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Motivation 

Debris laser ranging 

Hermite integration 
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 + 250 per year  

Space debris is a growing threat to the safe and cost-
effective operation of space systems   

Fengyun-1C 
ASAT test 

Kosmos 2251-Iridium 33 
collision 
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The Iridium 33–Cosmos 2251 collision highlighted the 
importance of actionable orbit uncertainties 

Relative collision velocity:  
11,7 km/s 
 
 

10 February 2009 
about 800 km above Sibiria 

Cosmos 2251 
(defunct) 

  950 kg 

Iridium 33 
(operational) 

  560 kg 
~ 1800 large 
debris objects 

Forecast of minimum distance : 

584 m 
 no collision avoidance maneuver  
    was performed by Iridium operators! 
 Visualization: AGI 
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ESA OGS  
Teneriffa 

Tracking radar for      
LEO objects 

Passive-optical tracking 
for GEO objects 

Passiv-optical imaging of 
LEO satellites 

Observatorium Lustbühel 
Graz 
SST 
Australien 

© DARPA 

Space debris objects of about 10 cm size and larger are 
detected and tracked by radar and optical telescopes  

Haystack Radar 
Westford, USA 

© MIT © WR 
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TLE data have inherent uncertainties in the km range, 
limiting their usage for effective conjunction analyses  
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59 objects / 150 passes 
Analysis: G. Kirchner, Graz 
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Motivation 

Debris laser ranging 

Hermite integration 



Laser ranging and tracking can be used to determine 
precise distance and angles of space debris objects 

laser 

telescope 

Distance 

Elevation 

Azimuth 

Time-of-flight laser ranging 
 

• Short laser pulses (nanoseconds) 
 

• Range accuracy: few meters  
 

• 3D trajectory assessment 
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Laser ranging to cooperative targets, i.e. equipped with 
retro-reflectors routinely provides sub-metre precision 

filtered  data 
normal points 
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Satellite Laser Ranging vs. Space Debris Laser Ranging  

Satellite Laser Ranging 
(SLR) 

Space Debris Laser Ranging 
(SDLR) 

Application Geodesy Orbit Determination 

Achieved in  ~ 1964 ~ 2004 

Operational 
stations 

approx. 40 1 – 2 

Experimental 
stations 

approx. 5 approx. 5 

Targets approx. 100 (cooperative) > 10 000 (non-cooperative) 

Precision < 1 cm ~ 1 m 

Pulse energy ca. 100 µJ – 1 mJ > 100 mJ 

Data analysis 8 analysis centres  individually 

Organization International Laser 
Ranging Service 

─ 
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Fusion of laser ranges and pseudo angular (TLE) data 
reduces the predicted orbit uncertainty   

Comparison with concatenated 
1-day CPF predictions  
 
Weighting of TLE pseudo-data 
to laser measurements 1:10 

ESA GSTP activity 
“Accurate orbit determination of space 
debris with laser ranging/tasking” 
Chr. Bamann, TU Munich, Germany 



We are developing laser ranging and tracking hardware 
and software, mainly geared towards LEO space objects 

Uhlandshöhe 
Forschungsobservatorium (UFO) 
 
SLR ground station testbed 
• 10-cm laser telescope, fibre-fed 
• 43-cm receiver telescope 
• equatorial mount 
 

Surveillance Tracking and Ranging 
Container (STaR-C)  
 
Transportable Debris Laser Ranging Station 
• 10-cm laser telescope 
• Same receiver telescope as UFO 
• Laser path through axes of alt-az mount 
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Selection of observing sites considered 
for transportable laser ranging station 

Andøya Space Center 
Andøya, Norway 

Observatorio del Teide 
Tenerife, Spain 

Southern African Large 
Telescope (SALT) 
Sutherland, South Africa 

Auger Observatory 
Malargüe, Argentina 

GARS-O’Higgins 
Kap Legoupil, Antarctica 

Rail 

Road 

Sea 

Air 
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Motivation 

Debris laser ranging 

Hermite integration 



Accurate   conserving first integrals (energy, angular momentum) 
Versatile   applicable for all orbit types and integration times 
Fast   capable of integrating many objects simultaneously  

 
Hermite integration scheme 
• Direct numerical integration method using Cartesian coordinates 
• Widely used in the astronomical N-body community (Makino 1991, Makino & 

Aarseth 1992, Kokubo & Makino 2004) 
 

• Needs acceleration a and its first derivative da/dt 
• Second and third derivatives can be calculated based on a and a/dt alone 

 
• For constant timesteps the Hermite integrator is time-symmetric 
• No secular errors in semi-major axis and eccentricity but small drift in ω 

 

We require an accurate, versatile, and fast integration 
method for propagating orbits and uncertainties 
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Test cases (Hull et al. 1972): Comparison of state 
vectors after 20/2π or about 3.2 orbits 
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Numerical accuracy  
defined as 



Short-term integration: 
100 orbits, corresponds to ~7 days for 100-min orbit 
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Case D1, e=0.1 



Short-term integration: 
100 orbits, corresponds to ~7 days for 100-min orbit 
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Case D1, e=0.1 



Long-term integration: 
3.2 million orbits, corresponds to ~600 yrs for LEO orbit 
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Long-term integration: 
3.2 million orbits, corresponds to ~600 yrs for LEO orbit 
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• Realistic and actionable uncertainties are important for many SSA applications 
• Laser ranging to space debris objects promises order of magnitude 

improvement 
• DLR is developing hardware for testing the technology that could be part of a 

sensor network 
• The Hermite scheme is an attractive integration method because it has no 

secular errors in semi-major axis and eccentricity  
 

 
Next steps 
• Implementation of force model (Earth potential, 3rd body, SRP, drag) 
• Detailed comparison of results with other propagation methods and codes  
• Analysis and optimization of a global network of debris laser ranging stations 

 

Summary and outlook 
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Backup slides 
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• laser ranging data can provide information about structure and dimension of 
objects 

Measurements: Residual Plots 
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separation 50ns (7.5m) separation 35ns (5.3m) 



• laser ranging data can provide information about rotational behavior and 
dimension of objects 
 

Measurements: Residual Plots 
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period  11.5s 
amplitude 30ns 

line width from 
50ns to 2ns 



Modelling of Orbital Debris and Artificial Satellite 
Trajectories (MODAST) 

• Numerical propagator based on the Hermite integration scheme 
− Previously for dynamical modelling of circumstellar dust (Rodmann 2006) 
− Iterated Predict-Evaluate-Correct method P(EC)n  
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