k2
= C2

L/T. (16)

Similarly to the IPL system in the 3D case [71], these sound
velocities can be easily related to the reduced excess energy (or
pressure). For the considered case of IPL3 in two dimensions
we immediately get for the QCA elastic sound velocities:

C2
L = 33

8
v2

Tuex, C2
T = 3

8
v2

Tuex, (17)

where vT = √
T/m is the thermal velocity of the particles.

Here we used the relation that follows directly from energy or
pressure equations (5),

pex = 3

2
uex = 3

4

2
0a

2

v2
T

∫ ∞

0

g(x) dx

x2
,

where 2
0 = 2πρεσ 3/ma3 is the conventional 2D frequency

scale. Note an immediate consequence of Eq. (17), CL/CT =√
11, for the IPL3 system in two dimensions.
A simplest model g(r), which takes into account the exis-

tence of a correlational hole (which prevent strongly repulsive
particles from closely approaching each other) and is unity at
longer separation (where correlations are small), turns out to
be quite useful for soft repulsive interactions. Mathematically,
this simplest model RDF reads

g(x) = θ (x − R), (18)

where θ (x) is the Heaviside step function and the radius of
the correlational hole R is of order unity in reduced units

(the distances are expressed in units of a here). A similar
RDF was employed previously to analyze the main tendencies
in the behavior of specific heat of liquids and dense gases
at low temperatures [97]. It was also used to calculate the
dispersion relation of Coulomb bilayers and superlattices at
strong coupling [98]. Physically, the model form of Eq. (18)
seems sensible in the present context, because the main
contribution to the long-wavelength dispersion corresponds
to long length scales, where g(x) � 1. For soft enough in-
teractions, this regime provides dominant contribution to the
integrals in Eqs. (D3) and (D4). The excluded volume effect
for x � R allows us to properly account for strong coupling.
In addition, an appealing advantage of this simple RDF is that
when substituted in the QCA (QLCA) expressions, it allows
the analytical integration for certain interaction potentials.
Particularly simple and elegant expressions have been recently
derived for Yukawa systems and one-component plasma in
three dimensions [99–101] and one-component plasma with
logarithmic interactions in two dimensions [102].

For the considered IPL3 system in two dimensions the
resulting expressions are not so elegant, although still tractable.
We get for the longitudinal mode

ω2
L = 2

0

R3

{
3

2
− q3R3 + J1(qR)

2qR
[6 + 2q2R2 − 2q4R4

+πq5R5H0(qR)

]
− J0(qR)

2
[6 − 2q2R2

− 2q4R4 + πq4R4H1(qR)]

}
, (19)

where q = ka is the reduced wave number, J0(x) and J1(x) are
Bessel functions of the first kind, and H0(x) and H1(x) are the
Struve functions of order 0 and 1, respectively. The dispersion
relation of the transverse mode is remarkably more simple:

ω2
T = 2

0

R3

{
3

2
− 3J1(qR)

qR

}
. (20)

The remaining step is the determination of the appropriate
correlational hole radius R. Previously, it was proposed to
determine R from the condition that the model form (18)
delivers good accuracy when substituted into the energy and/or
pressure equations [99]. This has been demonstrated to work
well for both Yukawa and OCP systems in 3D and 2D OCP
with logarithmic interactions [99,102]. Following the same
procedure we obtain

R = �

uex
. (21)

It is straightforward to verify that with this definition of R, the
low-q series expansion of Eqs. (19) and (20) will reproduce the
acoustic velocities given by (17). Note also that in the strong
coupling regime the excess energy is mainly associated with the
static contribution, uex � M�. In this regime the radius of the
correlational hole is practically constant, R � 1/M � 1.2523.

In order to verify the quality of this simple analytical
approximation, the dispersion relations of the IPL3 fluid have
been obtained from MD simulations. We used the standard
approach to compute phonon spectra in fluids, which is based
on the longitudinal and transverse current correlation functions
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FIG. 2. Longitudinal and transverse wave dispersion relations in color-coded format as obtained from Eq. (22) for � = 56 (a)–(c) and
� = 28 (d)–(f). Top panel [(a), (d)] corresponds to the longitudinal mode, bottom panel [(b), (e)] to the transverse mode. Circles and 
 and ⊥
symbols correspond to the frequencies ω0 and ω0 ± α values, respectively, obtained by applying a fitting function (23) for every fixed value of
dimensionless wave vector q = ka. White dashed lines correspond to the acoustic asymptotes ω = CLk and ω = CTk, where CL and CT are the
longitudinal and transverse sound velocities. For detailed discussion about the sound velocities in the IPL3 fluid, see Sec. V. The dotted red lines
correspond to the short-wavelength kinetic asymptote ω � ck, with c = √

2vT (see the text). The insets (c) and (f) show the long-wavelength
portions of the dispersion relations. Here the red (blue) circles correspond to the longitudinal (transverse) dispersion relations as obtained from
MD simulations. The red and blue solid curves display calculations using QCA approach of Eqs. (D3) and (D4) with the RDFs obtained from
MD simulations. The dashed black curves correspond to simple analytical expressions of Eqs. (19) and (20).

[53,86,103]. Specifically, we calculated

AL,T(q,ω) ∝ qRe
∫

dt 〈jL,T(q,t)jL,T(−q,0)〉eiωt , (22)

where jL(q,ω) and jT(q,ω) are the projections of veloc-
ity current j(q,t) ∝ ∑

i vi(t) exp[iqri(t)] to longitudinal and
transversal directions, respectively. Here the summation is
performed over all particles in the system, ri(t) is radius vector
of the ith particle and vi(t) is its velocity. Since fluids are
isotropic we can average AL,T(q,ω) over all directions of the
wave vector q to get the dependence on q = |q|.

Figure 2 shows, in color-coded format, the dispersion
relations of the longitudinal and transverse waves obtained in
this way for the two fluid state points characterized by � = 56
(a–c) and � = 28 (d–f). In contrast to crystals, color coding
of current fluctuation spectra for fluids can merely be used
to illustrate qualitative properties. To get more quantitative
information we fitted AL,T(q,ω) by the Cauchy distribution,

f (ω) ∝ 1

(ω − ω0)2 + α2
+ 1

(ω + ω0)2 + α2
, (23)

for each value of q. Examples of the obtained dependencies
ω0(q) and α(q) are plotted in Fig. 2.
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The long-wavelength portions of the dispersion relations
ω0(q) obtained from MD simulation are plotted in Figs. 2(c)
and 2(f). Here they are compared with QCA dispersion rela-
tions. The solid curves correspond to the “full” QCA with the
actual RDF g(r) obtained in MD simulations and substituted
in Eqs. (14) and (15). The black dashed curves correspond
to the “simplified” QCA given by analytical expressions (19)
and (20). The agreement between the two versions of QCA and
MD dispersions is satisfactory at sufficiently long wavelengths
(q � 2 for the longitudinal and q � 3 for the transverse mode).
This (low-q) regime corresponds to long length scales, where
both actual and model RDF are similar, g(r) � 1. For shorter
wavelengths the two versions of QCA behave differently. This
regime corresponds to short distances and the correct account
of short-range correlations existing in liquids is necessary.
Not surprisingly, the full QCA with the actual RDF is more
consistent with MD-generated dispersion relations.

Nevertheless, clear disagreement between the QCA and MD
spectra is still observed at short wavelengths even with the use
of accurate g(r). The main reason for this is that QCA does not
take into account effects of anharmonicity, which are causative,
in particular, for damping of collective excitations. Indeed, the
particles in liquid are considered within the framework of QCA
as “frozen” near their equilibrium positions, whose statistics
is determined by the actual RDF g(r). Then the excitation
spectra are calculated in the harmonic approximation using
perturbation theory for small displacements of particles around
equilibrium positions. Account of particles’ jumps (important
for the physics of liquid state) cannot be done within the
framework of perturbation theory [85]. At the same time,
anharmonicity is related to the short-range region of the inter-
action potential, which corresponds to large q in the reciprocal
space and results in the observed growing discrepancy between
the QCA and MD spectra. It should be also pointed out that the
disappearance of the transverse mode at long wavelengths and
the existence of a q-gap for the transverse waves propagation
[87] cannot be properly described within the conventional
QCA approach, because damping effects (associated with
anharmonic interactions) are not included. One can see from
examples presented in Figs. 2(b) and 2(e) that the width of the
q-gap decreases with increasing correlations (i.e., increasing
�), in agreement with previous studies on collective excitations
in various kinds of liquids [85,87,104,105].

Regarding the longitudinal mode, the asymptotic behavior
of the dispersion relation at q � 1 is not described by QCA,
because the kinetic effects are missing in this approximation. In
this regime the characteristic scales of particle motion are much
less than the average separation between the particles. The
expected high-q asymptote ω2 ∝ k2v2

T is consistent with MD
simulation results. The proportionality coefficient 9/4 has been
previously suggested in Ref. [53]. Our preliminary analysis in-
dicates that the coefficient 2 can be more appropriate. The small
(∼10%) relative difference between these coefficients does not
allow to discriminate between these two values using the ob-
tained MD data. We, therefore, leave this issue for future work.

IV. CRYSTALS

The reduced excess energy of a 2D crystalline lattice in
the harmonic approximation is uh = M� + 1. We need to add

FIG. 3. Anharmonic corrections to the reduced excess energy of
the IPL3 crystal in two dimensions versus the inverse coupling pa-
rameter 1/�. Symbols represent the results from our MD simulation,
the solid curve is a fit of Eq. (24).

a small anharmonic correction to get the total excess energy
of a crystalline phase. This anharmonic correction has been
evaluated using MD simulations, and the results are plotted in
Fig. 3. The anharmonic corrections are fitted using the standard
functional form [106]

uanh = A1

�
+ A2

�2
+ A3

�3
. (24)

The coefficients determined from the fitting are A1 = 2.47672,
A2 = −148.77, and A3 = 13 507.4 (curve in Fig. 3). The
resulting excess internal energy of the solid phase is

us = M� + 1 + A1

�
+ A2

�2
+ A3

�3
. (25)

The reduced excess Helmholtz free energy can then be
evaluated in the following manner [107]. First, we divide it
into anharmonic and harmonic contributions

fs =
∫ �

∞
d�′ uanh(κ,�′)

�′ + fh, (26)

where fh is the reduced excess free energy in the harmonic
approximation. It is calculated by adding the lattice and
vibrational free energies and subtracting the free energy of the
perfect gas [79,108]. In 2D geometry the resulting expression
for the reduced harmonic free energy is [108]

fh = M� + ln � + 1 + 1

2N

∑
k,s

ln
ω2

s (k)

2
0

, (27)

where ωs(k) is the frequency of a phonon with wave number
k and polarization s, and the sum on k is over the first
Brillouin zone in the reciprocal lattice. The sum of the last
two terms is sometimes referred to as the harmonic entropy
constant �, which is determined by the phonon spectrum of the
crystalline lattice. The latter has been evaluated for the IPL3
triangular lattice using the standard technique; the resulting
phonon dispersion curves are shown in the inset of Fig. 4. The
corresponding harmonic entropy constant has been evaluated
as � = 0.09284 (a related approach to estimate � using the
QCA dispersion relations is briefly discussed in Appendix E).
Thus, the reduced Helmholz free energy of the IPL3 crystalline
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FIG. 4. Example of the radial distribution function g(r) for the
IPL3 crystalline lattice at � = 92.8. The symbols correspond to the
MD simulation results, the solid curve is obtained using the IM
approach. The inset demonstrates BvK phonon dispersion curves for
the IPL3 triangular lattice.

solid is

fs = M� + ln � + 0.09284 − A1

�
− A2

2�2
− A3

3�3
. (28)

This is our main result concerning the thermodynamics of the
solid phase.

We can now estimate the location of the fluid-solid phase
transition in the 2D IPL3 system by equating Helmholtz
free energies of the corresponding phases. This yields �m �
69 (here the subscript “m” refers to melting). In a more
detailed consideration we equate fluid and solid temperatures,
pressures, and chemical potentials to evaluate the location
and width of the phase coexistence region. The standard
procedure then yields �L � 69.2 and �S � 69.4. This is
comparable to the results previously reported in the literature
[21,22,50,51,58] and is particularly close to the results from
the Brownian dynamics simulations [57]. Note that a very nar-
row coexistence gap obtained, ��/�S � 0.003 (here �� =
�S − �L), should be related to the very soft character of
the interaction potential. The anharmonic terms are not very
important for the location of the phase transition: With neglect-
ing anharmonic corrections, the fluid and solid free energy
intersection point moves to �m � 75. As a final remark, we
note that we have not considered the existence of the hexatic
phase.

Thermodynamic properties of the IPL3 crystals can also
be evaluated based on purely theoretical approach using an
interpolation method (IM) for pair correlations in classical
crystals proposed recently by some of the present authors
[109–111]. This approach allows us to compute RDF in the
crystalline state based on the Born-von Kármán (BvK) phonon
spectrum and taking into account anharmonic corrections to the
first correlation peak. The technical details of this approach are
summarized in Appendix F.

In Fig. 4 an example of the crystalline RDF g(r) is
presented. Visual similarity between the obtained theoretical
RDF and MD data is the same as in previous applications of
the IM approach [67,110,111]. Using these highly accurate
RDFs, pressure and excess energy can be readily obtained

using Eqs. (5). In its simplest harmonic form (β = 0) the IM
approach provides a relative error in the excess energy smaller
than �10−3 in the worst case near the melting point. Taking
into account anharmonicity, with the anharmonic correction
coefficient β = 7.54 [see Eq. (F4)], obtained from MD simu-
lations of the IPL3 crystal, reduces the relative error to �10−4.

The longitudinal and transverse sound velocities of a perfect
IPL3 2D lattice are given by Eqs. (17) combined with uex =
M� (we note that QCA reduces to the standard phonon theory
of solids in the limit T = 0). The final result is

CL � 1.8149(ε/m)1/2(σ/a)3/2,

CT � 0.5472(ε/m)1/2(σ/a)3/2.
(29)

V. HIGH-FREQUENCY ELASTIC MODULI AND SOUND
VELOCITIES IN THE LIQUID STATE

The high-frequency (instantaneous) elastic moduli for sim-
ple 3D fluids were derived by Zwanzig and Mountain [112].
The 2D analogues of these elastic moduli are

K∞ = 2ρT − πρ2

4

∫ ∞

0
drr2g(r)[φ′(r) − rφ′′(r)], (30)

the high-frequency limit of the bulk modulus [113], and

G∞ = ρT + πρ2

8

∫ ∞

0
drr2g(r)[3φ′(r) + rφ′′(r)], (31)

the high-frequency limit of the shear modulus. The relations
between the QCA elastic sound velocities derived in Sec. III B
and the elastic moduli are

mρC2
L = K∞ + G∞ − 3ρT , mρC2

T = G∞ − ρT . (32)

Useful relations between CL and CT in both two and three di-
mensions have been recently discussed [114]. In particular, the
high-frequency (instantaneous) sound velocity C∞, directly
related to the instantaneous bulk modulus, can be introduced:

C2
∞ = K∞/mρ = 2v2

T + C2
L − C2

T = v2
T

(
2 + 15

4 uex
)
.

(33)

The main purpose of this section is to demonstrate that this
instantaneous sound velocity is extremely close to the con-
ventional adiabatic sound velocity appearing in hydrodynamic
description of fluids [115]:

Cs = 1

m

(
∂P

∂ρ

)
S

= vT
√

γμ. (34)

The sound velocities CL, C∞, and Cs for several values
of the coupling parameter �, corresponding to the strongly
coupled fluid phase, are summarized in Table I. It is observed
that CL overestimates the adiabatic sound velocity Cs. How-
ever, the difference is rather small, as should be expected for
the soft interaction potential studied in this work [63,71,116].
(For soft interactions at strong coupling one normally observe
CL � vT and CL � CT, which implies CL ∼ C∞ � Cs [71].)
The instantaneous sound velocity C∞ is just slightly above the
adiabatic sound velocity Cs, the difference practically disap-
pears with the increase in the coupling strength. The general
inequality Cs � C∞ was established by Schofield [117]. We
see that from the side of soft long-ranged interactions, this
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TABLE I. Reduced sound velocities (in units of thermal velocity)
of the IPL3 fluid in two dimensions evaluated for different values of
the coupling parameter �, corresponding to the strongly coupled fluid
phase.

� 10 20 30 40 50 60 70

CL/vT 6.04 8.38 10.18 11.70 13.04 14.25 15.37
C∞/vT 5.93 8.11 9.81 11.24 12.51 13.66 14.72
Cs/vT 5.92 8.10 9.80 11.24 12.51 13.66 14.72

inequality is very close to equality, the observation previously
reported for soft IPL systems in three dimensions [71]. This
tendency, however, breaks down in the case of extremely
steep hard-spherelike interactions, where CL, and C∞ are all
diverging (in two and three dimensions [71,118]), while Cs

remains finite [119].

VI. CONCLUSION

We studied thermodynamics of two-dimensional IPL3
classical systems across coupling regimes, from the weakly
nonideal gas to the strongly coupled fluid and crystalline
phases. Careful analysis of the extensive MD simulation results
allowed us to put forward simple and physically suitable
expressions for the thermodynamic properties (e.g., excess
energy) of the investigated system. In particular, Helmholtz
free energies of the fluid and solid phases have been derived,
and the location of the fluid-solid coexistence has been deter-
mined. The obtained results are comparable to those previously
reported in the literature. A very narrow fluid-solid coexistence
gap observed is likely related to the very soft nature of the
interaction potential.

The QCA-QLCA approach has been applied to the de-
scription of collective modes of the IPL3 fluids. The use of a
simplistic RDF has been suggested, based on previous results
related to strongly coupled plasma fluids. This has allowed us to
derive explicit analytic dispersion relations for the longitudinal
and transverse modes, which have been checked against the
results of direct MD simulations. Reasonable agreement in the
long-wavelength regime has been observed. We also briefly
pointed out that the obtained simple fluid dispersion relations
can be of some use in estimating the harmonic entropy constant
of the solid phase.

The expressions for various sound velocities have been
examined. These include conventional longitudinal and trans-
verse elastic sound velocities of the idealized IPL3 crystalline
lattice, their analogues (based on a QCA-QLCA approxima-
tion) in the strongly coupled fluid state, as well as conven-
tional adiabatic sound velocity of the IPL3 fluid. Additionally,
expressions for the 2D high-frequency (instantaneous) elastic
moduli have been introduced and related to the sound veloci-
ties. One useful observation is that the instantaneous sound ve-
locity (related to the instantaneous bulk modulus) is extremely
close to the adiabatic sound velocity. This observation is very
likely a general property of soft long-ranged potentials, related
neither to the exact shape of the interaction potential nor to the
dimensionality.

Finally, we would like to point once more that the interaction
potential studied in this work represents just one particular

example of very soft long-ranged interactions. It is therefore
important that the approaches used here can be directly (or with
minor modifications) transferred and applied to other related
soft-interacting particle systems.
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APPENDIX A: THERMODYNAMIC RELATIONS
USED IN THIS WORK

Here we express some of the reduced thermodynamic
quantities of interest in terms of the reduced excess internal
energy uex. For example, the compressibility Z = PV/NT is

Z = 1 + pex = 1 + 3
2uex. (A1)

The inverse reduced isothermal compressibility modulus μ =
(1/T )(∂P/∂ρ)T is

μ = 1 + 3

2
uex + 9�

4

∂uex

∂�
. (A2)

The reduced isochoric heat capacity cV = (1/N)(∂U/∂T )V is

cV = 1 + uex − �
∂uex

∂�
. (A3)

The adiabatic index γ = cP/cV is (for the considered potential
and dimensionality)

γ = 1 + (3cV − 1)2

4μcV
. (A4)

The quantities γ and μ are used to calculate the conventional
adiabatic sound velocity in IPL3 fluids.

APPENDIX B: INTERNAL ENERGY
AT INTERMEDIATE COUPLING

The dependence of the reduced excess energy uex on the
coupling parameter � obtained from MD simulations at weak
and moderate coupling is shown in Fig. 5 along with the
scalings at strong coupling (10) and weak coupling (12). Based
largely on the combination of these two scalings, we con-
structed a practical approximation (interpolation) suitable for
the intermediate coupling regime. The proposed interpolation
is

uex = 2
3 [1 − ξ (�)]f1 + ξ (�)[M� + A ln(1 + B�s)], (B1)

where

ξ (�) = [1 + e−C(�−�0)]−1 (B2)

is the smooth step function. Fitting MD data resulted in
the following coefficients: A = 0.4791, B = 1.2198, s =
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FIG. 5. The reduced excess energy, uex, of a weakly to moderately
coupled IPL3 system in two dimensions versus the coupling parameter
�. Circles correspond to the results of MD simulations performed in
this work, the green line corresponds to the weak coupling asymptote
[Eq. (12)] the orange line corresponds to the strong coupling asymp-
tote of Eq. (10), and the red curve is the fit of Eq. (B1) appropriate
for the moderately coupled regime.

0.6044, C = 428.216, and �0 = 2.25 × 10−2. The corre-
sponding curve is also plotted in Fig. 5, documenting excellent
agreement with the MD results.

APPENDIX C: THERMODYNAMICS QUANTITIES
OF THE IPL3 MELT

In Table II we have tabulated some reduced thermodynamic
quantities of the IPL3 fluid near the boundary of the fluid-solid
coexistence (IPL3 melt) at � = 69. The quantities displayed
are internal thermal energy (uth), isochoric heat capacity (cV),
adiabatic index (γ = cP/cV), Helmholtz free energy (fex),
excess internal energy (uex), excess entropy (sex = uex − fex),
compressibility (Z = 1 + pex), longitudinal elastic velocity
(CL/vT), and transverse elastic velocity (CT/vT).

APPENDIX D: EXPLICIT EXPRESSIONS
FOR THE DISPERSION RELATIONS

Assume that a pairwise interaction potential can be written
in the general form

φ(r) = ε0f (r/a),

where ε0 is the energy scale [the subscript is used here to
demonstrate difference in energy scales compared to Eq. (1);
for the IPL3 potential we have ε0 = ε(σ/a)3]. The integrals
in Eqs. (14) and (15) can be simplified taking into account
dr = r dr dθ (in 2D), kz = kr cos θ and that the derivatives of

TABLE II. Selected thermodynamic quantities (see the text for
nomenclature) at the fluid boundary of the fluid-solid coexistence, at
� � 69.

uth � 1.38 fex � 59.39 Z � 85.71
cV � 2.11 uex � 56.47 CL/vT � 15.26
γ � 1.02 sex � −2.92 CT/vT � 4.60

the interaction potential are

∂2φ

∂z2
= φ′′(r)

z2

r2
+ 1

r
φ′(r)

(
1 − z2

r2

)
and

∂2φ

∂y2
= �φ(r) − ∂2φ

∂z2
.

Integration over the angle is then performed with the help of
the identities

1

2π

∫ 2π

0
[1 − cos(kr cos θ )] cos2 θ dθ

= 1

2
− J1(kr)

kr
+ J2(kr)

and

1

2π

∫ 2π

0
[1 − cos(kr cos θ )]dθ = 1 − J0(kr),

where J0(x), J1(x), and J2(x) denote the Bessel functions of
the first kind, related via

J0(x) + J2(x) = 2J1(x)

x
.

Introducing the reduced distance x = r/a we obtain

ω2
L = 2

0

∫ ∞

0
g(x) dx

{
f ′(x)

[
1

2
− J1(qx)

qx

]
+ xf ′′(x)

[
1

2
+ J1(qx)

qx
− J0(qx)

]}
, (D1)

and

ω2
T = 2

0

∫ ∞

0
g(x) dx

{
f ′(x)

[
1

2
+ J1(qx)

qx
− J0(qx)

]
+ xf ′′(x)

[
1

2
− J1(qx)

qx

]}
. (D2)

Here 2
0 = 2πρε0/m = 2πρεσ 3/ma3 is the nominal 2D

frequency and q = ka is the reduced wave number. For the
IPL3 potential with f (x) = 1/x3 the dispersion relations
become

ω2
L = 32

0

2

∫ ∞

0

g(x) dx

x4
[3 − 3J0(qx) + 5J2(qx)] (D3)

and

ω2
T = 32

0

2

∫ ∞

0

g(x) dx

x4
[3 − 3J0(qx) − 5J2(qx)]. (D4)

To within some minor difference in notation, Eqs. (D3) and
(D4) coincide with Eqs. (16) and (17) from Ref. [53]. These
expressions were previously used to generate the dispersion
curves with the input of g(r) data obtained in MD computer
simulations [53,72]. A simplification, which does not require
the accurate knowledge of the RDF, is discussed in Sec. III B.

APPENDIX E: HARMONIC ENTROPY CONSTANT
FROM QCA DISPERSION RELATIONS

Taking into account that we have two (longitudinal and
transverse) modes in a 2D lattice and approximating the first
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Brillouin zone by a disk with the area 4π2ρ, we can rewrite
the harmonic entropy constant [the last two terms in Eq. (27)]
as

� = 1 + 1

4

∫ 2

0

[
ln

ω2
L(q)

2
0

+ ln
ω2

T(q)

2
0

]
q dq, (E1)

where ωL,T(q) correspond to the angularly averaged longitu-
dinal and transverse phonon dispersion curves. As a simplest
rough estimate one can approximate the phonon spectrum by
its isotropic acoustic asymptote, Eqs. (16) and (29), as was done
in Ref. [108] for a 2D OCP with logarithmic interactions. In
this way we have obtained for the present case of IPL3 in two
dimensions

�0 � 0.6862, (E2)

which significantly overestimates the actual harmonic entropy
constant [subscript “0” in Eq. (E2) denotes zero approxima-
tion]. In order to improve the accuracy we have also used the
analytical QCA expressions (19) and (20) in Eq. (E1). This
approach is based on the observation that angularly averaged
lattice dispersion relations show remarkable similarity to
isotropic QCA dispersion relation, in particular within the first
Brillouin zone [91,120]. Taking R = 1/M = 1.25233 we have
obtained in this approximation

�QCA � 0.1336, (E3)

which is considerably closer to the actual harmonic entropy
constant. Thus, the fluid QCA dispersion relations in the strong
coupling limit can be of some use in quickly estimating the
free energy of the solid phase. Note that the harmonic entropy
constant contributes only a small fraction of the total free
energy for soft long-ranged interactions.

APPENDIX F: INTERPOLATION METHOD
FOR CALCULATING RDF IN 2D CRYSTALS

The anisotropic RDF g(r) of a crystal is written in the
form [111]

g(r) = 1

ρ

∑
α

pα(r − rα), (F1)

where the summation is over all the nodes α, and each
individual peak has the shape

pα(r) ∝ exp

[
−φ(r + rα)

kBT
− bα(eα · r)

− (eα · r)2

2a2
‖α

− r2 − (eα · r)2

2a2
⊥α

]
. (F2)

The normalization constant as well as the parameters a2
‖,⊥α,bα

are defined by the conditions [111]∫
dr pα(r) = 1,

∫
dr rpα(r) = 0,∫

dr (eα · r)2pα(r) = σ 2
‖α,∫

dr [r2 − (eα · r)2]pα(r) = σ 2
⊥α,

(F3)

where eα = rα/rα is the unit vector in the direction of rα ,σ 2
‖,⊥ is

the mean squared displacement for longitudinal and transverse
directions, respectively.

The effect of the temperature dependence of phonon spectra
can be taken into account by introduction of the anharmonic
correction coefficient β [67],

σ 2
‖,⊥α = σ̃ 2

‖,⊥α

[
1 + βNσ̃ 2

1 /V
]
, (F4)

where the tildes denote the mean-squared displacement (MSD)
calculated using BvK phonon spectra (see Ref. [110]); σ̃ 2

1 is
the total MSD for the nearest neighbors.

Contrary to 3D crystals, in 2D cases the mean squared dis-
placements diverge logarithmically. The resulting correlation
peaks become less localized, so the overlap of the neighboring
peaks is generally stronger for 2D crystals. Nevertheless, it
turns out that the IM approach can be applied also in this case,
in essentially the same way as for 3D crystals [111].
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