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Abstract

For present and future spaceborne SAR missions, an increasing amount of onboard
data is going to be required, due to the employment of large bandwidths, multiple po-
larizations, and large swath widths, which lead to hard requirements in terms of onboard
memory and downlink capacity. In this context, SAR raw data quantization represents
an essential aspect, since it affects both, the amount of data to be stored and transmitted
to the ground, and the quality of the resulting SAR products. In this master thesis, a
data reduction approach based on predictive quantization is investigated in the context
of Tandem-L, a DLR proposal for a highly innovative L-band radar satellite mission to
monitor the dynamic processes of the Earth. Tandem-L employs staggered PRI, a novel
acquisition mode which allows for a swath width up to 350 km and an azimuth resolution
in the order of 10 m, resulting in a required data volume of about 8 Terabyte per day.
In this case, a certain azimuth oversampling is mandatory in order to properly recon-
struct the data in presence of the gaps introduced by the staggered SAR mode. The
proposed technique takes advantage of the time variant autocorrelation properties of the
non-uniform azimuth raw data stream in order to reduce the amount of data through
a novel quantization method, named Predictive-Block Adaptive Quantization. Different
prediction orders are investigated by considering the trade-off between achievable per-
formance and complexity. Simulations for different target scenarios show that a data
reduction of about 10-15% can be achieved with the proposed technique with a modest
increase of the system complexity. Moreover, having a-priori information on the position
of the gaps, a technique for their reconstruction based on dynamic bit allocation has been
successfully implemented, showing no significant loss of information.





List of Figures

1 SAR Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Spherical SAR Geometry in the plane defined by the Earth’s center, a
point scatterer P and the radar closest approach to it R0. The height of
the satellite is expressed as hs, while Re represents the radius of the earth. 5

3 Spherical SAR Geometry in the plane defined by the radar track and the
point scatterer P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 SAR acquisition modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 SAR Processing workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Synthetic aperture Lsa and the azimuth antenna footprint Ls, Lsa = Ls. . . 10

7 Side-Looking geometry distortion. . . . . . . . . . . . . . . . . . . . . . . . 13

8 Interferometric SAR acquisition. . . . . . . . . . . . . . . . . . . . . . . . . 14

9 Standard deviation of interferometric phase error as a function of coherence,
for different number of looks. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10 An overview of the Earth’s dynamic processes which will be assessed and
monitored by the Tandem-L mission. . . . . . . . . . . . . . . . . . . . . . 17

11 Artistic view of the two satellites equipped with a reflector for the Tandem-
L mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

12 Tandem-L Scan-On-Receive principle. . . . . . . . . . . . . . . . . . . . . . 21

13 Location of blind ranges, (left) for a system with constant PRI and (right)
staggered PRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

14 ADC flowchart, considered as a variable gain amplifier A and an additive
noise source q(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

15 Midrise (left) and midtread (right) quantization schemes. . . . . . . . . . . 24

16 Block adaptive quantization (BAQ) flowchart. . . . . . . . . . . . . . . . . 26

17 Probability density function of input signal and clipping threshold. . . . . . 28

18 Monte Carlo simulation showing the SQNR performance of a uniform ADC
for different bitrates and different values of signal-to-clipping ratio (γclip). . 31

19 Phase error in cartesian quantizers for low and large amplitude signals.
Green vectors represent two possible raw signal values, while the black
vectors represent the quantized version to the nearest possible output be-
tween the decision boundaries. The resulting phase is more degraded for
the sample with lower amplitude. . . . . . . . . . . . . . . . . . . . . . . . 32

20 Predictive quantization encoding flow scheme. . . . . . . . . . . . . . . . . 34

21 Predictive quantization decoding flow scheme. . . . . . . . . . . . . . . . . 35



22 Azimuth antenna pattern as function of azimuth distance considering the
Tandem-L system characteristics. . . . . . . . . . . . . . . . . . . . . . . . 38

23 Theoretical autocorrelation of raw SAR data as function of time shift (a)
and PRF (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

24 Autocorrelation up to 6 samples (i.e. PRI intervals) as function of PRF. . 41

25 Theoretical gain in dB for LPC up to the 6-th order as function of PRF. . 42

26 Probability density function of the real values of the original signal (a) and
the differential coming from the weighted 1 sample subtraction (b). . . . . 43

27 Processing chain for uniform PRI investigation. . . . . . . . . . . . . . . . 48

28 SQNR evaluated on raw data with uniform PRI for the direct and first-
order predictive quantizers as function of PRF at different bitrates. . . . . 49

29 SQNR evaluated on raw data with uniform PRI for the direct and second-
order predictive quantizers as function of PRF at different bitrates. . . . . 50

30 SQNR evaluated on raw data with uniform PRI for the direct and third-
order predictive quantizers as function of PRF at different bitrates. . . . . 50

31 Gain evaluated on raw data with uniform PRI for the direct and first-order
predictive quantizers as function of PRF at different bitrates. . . . . . . . . 51

32 Gain evaluated on raw data with uniform PRI for the direct and second-
order predictive quantizers as function of PRF at different bitrates. . . . . 51

33 Gain evaluated on raw data with uniform PRI for the direct and third-order
predictive quantizers as function of PRF at different bitrates. . . . . . . . . 52

34 SQNR evaluated on focused data with uniform PRI for the direct and first
order predictive quantizers as function of PRF at different bitrates. . . . . 52

35 SQNR evaluated on focused data with uniform PRI for the direct and
second order predictive quantizers as function of PRF at different bitrates. 53

36 SQNR evaluated on focused data with uniform PRI for the direct and
third-order predictive quantizers as function of PRF at different bitrates. . 53

37 Gain evaluated on focused data with uniform PRI for the first, second
and third-order predictive quantizers as function of PRF at 4 bits/samples
(which is the standard bitrate employed for Tandem-L mission). . . . . . . 54

38 SQNR evaluated on raw data for 1st order Predictive Quantizer as function
of PRF at different bitrate applied on TanDEM-X system parameters. . . . 56

39 SQNR evaluated on focused data for 1st order Predictive Quantizer as func-
tion of PRF at different bitrate applied on TanDEM-X system parameters. 56

40 SQNR evaluated on raw data for 1st order Predictive Quantizer as function
of PRF at different bitrate applied on TanDEM-X system parameters. . . . 57

41 SQNR evaluated on raw data for 1st order Predictive Quantizer as function
of PRF at different bitrate applied on TanDEM-X system parameters. . . . 57

42 Generation of non-uniform PRI raw data. . . . . . . . . . . . . . . . . . . . 58

43 Processing chain for uniform PRI investigation. . . . . . . . . . . . . . . . 59

44 SQNR evaluated on raw data with non-uniform PRI for the direct and first
order predictive quantizers with 1β as function of PRF for different uniform
ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



45 SQNR evaluated on raw data with non-uniform PRI for the direct and
first order predictive quantizers with 20β as function of PRF for different
uniform ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

46 SQNR evaluated on raw data with non-uniform PRI for the direct and first
order predictive quantizers with 3β as function of PRF for different uniform
ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

47 Gain evaluated on raw data with non-uniform PRI for the direct and first
order predictive quantizers as function of PRF for different uniform ADC
rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

48 Gain evaluated on raw data with non-uniform PRI for the 20β and 1β first
order predictive quantizers as function of PRF for different uniform ADC
rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

49 Gain evaluated on raw data with non-uniform PRI for the 3β and 1β first
order predictive quantizers as function of PRF for different uniform ADC
rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

50 SQNR evaluated on interpolated data with non-uniform PRI for the direct
and first order predictive quantizers with 1β as function of PRF for different
uniform ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

51 SQNR evaluated on interpolated data with non-uniform PRI for the di-
rect and first order predictive quantizers with 20β as function of PRF for
different uniform ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

52 SQNR evaluated on the interpolated data with non-uniform PRI for the
direct and first order predictive quantizers with 3β as function of PRF for
different uniform ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

53 SQNR evaluated on focused data with non-uniform PRI for the direct and
first order predictive quantizers with 1β as function of PRF for different
uniform ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

54 SQNR evaluated on focused data with non-uniform PRI for the direct and
first order predictive quantizers with 20β as function of PRF for different
uniform ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

55 SQNR evaluated on focused data with non-uniform PRI for the direct and
first order predictive quantizers with 3β as function of PRF for different
uniform ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

56 Gain evaluated on focused data with non-uniform PRI for the direct and
first order predictive quantizers as function of PRF for different uniform
ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

57 Gain evaluated on focused data with non-uniform PRI for the 20β and 1β
first order predictive quantizers as function of PRF for different uniform
ADC rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

58 Gain evaluated on raw data with non-uniform PRI for the 3β and 1β first
order predictive quantizers as function of PRF for different uniform ADC
rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

59 PRI variation for the selected case of Staggered PRI for Tandem-L. . . . . 69

60 Behaviour of predictive coding parameters for the considered case of stag-
gered PRI for Tandem-L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



61 Comparison between the two approaches to the staggered PRI for Tandem-
L: one exploiting a single coefficient for prediction (1β) and the other taking
into account all the variations (233β). . . . . . . . . . . . . . . . . . . . . . 71

62 Predictive quantization encoding flow scheme. . . . . . . . . . . . . . . . . 71
63 Predictive quantization decoding flow scheme. . . . . . . . . . . . . . . . . 72
64 Processing chain for 2-dimensional Tandem-L simulation scenes and their

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
65 SQNR calculated on raw data at different orders of Predictive BAQ on a

distributed target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
66 SQNR calculated on interpolated data at different orders of Predictive BAQ

on a distributed target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
67 SQNR calculated on focused data at different orders of Predictive BAQ on

a distributed target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
68 SQNR calculated on focused data at different orders of Predictive BAQ

exploiting fractional bitrate on a distributed target. . . . . . . . . . . . . . 75
69 Backscatter profile averaged on the range line for the “Jump” target sim-

ulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
70 SQNR calculated on focused data at different orders of Predictive BAQ as

function of range line on a “Jump” target. The SQNR has been averaged
for each range line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

71 SQNR calculated on focused data at different orders of Predictive BAQ on
a “Jump” target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

72 Example of gaps location (in white) along the acquired raw data matrix. . 79
73 SQNR calculated on the whole raw data encoded with direct, “Post” and

“Distributed” strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
74 SQNR calculated on the samples after gaps encoded with direct, “Post”

and “Distributed” strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
75 SQNR calculated on the samples near a gap after interpolation encoded

with direct, “Post” and “Distributed” strategies. . . . . . . . . . . . . . . . 82
76 SQNR calculated on the raw data encoded with “Distributed” strategy for

different orders of prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . 83
77 SQNR calculated on the focused data encoded with “Distributed” strategy

for different orders of prediction. . . . . . . . . . . . . . . . . . . . . . . . . 83
78 SQNR calculated on the samples near a gap after interpolation encoded

with “Distributed” strategy for different orders of prediction. . . . . . . . . 84



List of Tables

1 Tandem-L system parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Parameters for BAQ encoding for different compression factors as imple-
mented in TerraSAR-X and TanDEM-X. In the first columns (Compression
Rate), the 8 at each row indicates the ADC bits, and the second number
is the effective nBAQ employed for BAQ compression. . . . . . . . . . . . . 27

3 TanDEM-X system parameters. . . . . . . . . . . . . . . . . . . . . . . . . 55
4 “Post” strategy bit allocation exploiting all the available bits. . . . . . . . 80
5 “Distributed” strategy bit allocation exploiting all the available bits. . . . . 80
6 “Post” bit allocation strategy applied on BAQ compatible bitrates. . . . . 81
7 “Distributed” strategy bit allocation applied on BAQ compatible bitrates. 81





Contents

1 Introduction 1

2 Theoretical Background 3

2.1 Synthetic Aperture Radar (SAR) Remote Sensing . . . . . . . . . . . . . . 3

2.1.1 SAR Acquisition Concept . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 SAR Imaging Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 SAR Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Range Focusing and Resolution . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Azimuth Focusing and Resolution . . . . . . . . . . . . . . . . . . . 9

2.3 Radar Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Distributed Scatterers and Speckle . . . . . . . . . . . . . . . . . . 11

2.3.2 Backscatter Intensity, σ0 . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Interferometric SAR (InSAR) . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Acquisition Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Coherence and Phase Errors . . . . . . . . . . . . . . . . . . . . . . 15

3 The Tandem-L Mission 17

3.1 Mission Goals and Characteristics . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Staggered SAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 SAR Raw Data Quantization 23

4.1 Quantization Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Uniform and Non-Uniform Quantization . . . . . . . . . . . . . . . 23

4.1.2 Block Adaptive Quantization (BAQ) for SAR Systems . . . . . . . 25

4.1.3 Quantization Parameters . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Quantization Errors in SAR . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Granular and Clipping Errors . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Low Amplitude and Low Scatterer Suppression . . . . . . . . . . . 31

5 Predictive Quantization for SAR Systems 33

5.1 Linear Predictive Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Weights derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 The Tandem-L System: Autocorrelation Analysis . . . . . . . . . . . . . . 37

5.3 Coding Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 Analytical Derivation for Gaussian Inputs . . . . . . . . . . . . . . 42



6 Simulation Results 47
6.1 Uniform Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 TanDEM-X case study . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Non-Uniform Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Staggered SAR for Tandem-L . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 Optimum Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Analysis on a Space Varying Scene . . . . . . . . . . . . . . . . . . 76
6.3.3 Gap Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Conclusion and Outlook 85

Bibliography 86



1 Introduction
In the last decades, satellite Synthetic Aperture Radar (SAR) applications have become
of great interest for the scientific community. The capability of those systems allows
to provide a high resolution imaging independent from daylight, weather conditions and
cloud coverage. For present and future spaceborne SAR missions, an increasing amount
of onboard data is going to be required, due to the employment of large bandwidths,
multiple polarizations, and large swath widths, which lead to hard requirements in terms
of onboard memory and downlink capacity. In this context, SAR raw data quantization
represents an essential aspect, since it affects both, the amount of data to be stored and
transmitted to the ground, and the quality of the resulting SAR products. In the following
subsection the problem is introduced and the goal of the thesis is reported.

A big challenge for future spaceborne remote sensing missions is now turning to the
estimation and long-term monitoring of dynamic processes in the Earth’s environmental
system, such as deformation events, forest and biomass change, and ocean surface cur-
rents. The German Aerospace Center (DLR) is investigating an innovative single-pass
interferometric and fully polarimetric L-band radar mission, named Tandem-L, which ex-
ploits innovative high-resolution wide swath SAR modes, together with the use of large
bandwidths, high pulse repetition frequencies, and multiple acquisition channels, result-
ing in an achievable swath width of about 350 km on ground. Such an increase in term
of coverage has as a main drawback the generation of a huge amount of onboard data,
which is of around 8 Terabytes per day. One of the proposed solutions to reduce the
resulting onboard data reduction suggests to perform a complex onboard processing (i.e.
an onboard interpolation, low-pass filtering and decimation) and allows a data reduction
up to 50% [23][21]. On the other hand, the onboard computational memory required for
the data reduction processing is at the limit of the hardware components, leading to high
energy consumption. Moreover, the practical realization of the technique is very complex,
including many specific coefficients which must be correctly selected during acquisition.
The research of alternative solutions is therefore of great interest in order to have differ-
ent options to choose for the mission development, which motivates the present master
thesis. In this work, a data reduction strategy based on Linear Predictive Coding (LPC)
is investigated in the context of Tandem-L. The method has been designed to reduce the
complexity as much as possible while achieving a certain data reduction. A mathemati-
cal formulation for the novel technique is an interesting goal for understanding in which
situation the present method can be more or less efficient. The resulting performance has
been verified through Monte Carlo simulations in order to evaluate the solution under
different aspects (i.e. final performance versus resulting system complexity). Moreover,
other complications introduced by the Tandem-L system such as the presence of missing
samples (so-called gaps) during the acquisition, have been investigated and successfully
solved through novel coding strategies.

The thesis is structured as follows. In Section 2 the principles of SAR systems are
recalled, including specific details of the processing necessary to retrieve the data from

1



the received echoes. An advanced measurement technique named Interferometric SAR
is also reported as the Tandem-L mission will have this features. The specific case of
Tandem-L mission is described in Section 3, giving a detailed overview about the mission
characteristics and objectives. A specific explanation of the capability of the system is
reported also to introduce the problem of onboard data amount. The basics of quantiza-
tion are reported in Section 4, with both general concepts of real world quantizers and
performance evaluations. A specific configuration named Block Adaptive Quantization is
also described, being the actual state of the art for satellite SAR system quantization. In
Section 5 the Linear Predictive Coding technique, a specific data encoding compression
method, is introduced. The application of this technique on SAR system is investigated,
giving specific information on a novel quantization method and its theoretical investiga-
tion. The result of the analysis are discussed in Section 6, where are also compared with
the state of the art technique in quantization. In the last section the conclusion of the
work are presented, as well as some outlook for future research steps.

2



2 Theoretical Background
2.1 Synthetic Aperture Radar (SAR) Remote Sens-

ing
Synthetic Aperture Radar (SAR) is an active remote sensing technique aimed at mapping
and monitoring the Earth surface. Atmospheric phenomena such as clouds and fog do not
have significant impact on SAR measurements, allowing this type of systems to perform
in any weather condition. Moreover, being an active system (i.e. it provides its own
illumination), SAR can perform independently also from solar illumination, while using
optical passive sensors this is not possible. SAR systems are usually equipped on satellite
or airborne platforms, both offering advantages and disadvantages for different applica-
tions. While satellites are more stable and guarantee a longer mission lifespan, airborne
platforms can achieve higher resolution and are less expensive. SAR systems can either be
monostatic or bistatic if one or two sensors are employed for transmission and reception,
respectively. In general, radar systems are microwave imaging sensors characterized by an
azimuth resolution which is limited by the antenna dimension. Since the antenna beam
width is inversely proportional to its dimension (i.e. size), a smaller antenna will be less
directive. Thus, to obtain a sufficient resolution, a longer antenna is necessary. This is
the case of Real Aperture Radar (RAR), for which the azimuth resolution is given by

δa = θhR0 =
λ

La
R0, (1)

where λ is the wavelength, La is the azimuth antenna length and R0 is the the slant range.
As an example, for a system with a 5 m antenna, operating in L band (λ =25 cm) and a
flying orbit of 500 km, the azimuth resolution will be in the order of kilometers. A longer
antenna could improve the δa but the physical and mechanical constraints imposed by
airborne and particularly spaceborne platforms do not allow antennas of longer dimen-
sion. To overcome this limitation, Synthetic Aperture Radars (SAR) exploits the high
stability of the moving platform (better in spaceborne systems) considering the formation
of a synthetic antenna [18]: an appropriate combination of the received echoes allows
to construct a virtual aperture much longer than the physical antenna, hence achieving
resolutions which are suitable for the observation of physical and geometrical parameters
on the Earth’s surface.

2.1.1 SAR Acquisition Concept

The geometry of a SAR acquisition (valid in general for airborne or spaceborne) is shown
in Figure 1. The platform moves along the radar track (azimuth direction) at a given
height hs and a given speed vs, whereas the slant range is the direction perpendicular to
the radar’s flight path and is indicated by R0. The swath width Wg is the ground range
extension of the radar scene and is given by

3



Wg =
λR0

W cos θi
, (2)

where W is the antenna length in elevation, and θi is the incidence angle defined between
the range direction and the normal on the surface. The azimuth footprint extension is
instead defined as

Ls =
λR0

L
, (3)

where L is the antenna length in azimuth direction. Differently from the range extension,
the azimuth scene extension depends (for most of the acquisition modes) on the data
take duration. From equation (3), as well as from Figure 1, it is possible to notice that
the antenna footprint Ls in azimuth is also equivalent to the synthetic aperture, which is
defined as the azimuth extension within which a point on ground is “seen” by the radar
pulses.
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Figure 1: SAR Geometry

The SAR systems transmits a radar wave which impinges the targeted area with an
incidence angle θi defined from the range vector and the normal to the surface. The
antenna footprint directly depends on the antenna dimension in both direction, according
to (2) and (3). SAR are coherent radar systems, meaning that the amplitude and phase of
the received echo are recorded, which are dependent on both, the physical and dielectric
properties of the irradiated target, as well as on the sensor parameters, such as the antenna
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pattern and the wavelength. The received signal is weighted by the antenna pattern both
in transmission and reception. For rectangular apertures, the antenna pattern G can be
reasonably approximated by

G(ψa, ψr) = sinc2

(
L

λ
ψa

)
sinc2

(
W

λ
ψr

)
, (4)

where ψa and ψr are the off-center angles in azimuth and range direction, while the sinc
functions are squared to consider both transmission and reception process. As known in
radar systems, the energy of the antenna pattern is typically considered between the half
power beamwidth angles (3 dB). If a sinc2 pattern is considered, the half power beamwidth
is located at ±0.443 λ

W
, hence the range and azimuth beamwidths can also be expressed

as

βr = 0.886
λ

W
(5)

βa = 0.886
λ

L
. (6)

The proper definition of the SAR geometry is of crucial importance to accurately
describe and model the performance of the SAR system under consideration. Typically, it
is possible to employ a spherical Earth approximation, as shown in Figure 2 and Figure 3.
In particular, the satellite velocity is a critical parameter in order to describe theoretically
the antenna pattern and its properties. The relevance of the each parameter will be
analyzed in detail in Section 5.2.

A

GH !"

!I

!I

!J >

?@

ℎ$

Figure 2: Spherical SAR Geometry in the plane defined by the Earth’s center, a point
scatterer P and the radar closest approach to it R0. The height of the satellite is expressed
as hs, while Re represents the radius of the earth.

In Figure 2, it is pictured the spherical SAR geometry in the plane of earth’s center,
the point scatterer P and the closest radar approach R0. It is possible to notice that the
observation angle αL is different from the incidence angle θi due to the earth’s curvature.
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Figure 3: Spherical SAR Geometry in the plane defined by the radar track and the point
scatterer P .

Considering S the position of the antenna (pictured in Figure 3) in the closest position
to the scatterer P (at time t = 0), at time t the radar will have moved to S ′ with speed
vs. The speed of the radar beam on ground is denoted as vg and can be approximated as

vg ∼= vs
RE

RE + hs
. (7)

The range of the radar to the point scatterer R(t) can be expressed as

R(t) ∼=
√
R2

0 + (vrt)2 ∼= R0 +
(vrt)

2

2R0

, (8)

where the effective speed vr is the geometric mean of vs and vg

vr =
√
vsvg. (9)

Finally, the azimuth angle φ is derived as

tanφ =
vgt

R0

. (10)

2.1.2 SAR Imaging Modes
SAR systems can acquire data in different modes, hence exploiting the typical trade-off
between spatial coverage and azimuth resolution, which are shown in Figure 4 and shortly
recalled in the following.

• Stripmap: Is the standard mode in SAR systems. The acquisition is performed
through a fixed antenna pattern and thus a single swath is imaged as the platform
moves (Figure 4a). It is a continuous imaging mode since the azimuth extension may
vary depending on the data take duration. The swath width for this methodology
is typically of about 30 to 50 km, maintaining an azimuth resolution of 5 m or less.
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Figure 4: SAR acquisition modes.

• ScanSAR: If a wider area has to be covered, the antenna elevation pattern is steered
to different elevation angles, which leads to multiple sub-swaths (Figure 4b). Each
sub-swath is illuminated by a shorter Section of pulses with respect to the Stripmap
mode, leading to a degraded azimuth resolution of around 15 m or more. On the
other hand, after an appropriate processing, the resulting acquisition covers a larger
swath, usually in the order of hundreds of kilometers. Like Stripmap, also ScanSAR
is a continuous imaging mode.

• Spotlight: When, on the other hand, a finer resolution is required, the antenna pat-
tern is steered in azimuth towards a fixed point (Figure 4c). The synthetic aperture
is maximized, giving the highest resolution achievable by the system, usually in the
order of 1 m or below. The counterpart of this gain in resolution is the lack of the
continuous imaging mode, meaning that the acquisition is not anymore continuous
in the azimuth direction but is fixed on a patch with a typical extension of a few
kilometers. To increase the coverage multiple, non-contiguous patches (also called
“vignettes”) can be recorded during a single radar flight.

2.2 SAR Image Formation
The set of raw echoes received by the SAR sensor fills a two dimensional matrix of
unresolved dispersed reflections from the scatterers on ground, hence a SAR acquisition
represents the projection of the 3D information (imaging) into a 2D matrix of unfocused
echoes in both (range and azimuth) dimensions. The required processing to retrieve
the SAR focused data consist mainly in a convolution of the raw data with the reference
function of the system in range and azimuth dimension. To shortly recall, the convolution
of two functions f and g is defined as

f ∗ g =

∫ +∞

−∞
f(τ)g(t− τ) dτ. (11)

SAR systems usually employs for transmission a chirp signal, which is a frequency mod-
ulated pulse waveform, characterized by a constant amplitude in time and a pulse time
τ . The instantaneous frequency of a chirp signal is linearly varying over time t according
to fi = kτ t, where kτ is the chirp rate, which also defines the range bandwidth Bτ = kττ .
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The chirp signal is defined as

g(t) = cos

[
φ0 + 2π

(
f0t+

kτ t
2

2

)]
+ j · sin

[
φ0 + 2π

(
f0t+

kτ t
2

2

)]
, (12)

where f0 and φ0 represents the carrier frequency and its phase respectively. After the
chirp transmission the echo window follows, a time interval in which the radar receives the
reflected signal from the target and stores it in the on-board memory. Such a transmission
and reception process is repeated every Pulse Repetition Interval (PRI), which is the
reciprocal of the Pulse Repetition Frequency (PRF = 1/PRI). In order to take into
account timing constraints (which are out of the scope of this thesis and will not be
detailed), typical PRFs for spaceborne SAR systems are in the order of a few thousand
of Hertz.

The time variable in the azimuth direction (azimuth time) is often referred to as slow
time, since it is in the order of seconds (i.e. the duration of the SAR acquisition). On
the other hand, the range time is denoted as fast time, because the time delay between
transmission and reception for the imaged swath is in the order of tens of microseconds.
By knowing the antenna pattern, the amplitude and phase of the raw azimuth signal at
time t can be obtained from R(t) and φ, reported in equation (8) and (10) respectively.

The received waveform is amplified, down-converted to the baseband and then dis-
cretized in time and amplitude, (by means of sampling and quantization operation, re-
spectively) by an analog-to-digital converter (ADC). Once digitized, the raw data are
transmitted on ground through the downlink antenna. Here the SAR processing is car-
ried out, which consists in a two matched filter operations, one in range and one in azimuth
direction as shown in Figure 5.

Figure 5: SAR Processing workflow.
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2.2.1 Range Focusing and Resolution
Focusing operation is fundamental in order to opportunely visualize the received data
and retrieve the information needed. The range compression process is carried out by
exploiting the range reference function (RRF), which is the complex conjugate of the
transmitted chirp signal

sr(t) = g∗(t) (13)

where g(t) is the envelope defined in (12). Usually, the RRF is weighted with a Hamming
filter to reduce side lobe effects, then is transformed through a Fast Fourier Transform
(FFT) in the frequency domain. This transformation is way more efficient from the com-
putational point of view since the convolution operation in time domain is a multiplication
in frequency domain. The result of the multiplication is then re-transformed in time do-
main, giving the range compressed data, which reveals only the distance between the
radar and all the points of the ground belonging to the swath.

The range resolution of the system depends on the pulse coding. Considering a chirp
waveform with a duration of τ seconds, the distance in slant range between two targets
∆R and c0 as the speed of light, it is possible to define the time delay between the two
received echoes reflected from the two targets

∆t =
2∆R

c0

. (14)

From that, to clearly separate the two echoes, , i.e. to avoid the echo overlapping of
the two backscattered waves, the chirp length τ should satisfy the following condition

τ ≤ 2∆R

c0

, (15)

from which the range resolution of a SAR system can be derived as

δτ =
c0

2Bτ

. (16)

In the above equation the relationship Bτ = 1
τ

has been exploited. As it can be
noticed, the range resolution is not subject to any geometrical parameter of the antenna,
being uniquely dependent on the chirp bandwidth Bτ .

2.2.2 Azimuth Focusing and Resolution
Similarly to the range compression, the azimuth compression is performed by multiplying
all azimuth lines in frequency domain by the azimuth reference function (ARF), which
is the complex conjugate of the expected response from a point target on ground. It is
possible to express the ARF considering a point scatterer at range R(t)

sa(t) = A
√
σ0e

iφse−i
4π
λ
R(t). (17)

In the above expression, A is the amplitude of the signal, σ0 is the radar cross section and
φs is the scattering phase. The exponent 4π

λ
R(t) gives the contribution of phase variation

with respect to the time-varying distance R(t).
As introduced in Section 2.1, real aperture radars have a very limited azimuth reso-
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lution due to the geometrical constraint of the antenna dimension. Thus, the synthetic
aperture is exploited in order to overcome this limitation by considering a synthetic vir-
tual antenna which is much longer then the physical one, which corresponds to the path
length of the antenna during which the scattered echo from a point target is received.

CK CL radar	
track

slant	
range

azimuth	

>

#$N

#$ #$

Figure 6: Synthetic aperture Lsa and the azimuth antenna footprint Ls, Lsa = Ls.

The beamwidth of an antenna of length Ls is derived in (3), and equals the synthetic
aperture Lsa. By coherently combining all returns received by the SAR from the point P
in Figure 6, the best attainable resolution achievable by a SAR system is

δa =
L

2
. (18)

The above equation shows that, for a SAR system, the azimuth resolution is directly
proportional to the azimuth antenna length (hence, a short antenna yields a finer res-
olution) and, most important, that it is independent of the distance between satellite
and target. This apparently surprising conclusion can be explained if considering that a
radar with a shorter antenna will have a wider beamwidth and is therefore able to see any
point on the ground for a longer virtual antenna length, hence achieving a better azimuth
resolution. However, this result must be subjected to further constraints considering e.g.
the system timing and the sampling process. Indeed, in azimuth direction the sampling
rate must be larger than the Doppler bandwidth (Bd) of the signal, according to the well
known Shannon sampling theorem. The sampling rate is equal to the PRF of the system,
giving the following equations

PRF ≥ Bd or vs · PRI ≤ L

2
. (19)
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From (19) comes out that for movement of L/2 at least one sample should be recorded.
If the PRF is increased, to achieve e.g. the best attainable resolution as in (18), the
receiving echo window must be consequently decreased, hence limiting the swath width.
It is clear that the trade-off between sampling rate and swath width must be taken into
account in SAR systems design. To overcome this limitation, multi-channel SAR system
systems have been investigated in the last decade [4][9], which are often referred to as
High Resolution Wide Swath (HRWS) SAR systems. On the other hand, by considering
such systems a much larger amount of data is going to be generated, which requires proper
methodologies to be efficiently stored on board as well as transmitted to the ground.

2.3 Radar Parameters
The informative level contained in the SAR data is dependent on the several parameters
which have been introduced in the previous Section. In particular, the wavelength deter-
mines the backscattered power and the Signal-to-Noise-Ratio (SNR) of the imaged area:
the backscattering level of a surface having rough scattering in X band (λ=3.1 cm) may
be smooth and specular if irradiated in L band (λ=23 cm). The polarimetric capability of
a SAR also influences the radar signature of an object, meaning that the same object has
a different backscattering properties if different polarization combinations in transmission
and reception are considered (e.g. HH or HV, where H stands for horizontal and V for
vertical polarization). Fully polarimetric SAR systems exploit this important feature by
extracting information on the scattering mechanism as volume scatterers, surface scatter-
ers and multiple scatterers. The incidence angle θi is another parameter for determining
the backscatter level, which decreases with shallow values of θi (i.e. for a given altitude
h the range increases with increasing the incidence angle, hence lowering the SNR). As
introduced before, the range resolution depends on the chirp bandwidth Bτ , whereas the
(best attainable) azimuth resolution equals half of the azimuth antenna size.

2.3.1 Distributed Scatterers and Speckle

Scatterers observed by SAR systems can be divided in two different classes: point scat-
terers and distributed scatterers. The former are considered as a main dominant scatterer
within the resolution cell, while the latter are considered as an ensemble of non-dominating
scatterers within the resolution cell. In this last case, the backscatter level is generated
as the sum of those non-dominating scattering elements. It is possible to assume the
distributed scatterers as a normal random distribution applying the central limit theorem.
While for medium resolution SAR systems and most of land covers this assumption is
valid under the condition of a circular distribution of the scatterers, for high resolution
systems and artificial scatterers (such as urban areas), this assumption may be not valid
anymore. Considering a circularly distributed Gaussian complex image, its probability
density function (PDF) can be modeled as

fx(x) =
1

πĪ
exp

{
Re(x)2 + Im(x)2

Ī

}
, (20)

where Ī is the intensity of the complex image fx(x). Moreover, no correlation between
the real and imaginary part of the scatterers is typically assumed, meaning that also the
magnitude and phase are independent from each other. It is possible to define the PDF
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of the intensity and of the magnitude of a given pixel, respectively, as

fi(I) =
1

Ī
exp

{
−I
Ī

}
where I = |x|2 (21)

fx(M) =
2M

Ī
exp

{
−M2

Ī

}
where M = |x|. (22)

By calculating the average power received for distributed scatterers, multiple scatter-
ers are not considered and the total average power is defined as the sum of all power
contributions from each individual particle. The received power is known through the
radar equation, defined as

p̄r =
PtG

2λ2

4π3

∑
i

σi
R2
i

, (23)

where Pt is the transmitted power and G is the antenna gain (considered squared for
both transmission and reception), λ is the wavelength. The second part of the equation
describes the scattering contribution as a summation of single scatterers, considering
Ri the individual distance from the radar. The spatial variance of scatterers within
a resolution cell over a mean value is defined speckle. Speckle is often referred to as
a noise contribution, which is related to the random disposition of scatterers within a
resolution cell, and is reasonably modeled as a multiplicative process. Thus, an increasing
amount of power in transmission to suppress this disturbance is pointless, as the noise
variance increases as the transmitting power increases. On the other hand. in order
to mitigate speckle, a non-coherent (i.e. involving only the signal intensities) averaging
process known as multilooking can be performed. Even though the multilooking process
causes a degradation in the resulting resolution, it removes speckle, hence increasing data
interpretability. Since speckle is related to the spatial variance of the backscattered signal
within a resolution cell, a higher resolution reduces the number of scatterers, leading to
a lower speckle. Multilooking process can be therefore understood as a low-pass filtering
on the image and can be implemented following different approaches:

• Spatial Domain Approach: Adding the neighbouring pixels in all direction
(within a certain window) and perform an average on the number of pixels.

• Time Domain Approach: Dividing the synthetic aperture in multiple sections
and process each of them as a single section according to the number of looks.

• Frequency Domain Approach: Performs the same synthetic aperture separation
of the Time Domain Approach defining the segments in Frequency domain, i.e.
considering Doppler and range sub-bands according to the number of looks.

Multilooking process improves the overall radiometric accuracy, but also introduces,
as a drawback, a degradation in resolution. The impact in terms of accuracy gained and
loss in resolution is dependent on the number of looks: the more the looks, the higher the
radiometric accuracy and the lower the resulting resolution.
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2.3.2 Backscatter Intensity, σ0
Once they have been acquired and properly processed, SAR images display the amount
of reflectivity of the captured area on ground. The higher the reflectivity of the targets,
the higher the intensity of the image area associated to them. The reflectivity variation
of the scene imposes two more steps in SAR process chain: calibration and geocoding.
The first is carried out by defining a relationship between the measured value σ0 and
the known reflectivity of an object, as, e.g., a corner reflector. Geocoding, instead, is
the conversion of backscattering value from slow/fast time (t, τ), to the real position
of ground (latitude/longitude). The side-looking geometry of SAR system introduces
geometrical distortions mainly caused by the mapping of a three dimensional scene in a
two dimensional plane. If considering variations in elevation within the scene, three kinds
of distortions may occur, as shown in Figure 7.
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(a) Layover.
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(b) Foreshortening.

O PQ
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(c) Shadow.

Figure 7: Side-Looking geometry distortion.

Layover (Figure 7a) occurs when the terrain shows a high slope angle, reducing the
range of the portion of the target located higher in altitude. Foreshortening (Figure 7b)
is the wrong relative distance from the satellites of elevated targets, while Shadow areas
obstruct the transmitted wave, giving no scattering information of the area that lies in
the shadow. The occurrence of these distortions can be described by means of specific
relationship among the elevation (i.e. look) angle and the local terrain slope.

2.4 Interferometric SAR (InSAR)
SAR systems retrieve information of the targeted area by exploiting the scattering prop-
erties of the targets. Interferometric SAR systems (InSAR) usually features a bi-static
or a multi-static configuration, performing an acquisition of the scene in different space
positions and/or time instances. The amount of information with this type of technique
is highly informative, especially if considering the phase information between two or more
acquisitions. In particular, the phase is made up of two different contributions: the propa-
gation phase and the backscattered phase. While the first is related to the distance between
the sensor and the scatterer, the latter includes the contributions of phase difference given
by the target properties. InSAR measurements are used to estimate with high accuracy
geophysical parameters such as ground deformation, glacier movements and altitude to-
pography (also named Digital Elevation Models, DEMs). Since differences of phase are
taken into account in InSAR processing, the accuracy of the measure can be in the order
of centimeters and even millimeters. Having such a high precision from a satellite plat-
form with all its advantages (i.e. altitude stability, revisit time and operational life), in
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Figure 8: Interferometric SAR acquisition.

the last decades InSAR missions are increasing their interest and relevance in the context
of remote sensing applications, both in spaceborne and airborne systems.

2.4.1 Acquisition Modes

An InSAR acquisition can be carried out in the same time instance, featuring two receiving
antennas, or at difference time frames, by revisiting the targeted area. The two images
are said to be acquired in single pass mode if the time lag between them is zero,
otherwise the interferometric acquisition is carried out in repeat pass mode. If the
two satellites are aligned in the along track dimension, it is said to be along track
interferometry, which is very effective for the estimation of the ocean currents and sea
surface spectrum, and usually operated in single pass mode to maximize the temporal
correlation between the two acquisition. By aligning the two platforms in the across track
direction (i.e. perpendicular to the flight direction), the acquisition is said to be across
track interferometry. This configuration is suitable for the generation of DEMs, both
in single and repeat pass mode. For a coherent combination of the two interferometric
images, a co-registration is mandatory, meaning that the value of the pixels of an image
(slave) must be interpolated to fit the geo-coded pixel grid of the other image (master).
A sketch of an interferometric acquisition is given in Figure 8. The interferometric phase
between the two sensors S1 and S2 is given by
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∆φ =
4π

λ
∆r, (24)

where ∆r is the travel path different between the two received signals. If single pass mode
is considered, ∆r = 2(Rs1 − Rs2), while in repeat pass configuration ∆r = Rs1 − Rs2

(if S1 is considered as master). The perpendicular baseline between the two platforms is
defined as B⊥, while h is the height of the target and θi is the incidence angle (in this
example, flat Earth and topography are assumed for simplicity). From the interferometric
configuration of Figure 8 it is moreover possible to define the height of ambiguity (HoA),
which corresponds to a complete 2π cycle of the interferometric phase, as

HoA =
λ ·Rs1 · sin(θi)

B⊥
, (25)

where λ is the radar wavelength, Rs1 is the slant range, θi is the incidence angle and B⊥
is the baseline perpendicular to the line of sight.

2.4.2 Coherence and Phase Errors
InSAR acquisitions are evaluated trough the interferometric coherence γ. γ represents
the normalized complex correlation between the master and the slave images, giving
information on the amount of noise present in the interferogram, and is defined as

γ = |γ| · ejφ =
E [s1 · s∗2]√

E[|s1|2] ·
√
E[|s2|2]

. (26)

The operator E indicates the statistic mean, i.e. the expectation of the corresponding ran-
dom variable. Considering X a random variable made up of finite samples x1, x2, . . . , xm
and associated to a given probability p1, p2, . . . , pm, the expectation of X is given by

E[X] =
m∑
i=1

xipi. (27)

The coherence can be modeled as the product of different noise sources, assuming statis-
tical independence between them. It is defined as

γ = γSNR · γQuant · γAmb · γRg · γAz · γVol · γTemp, (28)

where γSNR is the coherence loss due to the limited SNR, γAmb is related to ambiguities
decorrelation, γRg is the baseline decorrelation, γAz models the coherence loss due to
the relative Doppler shift spectra, γVol represents the volume decorrelation contribution
while γTemp is the temporal decorrelation. Here, γQuant is the coherence loss in raw data
quantization. Being γ a product of noise sources, any contribution smaller than 1 will
degrade the overall performance.

The most relevant contribution in the overall coherence is typically the γSNR. The
finite sensitivity in the receivers causes a loss in the SNR, and is defined as

γSNR =
1√

(1 + SNR−1
1 ) · (1 + SNR−1

2 )
, (29)

where SNR1 and SNR2 are the SNRs for each channel, and can be obtained as
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SNR =
σ0(θi)

NESZ1,2(θi)
. (30)

In the upper equation σ0 is the normalized backscattering coefficient, defined as function
of the incidence angle (θi) and the NESZ (Noise Equivalent Sigma Zero) is the measure
of sensitivity of the system (i.e. its “noise floor”).

Being the interferometric phase error a key parameter in InSAR systems, its proba-
bility density function can be defined as

pφ(φ) =
Γ
(
Nl + 1

2

)
(1− γ2

tot)
Nl γtot cos(φ)

2
√
πΓ(Nl) (1− γ2

tot cos2 φ)
Nl+

1
2

+
(1− γ2

tot)
Nl

2π
F

(
Nl, 1;

1

2
; γ2

tot cos2 φ

)
, (31)

where φ is the interferometric phase difference, Γ is the gamma function, Nl is the number
of looks and F is the hypergeometric function [10]. The standard deviation of the single-
point phase error is a typical parameter to define the performance of the system.

σφ =

√∫ +π

−π
φ2pφ(φ) dφ (32)

The relationship between the total coherence and the interferometric phase is shown in
Figure 9, where the number on each curve represents the corresponding number of looks
(Nl).
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Figure 9: Standard deviation of interferometric phase error as a function of coherence,
for different number of looks.
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3 The Tandem-L Mission
Tandem-L is a DLR (Deutsches Zentrum für Luft- und Raumfahrt) mission proposal for a
highly innovative L-Band SAR satellite mission for the observation of dynamic processes
of the Earth’s surface [17]. Thanks to the novel imaging techniques and a recording
capacity of 8 Terabytes per day, it will provide essential information for solving scientific
questions in the biosphere, cryosphere, geosphere and hydrosphere environments (Figure
10).

                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    JUNE 201510 

years is required when it comes to monitor fast-occurring, 
highly-dynamic processes, such as the relaxation following 
an earthquake, as well as slowly-occurring processes, like 
the inter-annual variation of forest biomass, with the neces-
sary accuracy and resolution. The fulfillment of these basic 
requirements defines the profile of the mission: Tandem-L 
should be able to image large areas regularly, in the shortest 
possible time intervals and with high spatial resolution over 
several years. This, together with a systematically planned 
acquisition strategy, should enable the generation of consis-
tent time series for the entire Earth. 

Parallel to the systematic mapping and monitoring of 
Earth system processes, Tandem-L should be able to serve 
emergency and disaster situations providing not only images 
with high spatial and temporal resolution, but also informa-
tion products, as for example topographic information, terrain 
deformation and change and critical infrastructure mapping. 

A number of science team meetings and user work-
shops organized in the last years by DLR have been used 
to define, consolidate and prioritize 10 application areas 
with the associated (Level-2 and 3) products as the mis-
sion driving science products:
1) Large scale deformation: Tandem-L is the first configu-

ration optimized for monitoring of terrain deformation 
without compromises. It has therefore the potential to 
be a milestone mission in mapping the highly dynamic 
changes of Earth’s topography [8], [9], [10], [11]. Five 
different application scenarios are considered:

 t Inter-seismic deformation: 3-D displacement vec-
tor maps with an accuracy of 2 mm/year at the 
end of the mission on a 50 # 50 m2 grid for all 
critical areas (i.e., tectonic areas with a strain rate 

3 10 9#2 - /year – see also Figure 2).
 t Co-seismic deformation: 3-D displacement vector 
maps with an accuracy of 10 mm (after Atmospheric 
Phase Screen (APS) removal) on a 10 # 10 m2 grid. 

 t Tectonics for volcanoes: For 1538 holocene volcanoes 
worldwide 3-D displacement vector map with a 5 mm 
accuracy (after APS removal) on a 20 # 20 m2 grid.

 t Urban subsidence: Subsidence maps with an ac-
curacy of 1 mm/year on a 20 # 20 m2 grid for 754 
cities worldwide. An example is shown in Figure 2 
where the rapid subsidence of the city of Semarang 
and its surroundings is measured by ALOS/PalSAR.

 t Landslides: 2-D velocity map with an accuracy of 
5–10 mm (after APS removal) on a 10 # 10 m2 grid.

All applications take advantage of a DEM acquired in bi-
static mode from the same wavelength and observation ge-
ometry as the deformation measurement.
2) Global base map: Coverage of all land surfaces in a  

10-meter resolution twice a year in order to establish 
a consistent global archive of polarimetric bistatic in-
terferometric data. The interferometric data acquired 
during the different mission phases will provide global 
digital elevation and terrain models (DEM and DTM) 
with a quality comparable to the final product being 

FIGURE 1. Examples of dynamic processes on the Earth’s surface to be monitored by Tandem-L. By the use of digital beamforming tech-
niques in elevation and azimuth in combination with a large deployable reflector, the stringent scientific and user requirements for global 
monitoring with high resolution and wide swath including polarimetric and interferometric imaging modes can be met.
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Figure 10: An overview of the Earth’s dynamic processes which will be assessed and
monitored by the Tandem-L mission.

3.1 Mission Goals and Characteristics
The mission consist of two L-Band (λ=23.6 cm) SAR satellites equipped with a reflector
antenna employed for SAR acquisitions, with variable formation flight configurations de-
pending on operative mode (Figure 11). A list of the mission parameters is reported in
Table 1 Having as main characteristic the high degree of innovation with respect to the
current technology, the systematic acquisition concept is based on two imaging modes: 1)
3-D structure mode with bistatic radar operation and 2) deformation imaging mode with
differential SAR interferometry. Both the imaging modes allow to achieve the following
mission objective:
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1. Global measurement of 3-D forest structure and biomass, to understand the ecosys-
tem dynamics and the carbon cycle;

2. Systematic recording of deformation of Earth’s surface with millimetric accuracy for
risk analysis and earthquake research;

3. Quantification of glacier movements and melting processes in polar regions for better
predictions of sea level rise;

4. High resolution measurement of soil moisture for advanced water cycle research;

5. Constant observation of coastal zones and sea ice for environmental monitoring and
ship routing;

6. Mapping of agricultural fields for crop and rice;

7. Infrastructure and disaster monitoring.

Figure 11: Artistic view of the two satellites equipped with a reflector for the Tandem-L
mission.
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The goal of the mission is to acquire interferometric images of a large spectrum of the
global landmass once a week. An advanced downlink channel trough Laser Communica-
tion Terminal (LCT) could extend the acquisition method, allowing the monitoring of the
entire landmass twice a week. Existing remote sensing mission are inadequate in terms
of imaging performance and measurement resolution for correctly observe large scale pro-
cesses precisely, making Tandem-L the only SAR mission able to do that. If considering
the operative lifespan of the project, the opportunity for acquiring large areas with high
spatial resolution within a short revisit time is fundamental also in emergency and hazard
scenarios. From the original SAR data (often referred to as Level-1 product), DLR pro-
poses a series of advanced products, with the aim of extracting relevant parameters from
the original Level-1 acquisitions. At this stage, 10 application areas of products of Level-2
and 3 (so-called “high-level products”), have been defined considering the capabilities of
the proposal [17]:

• Large scale deformation: Tandem-L configuration is suitable for monitoring ter-
rain deformation, and in this field, five different applications are considered: inter-
seismic deformation, co-seismic deformation, tectonics for volcanoes, urban subsi-
dence and landslides. All of these measurements will be provided with an accuracy
in the order of millimeters.

• Global DEM: All land surfaces will be covered twice a year in 10-meter resolution
in polarimetric bistatic interferometric mode. From these acquisitions a digital
elevation model and a digital terrain model will be generated, at a final resolution
comparable with the actual DEM generated from the acquisitions of TanDEM-X
system [10].

• Forests: In forest applications, Tandem-L has capabilities to provide products for
estimating forest structure, forest height and forest biomass. Especially this last
parameter is fundamental to better understand the terrestrial carbon cycle process.

• Wetlands: From wetlands areas it is possible to define the wetland inundation
maps and the pan-tropical mangrove extent.

• Agricultural maps: the mapping of the paddy rice field at high resolution and
the remaining agricultural areas will deliver crop calendars and crop classification
maps.

• Soil moisture: mapping of the spatial variability of the soil moisture within few
days (1-4) and the monitoring of the changes in large areas to provide information
on spatial and temporal pattern of the soil.

• Land ice and permafrost: The dynamic of the processes in the Artic areas are
still a case of study, whereas Tandem-L cryosphere products will contain crucial
information for a better understanding of this scientific field. In particular glacier
velocity estimation will be possible as well as the information regarding ice structure,
ice sheet elevation change, grounding line position and permafrost extent.

• Sea ice: both sea ice extent and sea ice type classification will be available, allowing
the science community to have Earth-wide information.
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Parameter Value

Orbit Height 745 km
Horizontal baselines 1 km . . . 18 km

Inclination 98.4°
Revisit time 16 days
Frequency L band

Range bandwidth up to 85 MHz
Azimuth resolution 1 m . . . 10 m

Swath width 50 km . . . 350 km
Downlink capacity 8 Terabytes/day

Look direction left / right
Reflector diameter 15 m

Mission lifetime 10 years
Polarization single/dual/quad

Table 1: Tandem-L system parameters.

• Ocean monitoring: A number of new products in the field of large scale hydrology
will be available for the first time: ocean currents estimation, wind speed velocity,
coastal area change, and water level change.

• Emergency mode: In case of natural disaster (e.g. flooding, fires and volcanic
events) a high resolution imaging mode will provide crucial information on the
affected areas.

Tandem-L mission will be capable of high resolution wide swath (HRWS) through
a feed array which illuminates a reflector. Each element of the array will illuminate a
different area on ground without overlapping with other beams. Scanning operation in
reception is performed from near to far range, known as SCORE (SCan-OnREceive) [11],
is done through a digital phase array. Tandem-L acquisition scheme is shown in Figure 12.
High resolution wide swath imaging allows to achieve a swath width in the order of about
350 km, maintaining a resolution of 10 m. Considering the actual TanDEM-X mission, a
resolution of 6 m is achieved under a limited swath width of 30 km. Such an increase of
swath aperture with high resolution imposes severe constraints in term on data volume,
on-board memory and system complexity.
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Figure 12: Tandem-L Scan-On-Receive principle.

3.2 Staggered SAR
For any SAR system, an intrinsic trade off between best attainable azimuth resolution
and swath width exists. By selecting a fixed PRF for the system, in the focused image
blind ranges will be observed, as shown in the left part of Figure 13. The extension of
blind ranges in the slant range dimensions is equal to

∆R0,blind = c0τ (33)

being τ the range chirp duration. If considering that the time interval when each feed
element is transmitting is in the order of microseconds, this will results in hundreds of
meters in the image lost in the blind range. Moreover, their position do not change
along the azimuth, making the information contained in the missing samples impossible
to recover.

Staggered SAR consists in the employment of a variable PRI along the azimuth di-
mension. This way, it is possible to make vary the azimuth position of the gaps. In
particular, by exploiting elaborated sequences of PRIs, one can impose that no more than
one sample is missed in azimuth direction, as shown in the right-hand side of Figure 13).
This way, the lost information can be recovered by implementing an opportune interpo-
lation across the azimuth dimension [21][22]. To obtain the focused data, staggered SAR
raw images need to be interpolated on a uniform grid, in order to properly perform the
azimuth compression. This is done through a Best Linear Unbiased (BLU ) interpolation,
which exploits the correlation between the neighbouring azimuth samples to estimate in
an optimal manner the value on the uniform grid. Estimation of missing samples must
be carried out with high accuracy in order to limit the reconstruction errors, which would
otherwise inevitably lead to subsequent error in the focused data. Since the BLU inter-
polation exploits the correlation in the azimuth dimension, an oversampling is necessary
to narrow the time lag between two samples and hence to opportunely recover the infor-
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Figure 13: Location of blind ranges, (left) for a system with constant PRI and (right)
staggered PRI.

mation lost in correspondence of the gaps positions. It is important to point out that
such an oversampling (by means of a larger average PRF, as defined in (19)) is necessary
in order to avoid the occurrence of large sidelobes in the impulse response function of the
system. The oversampling leads to an increase in terms of samples in the azimuth dimen-
sion, hence a wider amount of on-board memory is required. Shannon’s sampling theorem
defines the sampling rate for a proper discretization of continuous processes without loss
of information. The processing bandwidth employed during azimuth focusing is around
780 Hz, whereas the mean PRF of about 2700 Hz [21]. Thus, the amount of oversampling
for Tandem-L case is around 250%. This means that the oversampling is not necessary
to retrieve the focused data with higher accuracy, occupying valuable on board memory.
On the other hand, it is not possible to discard exceeding samples without performing the
required processing to retrieve the value in gaps positions. This aspect is crucial for the
data reduction approach proposed in this thesis and will be discussed in detail in Section
6.3.
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4 SAR Raw Data Quantization
The received SAR echo is an analog signal transduced by the antenna, which needs to
be digitized in order to be stored in the digital memory. The analog-to-digital conversion
(ADC) can be further decomposed in two processes: sampling (i.e. time discretization)
and quantization (i.e. amplitude digitization). SAR raw data quantization is detailed in
this chapter. The degree of fidelity in the digitization process is a fundamental parameter
especially in SAR missions: an inaccurate quantization scheme can degrade the data and
making impossible their interpretation, while a too fine quantization scheme leads to the
overflow of on-board memory reducing the amount of measurement possible within a given
time period. What is usually done is the employment of lossy quantization schemes as
a trade-off, taking into account the introduced degradation as an acceptable loss with
respect to the final product and the required performance. On-board data reduction
techniques can be implemented, yet the computational complexity needs to be as low as
possible to obtain high reliability and throughput while using minimal satellite resources.

4.1 Quantization Basics
In SAR systems the analog signal is usually quantized using a relatively high bitrate
(e.g. 8 bits/sample) and then further data reduction operations are performed. Each
quantization techniques is characterized by a fixed number of outputs, and quantization
is basically implemented by mapping the amplitude of the input into the nearest possible
output. The amount of possible outputs within a fixed amplitude range is defined by the
number of bits used for each sample, which define the “alphabet” of the quantizer. Since
binary domain is taken into account, the number of possible output values are defined
as 2Nb , where Nb is the number of bits assigned to each sample. The discretization
process always introduces a certain error, which is maximum when a sample lies exactly
in between two possible output values (i.e. on the decision threshold). This error is
randomly distributed and usually referred to as quantization noise. Let us consider an
analog input signal sx(t), then the quantized output from an ADC can be defined as
sadc(t). The quantization process is schematically illustrated in Figure 14, and can be
seen as an amplification of the input signal by a factor A and an additive noise source,
q(t), which is the quantization noise. The quantization error is defined as the difference
between the original signal and its quantized version Qi(x) as

q = x−Qi(x) if x ∈ [di, di+1] (34)

where di represents the decision level associated to the ith quantization interval.

4.1.1 Uniform and Non-Uniform Quantization
The transfer function of the quantization process is a non-linear staircaise-like function,
bounded in the maximum and minimum output values and characterized by M levels
(i.e. M = 2Nb). Depending on the arrangement of the decision levels, it is possible to
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Figure 14: ADC flowchart, considered as a variable gain amplifier A and an additive noise
source q(t).

define the midriser and midtread quantizers, according to Figure 15 the first one (Figure
15a) has a decision threshold in 0, meaning that this value is not present in the possible
output. The second one (Figure 15b) instead includes the 0 as a possible reconstruction
(output) value, meaning that an input value with amplitude less than ∆/2 is mapped as
0 without considering its sign.
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(b) midtread quantizer

Figure 15: Midrise (left) and midtread (right) quantization schemes.

A quantizer can either be uniform or non-uniform depending on the step size ∆, which
represents the portion of the input mapped in one single output value. If considering
a uniformly-spaced step size, the quantizer is said to be uniform; on the other hand,
a quantizer having a variable step size is said to be non-uniform. The choice to use a
uniform quantizer instead of a non-uniform one comes when the input signal is uniformly
distributed; in every other case (e.g. the signal has a normal distribution) one can optimize
the distribution of the quantization decision levels in such a way that the mean square
error (MSE) is minimized, and this always ends up with a non-uniform quantizer). This
means that if the input statistics are known, it is possible to define the best suitable type
of quantizer. Optimal quantizer design must take into account the suitable number of
levels and the correct threshold arrangement. As introduced above, the characteristic of
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the step size ∆ must be choosen according to the statistics of the input signal. Let us
consider an input signal x having zero mean and variance σ2

x

σ2
x = E[X]2 =

∫ +∞

−∞
x2px(x) dx. (35)

The quantization error Q as in (34) is also as a zero mean normal distributed random
variable with variance σ2

q .

σ2
q = E[Q]2 =

∫ +∞

−∞
[x−Qx]

2px(x) dx, (36)

then the integration of this expression is considered in the whole span of the decision
levels (M = 2Nb), giving as result

σ2
q = E[Q]2 =

M∑
k=1

∫ k+1

k

[x−Qx]
2px(x) dx. (37)

The maximum and minimum output value of the quantizer are known as Vclip, which
defines the boundary of the quantizer [−Vclip,+Vclip]. By knowing the number of levels
and the boundary of operation of the quantizer, it is easy to derive the step length (i.e.
the “resolution” of the quantizer) under the uniform quantizer assumption as

∆ =
2Vclip

2Nb
. (38)

The number of decision levels is fixed to the number of bits employed in the quantization
process, the Vclip bound instead must be selected to reduce the error. In particular, the
dynamic range of the input signal and the quantizer must be as close as possible

|x| ≤ Vclip =
∆ · 2Nb

2
. (39)

The probability density function of the error can be assumed to be uniformly distributed
in the step size interval if this is small, giving as result

pq(q) =

{
1/∆ if |q| ≤ ∆/2
0 otherwise,

(40)

The last equation allows to express in closed form the variance of the quantization error
as

σ2
q = ∆2/12 = σ2

x 2−2Nb . (41)

4.1.2 Block Adaptive Quantization (BAQ) for SAR Systems
A received echo is made up of both, high and low power contributions, which are gen-
erated by high and low reflectivity of the targets, respectively. Thus, the power of the
raw signal is space varying. For SAR imaging such a dynamic variability is typically in
the order of several decibels, meaning that, for achieving the required accuracy in SAR
products, the employment of a standard, uniform ADC as it has been presented above,
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Figure 16: Block adaptive quantization (BAQ) flowchart.

is applicable only if a very large number of bits Nb is employed. This makes the use
of uniform quantizers not suitable for typical spaceborne SAR systems. In this scenario,
adaptive quantization is mandatory to overcome the high dynamic variability of the signal.
Block Adaptive Quantization (BAQ) is a quantization scheme which allows to efficiently
compress SAR raw data and it is nowadays widely used as quantization standard for
spaceborne SAR systems [13][12]. By exploiting the input signal statistics, a raw data
block is quantized independently from the others, making possible the quantization deci-
sion levels to be adapted to its specific dynamic. This quantization scheme is known as
Max-Lloyd quantizer, adapting the quantization boundary to the normal statistics of the
input signal [13][16]. This method allows for high performance in quantization, meaning
that it is possible to encode more information using less memory. The compression pro-
cess can be carried out both in time domain and in frequency domain. The first allows
a better signal to quantization noise ratio, but it is not optimized for the compression of
the spectral envelope in range and azimuth direction. Even though the second technique
has higher performance, operating in frequency domain implies high complexity in hard-
ware [3]. BAQ is usually implemented as a cartesian quantizer, meaning that the two
components of the complex raw signal (I and Q) are treated separately, since the assump-
tion of statistical independence between In-phase and Quadrature components holds (see
(20)). Polar BAQ [19] has also been investigated leading to no significant gain in terms
of performance. As an example, both the TerraSAR-X and TanDEM-X satellites from
DLR [25] employ cartesian BAQ for on-board raw data compression. For TerraSAR-X
and TanDEM-X, the input raw signal is clipped (Vclip = ±127.5) and then quantized at 8
bit per sample through a uniform ADC. The BAQ start with the decimal interpretation
of the I and Q quantized values, as in

Iadc,n = (−1)s ·

(
0.5 +

6∑
i=0

Mi · 2i
)

(42)
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Compression Rate, nBAQ C Emax Mmax

8:2 2.20374 24 1
8:3 5.28038 20 3
8:4 8.50475 16 7
8:6 15.2549 8 31

Table 2: Parameters for BAQ encoding for different compression factors as implemented
in TerraSAR-X and TanDEM-X. In the first columns (Compression Rate), the 8 at each
row indicates the ADC bits, and the second number is the effective nBAQ employed for
BAQ compression.

Qadc,n = (−1)s ·

(
0.5 +

6∑
i=0

Mi · 2i
)

(43)

Here, n is the sample index and i the i-th bit of the ADC encoded sample, while s
represent the sign bit. The decimal interpreted signal is then divided in blocks of fixed
length and given as input to the BAQ. The block size is determined as a trade off between
the similarity of power between the samples and the gaussian statistics within the block.
This means that a block should be large enough to satisfy the gaussian assumption, but
small enough to have almost constant dynamic.

BAQ encoding of an input signal in TerraSAR-X and TanDEM-X can be seen as the
following sequence of steps:

1. The output of the ADC (Iadc,n and Qadc,n) is divided into blocks along the range
line. The chosen length for each block is LBAQ = 128 samples.

2. Depending on the compression rate (nBAQ) in charge, the corresponding C value is
selected from Table 2.

3. The exponent E1 is calculated as

E1 = 4 · log2

1 +
1

LBAQ

LBAQ∑
n=1

(|Iadc,n|+ |Qadc,n|)

− C, (44)

which is strictly related to the corresponding block.

4. The exponent value E1 is compared with the Emax value in Table 2, giving the final
exponent E as the minimum between Emax and E1 rounded to the closest integer
lower or equal to it

E = min {Emax, bE1c} . (45)

The exponent E is stored and transmitted on ground together with the data stream
(see 7.).

5. With the retrieved E value, the raw samples Iadc,n and Qadc,n are scaled to Īn and
Q̄n

Īn =
Iadc,n
2E/4

and Q̄n =
Qadc,n

2E/4
(46)
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6. Whether the absolute value from a sample exceeds the Mmax limit, it is bounded to
that. The result from this operation is defined as

IBAQ,n =
Īn
|Īn|
·min {|In|,Mmax} and QBAQ,n =

Q̄n

|Q̄n|
·min {|Qn|,Mmax} (47)

7. The resulting value (mantissa) is finally uniformly quantized between [−Mmax −
0.5, Mmax + 0.5] employing nBAQ bits per sample.

The quantized block (mantissa and exponent) is then stored on board and then trans-
mitted on ground through the downlink channel. In decoding, the original value is recon-
structed just by applying

IBAQ,n = (−1)s ·

(
0.5 +

nBAQ−2∑
i=0

Ki · 2i
)
· 2E/4, (48)

where s is the sign bit, and Ki the value of the i-th bit (0 or 1). The quadrature phase is
retrieved in the same manner.

4.1.3 Quantization Parameters
In order to describe a quantizer some key parameters have to be taken into account which
are detailed below.
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Figure 17: Probability density function of input signal and clipping threshold.
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Signal-to-Clipping Ratio, γclip

It is the measure of relationship of the clipping and the input signal variance. It is
important in performance comparison between different types of quantizers, and is defined
as

γclip =
σx

Vclip

, (49)

where σx is the standard deviation of the input signal and Vclip the clipping voltage, as
depicted in Figure 17. If considering that the input signal is complex and assuming that
the standard deviation of the two components is the same, it follows that

γclip =

√
σ2

inI + σ2
inQ

Vclip

=
√

2 · σinI

Vclip

. (50)

When performance evaluation is taken into account, the γclip value is forced to be the
same for all the considered quantizers. This is done by choosing a fixed value of γclip and
adapting the input signal dynamic to that. The α parameter is the multiplication factor
that allows the scaling of the input signal and can be derived as

α =
γclip · Vclip√

2 · σinI

. (51)

Signal-to-Quantization Noise Ratio (SQNR)

The signal-to-quantization noise ratio is the ratio between the signal and the introduced
quantization error. For real signals it can be expressed as

SQNR =
σ2
x

σ2
q

. (52)

If a complex signal is considered, the SQNR can be calculated for real and imaginary part
separately with (52), or by considering (53), where the sum on the available pixels of the
square absolute is considered.

SQNR =

∑N
i=1|xi|2∑N
i=1|qi|2

(53)

In the upper equation i represent the index of the samples, x is the non quantized data
while q is the difference between the original data and the quantized data. As previously
introduced in (41), the variance of the quantization error varies with the number of bits
employed in quantization. Substituting (41) in (52) and performing an evaluation in dB
for an optimum ADC quantizer, we obtain

SQNRdB = 10 · log10 22Nb ≈ 6 ·Nb dB (54)

which shows that, for each bit per sample added for quantization, a gain of approximately
6 dB in terms of SQNR is obtained, which is a well known result from rate-distortion
theory [7].
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Quantization Coherence, γquant

As previously introduced in 2.4.2, the coherence in the interferometric acquisitions is also
dependant on the quantization. In order to express the γquant value, only the SQNR
is necessary, since it is a very informative measure on the quantization impact. The
quantization coherence can be expressed as

γquant =
1

1 + 1
SQNR

=
SQNR

1 + SQNR
. (55)

4.2 Quantization Errors in SAR
As discussed above, quantization process introduces errors, which can be measured in
terms of SQNR. Both intrinsic characteristics of a cartesian quantizer (I and Q com-
ponents treated separately) and clipping operation are cause of errors of different types
and effects. Thus, granular and clipping errors are due to the quantization operation,
while the low scatterer suppression is an error which occurs in synthetic aperture radar
acquisitions.

4.2.1 Granular and Clipping Errors
Being the dynamic range of the quantizer limited by Vclip (Figure 17), for a fixed num-
ber of bits per sample, the granular error is considered as the quantization error within
the decision threshold. As introduced before, the error within the decision threshold is
maximum when the sample lies on the threshold. If the dynamic range is increased with
respect to the input power (i.e. by reducing γclip or equivalently enlarging Vclip), the de-
cision threshold will be wider, meaning that the granular noise will be greater. On the
other hand, shrinking too much the Vclip to avoid high granular error will exclude a wide
part of the PDF of the input signal from the quantization space. All the samples laying
outside the interval [-Vclip,+Vclip] will be coded as the maximum value available in the
quantization space, introducing clipping (or overhead) errors. The standard deviation of
the granular error can be expressed as

σEg =
N∑
i=1

∫ yi+∆/2

yi−∆/2

(x− yi)2f(x)dx, (56)

considering N reconstruction levels defined as yi with i = 1 . . . N . In the same way, it is
possible to define the standard deviation of the clipping error integrating the PDF of the
input signal outside the quantization boundary, leading to

σEc =

∫ y1−∆/2

−∞
(x− y1)2f(x)dx+

∫ +∞

y1−∆/2

(x− yN)2f(x)dx. (57)

It is clear that a correct choice of the quantizer dynamic with respect to the input signal
is a key element in order to design a well-operating quantizer. The relationship between
these two error contributions can be seen in Figure 18, which is the result of a Monte
Carlo simulation representing the SQNR of a uniform quantizer at different values of γclip
and different bitrates. The left part of the graphs shows a decreasing value of SQNR as
γclip decreases, describing the granular error. The effect of the clipping error is noticeable
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Figure 18: Monte Carlo simulation showing the SQNR performance of a uniform ADC
for different bitrates and different values of signal-to-clipping ratio (γclip).

with values of γclip greater than -10 dB, and the error contribution has more impact. From
that it is possible to select the best γclip value at -10 dB, giving this value the best trade
off between the two errors. It is important to recall that for real applications it is better
to adapt the γclip to a value lower than -10 dB in order to further reduce the occurrence
of clipping errors (which most affect the performance) at a cost of a slight increase of
granular errors.

4.2.2 Low Amplitude and Low Scatterer Suppression
Cartesian quantizers introduce granular and clipping error depending on the selected
quantization space. If phase errors due to quantization are considered, one can notice
that they strongly depend on the corresponding signal amplitude. In particular, the
phase error is bounded to a maximum of 45°, according to

|∆φ|max =
|θxa,ya − θxb,yb|

2
. (58)

Such a high phase error is present in the nearest quadrants of the quantization space,
as pictured in Figure 19. Green vectors represent two possible raw signal values, while
the black vectors represent the quantized version to the nearest possible output between
the decision boundaries. It is possible to notice that the same amount of granular error
is present (i.e. the quantization steps is the same for both signals), while the phase
error is larger for the sample with lower amplitude. Having less sensitivity near the 0
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Figure 19: Phase error in cartesian quantizers for low and large amplitude signals. Green
vectors represent two possible raw signal values, while the black vectors represent the
quantized version to the nearest possible output between the decision boundaries. The
resulting phase is more degraded for the sample with lower amplitude.

value imposes that the phase of low backscattered targets will be much more imprecise,
lowering the performance of phase-based techniques such as interferometry. Beside that,
low backscatter areas are also affected from the so called low scatterer suppression [6][15].
This phenomena is due to the relationship between the beamwidth extension, expressed
by the synthetic aperture, the chirp length and the distance between two (or more) targets
within the scene. If such a distange is much smaller than the synthetic aperture of the
antenna and the chirp length respectively, high reflective targets overlap their response
on low scatterers. BAQ adapts the quantization dynamic to the statistics of the signal,
therefore, if the two overlapping targets have different magnitude responses, the strong
signal is better reconstructed, whereas the low one is heavily distorted. In Section 6.3
an application in a simulated scenario showing low scatterer suppression effects will be
presented.
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5 Predictive Quantization for SAR
Systems

On-board memory represents a critical resource for spaceborne SAR systems since satel-
lite platforms can not be upgraded during their lifetime. Different on-board compression
techniques for SAR systems have been presented in the literature [16],[19], aiming at ex-
ploiting the intrinsic correlation patterns between samples to reduce the amount of data.
The capability to encode a higher amount of information is challenging when measure-
ments must be sent on ground. Linear Predictive Coding (LPC) has been introduced
in the late 60’s and applied in the field of speech encoding, where data troughput of
early communication systems was a limiting factor. This technique is the joint operation
of a predictor and a quantizer, reconstructing the original signal performing the reverse
process in reception.

5.1 Linear Predictive Coding
SAR system application scenarios impose severe constraints: on-board compression tech-
niques need to be relatively simple from the complexity and computational point of view,
on the other hand the highest compression performance should be achieved. High perfor-
mance and complex techniques for data reduction field are not applicable for spaceborne
SAR, where on-board electric power is not available in large quantity. If considering a
discrete time signal, the encoding is normally done sample by sample (or on block of sam-
ples, as implemented by the BAQ, see Section 4.1.2), associating to each amplitude value
a digital number according to discretization levels. This operation is the simplest encod-
ing system and is known in communication systems as Pulse Code Modulation (PCM).
Increasing the complexity, it is possible to consider the Differential Pulse Code Modula-
tion (DPCM), which introduces the concept of differential coding. This means that the
to-be-quantized signal for a sample s[n] will be then the difference between s[n] and the
previous sample s[n− 1].

sd[n] = s[n]− s[n− 1] (59)

The process is reversed in reception, which allows to reconstruct a distorted version (since
the quantization is a lossy process) the original values. DPCM reduces the dynamic of
the signal if the assumption that a sample is similar (i.e. correlated) to its previous it
is in charge (i.e. the signal should not vary too much between two samples). In order
to increase the performance of differential coding, Linear Predictive Coding (LPC) [7] is
considered. The idea of this technique is to encode the difference of one sample and its
prediction. By having a-priori information on the signal statistics a proper estimation
of its behaviour design of the predictor can be implemented. The prediction process
is a linear combination of the N preceeding samples, where N defines the order of the
predictor. Considering s̃[n] the prediction from N previous samples, it can be expressed
as

33



s̃[n] =
N∑
i=1

βi (s[n− i] + e[n− i]) , (60)

where the βi values are the weights assigned to each i-th previous sample and e[n − i]
represent the quantization error on the i-th previous sample. Being the prediction process
a linear combination, the complexity remains in principle sustainable for an on-board im-
plementation. Together with the prediction process, a quantizer is employed to discretize
the difference between the sample and the prediction. The dynamic of the resulting differ-
ence is lower with respect to DPCM, making this technique a good compromise between
complexity and performance. The encoding process for the n-th sample is pictured in
Figure 20.

s[n] − α Quantization sqd[n]

1/α

+Prediction

sd[n]

ŝ[n]
s̃[n]

Figure 20: Predictive quantization encoding flow scheme.

In the figure above, it is possible to identify the input sample s[n] from which its
prediction s̃[n] is subtracted, giving as result the prediction difference, pictured as sd[n].
The α scaling comes from (51) and is a key parameter for the overall performance anal-
ysis, since it scales the signal to the desired dynamic (γclip) and hence allows for a fair
comparison among different quantization schemes. After the quantization process, the
resulting quantized difference, named sqd[n] is transmitted on ground and exploited to
predict the subsequent sample. The dynamic of sqd[n] is scaled after the multiplication
with α, thus it needs to be rescaled to the original dynamic of s[n], since the subtraction
process must be coherent. The prediction block operates as defined in (60), by weight-
ing the N previous samples with the corresponding β. The recursive inclusion of s̃[n] in
the summation on the right-hand side of Figure 20, before the prediction block allows for
proper reconstruction of the original signal to be fed in the prediction block. For correctly
retrieving the previous sample necessary in the prediction stage from sqd[n], the previous
prediction s̃[n− 1] is added to it. Thus, the role of the recursion is to correctly represent
the previous sample. It is possible to substitute (60) in (59) and performing an expansion

34



evaluation for two discrete time instances

sqd[n] = s[n]− s̃[n] = s[n]−P

{
sqd[n− 1]

α
+ s̃[n− 1]

}
. (61)

The previous equation shows that the recursive process takes into account all the pre-
vious predictions. P represent the prediction block, i.e. the signal in the parenthesis is
reconstructed by means, in turn, of the linear combination of the N previous samples.

In reception the prediction process is replicated identically, as shown in Figure 21. Here
the input signal is decoded from the quantization operation, and rescaled to the original
dynamic of s[n] by means of a division by the same α coefficient. The resulting difference
is added to the prediction generated from the identical prediction block employed for
encoding in transmission.

sqd[n] Quantization−1 1/α +

Prediction

ŝ[n]

Figure 21: Predictive quantization decoding flow scheme.

The quantization error is injected in the prediction during the transmission process
since it is the quantized difference that is used for the prediction. Considering the real
(i.e., not quantized) difference sd[n] instead of sqd[n] will remove the quantization error in
the prediction, but in decoding stage it will be impossible to revert the process since only
the quantized version of the difference is available. ŝ[n] is the reconstructed value of s[n]
with higher accuracy with respect to an ADC with the same number of bits.

5.1.1 Weights derivation
Weights definition is done during the design stage, since they will be stored onboard in
registers and recalled by the predictor every time a new estimation is done. In order to
minimize the standard deviation of sd[n] (i.e. the signal dynamic), it is necessary to define
the best set of weights which allow to minimize the resulting error between the original
and the predicted signal. The variance of the difference signal is known as

σ2
d = E

[
s2
d[n]
]

= E
[
(s[n]− s̃[n])2

]
= E

(s[n]−
N∑
i=1

βi · s[n− i]−
N∑
i=1

βi · e[n− i]

)2
 , (62)

where e[n − i] is the error contribution from the quantizer and is also weighted by the
corresponding βi. The minimization process aims at minimizing the Mean Square Errorr
(MMSE), as it is possible to notice in (62). Thus, the next step is to minimize the variance
of the difference signal by performing a differentiation (63), considering βj with 1 ≤ j ≤ N
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a set of weights that optimize the MSE [7].

dσ2
d

dβj
= −2E

[
s[n]−

N∑
i=1

βi(s[n− i] + e[n− i]) · (s[n− j] + e[n− j])

]
↓
= 0 (63)

The upper equation can be rewritten in a much compact form, defined as

E [(s[n]− s̃[n]) ŝ[n− j]] = E [sd[n] · ŝ[n− j]] = 0, 1 ≤ j ≤ N. (64)

By expanding (64) and substituting (60), the solution can be simplified to (65), by con-
sidering that the error e[n] is uncorrelated to s[n].

φ[j] =
N∑
i=1

βi
(
φ[j − k] + σ2

eδ[j − i]
)
, 1 ≤ j ≤ N (65)

where φ[j] is the autocorrelation of s[n], defined for each discrete time unit as

ρ[j] =
φ[j]

σ2
x

=
N∑
i=1

βi

(
ρ[j − k] +

σ2
e

σ2
x

δ[j − i]
)
, 1 ≤ j ≤ N. (66)

Equation (66) can be rewritten in matricial form as

ρ = Cβ (67)

where the matrices ρ, C and β are defined as

ρ =



ρ[1]

ρ[2]

ρ[3]

...

ρ[N ]


,β =



β[1]

β[2]

β[3]

...

β[N ]


,C =



1 + 1
SNR

ρ[1] ρ[2] · · · ρ[N − 1]

ρ[1] 1 + 1
SNR

ρ[1] · · · ρ[N − 2]

ρ[2] ρ[1] 1 + 1
SNR

· · · ρ[N − 3]

...
...

...
. . .

...

ρ[N − 1] ρ[N − 2] ρ[N − 3] · · · 1 + 1
SNR


. (68)

The ρ vector represents the correlation values between the sample to be estimated and the
samples used for the prediction, while the β vector is composed of the prediction weights.
Finally, the matrix C takes into account the relationship between the samples used in
the prediction, they are also correlated between them. The SNR value on the diagonal
depends on the performance of the quantizer, which also depends on the quality of the
estimation. Being difficult to define the real impact of SNR in weight calculations, it is
possible to neglect it, i.e. to se it equal to ∞. This simplification has also been verified
by means of Monte Carlo simulations showing no considerable impact on the C matrix
as
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C =



1 ρ[1] ρ[2] · · · ρ[N − 1]

ρ[1] 1 ρ[1] · · · ρ[N − 2]

ρ[2] ρ[1] 1 · · · ρ[N − 3]

...
...

...
. . .

...

ρ[N − 1] ρ[N − 2] ρ[N − 3] · · · 1


. (69)

Hence, by knowing the autocorrelation of the input signal (i.e. the correlation between
samples), it is possible to derive the weights from (67), as

β = C−1ρ. (70)

5.2 The Tandem-L System: Autocorrelation Analy-

sis

As briefly introduced in Section 3.2, Tandem-L mission will inevitably introduce an over-
sampling along the azimuth dimension (by a factor of about 250% with respect to the final
processed bandwidth Bd=780 Hz). In order to exploit this important feature to perform
data reduction, the autocorrelation of raw data is investigated. Although the mission will
employ a reflector antenna, in this thesis we have considered the antenna as a planar array
with azimuth length L=10 m, which allows for a well approximation for the estimation of
the antenna pattern. The simulated backscatter SAR data along the azimuth domain is
considered as a normal distributed random process function of the antenna pattern both
in transmission and in reception. Thus, the square of the antenna pattern is taken into
account. The normal distributed random process is a well approximation for a distributed
target, and is defined as a complex circular process with mean equal to zero and variance
equal to σ2. Complex circularity is translated in a separated generation of the process
for real and imaginary part, since they can be considered independent random variables.
The raw data in the azimuth dimension can be then defined as

r = |G(Φaz)|2e−4πj R
λ ∗ s where

<{s} ∼ N (0, σ2)

={s} ∼ N (0, σ2).
(71)

In the upper equation G(Φaz) is the antenna pattern defined in (4) and depicted in Figure
22. It has been calculated considering an antenna length of 10 m, while the complex
exponent represent the doppler history of the echo, calculated considering a wavelength λ
equal to 23 cm (Tandem-L carrier frequency f0 = c/λ =1.2 GHz). In order to evaluate the
impact of the oversampling, the autocorrelation function of the raw data is considered.
Considering (71), the autocorrelation can be expressed as the inverse Fourier transform of
the power spectral density of the raw data (72), and defined as ρτ where f is the Doppler
frequency, L is the azimuth antenna length and vs is the satellite velocity (defined in
Section 2.1.1), whereas τ defines the time delay between the two functions.

ρτ = F−1

{
sin4

(
π
L

2vs
f

)/(
π
L

2vs
f

)4
}
. (72)
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Figure 22: Azimuth antenna pattern as function of azimuth distance considering the
Tandem-L system characteristics.

Performing separately the inverse Fourier transform for each sinc2, the result is a con-
volution between two triangular functions in time domain, being the triangular function
the inverse Fourier transform of a sinc2 pattern [2][21]. By calculating the convolution
according to (11), the result can be expressed as

ρτ =


1

2
(τ 3)− 3τ + 2) +

1

4
τ(τ 2 − 6τ + 6) 0 < τ < Bw

−1

4
(τ − 2)3 Bw < τ < 2Bw

0 elsewhere.

(73)

In (73), Bw is the bandwidth of the sinc2 function and is defined as

Bw =
L

2vs
, (74)

being L the antenna length and vs the speed of the satellite. From this equation it is clear
that the higher the bandwidth, the lower the decrease of the autocorrelation function. A
larger antenna gives a more directive beam, which can be intended as a narrower low-
pass filter in the Doppler domain. In the same manner, a slower satellite speed gives a
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higher correlation if we consider that a larger number of azimuth samples will be recorded.
Figure 23a shows a graphical representation of (73), in which is possible to see that the
greater the time shift, the lower the autocorrelation value. The retrieved theoretical
result has been confirmed also by calculating the autocorrelation of a simulated azimuth
line, showing the identical behaviour of Figure 23a. Considering as a time shift unit the
PRI, which represent the SAR sampling period, the autocorrelation function has been
consider as function of the PRF (Figure 23b). This second representation describes the
autocorrelation between two subsequent samples at a given PRF, known as ρ1. It is
interesting to notice that the PRF of Tandem-L mission equals to 2700 Hz shows to have
an autocorrelation value ρ1 greater than 0.6. If oversampling was not be present (e.g.
PRF∼1000 Hz), the autocorrelation value will be significantly lower. From this, it is
understandable that in the Tandem-L specific scenario it is possible to take advantage
of azimuth correlation between samples for reducing the signal and ultimately to achieve
effective data reduction. The theoretical derivation for ρ1 in Figure 23b can be also applied
for retrieving the correlation between non subsequent samples. Considering a time lag of
PRI for every sample, the correlation for second, third and other samples can be retrieved
in the same manner. An example for different values of PRF can be seen in Figure 24,
where the autocorrelations curves up to 6 PRI distance are plotted. Considering the
typical Tandem-L PRF, it is possible to observe that the correlation is not negligible up
to the third sample, while from the fourth is still equal to zero. As logical, the higher the
sampling frequency (PRF), the higher the correlation between samples.
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Figure 23: Theoretical autocorrelation of raw SAR data as function of time shift (a) and
PRF (b).
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Figure 24: Autocorrelation up to 6 samples (i.e. PRI intervals) as function of PRF.

5.3 Coding Gain

Linear Predictive Coding introduces complexity in the system, but on the other hand
introduces also a gain in terms of quantization performance. The discretization of gain can
be expressed as the ratio between the dynamic of the input signal (s) and the prediction
difference (sd) (77). Further theoretical analyses exploiting the statistics of the input
signal are reported in Section 5.3.1. The Signal-to-Noise ratio of the LPC system can be
expressed as the ratio between the signal power and the power of the introduced error

SNR =
E[s2[n]]

E[e2[n]]
=
σ2
x

σ2
e

. (75)

The upper equation can be rewritten by considering that the error is related to the
dynamic of the differential signal [5], giving

SNR =
σ2
x

σ2
d

· σ
2
d

σ2
e

= GP · SNRQ. (76)

In (76), the second factor σ2
d/σ

2
e represents the SNR of the quantizer, since it is related to

the difference signal and the quantization error from the quantization process. The first
factor, instead, represents the gain introduced by the LPC, i.e.

GP =
σ2
x

σ2
d

(77)
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Figure 25: Theoretical gain in dB for LPC up to the 6-th order as function of PRF.

As it appears evident from the above equation, the gain in the quantization performance
is related to the reduction of dynamic [5]. Since the differential signal will have a lower
dynamic with respect to the input signal, the amount of information, and hence the
number of bits required for coding it for a given performance, will be lower. In Figure 25
are reported the theoretical gain curves derived in the following Subsections as function
of PRF.

5.3.1 Analytical Derivation for Gaussian Inputs

Assuming that the input signal is normally distributed (as it is the case for distributed
target in SAR) allows the derivation of the variance of the difference signal in closed form,
and thus the gain of the LPC according to (78).

D ∆
= X − Y ∼ N (0, σ2

x + σ2
y − 2σxy) where

X ∼ N (0, σ2
x)

Y ∼ N (0, σ2
y)

σxy = σxσyρ

(78)

The upper equation represents the variance of a difference between two normal distributed
random processes as the sum of the two variance minus two time the covariance, which
can be expressed as the multiplication of the two standard deviation and the correlation
values between the two variables (ρ). The only value known by previous derivation is
the correlation between the two variables, while the variance of the two process it is only
known to be equal since they are related to the same process (σx = σy, i.e. stationarity
hypothesis hold). The graphical behaviour of the theoretical gain up to the 6-th order
is pictured in Figure 25, which has been derived from (70). The detailed mathematical
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derivation for the first four orders prediction is given in the following. The gain behaviour
for lower order of prediction is generally monotonically increasing, while for the highest
orders pictured, it follows an oscillatory trend. This is due to the inversion of the C
inversion (according to (70)), which may lead to instability since many ρ values are still
equal to zero, as shown in Figure 24.

First-Order Predictor

The application of (78) to the first-order predictor (i.e. N=1), thus considering only the
previous sample to perform the prediction, allows to derive the gain for this case. Being
the two variables dependent from the same process, the variances are initially equal, but
as defined in (67), the previous sample is weighted by β1, leading the definition of the
variance of the previous sample to σy = β1σx. The weight changes the equation of the
differential variance giving

σ2
d1 = σ2

x + σ2
y − 2σxσyρ1 = σ2

x + β2
1σ

2
x − 2σ2

xβ1ρ1. (79)

Considering from (67), the β1 value that minimize the MMSE for the first order of pre-
diction is given by the following calculation

β = C−1ρ → β1 = [1]−1ρ1 = ρ1. (80)

By substituting (80) in (79), the definition of variance for the first order predictor is given
by

σ2
d1 = σ2

x + ρ2
1σ

2
x − 2σ2

xρ
2
1 = σ2

x(1− ρ2
1). (81)

From the upper equation it is possible to see that any value of ρ1 > 0 will cause a
reduction of σ2

d1 with respect to σ2
x, as the weight is the optimal. An example of reduction

of dynamic for this case is pictured in Figure 26, where the left graph (Figure 26a) shows
the Probability Density Function (PDF) for the real part of the input signal. As PRF
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Figure 26: Probability density function of the real values of the original signal (a) and
the differential coming from the weighted 1 sample subtraction (b).

increases, the variance (i.e. the dispersion of the curves from the mean value) remains
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constant, as expected. On the right graph (26b), which shows the variance (81) calculated
for different values of PRF, it is possible to see that the higher the PRF (i.e. the value
of ρ1), the narrower the resulting distribution (i.e. the smaller the standard deviation).
Knowing the weight (80) and the dynamic of the differential signal (81), it is possible to
define in closed form the gain for the first order predictor applying (77), giving

G1 =
σ2
x

σ2
x(1− ρ2

1)
=

1

1− ρ2
1

. (82)

Second-Order Predictor

The second-order predictor considers the two previous samples to perform the prediction.
As for the previous Section, both β and σ2

d2 are necessary to retrieve the gain in close
form. Assuming that the variables are normal distributed (78), the second order implies
that the two previous samples are weighted for the corresponding βi calculated as

β = C−1ρ →
[
β1

β2

]
=

[
1 ρ1

ρ1 1

]−1 [
ρ1

ρ2

]
, (83)

weighting also the related variance of each variable. Applying (78) to this case, follows
that

X ∼ N (0, σ2
x), Y ∼ N (0, σ2

y) = N (0, β2
1σ

2
x), Z ∼ N (0, σ2

z) = N (0, β2
2σ

2
x) (84)

and the variance of the difference is then equal to

D ∆
= X − Y − Z ∼ N (0, σ2

x + σ2
y + σ2

z − 2σxy − 2σxz + 2σyz), (85)

while the calculation of the covariances between the variables is done in the same manner
(σxy = σxσyρ1, σxz = σxσzρ2 and σyz = σxσzρ1). By expanding (85), the variance of the
differential signal for the second order predictor is defined as

σ2
d2 = σ2

x(1 + β2
1 + β2

2 + 2ρ1β1 − 2ρ2β2 + 2β1β2), (86)

while the prediction gain is equal to

G2 =
1

1 + β2
1 + β2

2 + 2ρ1β1 − 2ρ2β2 + 2β1β2

. (87)

Third-Order Predictor

The third-order differential signal is defined as

D ∆
= X − Y − Z −W ∼ N (0, σ2

d3), (88)
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the considered weights are calculated from

β = C−1ρ →

β1

β2

β3

 =

 1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

−1 ρ1

ρ2

ρ3

 . (89)

The variables to be considered are four, and as the previous case known as

X ∼ N (0, σ2
x), Y ∼ N (0, σ2

y) = N (0, β2
1σ

2
x),

Z ∼ N (0, σ2
z) = N (0, β2

2σ
2
x), W ∼ N (0, σ2

w) = N (0, β2
3σ

2
x).

(90)

The calculation of the variance of the difference signal D is performed again exploiting
the weights applied to the variance of the variables (σxy = σxσyρ1, σxz = σxσzρ2, σxw =
σxσwβ3, σyz = σxσzρ1, σyw = σyσwρ2 and σzw = σzσwρ1), and defined as

σ2
d3 = σ2

x[1 + β2
1 + β2

2 + β2
3 + 2ρ1(−β1 + β1β2 + β2β3) + 2ρ2(−β2 + β1β3)− 3ρ3β3]. (91)

The gain is then retrieved as

G3 = [1 + β2
1 + β2

2 + β2
3 + 2ρ1(−β1 + β1β2 + β2β3) + 2ρ2(−β2 + β1β3)− 3ρ3β3]−1 (92)

Fourth-Order Predictor

By increasing the prediction to the fourth-order, the differential signal is given by

D ∆
= X − Y − Z −W − V ∼ N (0, σ2

d4), (93)

where the considered weights are calculated from

β = C−1ρ →


β1

β2

β3

β4

 =


1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1


−1 

ρ1

ρ2

ρ3

ρ4

 . (94)

The variables to be considered are four and defined as

X ∼ N (0, σ2
x), Y ∼ N (0, σ2

y) = N (0, β2
1σ

2
x), Z ∼ N (0, σ2

z) = N (0, β2
2σ

2
x),

W ∼ N (0, σ2
w) = N (0, β2

3σ
2
x), V ∼ N (0, σ2

v) = N (0, β2
4σ

2
x).

(95)

Applying the weights the covariances are defined as

σxy = σxσyρ1, σxz = σxσzρ2, σxw = σxσwρ3, σxv = σxσvρ4,
σyz = σxσzρ1, σyw = σyσwρ2, σyv = σyσvρ3,
σzw = σzσwρ1, σzv = σzσvρ2,
σwv = σwσvρ1.

(96)
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The variance of the differential signal for the fourth-order predictor is derived as

σ2
d4 =σ2

x[1 + β2
1 + β2

2 + β2
3 + β2

4+

+ 2ρ1(−β1 + β1β2 + β2β3 + 2β3β4)+

+ 2ρ2(−β2 + β1β3 + β2β4)+

+ 2ρ3(−β3 + β2β4)]

(97)

The gain calculation comes after the application of the ratio as in (75), resulting in

G4 =[1 + β2
1 + β2

2 + β2
3 + β2

4+

+ 2ρ1(−β1 + β1β2 + β2β3 + 2β3β4)+

+ 2ρ2(−β2 + β1β3 + β2β4)+

+ 2ρ3(−β3 + β2β4)]−1

(98)
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6 Simulation Results
In order to evaluate the theoretical performance of the joint use of Linear Predictive
Coding applied to SAR data, a set of Monte Carlo simulations have been performed.
The Tandem-L system parameters (i.e. wavelength, antenna length, orbit height...) as
defined in Chapter 3,have been assumed for the present investigations starting from the
verification of the technique on a single azimuth line in uniform PRI domain and the use
of a uniform ADC as quantizer, a focusing has also been implemented for considering the
performance on the whole processing chain. Moving to non-uniform PRI domain, a general
case has been conducted performing interpolation and successively the focusing. As a final
result, the application on the real Tandem-L mission scenario has been considered, which
represents a specific case where the non-uniform PRI is employed (see Section 3.1) with
the addition of gaps. This last simulation has been conducted in a 2D domain (i.e.,
considering range and azimuth dimensions) applying together Linear Predictive Coding
and Block Adaptive Quantization (BAQ, see Section 4.1.2).

6.1 Uniform Sampling
As first investigation, the coding scheme defined in Figure 20 has been applied on a single
raw azimuth line generated as in (71). The selected parameters for the quantization are a
Vclip=127.5 and γclip=-10 dB for this analysis as well as for all the results presented in the
following Sections. The encoding process has been carried out separately on both real and
imaginary part of the signal as we are considering a cartesian quantizer. Moreover, the
two components are assumed to be uncorrelated between each other (20) for a distributed
target. The decoding process is then applied to the encoded and quantized data, giving
as output the reconstructed signal. The same processing chain has been considered for
three prediction order and also to the direct quantizer as benchmark performance. For
the evaluation of the reconstruction performance the SQNR is calculated for each output
signal, considering as the original signal the non-quantized raw data as in (52) for a
complex signal calculated over all the available N pixels,

SQNRdB = 10 · log10

(∑N
i=1|si|2∑N
i=1|ei|2

)
where ei = si − sq,i (99)

being in this equation s the non-quantized signal and sq the quantized version of s. The
performance evaluation on raw data is considered between the original signal s, the output
of the direct quantization sq and the reconstructed signal after encoding and decoding
processes at three different orders of prediction: s1q, s2q and s3q. The SQNR evaluated
on those signals is pictured in Figure 28, 29 and 30. As it is possible to see in Figure
28, the SQNR of the direct quantizer (bullets), is constant as the PRF increases for all
bitrates. Moreover, the difference in terms of SQNR from one bitrate to the upper one
is equal to 6 dB, as introduced in (54). The SQNR related to the predictive quantizer
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Figure 27: Processing chain for uniform PRI investigation.

(triangles) is instead increasing as the PRF increase, maintaining the same behaviour for
all the bitrates. Second and third order predictor shows the same trend but with a further
increase of SQNR (gain), as pictured in Figure 29 and Figure 30. In order to evaluate
correctly the gain introduced by the predictive quantization in raw data, it is necessary to
define the difference between the predictive SQNR and the direct SQNR, named ∆SQNR

(100).
∆SQNR = SQNRpred,dB − SQNRdir,dB (100)

The result for the prediction gain for first second and third order predictors are pictured
in Figure 31, 32 and 33 respectively. The theoretical gain curves derived in (82), (87)
and (92) are overplotted on the respective gain graph. For all the three predictors, the
retrieved gain from the simulations is coherent with the expected theoretical value for
all the bitrates except the 2 bps. For this last case, the gain is around two dB more
than expected, this is because the uniform ADC can be more sensitive to the reduction of
dynamic, having more impact in the reduction of the quantization error. After performing
the focusing operation described in Section 2.2.2, the SQNR is calculated again in order
to evaluate the quality of the encoding after the whole processing chain. For azimuth
focusing, a processing bandwidth Bd = 780 Hz has been considered, which leads to an
azimuth resolution of around 10 m. For this, the original non quantized focused signal
(sf ) has been considered as a reference, while each version of the quantized signal has
been focused as well giving sqf , s1qf , s2qf and sqf , as pictured in Figure 27. The resulting
SQNR is reported in Figure 34, 35 and 36. It can be noticed that also on the focused
signal, the predictive quantization introduces the same coherent gain. One interesting fact
is the small amount of gain which affects the entire system as the PRF increases, thus also
the direct quantizer. An explanation for this behavior comes from the consideration of
sampling and quantizing as the two sides of the same coin, in the sense that a larger PRF
(i.e. a finer sampling) can be applied in order to recover a certain amount of information
which has been lost in the quantization process (of course, both sampling and quantization
rates directly impact the final system data rate) [8]. The gain for the focused analysis for
the different orders of prediction and for the standard bitrate of Tandem-L system (i.e.
4 bits/samples) is depicted in Figure 37. Hence, it can be concluded that the proposed
technique has shown results coherent with the theory expectation, also after the focusing
operation. If considering the typical Tandem-L PRF (i.e. 2700 Hz), this simulation
suggest that 2.5, 3 and 4 dB of gain are introduced by the first, second and third orders
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of prediction. Taking into account (54), the boundary of 1 bit per sample in terms of
data reduction is not achievable. Further analysis on this argument are faced in the final
result on the specific Tandem-L simulation (see Section 6.3.1).
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Figure 28: SQNR evaluated on raw data with uniform PRI for the direct and first-order
predictive quantizers as function of PRF at different bitrates.
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Figure 29: SQNR evaluated on raw data with uniform PRI for the direct and second-order
predictive quantizers as function of PRF at different bitrates.
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Figure 30: SQNR evaluated on raw data with uniform PRI for the direct and third-order
predictive quantizers as function of PRF at different bitrates.
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Figure 31: Gain evaluated on raw data with uniform PRI for the direct and first-order
predictive quantizers as function of PRF at different bitrates.
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Figure 32: Gain evaluated on raw data with uniform PRI for the direct and second-order
predictive quantizers as function of PRF at different bitrates.
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Figure 33: Gain evaluated on raw data with uniform PRI for the direct and third-order
predictive quantizers as function of PRF at different bitrates.
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Figure 34: SQNR evaluated on focused data with uniform PRI for the direct and first
order predictive quantizers as function of PRF at different bitrates.
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Figure 35: SQNR evaluated on focused data with uniform PRI for the direct and second
order predictive quantizers as function of PRF at different bitrates.
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Figure 36: SQNR evaluated on focused data with uniform PRI for the direct and third-
order predictive quantizers as function of PRF at different bitrates.
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Figure 37: Gain evaluated on focused data with uniform PRI for the first, second and
third-order predictive quantizers as function of PRF at 4 bits/samples (which is the
standard bitrate employed for Tandem-L mission).
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6.1.1 TanDEM-X case study
The results presented in the previous case are promising, although it is important to take
into account that the characteristics of the simulated systems are referred to Tandem-L.
By considering to apply the proposed technique of Linear Predictive Coding and quan-
tization on existent systems, a special case has been investigated in this section. The
German Aerospace Center (DLR) developed under a public–private partnership between
and Astrium GmbH the TanDEM-X (the TerraSAR-X add-on for Digital Elevation Mea-
surement) mission, an X-band bistatic SAR interferometer composed by two twin satel-
lites, TerraSAR-X (launched in 2007) [24] and TanDEM-X (launched in 2010) [10][26],
which opened a new era in spaceborne radar remote sensing. According to the param-
eters listed in Table 3 the investigation has been tuned to its system characteristics. In

Parameter Value

Orbit height 514 km
Local time 18 h
Inclination 97.44°

Revisit time 11 days
Frequency X-Band

Range bandwidth 100 MHz
Azimuth resolution 1 m . . . 16 m

Swath width 10 km . . . 100 km
Antenna length 4.8 m
Antenna width 0.8 m

PRF ∼3 kHz (single-pol)

Table 3: TanDEM-X system parameters.

particular, the PRF for the system is uniform and the antenna length is different from
the previous case as well as geometric parameters such as the orbit height (see Table 1 for
comparison). As the antenna pattern is different and the antenna length is smaller than
the Tandem-L case, according to (74) a faster decrease of correlation between samples
as the PRI increases is expected. As pictured in Figure 38 and 39, the expected results
have been confirmed by simulation. Hence, this analysis proves that applying predictive
quantization in the context of the TanDEM-X mission, as shown in Figure 40 and 41,
would lead to a negligible performance gain (less than 0.5 dB) for typical PRF values in
the order of 3 kHz.
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Figure 38: SQNR evaluated on raw data for 1st order Predictive Quantizer as function of
PRF at different bitrate applied on TanDEM-X system parameters.
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Figure 39: SQNR evaluated on focused data for 1st order Predictive Quantizer as function
of PRF at different bitrate applied on TanDEM-X system parameters.
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Figure 40: SQNR evaluated on raw data for 1st order Predictive Quantizer as function of
PRF at different bitrate applied on TanDEM-X system parameters.
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Figure 41: SQNR evaluated on raw data for 1st order Predictive Quantizer as function of
PRF at different bitrate applied on TanDEM-X system parameters.
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6.2 Non-Uniform Sampling
A non-uniform PRI is considered, i.e. a PRI which is varying during the azimuth (slow)
time, the raw data generation is not anymore possible in the same way as done for of
the uniform domain. The chosen technique for generating the non-uniform raw data is
pictured in Figure 42, where n represents the normal distributed random process which
is convoluted with an antenna pattern generated at a very high PRI (1 MHz). Up to

n ∗

1 MHz Antenna
Pattern

Non Uniform
Sampling

Non Uniform
Raw Data

Figure 42: Generation of non-uniform PRI raw data.

this point the process is equal as for the uniform domain (71). The raw 1 MHz signal is
then sampled according a proper PRI variation, . For the considered scenario, a variation
of ±20% with respect to the mean PRF, PRF, has been considered. Hence, for this
analysis the PRI varies linearly from−20% to +20% with 20 cyclic variations. Considering
the variation of PRI among subsequent samples, it is obvious that also the correlation
between them varies. In order to evaluate the performance by properly taking into account
the resulting variation of correlation, three different configurations for the first order of
prediction have been tested:

1. The weight associated to the PRF is employed for for all the samples. This is
expected to be the worst solution in terms of performance but, at the same time,
the less complex, since only one coefficient would be necessary to use and route for
on-board implementation.

2. The correct weight (i.e. the one resulting from the correlation estimated for each PRI
value) for each PRI value. This solution should be the best in terms of performance
but, on the other hand, the most complex since a different weight for each value
must be stored and correctly applied.

3. As a trade-off between the two previous solutions, an intermediate solution is con-
sidered where only three weights are considered. They are selected as follows: the
weight associated to the 3rd PRI variation for characterizing the first 7 samples, the
weight related to the 10th PRI for characterize the second 7 samples and the weight
related to the 17th PRI for characterizing the last 6 samples (i.e. the correlation
value associated to the mean PRI of each sub-interval.

The described approaches are referred to as 1β, 20β and 3β in the following graphs, re-
spectively. As it has already been pointed out, the variation of dynamic in the present
scenario represents an extreme case with respect to the staggered SAR case for Tandem-L
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Figure 43: Processing chain for uniform PRI investigation.

(which normally considers a variation of less than ±10%). Together with the prediction
weights, the correct set of α implemented in the quantizer has been considered for rescal-
ing the sample related to the corresponding PRI. Thus all the 20 values of α have been
taken into account for a proper and fair performance comparison. The flowchart of the
processing chain for this analysis is sketched in Figure 43. In order to evaluate the perfor-
mance after the focusing, an interpolation to a uniform grid of samples is mandatory to
perform the convolution operation. This is done trough the Best Linear Unbiased (BLU)
interpolation [1]. After this interpolation step (which has obviously been applied also
to the original signal), the performance has been evaluated after the focused operation.
Considering the non-uniform domain, the SQNR for the three possible approaches are
reported in Figure 44, 45 and 46. By looking at the results it is possible to notice that
the gain introduced by predictive is almost the same for the three considered strategies,
namely 1β, 20β and 3β. In order to evaluate the difference between the three approaches,
it is necessary to consider the SQNR gain, defined as (100), which is reported in Figure
47 the gain for the 1β case with respect to the direct quantizer and shows the same com-
parable result already obtained for the uniform domain (Figure 31). Figure 48 and 49
show the difference of SQNR between the 20β and 1β, and 3β and 1β, respectively. Even
though the 1β approach leads to the most inaccurate estimation of the prediction, there
is no significant loss with respect to the other investigated cases, which on the other hand
require a larger complexity (i.e. a larger number of coefficient to be routed on board) for
their implementation. It is then possible to conclude that for the non-uniform PRI case
and assuming a variation up to ±20% from the PRF, the performance on raw data that
obtained for equivalent to that obtained for the uniform domain PRI case by using only
one weight for all the samples (i.e. the 1β case). Moving on to the interpolation section,
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the performance has been evaluated in the same way by considering as reference signal
the interpolated version of s on an uniform grid where the sampling period is determined
by the inverse of the mean PRF. The result from this analysis are pictured in figure 50,
51 and 52. As expected, the performance are consistent after the whole processing chain,
thus after the focusing operation. The SQNR on the focused data are reported in figure
53, 54 and 55 for the 1β, 20β and 3β respectively. As for the case of raw data, the gain
is also reported for the focused signals in Figure 56, 57 and 58. This analysis applied
on a general case of non-uniform domain with a large PRI variation (with respect to the
staggered SAR case assumed for Tandem-L) shows a coherent gain. Three different solu-
tions have been tested showing no reason to increase the complexity by considering the
related autocorrelation value, and thus the weight, for each PRI variation. The equivalent
performance for the uniform domain case has been achieved exploiting only the weight
related to the mean value of the PRF.
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Figure 44: SQNR evaluated on raw data with non-uniform PRI for the direct and first
order predictive quantizers with 1β as function of PRF for different uniform ADC rates.
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Figure 45: SQNR evaluated on raw data with non-uniform PRI for the direct and first
order predictive quantizers with 20β as function of PRF for different uniform ADC rates.
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Figure 46: SQNR evaluated on raw data with non-uniform PRI for the direct and first
order predictive quantizers with 3β as function of PRF for different uniform ADC rates.
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Figure 47: Gain evaluated on raw data with non-uniform PRI for the direct and first
order predictive quantizers as function of PRF for different uniform ADC rates.
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Figure 48: Gain evaluated on raw data with non-uniform PRI for the 20β and 1β first
order predictive quantizers as function of PRF for different uniform ADC rates.
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Figure 49: Gain evaluated on raw data with non-uniform PRI for the 3β and 1β first
order predictive quantizers as function of PRF for different uniform ADC rates.
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Figure 50: SQNR evaluated on interpolated data with non-uniform PRI for the direct and
first order predictive quantizers with 1β as function of PRF for different uniform ADC
rates.
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Figure 51: SQNR evaluated on interpolated data with non-uniform PRI for the direct
and first order predictive quantizers with 20β as function of PRF for different uniform
ADC rates.
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Figure 52: SQNR evaluated on the interpolated data with non-uniform PRI for the direct
and first order predictive quantizers with 3β as function of PRF for different uniform
ADC rates.
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Figure 53: SQNR evaluated on focused data with non-uniform PRI for the direct and first
order predictive quantizers with 1β as function of PRF for different uniform ADC rates.

1000 2000 3000 4000 5000 6000

PRF [Hz]

−5

0

5

10

15

20

25

30

35

40

45

50

55

60

S
Q
N
R
 [
d
B
]

SQNR 1st order Predictive Quantizer 20β (Focu ed)
2bp 
Predictive 2bp 
3bp 
Predictive 3bp 
4bp 
Predictive 4bp 
5bp 
Predictive 5bp 
6bp 
Predictive 6bp 
7bp 
Predictive 7bp 
8bp 
Predictive 8bp 

Figure 54: SQNR evaluated on focused data with non-uniform PRI for the direct and first
order predictive quantizers with 20β as function of PRF for different uniform ADC rates.
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Figure 55: SQNR evaluated on focused data with non-uniform PRI for the direct and first
order predictive quantizers with 3β as function of PRF for different uniform ADC rates.

1000 2000 3000 4000 5000 6000

PRF [Hz]

−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

∆
S
Q
N
R
 [
d
B
]

Absolute Gain 1st order Predictive Quantizer 1β (Focused)
2b s
3b s
4b s
5b s
6b s
7b s
8b s

Figure 56: Gain evaluated on focused data with non-uniform PRI for the direct and first
order predictive quantizers as function of PRF for different uniform ADC rates.
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Figure 57: Gain evaluated on focused data with non-uniform PRI for the 20β and 1β first
order predictive quantizers as function of PRF for different uniform ADC rates.
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Figure 58: Gain evaluated on raw data with non-uniform PRI for the 3β and 1β first
order predictive quantizers as function of PRF for different uniform ADC rates.
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6.3 Staggered SAR for Tandem-L
In the previous section the proposed method to implement data reduction by means of
linear predictive coding and quantization has been tested on a set of different PRFs and
bitrates. Here we focus on the specific Tandem-L case, and for this the considered simu-
lations have been carried out by considering the Tandem-L PRF only, which corresponds
to 2700 Hz. As an example of PRI variation, the one pictured in Figure 59 has been
considered. This PRI pattern is different from the one considered in the previous case
both for variation boundary, which is now ±8% with respect to PRF and for number of
variation per cycle, which for this case is of 233. The pattern of variation is specifically
designed in order to have always a sample before and after a gap, in order to be able
to recover the lost information by opportune interpolation [21]. Being the PRI variation
different from the previous case, the same evaluation of the non-uniform case has been
carried out for the first order predictor. The proposed solutions are again the less complex
one defined as 1β, i.e. one single weight is employed for prediction for all the 233 PRI
variations, and the more precise one defined as 233β. The variations with respect to the
value related to the PRF is reported in figure 60a and are represented by the blue and red
curves, respectively. Considering that the variation boundary is lower than the previous
case, also the α values are part of the solution: while considering the 1β solution, also 1α
has been considered; on the other option, 233 α have been considered. The α variation
with respect to the one related to the PRF is pictured in Figure 60b, again in blue and
red respectively, showing a noisy behaviour with respect to the β variation. This is be-
cause the α value is related to the standard deviation of the input signal, which in turn
may show slightly varying values around the nominal one. The result of the evaluation
between the two solutions is pictured in Figure 61, where it is possible to see that the
233β, 233α case performs better of the 1β, 1α by a minimal amount. This difference is in
the order of 0.1 dB, leading to the confirmation of the result achieved in Section 6.2 also
for the α value, hence allowing also for the specific Tandem-L configuration the use of a
single coefficient for the complete set of considered PRI. Having proved the performance
for the Tandem-L case to be comparable to those obtained for the uniform PRI case,
the next step is to consider a BAQ in place of the uniform quantizer (ADC) which has
been considered for the previous simulations. The prediction scheme for encoding is then
considered as in Figure 62.

The only difference with the monodimensional case is that now s[n] represents a range
line. Since BAQ operates in blocks of 128 range samples, the pictured scheme is applied
to 128 azimuth lines together. Once the difference from the block and its estimation is
retrieved, the BAQ operates as described in Section 4.1.2, optimizing the quantization to
the statistics of the block. It is worth highlighting that, being each raw data sample a
realization of a normally distributed variable, the random variable resulting from the dif-
ference between the sample and a weighted sum of the N preceeding realizations (each one
being normally distributed) has still a normal distribution, hence making a Max-Lloyd
quantizer such as the BAQ suitable for the resulting raw data quantization. The joint
operation of BAQ and LPC is a novel technique named Predictive-BAQ (PBAQ). The
decoding process is done coherently as pictured in Figure 63. Having defined the predic-
tion parameters and the BAQ implementation in the encoding and decoding process, it
is necessary to generate the bidimensional non-uniform raw data. By proceeding azimuth
line per azimuth line following the metodology reported in Figure 42, it is possible to
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Figure 59: PRI variation for the selected case of Staggered PRI for Tandem-L.

obtain a non-uniform raw data which has been defocused only in the azimuth dimension.
In order to have a coherent raw data generation, the (uniform) transmitted chirp is convo-
luted for each range line, giving the non-uniform azimuth compressed bidimensional raw
data. Having defined all the parameters which must be taken into account, it is possible
to summarize the processing chain, which is pictured in Figure 64. As for the previous
investigations, the results calculated on the raw date are pictured in Figure 65, where the
SQNR is shown as function of the order of prediction for different bitrates. For this case
the “Direct” results refer to the application of BAQ on the uncompressed signal. This is
done for having a fair comparison between the standard BAQ scheme and the proposed
Predictive BAQ. After the interpolation operation, the SQNR has been calulated once
again, showing no significative difference in terms of performance as pictured in Figure
66. The evaluation on the whole processing chain is finally reported in Figure 67. Here it
is possible to see that as for the uniform case, the third order predictor gives a gain of 4
dB with respect to the direct BAQ quantizer. Having proved the gain for the Tandem-L
specific case, the data reduction evaluation is performed in the following Section, where
fractional bitrate is taken into account.
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Figure 60: Behaviour of predictive coding parameters for the considered case of staggered
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Figure 61: Comparison between the two approaches to the staggered PRI for Tandem-L:
one exploiting a single coefficient for prediction (1β) and the other taking into account
all the variations (233β).

s[n] − α BAQ sqd[n]

1/α

+Prediction

sd[n]

ŝ[n]
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Figure 62: Predictive quantization encoding flow scheme.
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Figure 63: Predictive quantization decoding flow scheme.
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Figure 65: SQNR calculated on raw data at different orders of Predictive BAQ on a
distributed target.
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Figure 66: SQNR calculated on interpolated data at different orders of Predictive BAQ
on a distributed target.
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Figure 67: SQNR calculated on focused data at different orders of Predictive BAQ on a
distributed target.
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6.3.1 Optimum Bit Allocation
The results presented in the previous Section confirm the theoretical expectation in the
uniform case. The objective of the work is to present an onboard compression technique
to reduce the data volume to be stored on board. As introduced in (54), as an example,
a gain of 6 dB allows to achieve the same SQNR performance by employing one bit
less. Since the presented results are showing a gain of 4 dB in the best case, it is not
possible to use one bit less, since SQNR performance will be no longer in line with the
system constraints. To achieve the performance of the 4 bits/sample direct BAQ, it
is necessary to implement an azimuth-switched quantization (ASQ) [14], which allows
to exploit fractional bitrates. ASQ operates varying the bitrate for each range line by
coherently alternating 4 and 3 bits per samples (in this case), such as the overall mean is
a fractional number between 3 and 4. After the focusing operation the different quality
of representation between samples will be uniformly spreaded on the whole data, giving
a uniform fractional bitrate for every sample. Four different fractional bitrates have been
considered: 3.2, 3.4, 3.6 and 3.8. The application of azimuth-switched predictive block
adaptive quantization is pictured in Figure 68. The present result shows that the SQNR
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Figure 68: SQNR calculated on focused data at different orders of Predictive BAQ ex-
ploiting fractional bitrate on a distributed target.

for approximately 3.5 fractional bitrate is equivalent to the SQNR of the direct BAQ at
4 bits per sample. This means that the presented technique has the same performance of
the direct BAQ using half a bit less. To evaluate the actual data reduction performance,
the following equation shows the percentage of data reduced with the Predictive BAQ
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quantization technique

PBAQdr =
3.5

4
= 12.5% (101)

i.e. a data reduction of about 12.5% (with respect to the BAQ direct case) can be achieved
using the proposed method based on Predictive Quantization.

6.3.2 Analysis on a Space Varying Scene
All the previous analysis have been executed assuming a distributed target. What hap-
pens in real situations is the mixture of distributed and point scatterers hence showing
a variation of backscatter intensity, causing clipping error in quantization step. BAQ
adapts the quantization on the block statistics, limiting the impact of this errors. More-
over, the block-based approach limits the impact of high backscatter difference. In order
to evaluate the performance of the proposed technique on a realistic scene, a specific case
of lower scatterers suppression has been considered. The raw data generation has been
performed with the same technique used in Section 6.3. To simulate a strong and a low
scatterers in close vicinity, the normal distributed process along the azimuth domain is
considered as the concatenation of two processes with different variance

n = {v, w : v ∈ n1, w ∈ n2} where
<{n1} ,={n1} ∼ N (0, σ)

<{n2} ,={n2} ∼ N (0, σ
√

10)
(102)

The
√

10 factor has been chosen to produce a 10 dB power difference between the two
distributions. The energy of the process is pictured in Figure 69, where the plot is consid-
ered in the neighborhood of the middle of the azimuth dimension, where the response of
the two, the strong and the low scatterer, sensitively overlap in the raw data domain. It is
possible to notice the 10 dB “jump” in the transit sample from the high backscatter area
to the lower one, which has been averaged along each azimuth line. In order to describe
the performance of the system as the lower scatterer effect is introduced, the SQNR has
been evaluated as a function of the range line (Figure 70). The decrease of performance
is due to the quantization parameters, which are set on the higher backscatter profile. As
the satellite moves, the BAQ adapts the quantization to the local dynamic of the signal,
and this results in a better reconstruction of the stronger target, whereas the weak one is
heavily distorted samples in the vicinity of the discontinuity [6][15]. This effect is peculiar
of the SAR acquisitions, and visible only after processing. The proposed method shows
the same behaviour of the direct BAQ. Even though the low scatterer suppression lowers
the performance in the neighborhood of the “Jump”, the overall SQNR is still coherent
with the previous results (e.g. see Figure 71).
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Figure 69: Backscatter profile averaged on the range line for the “Jump” target simulation.
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Figure 70: SQNR calculated on focused data at different orders of Predictive BAQ as
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6.3.3 Gap Mitigation
As briefly introduced in Section 3.2, applying the beamforming in elevation (SCORE)
in Tandem-L mission will inevitably introduce gaps. The PRI sequence shown in Figure
59 is designed to avoid two consecutive gaps in the azimuth domain [21]. Thus, the
prediction needs to be adapted to this situation, taking into account that some samples
will be missing. A novel approach wich applies predictive coding with missing samples is

0 50 100 150 200

Sample Index []

0

50

100

150

200

250

R
a
n
g
e
 S

a
m

p
le

s 
[]

Lost Pulse Matrix

Figure 72: Example of gaps location (in white) along the acquired raw data matrix.

presented, named Predictive Coding Restart. The concept is to exploit a-priori knowledge
on gap positions and modify the prediction for those samples. As the acquisition is
performed, the presence of gaps is known onboard, making possible to flag those samples
with 1 bit. When the prediction is estimating the value of a gap, a zero value is imposed
by the restart technique. This allows the estimation of the following sample without the
gap information, since the weight will be multiplied by the imposed zero. This of course
is expecting to decrease the performance. The flag operation allows to discretize the gap
with only 1 bit. In order to limiting the error near gaps, it is possible to exploit the N-1 bits
which are not used for the gap sample. Two different approaches of bit reallocation have
been presented, named “Post” and “Distributed”. The first one assigns the gained bits
from the gap to the subsequent samples: the idea is to have higher accuracy to quantize
the difference which comes from a bad estimation, meaning that its dynamic will be larger
than expected. The “Distributed” technique increases the encoding quality before and
after the gap, having as main goal the increment of information in the gap neighborhood
for a better interpolation. The rules and the examples of bit reallocation for the two
strategy are reported in Table 4 and 5, respectively. A preliminary evaluation has been
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“Post” bit allocation strategy

bitrate before gap on gap after gap
N N 1 3N-N-1
2 2 1 3
3 3 1 5
4 4 1 7
5 5 1 9

Table 4: “Post” strategy bit allocation exploiting all the available bits.

“Distributed” bit allocation strategy

bitrate before gap on gap after gap
N N+1 1 3N-N-2
2 2 1 3
3 4 1 4
4 5 1 6
5 6 1 8

Table 5: “Distributed” strategy bit allocation exploiting all the available bits.

done with a single azimuth line and an ADC quantizer. In addition, the analysis has been
also performed by keeping a constant bitrate. In Figure 73 the SQNR on the entire raw
signal including gaps is shown. As it is possible to notice, the proposed techniques seems
to increase the performance of the constant bitrate case. By calculating the SQNR only
on the samples after the gaps (Figure 74), clearly the “Post” strategy has higher accuracy
in the estimation. However, in order to evaluate the performance of the two proposed
methods, it is important to consider the signal after the interpolation. Especially, all
the samples which are in the nearest position to a gaps have to be considered for SQNR
evaluation, in this way, the actual impact of gaps to the final data is correctly characterized
(Figure 75). From this last plot, the “Distributed” technique is clearly the best between
the two, moreover the SQNR on the samples near the gap is the same of the SQNR on the
whole signal. This means that the performance of the proposed technique is not subject
to degradation due to gaps. Performing the same evaluation on the bidimensional scene,
BAQ is employed to replace the ADC. As it is possible to notice, some bitrates are non
applicable to BAQ method, as defined in Section 4.1.2. This is a limitation of the proposed
method and needs to be adapted to BAQ constrains, which allows only 2, 3, 4, 6 and 8
(bypass) bits per sample. In Figure 76 and 77 the result for the “Distributed” strategy
BAQ encoding at different orders of prediction is depicted. The degradated performance
for the 6 bps case is due to the limitation of BAQ bitrate, which does not allow higher
than 8 bps bitrates. As a confirmation result, Figure 78 shows the SQNR evaluated only
in the nearest samples of gaps after the focusing operation. Also in this case the gap has
no or negligible impact on the final result.
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“Post” bit allocation strategy for BAQ

bitrate before gap on gap after gap subsequent
2 2 1 3 2
3 3 1 4 4
4 4 1 6 4
6 6 1 8 8

Table 6: “Post” bit allocation strategy applied on BAQ compatible bitrates.

“Distributed” strategy bit allocation for BAQ

bitrate before gap on gap after gap subsequent subsequent
2 2 1 3 2 2
3 4 1 4 3 3
4 4 1 6 6 3
6 8 1 8 6 6

Table 7: “Distributed” strategy bit allocation applied on BAQ compatible bitrates.
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Figure 73: SQNR calculated on the whole raw data encoded with direct, “Post” and
“Distributed” strategies.
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Figure 74: SQNR calculated on the samples after gaps encoded with direct, “Post” and
“Distributed” strategies.

Constant bps
Predictive

Post-Strategy
predictive
N-1-[3N-N-1]

Distributed-Strategy
predictive

[N+1]-1-[3N-N-2]

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

S
Q
N
R
 [
d
B
]

SQNR on Samples Near Gaps after Interpolation
2bps
3bps
4bps
5bps

Figure 75: SQNR calculated on the samples near a gap after interpolation encoded with
direct, “Post” and “Distributed” strategies.
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Figure 76: SQNR calculated on the raw data encoded with “Distributed” strategy for
different orders of prediction.
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Figure 77: SQNR calculated on the focused data encoded with “Distributed” strategy for
different orders of prediction.
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Figure 78: SQNR calculated on the samples near a gap after interpolation encoded with
“Distributed” strategy for different orders of prediction.
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7 Conclusion and Outlook
For present and future spaceborne SAR missions, an increasing amount of on-board data
is going to be required, leading to hard requirements in terms of on-board memory and
downlink capacity. In this context, SAR raw data quantization represents a critical as-
pect, since it affects both, the amount of data managed on board and transmitted to
the ground, and the quality of the resulting SAR products. In this master thesis, data
reduction for SAR systems by exploiting linear predictive quantization is addressed. The
proposed novel data reduction approach is investigated in the context of the Tandem-L, a
DLR L-band SAR mission proposal which employs staggered PRI which allows for a swath
width up to 350 km, and resulting in a required data volume of about 8 Terabyte per day.
The proposed technique takes advantage of the large azimuth oversampling needed for
Tandem-L and exploits the resulting time variant autocorrelation properties of the non-
uniform azimuth raw data stream in order to reduce the amount of data. To this purpose,
Linear Predictive Coding and Block Adaptive Quantization are jointly exploited, and a
novel quantization method is derived, named Predictive-Block Adaptive Quantization (P-
BAQ). For this, different prediction orders are investigated by considering the trade-off
between achievable performance and complexity. Monte Carlo simulations have been con-
ducted on different target scenarios, showing that with the proposed technique an SQNR
gain of about 4 dB can be achieved with a third-order linear predictor, which corresponds
to a data reduction of about 10-15%. For this, a modest increase of the system complexity
is required, since, for its implementation, up to three range lines and coefficients (weights)
need to be stored and routed on board for prediction, for which a single FPGA should
be sufficient. With respect to other suggested approaches, which implement a complex
on-board processing in order to generate a decimated uniform data grid (leading to a data
reduction of about 50%), the proposed method allows the availability of the non uniform
data stream on ground, making possible future developments for advanced processing
techniques with the oversampled data. Moreover, the presented solution is not dependent
on the variable PRI of the system and the presence of gaps which occur due to the stag-
gered SAR acquisition mode. The application on LPC to SAR data has been theoretically
characterized according to a specific modelling of the autocorrelation function of the sys-
tem along the azimuth domain. The reduction of the dynamic of the data is the crucial
factor that allows to increase the performance, as the quantization error is proportional
to it. The effective reduction of dynamic has been proved for different values of PRF. By
deriving the theoretical gain and expressing it as function of the PRF, it is possible to
know in advance the required complexity of the prediction for a given required gain. The
mathematical description has been verified through Monte Carlo simulations preformed
in a uniform PRI case, confirming the expected results from the theory for different values
of PRF. The application of predictive quantization to the TanDEM-X system has been
considered as well, showing poor quantization performance as the mission parameters are
not suitable for this kind of technique. Moving to staggered PRI case, first an analysis
by considering an extreme case of PRI variation has been performed, reporting the result
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for different possible approaches considering different trade offs between complexity and
accuracy of estimation. The LPC has shows to perform the same as the uniform PRI case
even if the PRI is staggered. Applying the technique on an example of real PRI sequence
of Tandem-L, the results confirms the expectations by maintaining the 4 dB gain. A
complete bidimensional simulation has been performed both on distributed and “jump”
target, featuring the joint operation of LPC and Block Adaptive Quantization (BAQ).
The result of the technique on the complete scene simulation confirms the expected gain.
Moreover, the implementation of a variable bitrate along the azimuth domain, known as
Azimuth-Switched quantization, has demonstrated to reach the same performance of the
direct BAQ implementation employing about 0.5 bit less per samples. The amount of
reduced memory consumption is translated to an overall data reduction of 12.5%, as the
employed bitrate for Tandem-L is of 4-bit BAQ.

Staggered SAR mode generates missing samples at some points of the azimuth do-
main. Being the prediction performed along the azimuth direction, a specific strategy to
overcome this gaps without stopping the prediction has been successfully presented. The
proposed technique, named “PC-Restart”, exploits the usage of the a-priori knowledge of
gaps position, allowing to assign a 1 bit flag in its positions and increase the bitrate before
and after it. After interpolation, the values nearest to the gaps position are represented
with the same accuracy (SQNR) as the overall signal.

This work represents a preliminary study for the research topic. As possible outlook,
the proposed technique must be applied to real staggered data. A possible option of ac-
quired data is the airborne Flugzeug SAR (F-SAR) [20] from DLR, which allows a specific
setting of the instruments for making possible a Tandem-L-like raw data generation. For
this, it is worth pointing out that it has been employed, for the simulations, a planar
array approximation of the azimuth antenna pattern. It will be of great interest to an-
alyze the performance of the proposed technique by considering real reflector patterns,
and eventually take into account the pattern variation along range, which may have an
impact on the resulting weights estimation. After the real data analysis, different options
of improvements are planned. First of all, the application of polar BAQ together with
LPC in order to exploit the circular symmetry of the complex raw data signal. Finally,
the predictive process can be improved by considering more complex techniques, such as
non-linear predictors, which may be further investigated to increase the data reduction
capability of the system, eventually at the cost of a higher computational cost.
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