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There is a vast amount of data being generated every day in the world, coming from a 

variety of sources, with different formats, quality levels, etc. This new data, together with the 

archived historical data, constitute the seed for future knowledge discovery and value 

generation in several fields of science and big data environments. Discovering value from data 

is a complex computing process where data is the key resource, not only during its processing, 

but also during its entire life cycle. However, there is still a huge concern about how to 

organize and manage this data in all fields, and at all scales, for efficient usage and 

exploitation during all data life cycles. Although several specific Data LifeCycle (DLC) models 

have been recently defined for particular scenarios, we argue that there is no global and 

comprehensive DLC framework to be widely used in different fields.  

In particular scenario, smart cities are the current technological solutions to handle the 

challenges and complexity of the growing urban density. Traditionally, Smart City resources 

management rely on cloud based solutions where sensors data are collected to provide a 

centralized and rich set of open data. The advantages of cloud-based frameworks are their 

ubiquity, as well as an (almost) unlimited resources capacity. However, accessing data from 

the cloud implies large network traffic, high latencies usually not appropriate for real-time or 

critical solutions, as well as higher security risks. Alternatively, fog computing emerges as a 

promising technology to absorb these inconveniences. It proposes the use of devices at the 

edge to provide closer computing facilities and, therefore, reducing network traffic, reducing 

latencies drastically while improving security. We have defined a new framework for data 

management in the context of a Smart City through a global fog to cloud resources 

management architecture. This model has the advantages of both, fog and cloud technologies, 

as it allows reduced latencies for critical applications while being able to use the high 

computing capabilities of cloud technology.  

In this thesis, we propose many novel ideas in the design of a novel F2C Data Management 

architecture for smart cities as following. First, we draw and describe a comprehensive 

scenario agnostic Data LifeCycle (COSA-DLC) model successfully addressing all challenges 

included in the 6Vs, namely Value, Volume, Variety, Velocity, Variability and Veracity, not 

tailored to any specific environment, but easy to be adapted to fit the requirements of any 

particular field. Then, we introduce the Smart City Comprehensive Data LifeCycle (SCC-

DLC) model, a data management architecture generated from a comprehensive scenario 

agnostic model, tailored for the particular scenario of Smart Cities. We define the 

management of each data life phase, and explain its implementation on a Smart City with 

Fog-to-Cloud (F2C) resources management. And then, we illustrate a novel architecture for 

data management in the context of a Smart City through a global fog to cloud resources 

management architecture. We show this model has the advantages of both, fog and cloud 

technologies, as it allows reduced latencies for critical applications while being able to use the 

high computing capabilities of cloud technology. As a first experiment for the F2C data 

management architecture, a real Smart City is analyzed, corresponding to the city of 

Barcelona, with special emphasis on the layers responsible for collecting the data generated by 

the deployed sensors. The amount of daily sensors data transmitted through the network has 

been estimated and a rough projection has been made assuming an exhaustive deployment 

that fully covers all city. And, we provide some solutions to both reduce the data transmission 

and improve the data management. Then, we used some data filtering techniques (including 

data aggregation and data compression) to estimate the network traffic in this model during 

data collection and compare it with a traditional real system. Indeed, we estimate the total data 

storage sizes through F2C scenario for Barcelona smart cities. 

Keywords — Data LifeCycle, Data Management, Fog-to-Cloud (F2C), Vs Challenges
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1.1 Motivation 
 

It is expected that 70% of the world’s population will live in cities and surrounding areas by 

2050. Municipal managers have to devise new ways to managing and organizing the city in order 

to mitigate the issues derived from such amount of population, while maintaining or even 

increasing the citizens’ quality of life. Smart cities are the technological solutions designed, not 

only for absorbing the increasing pressure of population, but mainly for supplying better and 

more efficient services and processes, promoting a sustainable economic growth and, 

consequently, providing a higher quality of life to citizens [1, 2]. 

Smart cities involve different challenging technologies, and demand an exhaustive 

deployment of computing resources throughout the city (from sensors networks or mobile smart 

devices, to powerful data centers), all connected through several communication networks using 

different technologies (wireless sensor networks, 4G, WiFi, Bluetooth, etc.), and all together 

managed and coordinated by deploying sophisticated frameworks. However, beyond all foreseen 

but also unforeseen technologies, the most precious resource for a city to become smart is data. 

A huge amount of data is constantly being produced in the world, turning Big Data into one of 

the hottest research topics currently. Data are being generated from multiple scientific sources, 

including Smart Cities, the IoT, scientific modeling, or big data simulations [3-5]; but also from 

users’ social, professional or everyday activities. These daily fresh data are accumulated over 

other historical repositories, setting up the complex universe of digital data. This data can then be 

used in different forms during big data processing (reading, writing, transforming or removing), 

and then be reused in further processes, therefore drawing the life cycle of data. 

Data are the fuel for the Smart Cities technology. Indeed, data allow a city to become smart, 

instead of just automatized. This is rooted to the fact that data provide the required information 

for services to proceed according to contextual parameters, or some higher value knowledge 

extracted from complex data analysis. In fact, Smart Cities constitute the ideal scenario to 

generate abundant data from any kind of source, such as the own city’s sensors, participatory 

sensing (for instance, sensors integrated in citizens’ smartphones), data obtained from social 

media or any other third party application, surveillance cameras and devices, or any other city 

resource sensitive to contribute with additional information. For this reason, many efforts from 

academia and industry are being devoted to create and use data analysis algorithms in order to 

take advantage of this tremendous abundance of data. However, not many researchers are paying 

attention to explicit and efficient data management strategies in the context of Smart Cities. 

Data management and organization during their entire life cycle, including data generation, 

data acquisition, data preservation, or data processing, becomes a complex and challenging task 

[6, 7]. The main objective of data management is to provide easy and safe access to data sources 

and repositories, in order to be able to extract any form of value through complex computing and 

analytical processes aver big data sources. For this reason, efficient data management and 

organization systems are a key topic for effective value generation. In addition, the traditional 

concepts of Relational Database Management Systems (RDBMS) and the recent Extract-
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Transform-Load (ETL) process have been proposed for modeling the typical data life cycles in 

data warehousing environments [5, 8, 9]. Moreover, it is worth highlighting that Big Data brings 

further challenges to the traditional data management and organization systems [5, 10].  

Several Data LifeCycle (DLC) models have been proposed as an effective data management 

solution that facilitates the extraction of knowledge in complex data systems (see for example 

references [6, 7, 11-13]). In a short, a DLC models define the sequence of phases in the data life, 

specify the management policies for each phase, and describe the relationship among phases 

[11]. Furthermore, a DLC model is specific for a particular field and scenario, addressing their 

private requirements and challenges [7, 13]. Thus, the main goal of a Data LifeCycle model is to 

optimize data management – e.g., considering an efficient organization or the removal of any 

kind of waste– in order to offer end-users data products best suiting the expected quality 

requirements [11, 14, 15].  

 
1.2 Problem Statement 
 

In this thesis, we aim at contributing to the problem of designing a comprehensive data 

management architecture in the context of a Smart City. We believe data are the most important 

resource in a Smart City; without an efficient management of the data obtained from the whole 

deployed sensors network, no smart services can be provided. Such a problem faces with the 

following difficulties: 

 Data management in the context of smart cities is a well-known complex topic, there is no 

contribution yet considering data management as a nuclear component in the design of a 

Smart City architecture. 

 There is significant and unstoppable activity in the scientific community turning into new 

architectures and models for managing computation at the edge (understanding this 

paradigm either as edge computing or fog computing), but none of the proposed solutions 

considers the data as the central management resource. 

 There is not any data management architecture designed integrally throughout all data life 

cycle stages, from collection to removal, including storage and processing. 

 As of today, there is no data management architecture designed comprehensively, 

intended to address the main challenges of the Big Data paradigm applied to a Smart City 

scenario, which can be summarized as the 6Vs challenges, which are: 

o VOLUME: In a Smart City there is a wide sensors network deployed throughout 

the whole city. Such network is undoubtedly generating huge volumes of data that 

must be efficiently managed to make them accessible for users and applications. 

o VELOCITY: The data generation speed rate can be really high, and an effective 

data management system has to be able to deal with such velocity. 
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o VARIETY: The data types and formats generated are heterogeneous, since 

different types of sensors generate different types of data, using distinct formats, 

templates and characteristics. 

o VARIABILITY: In a Smart City, each data source continuously generates new 

updated versions of the produced data. The updated version may overwrite the last 

version when according to the specific data updating policy in place. 

o VERACITY: The exponential data growth is unquestionably posing tremendous 

constraints and demands in the Smart City, such as data quality or data security.  

o VALUE: And the last, but actually the most important challenge, is value: the 

whole data management architecture has to be defined to provide a framework to 

use data and generate information, knowledge, intelligence and, in summary, 

smartness to the city services. 

 Data sources in a Smart City are widely distributed. Such as a distributed topology drives 

complex challenges for designing an effective data management architecture such as 

providing low latencies rates, reducing data transfer volumes, or providing efficient 

performance for both, critical services but also high performance computing applications. 

All these requirements have to be provided globally. 

 

1.3 Research Objectives 

 
In this thesis we aim at designing a data management architecture for smart cities. We 

envision a distributed architecture with a hierarchical structure, meeting the following objectives: 

 The architecture must be distributed and hierarchical, effectively defining and 

coordinating all elements that belong to the system to become a broad, integrated, and 

efficient system. 

 The architecture must be comprehensive, i.e., it must have clear design and definitions for 

all data life cycle stages, including data acquisition, data processing and data preservation.  

 The architecture must address the 6Vs challenges as part of its design, becoming efficient, 

flexible, and providing high data quality. For this reason, the architecture must provide: 

o Efficiency for managing high volumes of data and at high speed rate. 

o Flexibility for managing heterogeneous data types and formats. 

o Quality, providing clean and polished data and, consequently, contributing to 

improve the system efficiency as well. 

 The architecture must be able to provide fast data access to match efficiently the 

requirements of both real-time and critical applications, by exploiting the features of data 

sources locality and fog computing. 
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 The architecture must be able to provide efficient data access to historical (not recent) data 

repositories to match the requirements of deep computing and big data applications, by 

exploiting the capabilities of cloud computing systems. 

 The architecture must be able to cover all sections and districts of the city and, therefore, 

become fully scalable without losing efficiency. 

 

Aligned to the proposed research objectives, in this thesis we propose a new architecture for 

data management in the context of smart cities. We base our architecture on the definition of a 

comprehensive scenario agnostic DLC model, named the SCC-DLC model. This model has been 

proved to address the 6Vs data challenges, and has already been easily adapted to the specific 

scenario of a Smart City. As a reference contribution for our proposed architecture we have 

selected the recently coined Fog-to-Cloud (F2C) computing paradigm [16], designed by other 

members of our research group, intended to create a hierarchically and distributed resources 

management system. Thus, we have designed all data management tasks during all data life 

cycle stages, from collection to removal, including storage and processing, on the F2C 

architecture. In addition, other important features, such as data quality and data transfer 

efficiency, have been also considered. The main advantages of the proposed model is that it 

combines the advantages of both, the cloud and the fog computing technologies, which mainly 

are keeping high performance capabilities for computational intensive applications, and reducing 

communication latencies for real-time or critical services, reducing network data traffic and 

enhancing fault tolerance and security protection. 

There are several novel ideas in this proposal. First, we defined the COmprehensive Scenario-

Agnostic DLC (COSA-DLC) model to manage and organize data in any scenario, science, or big 

data context. This model has been evaluated with respect to the 6Vs challenges to check its 

completeness and performance. We have also shown the easy adaption of this scenario agnostic 

model and have adapted it to the context of a Smart City, referred to as the Smart City 

Comprehensive DLC (SCC-DLC) model. Then, by designing and developing the SSC-DLC 

model on top of a F2C resources management framework, we benefit from the combined 

advantages of both the cloud and the fog computing technologies, these are: keeping high 

performance capabilities for computational intensive applications, reducing communication 

latencies for real-time or critical services, reducing network data traffic and enhancing fault 

tolerance and security protection. Finally, we have estimated the effects of our proposal and have 

evaluated the performance of some data management tasks in the Smart City of Barcelona, 

comparing our approach to the city centralized open data management platform. 

 

1.4 Research Methodology 
 

In this thesis, we have gone beyond the state of the art in the area of data management in 

specific context of smart cities. The research methodology used in the elaboration of this PhD 

thesis meets the traditional approach, we may structure into four global phases, as follows. In a 

first phase, we have reviewed the existing literature about DLC models, evaluated these models, 
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and concluded that there is no comprehensive DLC model suiting the specific needs for the 

mentioned smart cities context, thus setting the problem assessment. Aligned to this research 

need, in a second phase we have proposed a general data management framework, referred to as 

COmprehensive Scenario Agnostic DLC (COSA-DLC) model, intended to manage and organize 

data in any scenario, science, or big data context. This model has been evaluated in terms of the 

6Vs data challenges, to validate its performance and completeness. Then, in a third phase, we 

show the COSA-DLC model applicability. To that end, we extend the existing COSA-DLC to 

work in the context of a Smart City, referred to as the Smart Cities Comprehensive DLC (SCC-

DLC) model. Finally, in the fourth and last phase, we present a novel architecture for efficient 

fog-to-cloud data management in smart cities, consisting in mapping the SCC-DLC model into 

the Smart City F2C resources management architecture. The SCC-DLC consists of three main 

blocks, data acquisition, data processing, and data preservation. Data acquisition is mainly 

performed at fog layer 1, as well as some basic data processing and data preservation actions. 

The fog layer 2 can enhance the data processing and data preservations capabilities of level 1 by 

providing higher computing capabilities. And finally, the cloud layer is the responsible of a more 

complex and more sophisticated data processing over a much broader set of (presumably 

historical) data, as well as the responsible for permanent data preservation. These three blocks 

turns into the main chapters this manuscript is split into. 

Indeed, the data acquisition block and its phases, collected the first design efforts for the SCC-

DLC model, intended to show the ease adoption of several data aggregation optimizations in the 

proposed F2C data management model. For the sake of illustration, the Smart City of Barcelona 

has been deeply analyzed with the aim of estimating the amount of data generated by the sensors 

network, later collected and managed through its central platform, named Sentilo [17, 18], 

aiming to perform a data volume projection considering an exhaustive sensors development. We 

analyze the scalability of this eventual deployment and discuss different solutions to deal with 

this complexity. We have applied some data filtering and data aggregation techniques as part of 

data acquisition process.  

Afterwards, the second block, data preservation attracts our research attention. We presented 

the advantages brought by storing data (including real-time, least-recent, and historical data) in a 

distributed hierarchal model, deployed by our F2C data management model. We have appraised 

the amount of available data to be stored in the storage media (from fog to cloud layers) at 

Barcelona Smart City. In addition, several challenges, imposed by storing the huge volume of 

data in different layers of fog to cloud –such as, retrieving real-time and historical data, the 

frequency of updating data, etc.–, came up. In this thesis, we propose an F2C object store service 

model, able to organize the writing model for the stored data in our F2C data management 

model.  

The third block, the data processing is then analyzed, showing the benefits brought by our 

F2C data management model to ease the provision of services smart cities users. Our main 

interest focuses on showing how an F2C object store service model is able to read data for the 

services in our distributed F2C data management model. Finally, we highlight some details 

information about the network latency among layers in the F2C system. 
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1.5Structure of thesis 

 

This thesis manuscript is in eight chapters as follows. Chapter 2 refers to the data concepts 

(including Big Data, Open Data, Open Data Government, and 6Vs challenges). In Chapter 3, we 

describe current Smart City trends. In Chapter 4 we adapt the COSA-DLC model to a Smart City 

scenario (SCC-DLC), proposing our initial F2C data management architecture. In Chapter 5, we 

dig into the Data Acquisition block with their related phases (including data collection, data 

filtering, data quality, and data description) and depict the F2C Data Acquisition block for the 

smart cities. In Chapter 6, we introduce the different phases in the Data Preservation block and 

describe the F2C Data Preservation block for the smart cities. In Chapter 7, we argue about the 

Data Processing block and their phases for smart cities (including data process and data 

analysis), and present the F2C Data Processing block for the smart cities. Finally, we conclude 

this thesis in Chapter 8, summarizing the research work performed and highlighting the main 

contributions of this thesis. In the following paragraphs the organization of this thesis is 

described in more detail. 

Chapter 2: 

Section 2.1: We define some important data concepts (including Big Data, Open Data, and 

Open Government) 

Section 2.2: We argue about Vs challenges (including 3Vs, 4Vs, 5Vs, 6Vs, and so on) as part 

of Big Data complexities concepts. 

Section 2.3: We describe concepts and issues about data management and review the 

definition of a Data LifeCycle model. Then, we show in detail, most existing Data LifeCycle 

models focusing on their challenges and limitations. 

Section 2.4: We evaluate the presented Data LifeCycle models with respect to the 6Vs 

challenges. 

Chapter 3: 

Section 3.1: We introduce main sources and devices in the Smart City. 

Section 3.2: We argue about main proposed technological architecture to connect sources and 

devices in the Smart City. 

Section 3.3: We define the different computing models in the Smart City, including cloud, 

fog, and fog-to-cloud computing models. 

Section 3.4: We go in details about resource management in the Smart City, encompassing 

centralized and distribute resource management. 

Section 3.5.We describe data management in Smart City and then we highlight that a 

centralized data management (cloud data management) model is only existed in the current 

Smart City scenarios. So, we present that there is not any focus about distributed data 
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management (i.e. fog-to-cloud data management) model specially tailored to meet the smart 

cities needs, limitations and requirements.  

Section 3.6: We depict a real Smart City scenario to use for our real experiments in the rest of 

this thesis. Our interest is the Barcelona Smart City as one of the big metropolitan city in the 

Europe. 

Chapter 4: 

Section 4.1: We propose a novel Comprehensive Scenario Agnostic Data LifeCycle (COSA-

DLC) model, a DLC model which: i) is proved to be comprehensive as it addresses the 6Vs 

challenges (namely Value, Volume, Variety, Velocity, Variability and Veracity; and ii), it can be 

easily adapted to any particular scenario and, therefore, fit the requirements of a specific 

scientific field. We also include two use cases to illustrate the ease of the adaptation in different 

scenarios. We conclude that the comprehensive scenario agnostic DLC model provides several 

advantages, such as facilitating global data management, organization and integration, easing the 

adaptation to any kind of scenario, guaranteeing good data quality levels and, therefore, saving 

design time and efforts for the scientific and industrial communities. 

Section 4.2: We present the Smart City Comprehensive Data LifeCycle (SCC-DLC) model, a 

data management architecture generated from a comprehensive scenario agnostic model, tailored 

for the particular scenario of Smart Cities. 

Section 4.3 and Section 4.4: We define the management of each data life phase, and describe 

its implementation on a Smart City with Fog-to-Cloud (F2C) resources management, an 

architecture that combines the advantages of both cloud and fog strategies. 

Section 4.5.We highlight summary and contribution of this Chapter. 

Chapter 5: 

Section 5.1: We present the data acquisition block includes the data collection, data filtering 

(which performs some optimizations, such as data aggregation), data quality (aiming to appraise 

the quality level of collected data), and data description (tagging data with some additional 

information) phases. 

Section 5.2: We tailor the Data Acquisition block and their phases to the real F2C Smart City 

scenario. 

Section 5.3: We estimate the network traffic in F2C data management model during data 

collection and compare it with a traditional real system. 

Section 5.4: We discuss about summary and contribution of this Chapter. 

Chapter 6: 

Section 6.1: We introduce the data processing block encompasses the data process (which 

provides a set of processes to transform raw data into more sophisticated data/information), and 



    Hierarchical Distributed Fog- to-Cloud Data Management in Smart Cities 

 

 

25 

data analysis (implementing some analysis or analytic approaches for extracting knowledge) 

phases. 

Section 6.2: We map the Data Preservation block and their phases to the real F2C Smart City 

scenario. 

Section 6.3: We estimate the data storage size (including maximum, minimum and total 

capacity) in F2C data management. 

Section 6.4: We highlight all summary and contribution of this Chapter. 

Chapter 7: 

Section 7.1: We show the data preservation block consists of four phases which are the data 

classification (aiming to organize and prepare data for efficient storage), data archive (storing 

data for short and long terms consumption), and data dissemination (publishing data for public or 

private access). 

Section 7.2: We couple the Data Processing block and their phases to the real F2C Smart City 

scenario. 

Section 7.3: We show all summary and contribution of this Chapter. 

Chapter 8: 

This chapter reviews and summarizes the proposed ideas of this Thesis. Moreover, it suggests 

avenues for future work. 
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Chapter 2: 

 

 
 

Data Management Concepts 
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This Chapter is structured as follows. Section 1 introduces the data generation concepts, 

focusing on insights related to Big Data, Open Data, and Open Government Data concepts. 

Section 2 describes the 6Vs challenges, to be used for evaluation purposes. Then, Section 

3conceptualizes the Data Lifecycle model, reviews most relevant existing models, leading to 

their evaluation in terms of the 6Vs challenges in Chapter 4. In Section 5, we describe our 

proposal for managing data complexity, i.e., the comprehensive, scenario agnostic, DLC (COSA-

DLC) model and evaluate it also in terms of the 6Vs challenges for benchmarking. Finally, in 

Section 6, we summarize the work done and open up avenues for further research. 

 
2.1 Data Generation concepts 
 

Nowadays, the Information Technology (IT) world is quickly, continuously and unstoppably 

progressing towards unforeseen frontiers, empowered by Social Media, Internet of Things (IoT) 

as well as by emerging smart scenarios, such as smart cities, smart transportation or smart health. 

This IT progress is driving the need to handle a very huge volume of data as required by the set 

of services and devices building the envisioned IT smart scenario. As a consequence, a very 

large amount of data collected in either structured, semi structured or unstructured format (Big 

Data), are being stored in distributed data repositories to be shared and openly (Open Data) 

utilized by potential clients for either private or public usage (Open Government Data). 

However, it is widely accepted that sharing huge amounts of heterogeneous data brings some 

challenges yet unsolved, mainly related to an efficient and smart data processing. Some authors 

have already identified the set of challenges that must be addressed, coining the 5Vs challenges, 

namely Volume, Velocity, Variety, Value and Veracity. 

We now introduce three examples to illustrate the growth rate curve for data production. The 

first example, refers to Big Data, and seats on the Next Generation Sequencing (NGS) [17, 18] in 

the biological systems field. As shown in Figure 2.1(Big Data example), the data growth evolved 

from a rate of 1 KB per day in 1996 to a rate of 10 GB per day in 2011. As a result, the size and 

number of experimental datasets available, from 1996 to 2011, keeps growing exponentially. The 

second example, refers to Open Data and is promoted by the Government of Catalonia [19, 20]. 

Figure 2.1 (Open Data example) shows the data collected by the app "Mobile Coverage", starting 

from January 2014 till now. The data are split into two periods, one lasting 15 months and the 

other one (the more recent) lasting two months. We may easily see how the magnitude of the last 

one is pretty close to the first, even though the 1 to 15 time relation, what undeniable shows the 

enormous growth in data. The third example, refers to Open Government Data, and focuses on 

data offered by three different countries (Australia, United Kingdom and USA) [21-23]. Figure 

2.1 (Open Government Data example) also shows the datasets growth rate from May 2013 to 

May 2015. Again, we may easily observe a huge data evolution in both United Kingdom –more 

than twice from 2013 with 9,440 datasets to 2015 with 24,732 datasets–, and USA –an 

impressive 78,8% in the same period, from 73,623 datasets in May 2013 to 131,635 datasets in 

May 2015. 
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1. Big Data example 

 
2. Open Data example    3. Open Government Data example 

Figure 2.1 Some examples of data growth rate from 1996 to 2015 

Unfortunately but unavoidably, the continuous increase in the volume and diversity of data is 

adding high complexity and severe difficulties to all data life stages to be faced by technology 

stakeholders, particularly when dealing with real time data analytics. Thus, concepts such as Big 

Data, Open Data and the most recent Open Government Data are stressing the overall data life 

cycle processing, while simultaneously easing both users’ access to data (leading to 

transparency, participation, and collaboration for customers [24]), and the deployment of new 

added-value services. It is worth emphasizing that by an easy users’ access to data and the 

deployment of new services, the continuous development of the three mentioned concepts is 

strongly empowered, what undeniably sustains and even increases the overall data processing 

complexity. 

For this reason, the worldwide scientific community has invested substantial efforts in the 

recent decades to overcome the challenges related to managing difficulty and complexity in the 

different aspects related to data life cycle (e.g. data collection, data processing, data analysis, 

data storing). To that end, the concept of Data Lifecycle model was formally defined, thus 

proposing different Data Lifecycle models as a high-level framework encompassing all data 

management aspects, from data creation to data consumption. The main goals for a Data 

Lifecycle model are: i) to eliminate waste; ii)to operate efficiently, and; iii) to prepare data 

products ready for end-users matching the expected quality constraints [25]. However, Data 

Lifecycle models are usually tailored to specific fields and interests, turning into particular goals 

and different data stages depending on the designer’s needs for each data stage. 

This Chapter goes deep into the main concepts related to the Data Lifecycle model, aiming at 

two concrete objectives. First, the Chapter surveys most of the existing Data Lifecycle models, 

particularly emphasizing the need for deploying a widely adopted solution not tailored to specific 

scenarios. Second, the Chapter points out the weaknesses of existing 5Vs challenges and 
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proposes a novel set of 6Vs challenges to evaluate most relevant Data Lifecycle models, 

highlighting limitations and weaknesses for each of them. 

 

2.1.1 Big Data, Open Data, and Open Government Data concepts 

 This section deepens into Big Data, Open Data, and Open Government Data concepts, 

carefully analyzing pros, cons and main challenges for each initiative. In fact, having a solid 

knowledge about any ongoing initiative is crucial to get a comprehensive picture about the 

overall scenario but also to get the required background to facilitate the design and development 

of innovative solutions fixing the yet unsolved challenges. 

 

2.1.1.1 Main Big Data concepts 

Coined some years ago, the “Big Data” term [26, 27] has been largely defined by the data 

scientific community. However, although the technical relevance and business impact of Big 

Data is widely recognized, there is no global consensus on a uniform and highly accepted 

definition [28]. That said, after a thorough reading process on the current related literature we 

may conclude that Big Data definition scan be categorized into three blocks depending on the 

main characteristic used to formally establish the definition. The three semantic approaches can 

be classified as “data size”, “technologies and processes”, and “challenges”. Table 2.1 highlights 

relevant references in the literature for each one of the mentioned characteristics: 

Table 2.1. Big Data definitions 

Characteristic Ref. Description 

Data Size [29] Michel Cox and David Ellsworth were among the first to use the term 

big data literally, referring to the usage of larger volumes of scientific 

data for visualization. 

[30] Big data refers to datasets whose size is beyond the ability of typical 

database software tools to capture, store, manage, and analyze. 

[31] Big Data is about the growing challenge organizations face as they deal 

with large and fast-growing sources of data or information that also 

present a complex range of analysis and use problems. 

Technologies 

and Processes 

[28] Big data shall mean the datasets that could not be perceived, acquired, 

managed, and processed by traditional IT and software/hardware tools 

within a tolerable time. 

[32] Big Data and data intensive technologies are becoming a new 

technology trend in science, industry, and business. 

[27] Big Data is a set of techniques and technologies that require new forms 

of integration to uncover large hidden values from large datasets that are 

diverse, complex, and of a massive scale. 

[26] The process of handling big data encompasses collection, storage, 

transportation, and exploitation. It is with no doubt that the collection, 

storage, and transportation stages are necessary precursors for the 
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ultimate goal of exploitation through data analytics, which is the core of 

big data processing. 

[33] Big data is a term encompassing different types of complicated and 

large datasets, all becoming hard to process with the conventional data 

processing systems. 

[34] Big data shall mean the data of which the data volume, acquisition 

speed, or data representation limits the capacity of using traditional 

relational methods to conduct effective data analysis or the data which 

may be effectively processed with important horizontal zoom 

technologies. 

[35] Big Data is a massive volume of both structured and unstructured data, 

so large that makes difficult its to process using traditional database and 

software techniques. 

Challenges [27, 

36-

40] 

The “V” discussion is started with 3Vs models. The terms 3Vs were 

originally introduced by Gartner to describe the elements of big data 

challenges, ending up characterizing Big Data by the three Vs, namely 

Volume, Velocity and/or Variety. 

[26] Later, the 3Vs models were extended to 4Vs. However, there were some 

doubts on the added V. This reference includes veracity, so showing the 

4Vs as volume, velocity, veracity, and variety.  

[28] Another alternative for the added V is value, so defining the 4Vs as 

volume, velocity, variety, and value (instead of veracity). 

[32, 

41, 

42] 

Recently, the discussion moved to 5Vs. Like 4Vs, there are different 

thoughts to characterize the 5Vs. Some references pushed for a 5Vs 

model including volume, velocity, variety, value, and veracity. 

[33] This reference pointed out variability (replacing veracity), so defining 

5Vs as volume, velocity, variety, value and variability. 

[43, 

44] 

New discussion goes to 7Vs as volume, variety, velocity, veracity, 

value, variability and visualization. 

 

Big Data provides some opportunities and challenging effects. In short, most opportunities of 

Big Data refer to its economic impact [45], particularly dealing with optimizing production 

processes and supply chain, generating new goods and services, targeted marketing, improved 

organizational management as well as faster research and development. On the other hand, 

challenging effects of Big Data refer to the challenges highlighted by the exiting 5Vs challenges, 

mainly summarized into Volume (huge volume of data), Variety (various data formats), Velocity 

(rapid generation of data), Value (huge value but very low density) [28], and Veracity (quality 

and security of data) [32] which are later discussed in section 3. 

 

2.1.1.2 Open Data 
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Many profit and nonprofit organizations establish public data spaces, generally referred to as 

Open Data [24, 45-49], enabling data sharing in a simple and elegant way in public or private 

spaces. In addition, data stakeholders send, publish and receive lots of different information 

through any connectivity technology in place. Thus, data come to open environments with 

distinct formats and sources by data stakeholders which make new challenges and opportunities 

for the information world. The main objective of Open Data is to provide data stakeholders with 

a public space for sharing information. Open Data is undoubtedly bringing in some benefits: i) 

business opportunities; ii) a free (or low-cost) public resource fostering innovation and a better-

informed public[45]; iii) capacity to generate more services for users, and; iv) a more vibrant 

economy[47]. Nevertheless some weaknesses may also be reported, such as: i) the lack of data 

quality; ii) incompatible formats and access methods, or; iii) various semantic interpretations of 

data[48]. 

 

2.1.1.3 Open Government Data (Open-Data Government) 

Several initiatives have been recently set by many governments around the world to create 

Open Government Data portals. In short, Open Government Data can be considered as Open 

Data provided by governments. This means that the data provided must have a valid and trusted 

reference for users as well as an acceptable quality. The aim of Open Government Data is to 

connect the customers to trustable and reliable information to benefit from better services. Its 

main rationale can be decoupled into a better governance, great and improved services, and a 

more vibrant economy [46, 50-55]. Forty-seven countries [56], as of May 2015, are already 

participating in the Open Government Data model throughout cities, states, and countries as 

shown in Figure 2.2. 

 

 
Figure 2.2 Countries joining the Open Government Data portals 
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Open Government Data portals bring huge pros and cons for Open Government Data 

stakeholders. On one side, major advantages of Open Government Data are transparency, 

participation, and collaboration [24], as well as valid sources and standardization of the data 

format. On the other side, the most notable barriers are the risk of violating existing regulations, 

difficulties with data ownership, misinterpretation and misuse of raw data, negative 

consequences of transparency and negative consequences for the government [57]. 

 

2.2 Extending the 5Vs challenges to a 6Vs model 
 

The main challenges in Big Data have been traditionally described through the 3Vs 

challenges, Volume, Variety and Velocity, as defined by Gartner [27]. This model has been 

extended to the 5Vs challenges, which may be considered as 4 +1, since the latter differs 

depending on the reference. Indeed, 4Vs parameters include Value, Variety, Velocity and 

volume. The additional one may be either Variability as stated by [33, 58] or Veracity as read in 

[32, 41, 42]. Recently, there is some effort to show that the challenges can assume 7Vs [43, 44], 

including both Variability and Veracity, and adding Visualization as a new challenge. Some 

other authors propose Volatility, Viscosity and Virality as additional main challenges [59-73]; 

however, we think these are not mature enough to be considered in this work. Next, we introduce 

main references and concepts for all previous challenges among all sources. 

 Value of data 

Value is a highest priority aspect of Big Data [27]. This is rooted on the fact that the main 

goal for data analysis and management, indeed, is to obtain enriched information. To reach 

this goal, we must explore large amounts of data with different data formats and sources to 

pick up some hidden data which can build the valuable information for business and end-users 

purposes [28]. The main challenge linked to this parameter refers to provide smartness 

approaches and scenarios for discovering and recognizing hidden value of information among 

all data. 

 Volume of data 

This parameter indicates the huge amount of data to be managed, coming from different data 

sources with distinct data types and formats. Note that Big Data concepts refer to the fact that a 

very large amounts of data must be managed and analyzed. Furthermore, traditional technologies 

can efficiently analyze and manage datasets limited to a certain size, typically in the size of 

Gigabyte. Therefore, the challenge is to promote new techniques and technologies to handle 

huge amounts of massive data, with different formats and sources [26, 28]. 

 Variety of data 

Variety refers to the fact that data comes from different sources, like sensors, social networks, 

smartphones, and so on [27] and, therefore, the formats to be considered may be very diverse. 

These include structured, semi-structured, and unstructured data, such as audio, video, webpage, 
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plain text, etc. [28]. In addition, the continuous technology progress will definitely bring new 

devices and solutions enabling additional data collection (for example, we may envision highly 

impacting advances in the e-health or in the transportation sectors), what is also adding 

variability to the collected data. Thus, handling data heterogeneity is a relevant challenge for big 

data. Indeed, traditional tools, such as SQL, use to handle only structured databases, but do not 

perform well when the databases are semi-structured or unstructured [74]. 

 Velocity of data 

Velocity highlights the extremely fast speed data streams are generated. For instance, sensors 

produce streams of data very fast, and the number of sensors are uncounted in smart scenarios. 

This demands a link between the Big Data concepts –specifically data collection, processing and 

analysis–, and a timely and efficient business value, for obtaining the expected value [26, 28, 

74]. In addition, the business markets make plans for setting more frequent decision making 

closer to their customers' requirements. For instance, the bank industry needs to get online, or 

nearly online, data analytics –Fast Data analytics concepts–, to create better services for their 

customers in current days. Traditional algorithms and systems cannot manage the current data 

stream growth rate nor can process the increasingly growing data sizes [26, 39]. So, the main 

challenge is to propose appropriate technologies to satisfy the business requirements. 

 Variability of data 

Variability refers to the fact that data meanings can be changing and updating over the time. 

It refers to data semantic concepts which are related to the intrinsic and interpretations 

meanings of data [44]. For instance, sometimes one single word may stand for multiple 

meanings; or one word can be translated into different meaning depending on the sentence 

context; or even some words can change to different meanings throughout the time [43, 44]. 

This parameter is highly impacting stakeholders involved in data analysis [75]. The challenge 

points out that the definition of specific algorithms and approaches, like sentiment analysis 

and opinion mining, making text deeply and globally understandable are required [76]. 

 Veracity of data 

Data veracity can be seen from two different points of view, namely quality concepts and 

security concepts, both defined next. 

Veracity in Big Data, from a security perspective, guarantees that the data access will be 

secure, that is, unauthorized access and modification will be prevented. This makes data to be 

trusted, authentic and protected for end-usage [32]. The challenge is to guarantee that huge sets 

of data will be preserved against any unexpected change and attack during collection, processing, 

storing and any other stage during the whole data lifecycle [32]. 

Veracity in Big Data, from a quality perspective, guarantees that the data provided suits best 

end-users expectations [14]. The issue of data quality has been considered by a number of 

researchers, and includes topics such as data complexity, missing values, noise, imbalance, 

dataset shift and so on [77-81], and concentrates on details about how the data can be relied for 

making the best customers’ decisions among all data [66, 82]. The challenge faces that despite 

the abundant data being available for usage, the quality of the data could be too complex for 
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decision making [26]. Furthermore, data quality can be guaranteed with two different strategies 

that try to prevent or correct errors throughout any activity [83, 84]: 

 Quality Assurance (QA) is “a part of quality management focused on providing 

confidence that quality requirements will be fulfilled” regarding the ISO 9000 standard 

definition [85]. QA tries to prevent any kind of defect in the product with a focus on the 

process utilized to build the product [86]. 

 Quality Control (QC) is “a part of quality management focused on fulfilling quality 

requirements” regarding the ISO 9000 standard definition [85]. QC tries to identify and 

correct defects in the final products [83, 86]. 

 Visualization of data 

Data visualization refers to the way data is presented, after being processed, as something 

easily visible, readable, understandable and tangible for most of the audiences like tables, 

diagrams, images and other intuitive display techniques [43]. The visualization may help users 

perform any potential analysis, seeking for possible solutions to endow business with better 

quality and performance. Such visualization however, is challenging since Big Data cannot be 

easily managed as traditional datasets. Indeed, some challenging issues in Big Data visualization 

are visual noise, information loss, large image perception, high rate of image change and high 

performance requirements [87].    

After reviewing all definitions about the Big Data concepts, we may assess that, in our 

opinion, there is a difference between using the Vs model for Big Data definition and Big Data 

challenges. On one hand, the complete definition of Big Data can be generated considering 

variety, volume, and velocity, since these are the features that describe Big Data –value might be 

also included assuming Big Data has appeared fueled by the potential value among such massive 

data. On the other hand, with respect to the Big Data challenges, we do not believe that 

visualization, referring to a way of presenting data once processed [26], is one main challenge 

for Big Data technology. This is rooted to the fact that visualization is an optional software 

programming aspect for end-users. In this paper we propose the 6Vs challenges model, 

considering Value, Volume, Variety, Velocity, Variability and Veracity, as a model to evaluate 

the comprehensiveness of the different data lifecycle models considered in section 4. 

Finally, in this thesis we propose the 6Vs challenges to be assumed for Open Data and Open 

Government Data concepts as well, since Open Data and Open Government Data both face the 

same challenges. However, the density of those challenges is different in Big Data, Open Data, 

and Open Data Government concepts. For instance, Open Government Data is less challenging 

in terms of Veracity assuming all datasets have been prepared with the unified sources; however 

some major challenges in terms of security and data quality under the Veracity challenge remain 

yet [57].  

 
2.3 Data LifeCycle models 
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The chronological evolution about data generation, especially in terms of digital data, can be 

referred many years ago. But, it is with no doubt that the first digital data was created with the 

first advent of the computer generation worldwide (Data Creation). The generated digital data 

may be then eventually stored in different types of media for later usage (Data Storing). 

Afterwards, the stored data must be converted into data with sense and meaning, capable of 

being communicated or manipulated by some process (Data Processing). Thus, raw data can 

become information and useful knowledge through some specific processing, which basically 

garners data from a variety of sources that is then analyzed to feed end users with value-added 

benefits and advantages (Data Analysis). This basic roadmap, from data creation to data analysis 

through data storing and data processing, depicts a simple data life cycle. However, recognized 

the volume of data and the data formats heterogeneity, different Data LifeCycle models are 

currently positioned to manage and organize the data reacting to the specific needs, 

characteristics and requirements. 

The Data management and organization concept is a critical and hot topic issue in any 

sciences (such as eScience), and big data environments (such as Smart Cities) intended to 

manage data sources, from creation to consumption in academia and industry nowadays. 

Traditionally, handling data management technologies is concentrated to the concept of 

Relational Database Management (RDBMS) and the more recent Extract-Transform-Load (ETL) 

process, for modeling data life stages in the context of data warehousing environments [8, 88, 

89]. Recently, the emerging big data paradigm (in any scenario and science) has imposed further 

difficulties and complexities to the traditional data management systems [88]. Therefore, several 

DLC models are proposed as a set of planning, organization and management of data, from 

production to usage beyond any technology, system and software restrictions to overcome data 

management concerns [11, 12]. 

Data LifeCycle models are defined to set a high level framework standing for a global data 

life view from production stage to consumption stage. The benefits of designing and 

implementing a DLC model are the following: 

 easing for planning and handling complexity of data management in all data life stages [11, 

12]; 

 preparing data products ready for end-users, matching the expected constraints and 

efficiency [7, 11, 12]; 

 showing elucidate the quality level of data, removing any kind of waste and noise [11]; 

 illustrating a sequence of any essential activities related to data life [11]; and 

 helping designers create sustainable software [90, 91]. 

Several proposals for Data LifeCycle models can be found in the literature as part of specific 

sciences and/or environments and/or data stages management, each of them addressing specific 

challenges and objectives about the particular science [12, 13], scenario [92, 93] or data stages 

management [94]. For instance, one simple and first Data LifeCycle model designed for 

collecting and storing data and managing specific curation policies, could be represented by 

three elements, namely Acquisition, Curation, and Preservation [11]. Acquisition refers to the 



    Hierarchical Distributed Fog- to-Cloud Data Management in Smart Cities 

 

 

37 

specific process of data collection. Curation stands for the process of preparing the collected 

data, as an initial feed, for a later utilization. Finally, Preservation refers to the process of 

keeping data available in any kind of physical source for future usage. However, it is worth 

mentioning that this naive model is to be meaningful for some particular scenarios requiring 

simple needs, such as collecting, filtering and storing data. Nevertheless, other more 

sophisticated models could be designed to meet additional users’ data requirements and details, 

such as data plan definition, data quality control, security guarantees, or business policies to 

name a few. Thus, recognized the relationship between the end-user/data’s requirements and the 

data challenges, the selection of the appropriate Data LifeCycle model for a particular problem is 

a key design step in the global data management strategy. 

In the next Section we review most relevant Data LifeCycle models found in the literature, in 

order to provide readers with a solid and comprehensive picture of current efforts and trends 

done so far in this area. The objective is to illustrate gaps and weaknesses fueling the need for 

additional research. We will show that although several models have been proposed to manage 

data for specific scientific fields or individual projects, these models are customized to meet the 

set of end-users needs, hence only considering a few elements from a complete lifecycle of data. 

Other proposed models emphasize specific data phases, such as data curation or data 

preservation, hence only contributing on a narrow spectrum to meet individual challenges. In 

order to have an accurate but also broad evaluation, the completeness of the proposed Data 

LifeCycle models is evaluated on a broader basis defined by the set of 6Vs challenges introduced 

in [95]. 

 

2.3.1 Review of current Data LifeCycle models 

This sections revisits a wide sample of existing Data LifeCycle models found in the literature. 

The objective for each model review is twofold, to describe the applicability context and to list 

the set of included elements, also highlighting the missing challenges. 

 

2.3.1.1 The ANDS Data Sharing Verbs model 

ANDS is an abbreviation of the Australian National Data Service. ANDS puts together 

information from data providers and publicly invested institutions, to be used by research 

institutions within Australia [92, 96]. The ANDS Data Sharing Verbs model aims to design 

systems for supporting data sharing and re-using. Create, Store, Describe, Identify, Register, 

Discover, Access, and Exploit are the steps defined in the Data LifeCycle model [94, 97-99]. 

This data model is focused to deal with enquires for information exchange within Australian 

research with simple access possibilities through an Internet based discovery [99]. 

Challenge: This model was created for a specific purpose, i.e., data sharing and data re-using. 

Therefore its applicability cannot be widely extended, hence it cannot be considered as a 

comprehensive or wide-applicability spectrum model. In addition, this model does not consider 

data quality, nor QA nor QC, what is also hindering its applicability and extendibility on those 

scenarios requiring such quality constraints.  
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2.3.1.2 The BLM model 

The BLM (Bureau of Land Management) administrates the public lands in USA [100]. They 

propose a model for sharing information among customers with high quality levels. Plan, 

Acquire, Maintain, Access, Evaluate, and Archive are steps of the BLM model designed for land 

data management. This model has been designed as a non-linear representation, where QA and 

QC management are central issues. Hence, this model seems to work for data archiving and 

accessing with QA and QC management, as depicted in Figure 2.3 [101]. 

Challenge: The BLM model cannot be assumed as a comprehensive model because the 

orientation of the model is for information sharing with strong emphasis in data quality, only 

applied to a particular field, related to public lands information. Further, additional discussions 

are required on this model, mainly about time and cost efficiencies in this non-linear model, 

because quality assurance and quality control are nuclear components of this model. 

 

Figure 2.3 The BLM model 

 

2.3.1.3 The CSA model 

The Cloud Security Alliance (CSA) is the world’s leading organization working on security 

for cloud computing environments. CSA proposes a Data LifeCycle model for data security in 

the cloud environment, consisting in six phases, namely Create, Store, Use, Share, Archive, and 

Destroy, as shown in Figure 2.4 [102]. Again, this model only addresses one particular problem, 

i.e., security, for a specific scenario, i.e., cloud computing.  

Challenge: The CSA model is not a comprehensive data model either, because it has been 

designed and customized for data security in cloud computing scenarios. This means that some 

concepts, such as data quality, data processing or data analysis are not considered, what 

unquestionably limits its extendibility.  
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Figure 2.4 The CSA model 

 

2.3.1.4 The DataONE model 

The Data Observation Network for Earth is an organization, called DataONE, funded by the 

US National Science Foundation (NSF). Their data model aims to provide data preservation and 

re-using for research in biological and environmental sciences. The proposed Data LifeCycle 

model includes Collect, Assure, Describe, Deposit, Preserve, Discover, Integrate, and Analysis, 

as illustrated in Figure 2.5 [103, 104]. This particular model can be used for storing and 

retrieving information for long term usage. 

Challenge: This model has been developed specifically for data preservation and re-using, 

which again limits its extendibility – for example, data security concerns are not included.  

 

Figure 2.5The DataONE model 

 

2.3.1.5 The DCC model 

The Digital Curation Centre (DCC) is an organization addressing curation issues for digital 

information to improve higher education in the United Kingdom [105-107]. Indeed, DCC 

provides a model for successful data curation and preservation, assuming data in digital form. 

The proposed DCC LifeCycle introduces different layers: Full Lifecycle Actions, Sequential 

Actions and Occasional Actions. Full Lifecycle Actions are divided into four steps, namely 

Description and Representation of Information, Preservation Planning, Community Watch and 

Participation, as well as Curate and Preserve. Sequential Actions provide seven steps, namely 

Conceptualize, Create or Receive, Appraise and Select, Ingest, Preservation Action, Store, 
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Access, Use and Reuse, and Transform. Finally, Occasional Actions include three steps, namely 

Dispose, Reappraise and Migrate, as shown in Figure 2.6 [108, 109]. The steps disposition in this 

model is quite sophisticated as they are placed in a multiple layer cyclic structure. The main 

objective and focus for this model is on guaranteeing successful curation and preservation of 

digital data. 

Challenge: This model is also designed for a particular scenario and objective hence 

impeding its wide adoption – for example, data analysis and data integration are not considered 

in this model. Moreover, the DCC model does not provide QA because the “Appraise and 

Select” step works like data QC in the LifeCycle [105]. 

 

Figure 2.6TheDCC model 

 

2.3.1.6 The DDI conceptual model, version 3.0 

The Data Documentation Initiative (DDI) is a project of the Inter-University Consortium for 

Political and Social Research (ICPSR). The DDI aims at producing a metadata specification for 

the description of social science data resources. The offered model includes eight elements, 

shown in Figure 2.7, namely Study Concept, Data Collection, Data Processing, Data Archiving, 

Data Distribution, Data Discovery, Data Analysis, and Repurposing [92]. This model generates a 

conceptual model for political and social data research and standardization. In its version 3.0 the 

model provides the standardization for XML vocabularies. 

Challenge: The DDI model successfully addresses most steps in the Data LifeCycle, from 

collection to consumption, what would ease its adoption as a comprehensive model. However, 

the model misses any approach for both data quality and security, what again limits its broad 

adoption. 
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Figure 2.7The DDI Conceptual model, Version 3.0 

 

2.3.1.7 The DigitalNZ Content model 

DigitalNZ comes from Digital New Zealand and its goal is to collect and increase the amount 

of digital content for users. The data model is designed for both archiving and using the digital 

information. The proposed model includes Selecting, Creating, Describing, Managing, 

Preserving, Discovering, and Using and Reusing as steps, as shown in Figure 2.8 [110, 111], 

with the main goal of efficiently managing digital information exchange among data 

stakeholders. 

Challenge: This model has been designed to focus only on archiving and using purposes, 

hence it cannot be considered as a comprehensive model either – for example, data analysis, data 

integration, data security and data quality steps are not addressed in this model.  

 

Figure 2.8The DigitalNZ Content model 

 

2.3.1.8 The Ecoinformatics model 

Ecoinformatics is a framework to help scientists work with the relevant biological, 

environmental and socioeconomic data and information. The data model aims to build new 

knowledge through creative tools and approaches for discovering, managing, integrating, 

analyzing, visualizing and preserving relevant data and information. As depicted in Figure 2.9, 

Plan, Collect, Assure, Describe, Preserve, Discover, Integrate, and Analyze are the steps 

included in the Ecoinformatics model [12, 13]. Hence, the model provides a framework to 

achieve new insights about data and information for some particular sciences. 
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Challenge: This framework design is close to be widely adopted since it copes with most 

relevant challenges, i.e., data collection, data preservation, data discovery, and some data 

manipulation, such as data integration and data analysis. However, data security is still an open 

challenge not included in the model, what unquestionably limits its extendibility. This model is 

similar to the DataONE model described in Section 3.4, only differing on the first step. 

 

Figure 2.9The Ecoinformatics model 

2.3.1.9 The Generic Science model 

The Generic Science model is offered by the Science Agency in order to manage scientific 

digital data. There are six steps included in the Generic Science model, namely Plan, Collect, 

Integrate and Transform, Publish, Discover and Inform, and Archive or Discard. The model, 

shown in Figure 2.10, can predict the next set of data acquisitions with specific techniques to use 

for data management plans [101].  

Challenge: This model is specifically designed for data archiving and disposing, hence it 

cannot be considered as a global comprehensive model – for example the model does not 

consider data analysis, data security or data quality. 

 

Figure 2.10TheGeneric Science Model 

 

2.3.1.10 The Geospatial model 

The Geospatial Data LifeCycle model is supported by the Federal Geographic Data 

Committee (FGDC). The model aims to explore and save valuable information about geographic 

and spatial-related data activities. Figure 2.11 summarizes the Geospatial Data LifeCycle steps, 

i.e., Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive [101, 

112]. This model is proposed to discover data with acceptable quality and business requirements 

for future use. 
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Challenge: As the previous one, this model has been designed for a particular objective, 

specifically for searching and archiving information. Therefore the model cannot be positioned 

to be widely used in different scenarios – for example, the model does not address data analysis 

and data integration. Moreover, in this model QA and QC are included in each step, which can 

be a limitation in terms of runtime and work efficiency.  

 

 

Figure 2.11 TheGeoSpatial model 

2.3.1.11 The LOD2 Stack model 

LOD2, the Linked Open Data, is a large-scale integrating project co-funded by the European 

Commission within the FP7 Information and Communication Technologies Work Program [42]. 

The LOD2 Stack data model looks for useful data matching the end-user requirements. This 

model includes Storage/Querying, Manual revision/Authoring, Interlinking/Fusing, 

Classification/Enrichment, Quality Analysis, Evaluation/Repair, Search/Browsing/Exploration, 

and Extraction as the different steps, as shown in Figure 2.12 [92, 113, 114]. In short, this model 

is helpful to find relevant data for end-users.  

Challenge: The main objective for this model is to look for particular data, thus not useful for 

different objectives – for example, data security is not considered. Moreover, it is also worth 

noticing that the LOD2 Stack model manages quality, but just partially since only QC is 

managed – only the quality of the web contents is measured [113]. 

 

Figure 2.12 LOD2 Stack Model 
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2.3.1.12 The University of Deusto model 

A group of researchers from the University of Deusto, in Spain, have proposed one Data 

LifeCycle model for data management in smart cities [92]. As depicted in Figure 2.13, the 

different steps of this model are Discovery, Capture, Curate, Store, Publish, Linkage, Exploit and 

Visualize. This model looks to be a proper candidate for discovering, storing, and publishing 

data in smart cities. 

Challenge: This model focuses on smart cities scenarios, thus too narrow for wide adoption. 

In addition, the model does not focus on data security, nor on data quality (including QA and 

QC). 

 

Figure 2.13The University of Deusto model 

2.3.1.13 The Records model 

The University Archives and Historical Collections (UAHC) department assists the Michigan 

State University to grant an efficient data administration and management, meeting the severe 

university’s procedures. The Records data model aims to offer a solution for moving paper work 

to digital work in any kind of scenarios, especially in the university. The offered model includes 

different steps, i.e. Create/Receive, Use and File, Transform and Store, Dispose and 

Archive/Destroy, as shown in Figure 2.14 [101, 115]. In summary, the model provides an 

electronic procedure for making more efficient and better administration and management in the 

university.  

Challenge: The Records model is not extendable, since it was designed to focus on data 

archiving – for example, the model does not consider data quality, data analysis, data processing, 

and data integration. 

 

Figure 2.14 The Records model 

 

2.3.1.14 The JISC Research model 
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 The Joint Information Systems Committee (JISC) under the Managing Research Data 

Program, works for efficient research data management and sharing for the UK Higher 

Education and Research. The proposed Research model has been designed for discovering and 

sharing data among users. The model includes seven steps, namely Plan, Create, Use, Appraise, 

Publish, Discover, and Reuse, as drawn in Figure 2.15 [110, 116].  

Challenge: This model cannot be widely adopted because it has been particularly designed 

for data sharing and discovery – for example the model does not offer any step for data 

processing, data integration or data analysis. Moreover, the model covers QC concepts within the 

“Appraise” step, but QA is not provided. 

 

Figure 2.15 The JISC Research model 

 

2.3.1.15 The UK Data Archive model 

The UK Data Archive works among the largest collection of digital data, including social and 

economic data, in the United Kingdom. The UK Data Archive model focuses on acquisition, 

curation and archive of the digital data. To that end, the proposed model includes Creating Data, 

Processing Data, Analyzing Data, Preserving Data, Giving Access to Data, and Re-using Data, 

as shown in Figure 2.16 [92, 97]. In summary, the model can be a good choice for archiving and 

discovering across the digital data.  

Challenge: This model could be considered as a comprehensive model because it provides the 

full Data LifeCycle, which includes acquisition, curation and preservation. However, the model 

concentrates on particular social and economic sciences, what limits its broad adoption. 

Moreover, the model does not cover data quality issues. 
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Figure 2.16The UK Data Archive model 

 

2.3.1.16 The USGS model 

The U.S. Geological Survey (USGS) Community for Data Integration (CDI) works with data 

and information management issues that can be relevant for the U.S. Bureau’s Scientific 

Research. The USGS data model provides a framework to evaluate and improve policies and 

practices for managing scientific data, as well as to identify areas in which new tools and 

standards are needed. The model includes Primary and Cross-Cutting model elements, as 

depicted in Figure 2.17 [15, 25]. The Primary model elements are Plan, Acquire, Process, 

Analyze, Preserve, and Publish/Share. Besides that, Cross-Cutting model elements come with 

Describe, Manage Quality, and Backup and Secure, as steps. Thus, this model can be a reference 

to manage the scientific data for better standards and tools. 

Challenge: Similar to the previous one, this model could be considered as a comprehensive 

model because it suggests data cycles for acquisition, curation and preservation. However, this 

model chooses a linear presentation for the graphic model, so time and work efficiency should be 

under discussion, especially for large amounts of data. In addition, the model does not cover data 

security because the meaning of secure in the “store and secure” element refers to physical risk, 

such as hardware and software failures [15]. 

 

Figure 2.17The USGS model 

 

2.3.1.17 The Beijing University model 

The model comes up from a research team at the Beijing University on Posts and 

Telecommunication, in China. This model is used for data security in the cloud computing 

environment. The graph-based model, depicted in Figure 2.18, includes five steps, namely 

Create, Store, Use and Share, Archive, and Destruct [117]. This model is appropriate for security 

data in cloud environments. 

Challenge: This model cannot be considered as a comprehensive model because it is designed 

only to support data security in the cloud – the model does not consider data quality, data 

analysis and data publishing in any of the proposed steps. 
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Figure 2.18The Beijing University model 

 

2.4 Evaluation of the Data LifeCycle models 
 

Section 3 analyzed and deeply described most Data LifeCycle models found in the literature. 

Our focus was oriented to two key aspects. First, although several Data LifeCycle models have 

already been designed, they are tailored to solve particular problems or areas in data 

management in (several) science(s). It is with no doubt that the proposed solutions may be 

complete in the set of challenges they cover, but unfortunately the proposed solutions follow a 

narrow-design strategy, only addressing the specific challenges for the particular problem, hence 

impeding its extendibility to other wider scenarios. Thus, these solutions are not wrongly 

designed but too customized to individual scenarios. 

Second, the fast and unstoppable technological evolution is fueling the development of new 

services and apps, bringing new opportunities not only for traditional providers (telcos, services 

developers, etc.) but also for users that are easily adopting new technologies to accommodate 

their needs, thus playing new roles in the overall market (for example, prosumers, i.e. consumer 

+ producer). This evolution turns into a smarter IoT world, where traditional areas, such as 

transportation or health, are enriched with smart capabilities leveraging technology evolution but 

also data availability. The coming IoT world is envisioned as a set of high-impacting services 

(user-transparent and technology-agnostic) deployed for and by users to improve users’ quality 

of life (in different areas). A successful deployment of this IoT world is strongly dependent on 

the available data and on the processing capacities required for data management, hence an 

accurate, fast, reliable, secure, etc., global and widely deployed model for data (mobile, diffuse, 

un-structured, heterogeneous, etc.) management is demanded and undoubtedly mandatory. 

For this reason, we analyze whether there is a global and comprehensive Data LifeCycle 

model already in place, which can successfully deal with most challenges required to support the 

coming IoT world demands. In short, the main contribution of a comprehensive model is to 

eliminate waste and duplicity in researchers’ tasks to design a new model for any new project. 

To that end, in this section, we evaluate all introduced Data LifeCycle models with respect to the 

6Vs challenges proposed in [95], including Value, Volume, Variety, Velocity, Variability, and 

Veracity, in order to know to what extent each model is comprehensive enough to be widely 

adopted as a general purpose model. Table 2.2 shows the results of the Data LifeCycle models 
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evaluation with respect to the 6Vs challenges. The evaluation is marked “yes” ( ) at each box if 

the model can handle the corresponding V challenge, otherwise it is marked “no” (x). 

In order to complete the table, we have assumed that, as volume and variety are fundamental 

challenges in Big Data management, all Data LifeCycle models are able to address both of them. 

For that reason, we have marked “yes” in the corresponding table column for all models. In 

addition, all Data LifeCycle models have been designed to manage data in specific 

environments, what means that only some challenges will be addressed on each model. For 

example, the CSA model has been proposed to provide security for Cloud computing 

environments. Therefore, this model is appropriate to be considered in environments where 

volume and variety of data has to be managed, so we mark “yes” for volume and variety. But 

value, velocity, variability, and veracity must be deeper reviewed. Eventually, we have marked 

“yes” in security, as part of veracity, because this model is specific for data security, but we have 

marked “no” for variability, velocity, and QA and QC, as another part of veracity, because in its 

description there is no clue on how these challenges would be handled. 

From Table 1 we can conclude that: i) data quality –as part of veracity–, and velocity, are 

challenges that have only been considered in very few models, hence a comprehensive Data 

LifeCycle model must pay more attention to these challenges, so guaranteeing data quality and 

fast data generation, as important keys in Big Data management, and; ii) there is no Data 

LifeCycle model completely covering all the 6Vs challenges within the LifeCycle steps. The 

USGS model gets closer to this completeness; however, it still lacks of data security. Therefore, 

we may conclude that there is no global and comprehensive model with respect to the 6Vs 

challenges in this evaluation. 

Table 2.2 Make evaluation of the Data LifeCycle models 
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QA QC Security

1 x R R x x x x R

2 R R R x x R R R

3 x R R x x x x R

4 x R R x R R R x

5 R R R x x x R R

6 R R R R R x x x

7 x R R x x x x x

8 R R R x R R R x

9 R R R x x x x x

10 R R R x x R R R

11 x R R R R x R x

12 x R R R R x x x

13 x R R x x x x x

14 R R R x x x R R

15 x R R R R x x R

16 R R R R R R R x

17 x R R x x x x R

Records model 

JISC Research model 

UK Data Archive model 

USGS model 

Beijing University model 

University of Deusto model

ANDS Data Sharing Verbs model 

BLM model 

CSA model 

DataONE model 

DCC model 

DDI conceptual model, version 3.0 

DigitalNZ Content model 

Ecoinformatics model

Generic Science model 

Geospatial model 

LOD2 Stack model 

VariabilityVolume Variety
Data LifeCycle models

6Vs Challenges

Value Velocity
Veracity
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The world human population is estimated to increase from 7,336 million in mid-2015 to 9,804 

million in mid-2050 [27]. This human population evolution is and will be demanding more and 

much better services aiming at city resources optimization. Smart Cities provide new solutions 

and opportunities for efficient management through the use of the most advanced Information 

Technology. In fact, it is widely accepted that Smart Cities have the potential to improve its 

citizens’ quality of life through the economy development, the social and political progress, the 

availability of new services and solutions, the protection of the environment, the hyper 

connectivity among citizens, and so on [118]. In addition, the Smart City concept can be applied 

in several domains, such as smart environment, smart energy, smart transport, smart health, or 

smart security, just to name a few. 

Nowadays, Smart Cities are positioned as one of the most challenging and important research 

topics, highlighting major changes in people's lifestyle. Currently, several definitions have been 

proposed to define the “Smart City” term, some of them listed next [119]: 

 IBM in 2010 defined “the use of information and communication technology to sense, 

analyze and integrate the key information of core systems in running cities”. 

 In 2011, Caragliu mentioned that “a city is smart when investments in human and social 

capital and traditional (transport) and modern (ICT) communication infrastructure fuel 

sustainable economic growth and a high quality of life, with a wise management of 

natural resources, through participatory governance” 

Technologies such as smart energy, smart transportation or smart health are being designed to 

improve citizen's quality of life. Smart Cities leverage the deployment of a network of devices – 

sensors and mobile devices–, all connected through different means and/or technologies, 

according to their network availability and capacities, setting a novel framework feeding end-

users with an innovative set of smart services. Aligned to this objective, a typical Smart City 

architecture is organized into layers, including a sensing layer (generates data), a network layer 

(moves the data), a middleware layer (manages all collected data and makes it ready for usage) 

and an application layer (provides the smart services benefiting from this data). 

Indeed, smart cities goals are to upgrade the traditional services towards modern services 

supporting users’ demands through high level technologies. This view objective is not only to 

citizens’ prosperity, but also to economic progress and sustainability of the city. In addition, cities 

compete and invest many efforts and budget to endow their citizenships with innovative services. 

Several reports classify cities around the world ranking smarter cities according to different 

factors, such as energy efficiency, transport effectiveness, public management, and so on.  

Recently, IESE Cities in Motion Index (CIMI) 2015 reported that Barcelona is ranked first in 

Spain and thirty-fourth in the world [120, 121]. The report has analyzed some values, such as 

human capital, social cohesion, public management, the environment, mobility and transport, 

technology, or the international outreach of the cities. 

In this Chapter, we open some description about organizing and managing technologies in the 

city. First, we highlight the fact that a significant number of sources and devices (such as sensors) 

is deployed in a Smart City, to be used to sense the daily life in the city. In addition, each source 
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will produce data as the initial feed for Smart City services in the city. Second, we show how 

sources and devices can be communicated each other through a technological architecture in the 

city. Third, we describe how raw data can be converted into meaningful information by using 

computing models. This, different computing models exists intended to convert the raw data into 

information in a Smart City. Next, we explain some strategies about resource management in the 

Smart City. Those strategies go beyond managing resources in a city through centralized and 

decentralized models. And, we highlight that the advent of big data imposed new challenges for 

technological architecture, resource management and computing models in smart cities. So, we 

may conclude that the data management strategy in the city can coordinate this challenge. We also 

talk about some open challenges and directions for future smart cities. Finally, we dig into the real 

Smart City scenario in Barcelona city, focusing on a Smart City architecture for Barcelona, 

specifically on the sensor deployment and the Sentilo platform. 

This Chapter, is structured as follows. Section 1 presents the most remarkable sources and 

devices in the smart cities. Section 2 shows the communication technologies in the smart cities. 

Section 3 describes the computing models in the smart cities. Section 4 talks about the resource 

management in the smart cities. Section 5 digs into data management models in the smart cities. 

Finally, Section 6 illustrates the Barcelona Smart City. 

 

3.1 Sources and devices in Smart City 

 
Nowadays, a large number of sources may be found in any Smart City. While in Chapter 5, we 

will deeply discuss different type of sources and devices, in this Section we present some of the 

main sources for data generation (including sensors, smart devices, and web services) in smart 

cities as shown below: 

 The sensor is a physical device able to sense and get a specific type of input, such as light, 

heat, motion, pressure, or noise, from the physical layer. The input can be either converted 

into human-readable display at the sensor location, or transmitted electronically through 

the network for future use. There are many different types of sensors, for instance, 

acoustic and sound sensors (e.g. microphone), automotive sensors (e.g. speedometer), 

chemical sensors (e.g. pH sensor), electric and magnetic sensors (e.g. metal detector), 

environmental sensors (e.g. rain gauge), optical sensors (e.g. wave front sensor), 

mechanical sensors (e.g. strain gauge), thermal and temperature sensors (e.g. calorimeter), 

proximity or presences sensor (e.g. Doppler radar), and so on [122]. There are some 

important challenges for selecting and installing the appropriate sensors in a given context, 

such as accuracy, environmental condition, range, calibration, resolution, cost and 

repeatability [119]. 

 Smartphones are common devices spread all over the city that may behave as a great 

physical and mobile source for data gathering, everywhere and every time. It provides 

great opportunities to invest efforts for collecting data from anywhere at a very low cost. 

In fact, many smartphone apps are already sensing and saving large amount of data 

together with the user’s location. In fact, some mobile applications are collecting such data 
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even without Internet connection and, therefore, this information is stored offline and can 

be retrieved later. 

 Web services generate huge amounts of data that may be of interest in a Smart City 

environment. However, the veracity and quality of this information should be carefully 

considered before being used. Some efforts have been made to filter this data for a proper 

utilization in the context of a Smart City. Techniques such as Semantic Web, Linked Data, 

and so on [92], are used to obtain information from websites to the Smart City’s 

stakeholders. 

 
3.2 Connecting sources and devices in the Smart City 

 
In a modern city there is an ever unlimited amount of resources and technologies, including 

computing devices (from smartphones, computers in vehicles, embedded computers, to personal 

computers or more powerful data centers), other devices to generate data (sensors in the city, 

sensors in users’ devices, surveillance cameras, and so on), communication networks (wired 

networks, such as Ethernet, optical fiber, or wireless technology, such as 4G, WiFi, RFID, 

Bluetooth, or any other ad hoc networking technology), and several management platforms to 

facilitate and optimize users’ interaction with the Smart City. 

The Smart City technological architecture is typically organized into layers, including the 

sensing layer, the network layer, the middleware layer and the application layer [123]. The 

sensing layer consists of a broad network of sensors spread across the whole city, responsible for 

collecting as much data as possible through either different types of sensors, other smart devices, 

such as smart phones or smart vehicles, or also through web services, surveillance cameras, or 

GPS devices. The network layer connects the sensing layer to the middleware layer through a 

diverse set of communication technologies, such as cellular networks, satellite networks, WiFi, 

Ethernet, or any other ad-hoc technology enabling non easy to reach location connection. The 

middleware layer contains the main framework aimed at both organizing and centralizing the data 

collected as well as providing a platform for an easy and usually open access to the information. 

And eventually, the application layer provides the set of appropriate services for citizens or third 

party consumers [124]. 

Providing appropriate architectures for Smart Cities assuming different scenarios and 

environments has recently become an active research topic. There is no unique solution, rather 

several exist following similar patterns. In [118], Kyriazopoulou identifies six different 

architectural approaches to design a Smart City, such as Architectural Layers, Service Oriented 

Architecture, Event Driven Architecture, Internet of Things, Combined Architectures, or Internet 

of Everything. 

Smart cities design through Architectural Layers (AL) defines a framework organized by some 

specific hierarchical layers. Each layer has a different responsibility and defines an interface to 

interact with higher and lower layers. The main aim of an AL framework is to offer an efficient 

solution for developing modular services and applications at each layer. Main AL architecture 
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advantages are both its simplicity and its modular design facilitating extensions for future 

development. 

The Service Oriented Architecture (SOA) approach defines a platform for interaction between 

service stakeholders and services. Three roles are usually defined in SOA: the service provider, 

the service agent and the service consumer, to make the interaction between end-users, services 

and service provider through data collection, data filtering, and so on [125]. The benefit of the 

SOA architecture is its capability for adaption between service stakeholders and services. 

The Event Driven Architecture (EDA) approach defines an architecture for managing 

asynchronous events under uncertain conditions. This architecture proposes a model to manage 

events in terms of creation, identification, utilization and response, which can, for instance detect 

emergency cases through sensors data registering. An advantage of an EDA model is its capacity 

to provide sustainability and security in Smart City environments through events management. 

The Internet of Things (IoT) approach defines a framework enabling heterogeneous devices 

management, including sensors, smart devices, web services, and so on. Each kind of 

heterogeneous devices can connect and communicate with other through Internet, or any other 

local networks. In addition, Cloud Computing can also be used to help share computational 

resources also offering services to devices through Internet. Therefore, the IoT architecture 

creates an appropriate unified scenario to overcome all possible requirements for IoT 

stakeholders. The main profit of an IoT architecture is to provide connectivity with many different 

type of sources and provide variety of services for end-users. 

The Combined Architecture is a new trend in current Smart City design that properly combines 

different aspects of the previous proposals, hence taking the most out of any individual 

architecture. Some popular architectures are IoT-SOA, IoT-SOA-AL, IoT-EDA, or IoT-SOA-AL-

EDA. 

The Internet of Everything (IoE) is a new generation paradigm to extend the IoT. Although no 

much difference is reported between both concepts, IoE could be understood as an IoT extension 

guaranteeing “everything” connectivity. The IoE proposes a new and broader paradigm for smart 

objects that can connect to each other easily and quickly, anytime and anywhere around the city. 

The highly increasing interest of the IoE architecture is to manage a wider variety of information, 

from any device, to create smarter applications and services through faster Internet infrastructure 

and network connection. 

 

3.3 Computing models in Smart City 
 

As we have discussed so far, many data exist in a Smart City coming from different sources 

and devices. These (raw) data are not meaningful for user demands. So, the first step is to transfer 

this raw data into meaningful information by an appropriate computing. In this Section, we 

present some of the computing models candidate to be deployed in smart cities (including cloud, 

Fog, and F2C computing) as shown in below: 
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3.3.1 Cloud Computing 

Cloud computing has driven a global shift for computer processing, storage, and software 

delivery away from the desktop and local servers, across the network, relying on next generation 

data centers hosted by large infrastructure companies (such as Amazon, Google, Yahoo, 

Microsoft, or Sun) [126]. Definitely, cloud computing technologies provide extremely powerful 

computing resources over the network. Moreover, cloud computing offers the pay as-you-go 

model, where infrastructure is maintained by its owner, turning into a model very attractive for 

many companies (especially for start-ups and medium-sized businesses). In this way, cloud 

computing platforms (like those offered by Amazon Web Services, AppNexus, GoGrid, etc.) 

work differently than application service provider (ASP) and database-as-a-service (DaaS) 

paradigms. Instead of owning, installing, and maintaining the database software for a specific 

client (often in a multi-tenancy architecture), cloud computing stakeholders support little more 

than the hardware, and provide a set of virtual machines so that their customers may install their 

own software. In short, cloud computing offers resources (almost a seemingly infinite amount of 

computing power and storage) to be accessed by potential users in a pay-only-for-what-you-use 

pricing model. Indeed, cloud computing provides computing resources (including hardware, 

application development platform, and computer applications) available as services across the 

Internet, through three different schemes, Infrastructure as  a  Service  (IaaS),  Platform  as  a  

Service (PaaS)  and Software as a Service  (SaaS) [127]. 

Cloud computing has some desirable advantages, namely cost efficiency, reducing of system 

administrative functions, enhancing flexibility, increasing reliability and location independence. 

However, some undesirable disadvantages of cloud computing are high and unpredictable 

network latencies, difficulties in securities issues, critical and real-time applications requirements 

[127]. 

 

3.3.2 Fog Computing 

Alternatively, Fog computing has been proposed to deal with some cloud weaknesses, for 

example, latency or high traffic load. The Fog computing boils down to extending the cloud 

towards the edge, thus putting together billions of Internet-connected devices into a distributed 

infrastructure, located at the edge of the network[128]. Accordingly, fog computing brings 

additional infrastructure (i.e., compute, storage, and networking) for services execution, located at 

the so-called fog-layer, somewhere between the edge and the cloud (traditional datacenters). 

Indeed, from a service execution perspective, Fog computing can provide substantial advantages 

for services execution in several domains (including Smart Grid, wireless sensor networks, IoT 

and software defined networks, SDNs). 

The main objective of Fog computing is to offer computing (storage and network) resources 

closer to end-user devices, thus reducing both response time and network load, while also 

diminishing the security gaps. Unfortunately and obviously, the Fog infrastructure does not have 

powerful computing capacities as cloud, what along with the specific constraints and limitations 

inherent to the components deploying the fog layer, will pose several limitations to fog 
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deployment and utilization. As a consequence, it is reasonable to say that the main goal of Fog 

Computing is not to compete with cloud computing [129], but to complement each other. 

As a summary, we may undoubtedly assess that Fog computing provides several benefits, such 

as lower latency, lower network traffic, location awareness, widespread geographical distribution, 

mobility support, the predominant role of wireless access, improving quality of services for 

streaming and real-time applications, scalability, heterogeneity, the orchestration of largescale 

control systems, hierarchical networking, and computing structures [23, 130, 131]. 

 

3.3.3 Fog-to-Cloud Computing 

The Fog-to-cloud (F2C) computing model comes up to make the most out of combining Cloud 

and Fog computing models. In short, F2C is intended to use both advantages of Fog (close to 

users but limited resources) and cloud computing (far to users but unlimited and powerful 

resources). In addition, F2C Computing aims to enhance integration of Fog Computing and Cloud 

Computing through a coordinated management of underlying resources, while also bringing in 

innovative execution models, such as parallel and distributed execution of services into distinct 

fog or cloud resources[132]. The main rationale is to execute services on those resources best 

suiting the services needs, be it at cloud, at fog, or a combination of both [133]. 

In [134], the author proposed a simple three level hierarchy as depicted in Figure 3.1. We may 

see that, Fog devices can connect to the edge devices and also to Cloud. 

 
Figure 3.1 The basic F2C scenario [134] 

 
3.4 Resource management in Smart City 
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Resources management in the context of smart cities can be approached from two main 

perspectives: centralized or distributed. In a centralized approach, a main data center (probably in 

the cloud) is the responsible for organizing and managing all resources from the city, gathering all 

data generated by sensors at the edge (traffic monitoring, energy meters, noise detection, or air 

pollution control, among others) and transferring them through some sort of global wireless 

communication technologies, such as 3G or 4G. In addition, processing facilities are also 

provided in the centralized data center, as long as it has very high computing and storage 

capabilities as shown more details in following.  

3.4.1 Centralized resource management 

Traditional resource management architectures in smart cities rely typically on centralized 

cloud computing facilities. Advantages of cloud computing are the (almost) unlimited computing 

capacity, the cost efficiency (market scale) and the elasticity (pay-as-you-go model) [135, 136]. 

However, moving all data and services to the cloud, which presumably may be far from the user, 

undoubtedly adds several inconveniences, such as high communication latencies, network 

overloading, and also increases the risks for failures and for security vulnerabilities [137-139]. 

For instance, Figure 3.1 shows an architecture for Smart City resources management based on 

cloud computing [140]. This model considers four layers, namely physical, network, cloud, and 

application layers. The physical layer includes all physical devices to obtain raw data from the 

city. The network layer provides support for sending the sensed data to the main cloud computing 

environment. The third layer is the cloud layer, which is able to process, compute and analyze all 

raw data, turning it into meaningful information mandatory for services execution. And the last 

layer is the service layer, which is ready to accessing data from the cloud layer and convert, 

interpret or combine each other for services and applications. In such scenarios, there is no doubt 

about the almost unlimited computing capacities and the ubiquity of such resources; however, 

some limitations due to the physical distance between resources and services can be reported, 

such as network overloading, high communication latencies, as well as high probability of failures 

and security risks, as mentioned before [138, 139]. 

 

3.4.2 Distributed resource management 

Alternatively, in a distributed architecture, the resources management can be performed by 

using different devices distributed among the city. There are many recent proposals for distributed 

resources management, including cloudlets, fog computing, and edge computing. As part of these, 

fog computing has emerged as a promising technology for resources management in the Internet 

of Things, by using the computational capabilities of the set of devices located at the edge [1, 

130]. With this strategy, data do not have to be moved to a central (and far remote) data center 

(usually in cloud) and, as a consequence, the network traffic and latencies can be reduced, while 

increasing fault tolerance and security safety. 

 

3.5 Data Management in Smart City 
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Most architectures designed with explicit data management schemes are centralized. This 

means that even though data is collected from different sources spread all over the city (such as 

sensors, surveillance cameras, third party applications, external databases, etc.), data is accessible 

from a centralized site, usually in the cloud. For instance, in [141] Gubbi et al. propose a cloud 

centric vision for interaction between private and public clouds, later extended in [142] to propose 

an information framework particularly tailored for Smart City management. As shown in Figure 

3.2, the data flow is clearly specified, including four layers, namely Data Collection, Data 

Processing, Data Management, and Data Interpretation. However, note that applications and 

services obtain the data from a centralized cloud computing platform. 

 

Figure 3.2 IoT architecture for Smart City[142] 

In [143] Rathore et al. basically follow the same patterns but focus specifically on Big Data 

Analytics. This means that all collected data is preserved in the central cloud, and includes several 

additional data life cycle steps, such as data aggregation, data filtering, data classification, 

preprocessing, and decision making. In [144], Pena et al. also propose a Big Data centric 

framework for smart systems through Internet of Everything (IoE) but, basically, the model is 

similar to previous models in terms of data flow layers.  

In [126], the author assessed that data management application acquires in the cloud. And then 

the author discusses about transactional data management and analytical data management. The 

transactional data management is related to topic of application database management which is 

organized somewhere very close to cloud environments. The analytical data management is part 

of applications demanding data storage to be utilized in business planning, problem solving, and 

decision support. Historical data along with data from multiple operational databases are all 

typically involved in the analysis. 
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Oppositely, few architectures propose a distributed schema for resource allocation and 

management, using technologies such as Fog Computing [130] or Fog to Cloud Computing [16]; 

however, none of them has an explicit focus on data management and organization. One 

exception may be found in [145], where Sarkar et al. explicitly address some issues related to data 

collection at fog level, and distributed temporal data storage also at fog level. 

 
3.6 Barcelona Smart City 

 
In this Section, we introduce a real Smart City scenario that will be used throughout this thesis 

to illustrate some implementation details of our architecture and evaluate the efficiency of this 

architecture in the Smart City scenario. Barcelona is located Northeast in Spain and is referred to 

as the second-largest city in Spain. Estimated population is 5,309,000 in 2016 which it makes the 

6th most populous urban area in the European Union and the largest on the Mediterranean Sea 

[146]. In addition, Barcelona has almost 100 km2 area, allocating (average) 16,000 people per 

square kilometer (41,000/sq mi). Thus, the huge amount of people, in the wide geographical 

distance at Barcelona, makes it needed to deploy high level services and urban equipment to the 

city hall. According to an official report issued in 2016, the city hall prepared and installed some 

urban equipment for their citizens, such as 150,000 lamp spots, 80,000 parking slots, 40,000 

garbage containers, and many other “smart” devices[147]. Recently, the city hall deployed more 

facilities aiming at meeting citizen needs and demands (innovative smart services and 

applications), setting Barcelona as a flagship city when discussing about the Smart City concept 

all over the world.  

The Barcelona city designed an architecture to deal with city information sources (including 

IoT devices, sensors platform, etc.) along with Smart City applications, supported by a middle 

layer, referred to as City OS. Thus, the proposed architecture consists of three main layers, 

namely city information sources, City OS and Smart City applications, as shown in Figure 

3.3[148]. The city information sources layer is covered with abundant data sources (including 

physical and non-physical sources) in the city and plays as a mediator (or broker)assisting on the 

data collection and sharing strategies required by the Smart City applications layer. The Smart 

City applications layer plays as a repository for a set of applications and services to be executed 

by the citizens. 
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Figure 3.3 City OS architecture for Smart City in Barcelona [148] 

More concretely, the City OS architecture includes four main stages to handle their tasks. 

Those stages are data repository, semantics, processes and ontology, as shown in Figure 3.4. The 

data repository stage aims to store all collected data from the city information sources. The 

processes stage provides a subset of processes for stored data. As it is shown in Figure 3.4, the 

process stage is able to read and write data to the data repository stage. Certainly, the processes 

stage can read the appropriate data from the data repository stage first, and then, the received data 

can run some specific processing, generating “sophisticated” data forwarded back to the data 

repository stage to be stored again. The ontology stage aims to provide a subset of ontology 

techniques intended to organize and analyze data for future usage. Finally, the semantics stage is 

responsible for applying some semantic techniques to the stored data thus making the data ready 

for the application/service layer. 
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Figure 3.4 Layers of City OS architecture for Smart City in Barcelona [148] 

From a physical perspective, see Figure 3.3, the city information sources layer includes a 

diverse variety of physical (e.g., sensors) and non-physical (e.g., social networks) sources. In 

particular, the Sentilo platform is part of the city information sources layer in the Smart City 

architecture proposed for the Barcelona city. The Sentilo platform is an open source software 

platform designed to visualize the data collected from the different sensors deployed in Barcelona, 

setting a network of sensors for sensing and collecting data in the Barcelona city over times [149]. 

The data collected from the sensors is archived and shared in the storage capacities built at 

Sentilo. Then, Sentilo may connect with the City OS to transfer these data for further objectives 

(including storing, processing or mixing the Sentilo data with another type of collected 

data/information) as shown in Figure 3.4.  

In fact, the Sentilo platform has two main stages, data collection and data transmission. The 

data collection stage collects all possible data from the sensors deployed in the city, later 

transferred to the upper layer (which is City OS layer) through, see in Figures3.3 and 3.5. 

Therefore, Sentilo contains large repository capacities to save the historical sensors data. 

Nowadays, Sentilo goes beyond the preliminary Sentilo Cloud solution through its correlation 

with Waspmote sensors, Meshlium gateway and Libelium,aimed at building the first Smart Cities 

software platform which is based on experience and knowledge of the requirements of a large city 

such as Barcelona [150]. 
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Figure 3.5 Sensors data architecture in Barcelona Smart City[151] 

So far, we have shown that the Smart City architecture of Barcelona (as shown in Figure 3.2) 

proposed a centralized architecture for managing resources and data. In order to illustrate the real 

chances this model may have for a wide deployment we figure out some figures. First, we 

calculate the number of sensors data. Then, we will estimate the number of sensors data to come 

in a near future (in two main terms, full sensors coverage in the area of Barcelona and also 

extending the type of information to be collected from the sensors). After that, we show how we 

can optimize the volume of generated data –using some compression techniques–, through a 

distributed model. For instance, we show some data aggregation techniques to reduce the volume 

of data to be forwarded to the upper layer, seeking for an optimized data collection. 
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Chapter 4: 
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In previous chapters, we deeply explained how data can be managed in smart cities scenarios, 

considering cloud computing, turning into a centralized approach (i.e., Cloud Data Management, 

see[152]). We also discussed some research avenues driven by envisioned challenges in the area 

of data management Smart City scenarios. This chapter is focused on describing the main 

contribution of this thesis, i.e., the design of a data management architecture for a Fog-to-Cloud 

Smart City resources management structure. 

To that end, we first design a comprehensive DLC model for smart cities, considering all data 

life stages. This initial task is divided into two subtasks: 

• Designing a comprehensive scenario agnostic DLC (COSA-DLC) model. 

In Chapter 2, we ended up emphasizing the need for a novel comprehensive DLC model, to be 

easily mapped into any scenario and environment. Thus, this chapter works on that direction, 

proposing a comprehensive DLC model, showing the need for its easy adaption to any scenario 

– to keep it scenario agnostic–, as well as estimating the efficiency of the proposed model 

through the 6Vs challenges. 

• Designing the Smart City comprehensive DLC (SCC-DLC) model, tailored to a Smart 

City context. 

As we know, data is an essential asset in any smart scenario, also referred to as “green oil” to 

emphasize the importance and relevance in such smart contexts. Focusing on a Smart City 

scenario, it is widely accepted that, in a general view, smart cities must deal with constraints 

coming up from the complexity linked to the data characteristics (including heterogeneity, high 

volume, etc.), thus requiring the need for an innovative model to manage these data. This 

model is inferred from the COSA-DLC, extended to meet the Smart City requirements. The 

SCC-DLC model is able to manage data in the Smart City to meet any demands of data 

stakeholders in the Smart City.  

In a second step, we map the SCC-DLC model into the F2C Smart City. This task is also 

divided into two subtasks: 

• Describing the F2C Smart City. 

The SCC-DLC model proposed in this thesis is an abstract model that can be easily 

implemented in a Smart City scenario. Before doing so, we first describe the structure of the 

city according to a F2C resources management architecture. The architecture is distributed and 

hierarchical, and organized into several layers, from the fog up to the cloud. This architecture 

will be used as a baseline for our data management architecture design. 

• Proposing the F2C data management architecture. 

Data management in a Smart City is a complex task exacerbated by the large set of 

“components” building the city, such as an enormous amount of distinct IoT devices, 

computing models, network communication technologies, etc. Thus, all these aspects must be 

considered in our data management model (SCC-DLC) to make the solution work. F2C, yet in 

its infancy, comes up as a potential management framework bringing a solution for an efficient 
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resources management, especially for scenarios where diversity is a must. Thus, we leverage 

such a F2C solution as a baseline concept to enrich our data management architecture. 

Indeed, this chapter is organized into five main sections. In Section 1, we describe our proposal 

for managing data complexity, i.e., the comprehensive, scenario agnostic, DLC (COSA-DLC) 

model. Plus, the comprehensive DLC model is evaluated with respect to the 6Vs challenges as 

benchmark test. Section 2 presents the SCC-DLC model (including main blocks and phases) with 

respect to the adaption of the COSA-DLC model. Plus, we report some benefits of the SCC-DLC 

model. Then, we describe our depicted Smart City scenario, defining the different layers in 

aSmart City scenario, and discussing the concept of F2C data management architecture. We show 

how F2C data management can be mapped into a Smart City scenario. Then, we highlight several 

advantages of the F2C data management vs the SCC-DLC architecture. Finally, we emphasize the 

main contribution in this chapter and include our related publications. 

 

4.1 Proposing a COSA-DLC model 
 

The comprehensive scenario agnostic DLC (COSA-DLC) model considers all phases of data 

management and organization, from data acquisition to data preservation and processing, and 

includes other fundamental aspects related to data quality and data security, among others. In 

addition, the COSA-DLC model can be easily customized and fitted to any scenario to guarantee 

the specific requirements while providing high level of data quality. 

Some potential advantages of a COSA-DLC model are: i) managing and organizing global 

datasets for any future data discovery, integration, and processing; ii) providing easy 

customization and adoption to any science or scenario; iii) improving data quality levels in any 

specific context, and; iv) eliminating any additional waste and effort for designers, including 

data, software and system designers, to design their appropriate and efficient architecture. 

The main organization of the COSA-DLC model is defined in three main blocks, named Data 

Acquisition, Data Processing, and Data Preservation. Each block, in turn, is further described 

into a set of more detailed phases, covering all cycles involved in the data life. In addition, each 

phase is specified in terms of the Data Lifecycle Management (DLM), which defines the phase’s 

policies and actions, and the interrelation among phases. 

 

4.1.1 Main blocks in the COSA-DLC model 

The COSA-DLC model is defined as a modular three blocks structure (see Figure 4.1), with 

the Data Acquisition, the Data Processing and the Data Preservation blocks. These blocks are 

responsible for gathering, storing and organizing data for processing purposes, while 

guaranteeing high levels of data quality. This modularity eases the process of adaption to specific 

scenarios by tailoring this model to the specific scenario requirements. 

The Data Acquisition block is responsible for collecting data into the system, gathering data 

from different sources, assessing data quality, and tagging data with any additional description 

required in the business model. Collected data can then be stored, through the Data Presentation 
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block, or processed, through the Data Processing block. The Data Processing block is 

responsible for performing the main big data processing, extracting knowledge or generating 

additional value, through complex data analysis techniques. The outcome of the processed data 

(higher value data) can be either delivered to end users, or stored for future additional data usage 

or reprocessing. The Data Preservation block is the responsible for data storage, performing any 

eventual action related to data curation. This data is ready for future publication or 

dissemination, or for further processing. 

 

Figure 4.1The DLC model in blocks 

The data flow is as follows. Data is initially created and collected through the Data 

Acquisition block. If data is immediately processed, this is considered real-time data; otherwise 

if it is preserved, this is considered archivable data. Note that either all or part of the processed 

data can also be preserved, and vice versa, i.e. these two data sets are not exclusive. When 

archived data in the Data Preservation block is used for processing, this is considered historical 

data. So the Data Processing block is able to use both real-time and historical data for 

processing. Finally, the data processing outcome can be stored back through the Data 

Preservation block: this data is considered higher value data. 

 

4.1.2 Phases in each block for the COSA-DLC model 

The proposed COSA-DLC model is organized into three main blocks, as described in the 

previous section. This set of blocks includes a sophisticated set of phases implementing all 

required tasks to make comprehension, agnosticism and adaption true. Thus, as shown in Figure 

4.2, the Data Acquisition block is developed in four phases, the Data Processing block is 

developed in three phases, and the Data Preservation block is developed in four phases. The 

description of all functionalities and activities of each phase, together with the relationship 

among phases, is called the Data LifeCycle Management (DLM), and is presented next. 

The Data Acquisition block is made by the following four phases, namely Data Collection, 

Data Filtering, Data Quality and Data Description: 

 The Data Collection phase aims to collect data from all sources and devices, according to the 

business requirements and scientific demands. Specifically, it is responsible for: 
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o Collecting data, directly and indirectly, from any valid source, such as basic or complex 

devices (sensors, smart devices), databases, web-generated data, third party 

applications, etc. 

o Managing the ranges of valid and trusted sources for data collection. 

o Exploring and discovering new sources for data collection. 

 The Data Filtering phase is responsible for performing some basic data transformations in 

order to optimize the volume of data flowing from the collection to the quality phases. 

Particular data transformations are specific of the context and business requirements. 

However, filtering, aggregation, curation, sorting, classification, or compression, are some 

data transformations that could be considered as well. 

 The Data Quality phase aims to appraise the quality level of the collected data. It is 

responsible for guaranteeing both, Quality Control (QC) and Quality Assurance (QA), in 

particular: 

o Checking the quality level of data and discarding or repairing low-quality data, 

according to the provided policies (QC). 

o Monitoring the quality of data flows and, in case of continuous failures, proceeding 

according to the provided policies (QA). 

 The Data Description phase aims to tag data with some additional information for an optimal 

future usage. Any available metadata considered in the business model can be used, such as 

timing (creation, collection, modification, etc.), location or origin (city, country, coordinates), 

authoring, and so on. 

Once the data has been described appropriately, it can be used for either processing on real-

time, or for archiving for future queries over historical data. 

The Data Processing block consists of the following three phases, namely Data Process, Data 

Quality and Data Analysis: 

 The Data Process phase provides a set of processes to transform (raw) data into more 

sophisticated data/information. These processes could include one or several internal steps, 

such as pre-processing or post-processing, depending on the particular business requirements. 

Data considered for processing can be either real-time –lately generated–, data (from the Data 

Acquisition block), or historical archived data (from the Data Preservation block). The output 

of this phase is considered higher value data, meaning that this data is more mature than the 

original (raw) input data. 

 The Data Quality phase aims to appraise the quality level of processed data. It can check both 

QC to the output of the processing and QA to the processing procedure. 

This phase could seem redundant or repetitive with respect to the Data Quality phase in the 

Data Collection block; however, it runs specific checking targeted to the specific life cycles. 

In addition, in order to provide completeness and to guarantee a maximum level of quality, 

any additional quality appraising is always useful. 

 The Data Analysis phase is responsible for developing all data analysis and data analytics for 

extracting knowledge and discovering new insights. 
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This phase is the last step in the procedure of value generation, and it is usually the natural 

interface with the end-user. Alternatively, this data can also be considered for storing, as part 

of the Data Preservation block, thus allowing future data re-processing. 

 

Figure 4.2 The proposed DLC model 

 

The Data Preservation block consists of the following four phases, namely Data 

Classification, Data Quality, Data Archive and Data Dissemination: 

 The Data Classification phase aims to organize and prepare data for efficient storage, by 

applying some optimization, such as classification, arrangement, compression, etc. 

Furthermore, some additional descriptive information could be also attached to this data 

related to the archiving policies, such as access permissions, privacy, expiry time, or sharing, 

use and reuse capabilities. In this phase, data provenance or data versioning could be 

considered. 

 The Data Quality phase aims to appraise the quality level of classified data, before storing. It 

can check both QC to the output of the classification and QA to the preservation procedure. 

Again, note that this phase is specific for the data preservation block, and it is aimed at 

guaranteeing a maximum level of quality. 

 The Data Archive phase aims to store a large set of high quality data in the available 

permanent or temporary storage resources. This phase must be able to perform long-term 

preservation over large amounts of data. It also takes over some additional tasks, such as data 

cleaning according to the corresponding expiry time or other business policies. 

 The Data Dissemination phase aims to prepare archived data for private or public end-users’ 

access. Any sharing procedures could be managed in this phase to guarantee access 

permissions, privacy, expiry time, or any other sharing capabilities. 

This phase is the natural interface with the end-user for stored data. Additionally, this data can 

also be considered for processing, as part of the Data Processing block. 

  

4.1.3 Comprehensive DLC Model Evaluation 
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As we mentioned in the previous section, several authors [27, 28, 41] previously highlighted a 

list of problems and challenges that should be considered in large and complex data 

management, often related to Big Data. These contributions have already identified several 

challenges, such as Value, Volume, Variety, Velocity, Variability, Veracity, and some others 

(note they all start with V). This set of challenges is known as the Vs challenges. Thus, the Vs 

challenges depict some strong barriers, difficulties and complexities for data management in Big 

Data related scenarios. However, existing contributions propose to work with different number 

of challenges, including 3Vs, 4Vs, 5Vs, 6Vs, or 7Vs challenges –perhaps more in the future–. In 

addition, we analyzed the appropriate challenges to be addressed in DLC models and considered 

the aforementioned 6Vs challenges. We also revisited most DLC models and evaluated them 

with respect to the 6Vs challenges as benchmark test. We concluded that although each model is 

adequate for its particular purpose, there is no any comprehensive model that addresses the 6Vs 

challenges completely. In this section we evaluate the proposed COSA-DLC model in order to 

demonstrate it is certainly comprehensive according to the 6Vs challenges. 

 Value: The value challenge refers to the valuable information that can be extracted from (a 

huge volume of) data, after some processing and/or analysis steps. 

The proposed COSA-DLC model has several merits to address the value challenge. Firstly, the 

Data Process and Data Analysis phases are precisely included for extracting value from data. 

Secondly, all Data Quality phases included in the model guarantee a high level of data quality 

and, therefore, data is more valuable. In fact, any DLC model, just because of its nature, induces 

to be designed for obtaining any kind of goal, or benefit. So this challenge can be assumed for any 

DLC model. 

 Volume: The volume challenge refers to the huge volumes of data, in any format, that 

must be considered for management. 

The proposed COSA-DLC model addresses this challenge in both the Data Collection phase –

it is prepared to collect data from multiple sources–, and the Data Archive phase –, it should be 

designed to store large amounts of data. Again, any DLC model is able to address this challenge 

by definition. 

 Variety: The variety challenge refers to the diverse types and formats of the data to be 

considered, mainly because data provide from different sources. 

The proposed COSA-DLC model addresses this challenge in the Data Collection phase by 

collecting data, directly and indirectly, from any source, such as basic or complex devices 

(sensors, smart devices), databases, web-generated data, third party applications, etc. In this phase 

new sources for data collection are also explored, therefore expanding the candidate sources for 

data collection. In addition, other phases, such as Data Filtering, Data Description or Data 

Classification have been included precisely for supporting data organization and classification 

with high variety of formats. 

 Velocity: The velocity challenge refers to the speed rate of data stream generation and the 

subsequent capability to process it efficiently. This challenge is closely related to performance. 
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The proposed COSA-DLC model has been designed for achieving high performance, both 

during data stream collection and during data processing. For this reason, a specific phase is 

proposed to manage each of these tasks, namely Data Collection and Data Process. Certainly, the 

final performance will depend on the particular resources deployment, but by considering specific 

phases, the design helps allocating specific resources in these steps. 

 Variability: The variability challenge refers to the possibility that historical data varies its 

semantic meaning over time.  

The proposed COSA-DLC model includes a Data Description phase to tag data for future 

usage and a Data Classification phase where additional tagging could be done, including expiring 

date. The Data Archive phase also offers the option to implement some data cleaning policies. 

Finally, in the Data Analysis phase, some data analytics processes could be implemented to 

analyze and predict eventual context changes. 

 Veracity: The veracity challenge can also be understood from two perspectives, according 

to different authors’ interpretations: data quality or data security. Data quality concepts include 

quality of control (QC) and quality of assurance (QA). And data security prevents datasets from 

any kind of modification from unsecured and unauthorized sources and devices. 

The proposed COSA-DLC model includes a Data Quality phase in all blocks (Data 

Acquisition, Data Processing and Data Preservation), guaranteeing both QC and QA. First, all 

data is checked and if quality is too low (according to the business model), this can be discarded 

(QC). If a low quality level is reported continuously, the whole process can then be checked, in 

order to improve procedures for better quality and performance (QA). 

Furthermore, the COSA-DLC model is able to address the data security challenge in different 

phases. Initially, by guaranteeing sources to be secure and trusted during data collection. Some 

additional metadata can also be included during the Data Description phase to implement some 

eventual encryption mechanisms. In addition, during Data Dissemination, different access policies 

can be defined and implemented to manage accesses, permissions, etc. And finally, a deep 

security analysis can be performed on data during the data quality phase. 

 

4.1.4 Use Cases that illustrate the ease of adaptation of the COSA-DLC model 

In this Section, we present two different use cases to illustrate how easy the customization and 

adaption of the proposed COSA-DLC model is to any kind of science or scenario. The first use 

case adapts the COSA-DLC model for data management in a Smart City scenario. The second use 

case adapts the COSA-DLC model into a library, which represents a scientific sample. 

 

4.1.4.1 A DLC model for a Smart City 

In the first example we use the Smart City of Barcelona as a use case to illustrate the COSA-

DLC model adaption. Data in the Barcelona Smart City is currently managed through the Sentilo 

platform[153], a framework that collects data from different sources (mainly sensors, but also 

other information sources from the city), organizes and stores it, and provides a public interface to 
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access the datasets, either real-time or historical data. Figure 4.3 shows the Sentilo architecture, a 

middleware providing a unified access to the public data. 

 

Figure 4.3 The Barcelona Smart City IT architecture 

In order to adapt the COSA-DLC model to Sentilo, data acquisition, data processing and data 

preservation should be considered. Our proposal is illustrated in Figure 4.4. The Data Acquisition 

block includes Data Collection, Data Filtering and Data Description phases. Note that no quality 

control is performed in Sentilo as it provides the raw data as it gets it, only adding some additional 

descriptive data about timing and positioning. All collected data is archived in the Sentilo 

databases, and developers can access both real-time and historical data. The Data Preservation 

block includes Data Classification, Data Archive and Data Dissemination phases. The 

classification phase organizes information to be stored according to its type and format. And the 

stored data can then be retrieved through the interface managed in the data dissemination phase. 

Finally, some services are offered providing more processed data, although these services will be 

very customer dependent and then, no generalization can be easily made. For this reason, we 

include a Data Processing phase to allow some basic processing in the DLC model. 

 

Figure 4.4COSA-DLC model proposal for Sentilo 
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4.1.4.2 A DLC model for a Scientific Library 

In the second example we will use the Library of the UPC BarcelonaTech as a use case to 

illustrate the COSA-DLC model adaption in an eScience field. The library is connected to 

different university campuses to collect, aggregate and share all digital resources among internal 

libraries and departments. Several types and formats of information are collected by the library 

procedures, including books, journals, digital video, doctoral theses, examination records, etc., 

and all the information is available for online access, under registration and according to any 

eventual copyright statement[154]. The data in the UPC BarcelonaTech Library is currently 

managed through the framework shown in Figure 4.5. 

The COSA-DLC model can easily adapt this framework by considering data acquisition and 

data preservation, as illustrated in Figure 4.6. The Data Acquisition block includes Data 

Collection, Data Filtering, and Data Description phases. Notice that in a Scientific Library many 

metadata is required to facilitate the catalog retrieval. The Data Preservation block includes Data 

Classification, Data Archive and Data Dissemination phases. In this case, some analysis is 

performed to check if different entries are referencing the same physical document in the quality 

phase. The dissemination phase provides a basic interface to handle advanced searching. 

 

Figure 4.5The UPC BarcelonaTech Library architecture 

 

Figure 4.6COSA-DLC model proposal for UPC Library 
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These two use cases illustrate how easy the adaption of the COSA-DLC model into a variety of 

different scenarios and sciences may be. Indeed, adapting the model just requires selecting those 

phases that can be relevant according to the particular scenario requirements. 

 

 

4.2 The COSA-DLC adaptation to smart cities: SCC-DLC model 

 
The Comprehensive Scenario Agnostic Data LifeCycle (COSA-DLC) model has been proved 

to be: i) comprehensive, as it has been designed as an efficient and global data management 

model to address the set of 6Vs challenges for big data management (namely Value, Volume, 

Variety, Velocity, Variability and Veracity), and; ii) scenario agnostic, as it is easily adaptable to 

any scenario or scientific environment. In this section we extend the COSA-DLC model to a 

Smart City scenario, coining the Smart City Comprehensive DLC, or SCC-DLC model, for 

shorter [139]. The proposed SCC-DLC model has been designed for efficient data management 

and organization in the context of a Smart City. 

In this section, we start by introducing the SCC-DLC model, showing how it can be inherited 

from the COSA-DLC model, and finally emphasizing its main benefits. 

 

4.2.1 The SCC-DLC model 

In Figure 4.7 we show our vision of the data life cycle in terms of main steps and data flow. 

We identify three major blocks, namely data acquisition, data processing, and data preservation. 

Data acquisition is one of the most important data related tasks in a Smart City, because the more 

information gathered from the city, the more complete and sophisticated services can be provided 

(as long as these data are verified and with high quality). So the data acquisition block is the 

responsible for collecting data, classifying data, assessing data quality, tagging data, applying any 

eventual data aggregation technique, and preparing the data for further usage. Data can then be 

processed or preserved. The data processing block is responsible for transforming data into 

information, knowledge, or any other higher value item, through complex analysis or analytical 

processes. This processed data can be either consumed by end users or stored for future usage. 

Finally, the data preservation block is the responsible for data archiving, storing high-quality data 

(curated in either the data acquisition or data processing blocks), and preparing the data for 

publication, or further processing phases. 
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Figure 4.7 Data flow in the data lifecycle 

The data flow is as follows. Data are gathered into the system through the Data Acquisition 

block, which collects data from different sources. If data are required for immediate processing, 

they can be considered real-time data; otherwise, if they are prepared for storage, they can be 

considered achievable data. Notice that either all or part of the processed data can also be 

preserved, and vice versa, i.e. these two data flows are not exclusive. When archived data, from 

the data preservation block, are used for processing, these are considered historical data. Hence, 

the data processing block can use both real-time and historical data for processing. Finally, the 

results of data processing can be consumed by end users or stored back through the data 

preservation block: in this case, these data are considered to be higher value data. 

In Figure 4.8 we show the SCC-DLC model adapted to the smart cities scenario. As seen in the 

figure, each block is implemented through a set of phases to fulfil the required functionalities, as 

follows: 

• The data acquisition block includes the data collection, data filtering (which performs 

some optimizations, such as data aggregation), data quality (aiming to appraise the quality level of 

collected data), and data description (tagging data with some additional information) phases. 

• The data processing block encompasses the data process (which provides a set of 

processes to transform raw data into more sophisticated data/information), and data analysis 

(implementing some analysis or analytic approaches for extracting knowledge) phases. 

• The data preservation block consists of four phases which are the data classification 

(aiming to organize and prepare data for efficient storage), data archive (storing data for short and 

long terms consumption), and data dissemination (publishing data for public or private access).  

Notice that it is not necessary to implement any data quality phase in the data processing nor in 

the data preservation blocks because all data flowing to these blocks has previously been checked 

for quality in the data acquisition block. A complete description of each phase and its behavior 

can be found in below: 

o The Data Acquisition block contains all phases defined in the original comprehensive 

COSA-DLC model. Their management is described as follows: 



    Hierarchical Distributed Fog- to-Cloud Data Management in Smart Cities 

 

 

76 

Data Collection, responsible for: 

 Collecting data directly from physical devices spread along the city, such as 

sensors, surveillance cameras, users’ smart phones and vehicles, and so on. 

 Collecting data indirectly from other city sources, for instance, data created in 

city’s local business or public institutions, and offered to the city as open data for smart 

services. 

 Exploring and discovering new data sources that may extend the available data 

scopes at the city. 

Data Filtering, responsible for: 

 Applying some methods for data optimization, such as data filtering, data 

aggregation, data compression, data polishing, and so on. They are intended to optimize 

the volume of data managed in the system. 

 Classifying or sorting data in order to provide enhanced performance. The actual 

classification will depend on the city’s business model. 

Data Quality, responsible for: 

 Checking the data quality level (namely Quality Control) according to different 

techniques and algorithms. The particular quality methods required will depend on the 

city requirements. 

 Discarding or repairing low quality data, according to the city’s requirements and 

policies. In case of continuous failure, the data source could be blocked. 

 Monitoring the quality of data flows and, in case of continuous failures, proceed 

according to the provided policies (namely Quality Assurance). 

Data Description, responsible for: 

 Tagging data with additional description for optimized future retrievals. 

 Any metadata considered in the business model can be used, such as timing 

information (creation, collection, modification, etc.), location positioning (city, country, 

GPS coordinates), authoring, privacy, and so on. 

o The Data Preservation block contains all phases defined in the original comprehensive 

COSA-DLC model except the Data Quality phase. The reason is that in the context of this 

Smart City, all stored data come from the Data Acquisition block and, therefore, its quality 

is granted. The phases’ management is described as follows: 

Data Classification, responsible for: 

 Classifying and organizing data before storing, according to the city’s business 

model. 

 Adding some additional metadata regarding storage, such as expiry time, usage 

and reuse capabilities, security level, and so on. 
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 And eventually, implementing the corresponding management techniques in order 

to implement any data versioning, data lineage or data provenance. 

Data Archive, responsible for: 

 Storing (large sets of) data collected and processed in the city. Data will be stored 

in temporal sites, distributed along the city, and a selection of data (aggregated) will be 

permanently stored in the cloud. 

 This phase is responsible for the long term preservation, but also responsible for 

some additional tasks, such as data cleaning according to the corresponding expiry 

time, or implementing other business related policies. 

Data Dissemination, responsible for: 

 Providing a user interface for safe private or public access to stored data, and 

managing data sharing according to the access permissions policies. 

 Implementing the protection, privacy and security policies according to the 

business requirements. 

o The Data Processing block contains all phases defined in the original comprehensive 

COSA-DLC model except the Data Quality phase. As with the Data Preservation block, the 

data quality checking is not necessary. Their management is described as follows: 

Data Process, responsible for: 

 Performing all data processing required in the application or service to convert raw 

data into some more sophisticated, higher level information, which provide smartness 

to the service. These processes could include one or several internal steps, such as pre-

processing or post-processing, depending on the particular applications requirements. 

Data Analysis, responsible for: 

 Performing all deep data analysis and data analytics algorithms for extracting 

knowledge and discovering new insights. Again, the analysis or analytics processes 

tightly depend on the users’ application or service. 

 This phase also provides a user interface for accessing the results of data 

processing of an application or service. Alternatively, processed data can also be 

considered for archiving and stored. 

Note that processed data can be either consumed directly by the end-user, or stored back to 

the system to allow data re-using and data re-processing. 
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Figure 4.8 The SCC-DLC model 

Finally, notice that all gathered data are accessible for smart cities’ services consumption, 

usually through some sort of open access interfaces. In our proposal, we characterize data 

according to its age, ranging from real-time to historical data. For instance, real-time data is the 

one generated and just consumed, generally in critical very low latency applications. Such real-

time data entails some implicit proximity constraints, because these data are difficult to be critical 

in remote services. Alternatively, data becomes historical (older data) as long as it is accumulated 

and stored on files or databases. In this case, historical data can be considered to be farther away 

(even if originally close) because accessing data from cloud, for instance, requires higher latency. 

We also consider that real-time critical data is requested in relatively small sizes, because very 

large volumes of data can hardly be considered for real-time. On the other hand, historical data 

can be requested in any, small or large data sets, and any type of fast or complex processing is 

expected to be done. 

 

4.2.2 Advantages of the SCC-DLC model 

We conclude that our SCC-DLC model has several advantages for data management in Smart 

City as show in below: 

 Can be applied to any Smart Cities scenario easily 

 Covers 6Vs challenges as a widely accepted concept of Big Data 

 Provides a comprehensive model for data management in Smart Cities 

 Gives some clues to developers and managers of Smart Cities to handle their enquiries 

regarding data life and stages (from creation to consumption) 

 Organizing and managing data without any limitation about hardware and software 

 Making facility to have standardization and globalization for the Data management 

model in the Smart Cities. 

 The model considers data during their whole data life cycles, from production to 

consumption and cleaning, including storage and processing 
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4.3Scenario Description: the F2C Smart City 

 
The Smart City is furnished with different type of sensors (such as temperature, electricity 

meter, and so on.), which are able to collect huge volumes of data in the city. The collected 

information will be then sent to computing devices (such as traffic light, smart phone, or 

something else) to do some initial processing and storage as shown in Figure 4.9. As you can see 

in this Figure, Edge-Data-Sources can be any type of sensor in the city. In addition, the Fog-

Device can be any powerful device among Edge-Data-Sources as long as it supports Edge-Data-

Sources coordination in the same location.  

As shown in Figure 4.10, there are many different areas in the city, called Fog-Areas. A Fog-

Area covers several Fog-Devices in the city. Similarly, a Fog-Leader node is defined as a node in 

the same area with capacity to organize and manage the resources in the Fog-Area. 

 

Figure 4.9 Edge-Data-Sources and Fog Device 
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Figure 4.10 Our depicted Smart City scenario 

As the number of Fog-Areas can be large in the wide city, a set of leaders will be coordinated 

by a higher level leader, becoming a hierarchical multi-layer structure, as shown in Figure 4.11. In 

addition, the number of layers will depend on the system size, urban city structure, business 

model, city manager organization, and etc. However, for simplicity, we will use a three layers 

architecture as shown in Figure 4.10. So, we depict our Smart City scenario with three different 

layers, namely Fog-Layer-1, Fog-Layer-2, and Cloud layer as described next. 

 Fog-Layer-1 is the closest layer to the users in the city. This layer covers different Fog-

Areas, Fog-Devices, and Edge-Data-Sources in our scenario as shown below. 

o Edge-Data-Sources: As shown in Figure 4.3, there are varieties of data sources in the city 

which include fixed (like sensors, camera and etc.) and portal devices (like smartphones, 

vehicular sensors and so on). These data sources are namely called edge-data-sources in 

our scenario. 

o Fog-Device: In our scenario, the edge-data-sources are managed and controlled by Fog-

Devices. In addition, we consider that the strongest nodes among the edge-data-sources 

can be selected for the Fog-Device position in the city. In fact, a Fog-Device is supposed 

to have more capability for processing and storage than other edge-data-sources.  
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o Fog-Area: In our scenario, the city can be divided into small size distance spots, we 

called “Fog-Area”. In addition, each Fog-Area covers different edge-data-sources and 

Fog-Devices. 

 Fog-Layer-2 is an intermediate layer between cloud and Fog-Layer-1 layers. So, this layer 

is not close, like Fog-Layer-1, to the users and devices in the city, but it is not that far as 

cloud layer is. However, this layer is still located somewhere in the city. These layer covers 

with Fog-Leader as described in below. 

o Fog-Leader: In our scenario, we consider that Fog-Leader is positioned as strongest 

nodes among Fog-Devices. So, in fact, the Fog-Leader has more capacity in terms of 

processing and storage. 

 Cloud layer is located at the top position of our scenario. Cloud covers the almost unlimited 

resources in terms of processing and storage. In addition, cloud layer is positioned in a place 

which can be very far away from the city (sometimes, in a different city or country or 

continent). So, the communication between city and cloud layer is a very important concept 

in this scenario. Currently, the new generation of cellular networks (like 4G or 5G) is used 

to build this network connection between cloud technologies and the Smart City scenario. 
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Figure 4.11Different numbers of Fog-Layers and Fog-Leader 

 

4.4 The F2C Data management architecture 
 

The distributed hierarchical F2C resources management architecture provides an interesting 

framework for data management in the context of smart cities, according to our SCC-DLC model 

proposal. In this section we present a novel architecture for efficient fog to cloud data 

management in smart cities, consisting on the mapping of the SCC-DLC model onto the Smart 

City F2C resources management architecture. Our model is illustrated in Figure 4.12. Notice that 

data acquisition is mainly performed at fog layer 1, as well as some basic data processing and data 

preservation actions. The fog layer 2 can enhance the data processing and data preservations 

capabilities of level 1 by providing higher computing capabilities. And finally, the cloud layer 

will be responsible for more complex and sophisticated data processing over a much broader set 

of (presumably historical) data, as well as the responsible for permanent data preservation. 

In the following subsections the functionalities of each data lifecycle block in this architecture 

are described and, then, we discuss the advantages of our model. 
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Figure 4.12 Mapping of the SCC-DLC model onto the F2C architecture 

 

4.4.1 The Data Acquisition 

Data acquisition is mainly performed at Fog layer 1. In fact, all sensor devices (such as the 

sensors network deployed throughout the city, but also surveillance cameras or sensor data from 

smart phones) are part of fog nodes at this level according to their respective location. Therefore, 

most data are collected at fog layer 1. There can eventually be some additional data collected 

from web services or third party applications, all collected at cloud level (where web services 

run), but these will be a small data set compared to the vast volumes of sensor generated data. 

As long as the data are being collected, the following phases from the data acquisition block 

can also be performed at fog layer 1, where a reasonable amount of computing resources is 

available. For instance, the data filtering phase can apply filters to remove redundant data and can 

apply some data aggregation techniques to further reduce the amount of data to be managed. Data 

quality can also be implemented at this fog layer, assessing and guaranteeing higher data quality. 

And data description can be performed in order to tag data according to the city business model 

considered, for instance, timing information (creation, collection, modification, etc.), location 

positioning (city, country, GPS coordinates), authoring, privacy, and so on. 

Data collected at fog layer 1 will be periodically moved upwards to layer 2, and data collected 

at layer 2 from a set of fog nodes at layer 1 will be combined and periodically moved upwards to 

the cloud level, which will collect the whole data set from the city. Notice that data at fog layer 1 
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can be immediately used at this same level (real-time data), so there is no need to urgently move 

these data to higher levels and, therefore, the frequency for the periodical upwards data 

movements can be strategically decided in order to accommodate it to the network traffic. 

 

4.4.2 The Data Preservation 

Data are generated at fog layer 1, but gradually moved upwards to the fog layer 2, and upwards 

to the cloud layer, where they will be permanently preserved. So, in fact, the F2C hierarchy acts 

as a reversed memory hierarchy, where data are created at the lowest cache level (fog layer 1) and 

moved upwards to main memory (cloud layer) instead of being created at main memory and 

moved to lower cache levels of the memory hierarchy. 

Data generated at fog layer 1 will be temporarily stored at this level, allowing real-time 

applications an instant access to these data. The Smart City business model can decide the amount 

of temporal data that can be stored at this level, as well as the frequency of updating to upper 

levels. Similarly, data gathered at fog layer 2, consisting of data received from several fog nodes 

at layer 1, will be temporarily stored at this level 2. This will make up a set of less recent data (as 

it has been received after some period of time) but from a broader area, comprising the 

combination of the respective fog nodes’ areas at layer 1. Finally, data will be permanently 

preserved at cloud layer, unless any expiry time is defined. 

The different phases included in the data preservation block will be mainly executed at the 

cloud level, where the permanent storage is performed. Notice that these phases are not urgent 

and, therefore, their execution can be delayed to the time in which data reach to the cloud layer. 

This is the case of both the data classification phase –responsible for classifying and ordering data 

before storing, and eventually implementing the appropriate techniques for data versioning, data 

lineage or data provenance–, and the data dissemination phase –responsible for providing a user 

interface for public or private access to stored data, as well as for implementing any protection, 

privacy or security policies according to the city business requirements. 

 

4.4.3 The Data Processing 

Data processing can be performed at any F2C layer, according to the requirements of the 

application or service. For instance, critical real-time services will be executed at fog layer 1 in 

order to have a faster access to the (just generated) real-time data. Notice that accessing data 

locally inside the boundaries of a fog node is much faster than moving the data to a centralized 

cloud data center and, afterwards, reading these same data from the cloud to the local node. 

Alternatively, deep computing complex applications will be executed at the cloud layer. Notice 

that: i) computing resources at cloud are unlimited and, ii) the data set of a high performance 

computing application will presumably be very large and, therefore, be part of the historical data 

set stored at the cloud layer. It is worth highlighting that in this case, when computation requires 

very high capabilities, adding more latency to the first access to data will not be significant in the 

overall performance. 
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Other applications will be executed at the lowest fog layer providing the required computing 

capabilities and the lowest fog layer containing the required data set. As a general rule, the closer 

the layer, the faster response times. An additional consideration in this case is when the required 

data is not present in the current fog node at layer 1, but can be accessed from either a node at a 

higher layer or a neighbor fog node at the same layer 1. This option may eventually be considered 

and solved using some sort of cost model to estimate the effects of both cases and proceed 

according to the lowest cost. 

 

4.5Summary and contributions 
 

In this Chapter, we have designed the Comprehensive Agnostic Data LifeCycle (COSA-DLC) 

model for any scenario, which is able to map with any science, scenario, and Big Data 

environment. Our COSA-DLC model comes with three main blocks, namely data acquisition, 

data preservation, and data processing, each describing a set of phases to properly manage the 

data. We have evaluated the COSA-DLC model with respect to the 6Vs challenges to obtain their 

efficiency in any Big Data environment. Plus, we showed two uses-case for depicting easy 

adaption of this model to any scenario and science (encompassing Smart City scenario and the 

scientific library science). 

Next, we have proposed a comprehensive data management model for a Smart City scenario. 

For this purpose, we have shown how the COSA-DLC model can be easily mapped into a Smart 

City scenario, turning into the Smart City Comprehensive DLC (SCC-DLC) model. The SCC-

DLC model has three main blocks and their related phases, namely Data Acquisition (including 

data collection, data filtering, data quality, and data description phases), Data Processing 

(consisting of data process and data analysis phases), and Data Preservation (encompassing with 

data classification, data storing, and data dissemination). The SCC-DLC model provides some 

desirable advantages to organize the most valuable assets in a Smart City, i.e., the data. Similarly, 

the SCC-DLC model is able to address successfully the 6Vs challenges. 

And finally, we have designed the F2C data management architecture by tailoring the SCC-

DLC model to the F2C hierarchical Smart City scenario. The F2C data management architecture 

proposes different layers, Fog-Layer-1 (including Edge-Data-Sources, Fog-Devices, and Fog 

Areas), Fog-Layer-2 (consisting with Fog-Leaders), and the cloud layer. We have shown that the 

data acquisition block is mainly handled at Fog-Layer-1 (with the high performance level), Fog-

Layer-2 (with the medium performance level), and cloud layer (with the minimum performance 

level). Additionally, the Data Preservation and Data Processing blocks are performed at Fog-

Layer-1 (with some basic data processing and data preservation actions), Fog-Layer-2 (with some 

more sophisticated data processing and data preservation actions), and cloud layer (with some 

advanced data processing and data preservation actions). 

Therefore, the main contributions of this Chapter can be summarized as follows: 

 Designing a comprehensive and scenario agnostic data management model (COSA-

DLC) [155, 156], which has been proven to be comprehensive and easy to adapt to any 

scenario. 
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 Evaluating the COSA-DLC model with respect to the 6Vs challenges [155, 156], which 

proves the completeness of the model. 

 Adapting the scenario agnostic COSA-DLC model into a specific scenario: Smart City. 

This adapted model is the Smart City comprehensive DLC (SCC-DLC) model, which 

keeps the feature to be comprehensive [138]. 

 Designing the F2C data management architecture by mapping the SCC-DLC model onto 

a F2C Smart City. This data management architecture is the core of the following 

contributions to be described in the following chapters. We have also shown the 

numerous advantages of this new data management architecture [138]. 

The novel COSA-DLC model provides some remarkable advantages and facilities as seen 

below: 

 Organizing and managing data in any scenario, science, and Big Data environment 

through COSA-DLC model (without any limitation about hardware and software). 

 Making facility to have standardization and globalization for the Data LifeCycle model. 

 Giving opportunity to researchers in academia and industry to easily adopt our 

proposed COSA-DLC model to be applied to their scenarios with minimum efforts.  

 Covering the 6 Vs challenges in any scenario and Big Data environment. 

The main advantages of the F2C data management architecture design can be listed as follows: 

 This architecture can benefit from the combined advantages of both, the cloud and the 

fog computing technologies, these are high computing and storage capabilities from the 

cloud layer and reduced network traffic and communication latencies from the fog 

layers.  

 Real-time data accesses are much faster than in a centralized architecture. This higher 

speed is not only due to the reduced communication latencies of proximity, but due to 

the fact that accessing data from a centralized system requires the data to be moved first 

to the cloud, classified and stored there, and then moved back to the edge. So two times 

data transfer through the same path. 

 By reducing the data transmission length, the security risks and the probability of 

communication failure are both reduced and, additionally, privacy can be easily 

enhanced. 

 By having the just collected data available at fog layer 1, the network load is drastically 

reduced because some applications will be able to access these data locally, avoiding 

several remote data accesses through the network. 

 By having the just collected data available at fog layer 1, the transmission to the cloud is 

not urgent and, therefore, it can be delayed without any performance loss. This allows 

additional optimization implementations, such as: 
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o Performing some data aggregation techniques to reduce the volume of data to be 

transmitted upwards, without any computational constraint, as data do no need to 

be sent immediately. 

o Adjusting the frequency of the data transmission in order to use the network in 

periods when the traffic load is low. 

 Traditional centralized systems define a low frequency policy for data collection from 

sensors in order to reduce the total amount of data to be transmitted in the network. By 

having the real-time data available at fog layer 1, the data collection frequency can be 

increased at this level without overloading the network and, therefore, providing more 

precision and accuracy from the sensed data at no additional cost. 

 By defining a distributed storage hierarchy, data can be cached at different layers of the 

architecture and, for this reason, data access times can be easily reduced. 

 In addition, the F2C architecture can manage data according to their initial location, 

which enables exploiting some locality features required in Smart City IoT contexts. 

 From the processing and analytics point of view, this architecture allows a flexible 

interface in order to access the most convenient data for each service or application in an 

IoT context. 

 During processing time, the architecture hierarchy provides an efficient structure that 

allows the application to access the nearest (and therefore fastest) data from the original 

data source. 

 And finally, thanks to the distributed nature of the F2C data management model, it 

allows performing additional data related optimizations, such as providing high levels of 

quality, keeping high security and privacy standards, as well as reducing the global 

network performance. 

The work done in this Chapter has conducted to the following publications:  

 A.Sinaeepourfard, J.Garcia, X.Masip-Bruin, E.Marín-Tordera, X.Yin, C.Wang,  "A Data 

LifeCycle Model for Smart Cities", IEEE conference on ICTC 2016, Korea, October 

2016. 

 A.Sinaeepourfard, J.Garcia, X.Masip-Bruin, E.Marín-Tordera, "Towards a 

Comprehensive Data LifeCycle model for Big Data Environments", IEEE/ACM 

BDCAT 2016, Shangai, China, December 2016. 

 A.Sinaeepourfard, J.Garcia, X.Masip-Bruin, E.Marín-Tordera, "A Comprehensive 

Scenario Agnostic Data LifeCycle Model for an Efficient Data Complexity 

Management", IEEE conference on eScience 2016, Baltimore, USA, October 2016. 
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The Data Acquisition is the first and one of the most important blocks in any scenario because 

this is the block that provides the data (as the initial feed) for all upper layers from physical and 

non-physical devices. Several definitions of the data acquisition block in different scenarios may 

be found in the literature. In [157], the author argue that data acquisition senses the raw data 

generated by different physical and non-physical devices in a digital form for further storage and 

process. In addition, the produced data can be obtained with different types (such as image, 

document, sound and etc.) and formats (such as .jpg, .doc, .mp3 and etc.), turning into a huge 

volume of data in today’s information technologies. Other authors tried to define some different 

sub-steps for the data acquisition block in specific scenarios. In [158]authors made three sub-steps 

for the data acquisition block in a Big Data scenario, that are data collection, data transmission, 

and pre-processing steps.  

Some key differences come up when analyzing data acquisition block definitions from the 

academia and industry sides. First, some researchers support the fact that the data acquisition 

block is only responsible for gathering data from IoT devices, later sent to upper layers for further 

process and storage [152, 159].  In the particular scenario of smart cities, most contributions 

assume data will be collected in the city (as main task of the data acquisition block), and then 

upper layers/blocks are responsible for further data actions usually running at cloud [152, 159, 

160]. Second, few authors mentioned that the data acquisition block (in particular data collection) 

can be included with some data actions to make data more sophisticated for further usage with 

other upper layers [157]. Those authors try to eliminate non-useful data from others data. So, they 

are demonstrating some kind of data actions (like cleaning, data filtering, and so on) to prepare 

data to be sent to upper layers for any further demands. 

In our perspective, the data acquisition block goes far beyond a simple data collector from 

physical and non-physical sources (in particular for a smart city scenario). As we know, today´s 

IoT devices generate more than million data over times. However, some of these generated data 

are redundant or dirty (not useful at all in the future). So, we believe that the collected data must 

be refined with some available and basic technologies located at the edge of the network for the 

sake of data production proximity. In addition, due to the huge amount of data that is being 

constantly collected, this block should also be responsible for aggregating these data and, 

therefore, reduce the network traffic. 

In the following section, we explain in detail (including definition, state of art, and challenges) 

the different phases envisioned in the Data Acquisition block (including data collection, data 

filtering, data quality, and data description). We show the Data Acquisition Block and its phases 

in F2C. In addition, we discuss how the phases (in data acquisition) can be handled in the F2C. 

Then, we propose the Data acquisition block in the city of Barcelona. Next, we describe how 

many sensors data (including current and future of the Sentilo platform) will be collected in the 

city of Barcelona. And then, we present some data optimization techniques (including data 

aggregation and data compression) through the data collection phase in Barcelona city. In 

addition, we highlight the efficiency rate of these techniques through the collected data in 

Barcelona city. 
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5.1 Phases in the Data Acquisition Block 
 

We propose the data acquisition block in the SCC-DLC model to include four main phases, as 

shown in Figure 5.1. The proposed phases are “data collection”, “data filtering”, “data quality”, 

and “data description”. Next these phases are described. 

 

Figure 5.1 Phases in the Data Acquisition Block 

The main objectives of the Data Acquisition Block are: 

 Sensing and collecting all possible data from the smart city environment. 

 Applying some data filtering techniques (such as data aggregation) to remove dark 

collected data. 

 Appraising some quality techniques to control the quality of the collected data. 

 Attaching some more information (including ownership, production time, and etc.) to 

the collected data for future usage in processing and/or storage. 

 

5.1.1 The Data Collection phase 

The Data Collection phase is the first phase in the Data Acquisition block, as shown in Figure 

5.2. 

 

Figure 5.2The Data Collection phase in the Data Acquisition Block 

 

5.1.1.1 Definition 

Several definitions for this phase may be found in the literature, applied to different scenarios. 

In the area of the Internet of Things, the authors in [161]said that data collection is the ability of 

discovering and identifying “Things” and subsystems (statistic or mobile) for feeding the IoT data 

stores. In the area of Big Data, the authors in [158] mentioned that data collection techniques get 

help to grab raw data from a specific data generation environment. In a smart city scenario, data 

collection must gather all raw data generated in the city whose raw data come from installed 
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sensors or other non-physical sources [92, 152]. In brief, we can categorize related views about 

data collection definition as shown below: 

 Available data: It means we stored data in different IoT data stores or a specific data 

generation environment. And now, we aim to collect our suitable data from this stored 

data pools.  

 Non-available data: It means that we must sense and generate data from our 

environment by sensors, camera surveillance, and smart phones and so on. 

 

5.1.1.2 State of the art 

Collected data can be seen by different formats and types which maybe redundant and non-

real-time data. We realized that all devices and sources can be categorized in a smart city scenario 

into the physical and non-physical devices: 

 Physical devices: It means that there is a physical instrument which is installed 

somewhere in your environment to get data for further usage. In addition, the physical 

instrument can exist like fix (e.g. traffic light sensors) and portal devices (e.g. vehicular 

sensors) in the city. In the below categories, we show some types of the physical 

devices: 

o Sensors: Sensors can be seen in different types (such as acoustic, sound, 

vibration, automotive, chemical, electric current, weather, pressure, thermal, 

proximity, and etc.) to collect distinct numbers of information, as shown in 

Figure 5.3 [162]. Plus, we can sort the sensor networks to wired and wireless 

sensors [163]. It is very obvious that wired sensors must be connected by wire 

to somewhere. On the other hand, wireless sensors are able to connect to the 

next level by wireless communication technologies. In addition, energy and 

communication capabilities must be managed and optimized in this way of 

communication. 
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Figure 5.3 Different types of information and their sensors 

o Human biometrics: Finger prints and signatures can be considered in this 

category. These physical devices are used to capture and save data for identity 

authentication and to track criminal for any future purposes [164]. 

o RFID (Radio Frequency Identification): RFID is a type of embedded 

communication. It consists of tags able to attach to any object for virtual 

identification. This tag also provides some space for electronically stored 

information which can exist by active, passive and battery-assisted passive 

types, as shown below [165, 166]: 

 Active type: This type is able to send their id signal periodically, which 

is considered as battery-powered type. 

 Passive type: This type is based on radio energy transmitted by the 

reader, which is not considered as battery-powered type. 

 Battery-assisted passive type: This type prepares a small on-board 

battery, which is able to transfer only in the presence of RFID reader. 

 Non-physical devices: It means that data are saved directly or indirectly from physical 

devices somewhere (like data repositories) we must connect to in order to collect the 

data for our purposes. The main types of this non-physical devices can be existed in 

below: 

o Social networks: Day by day, users are more active to explore and interact their 

information and enquires in the Web such as LinkedIn, Facebook, Twitter, and 

so on. So, there are some techniques to catch user actives through Web and 

manipulate entered information with others as shown as below:    

 Log file: Log files are made by data sources to show their record 

activities in a specific file format for further subsequent analysis. For 

example, the web server log file formats have three main types (NSCA, 

W3C, and IIS) to depict user activities through websites [158]. Other 

examples can be given in “software-as-a-sensor” by physical sensors, 

stock ticks in financial applications, performance measurement in 

network monitoring, and traffic management. 

 Natural Language Processing (NLP): The user data must be 

understandable by machine. So, the NLP techniques are used to 

overcome this challenge. For example, NLP and NER (Named Entity 

Recognition systems are able to manage the emergency situations like 

car crash, earth quick and so on [92]. 

 Web-Crawler: Web-Crawler is considered as general data collection 

applications for website-based applications such as web search engines 

and web caches [158]. The crawling process handle several policies like 

selection, revisiting, politeness, parallelization, etc.[163]. 
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o Mobile Sensing and User Generated Data: There is a new way to generate data 

by users in smart devices (like smartphones) [162]. For instance, users can 

cooperate to produce data in smart city scenarios. In this example, there are 

some contributions showing how users can join each other to produce and share 

data in a smart city (such as Urbanopoly, Urbanmatch, csxPOI and etc.) [92]. 

Indeed, this way of data collection is highly important in these days because of 

low-cost timely sensing of the environments by users. 

o Remote Database repositories: It means that data is stored in databases we can 

remotely connect to for taking our requirements [160]. In addition, there are 

varieties of available private and public data repositories in the city (such as 

companies, banks, hospitals, city hall and etc.).  

So far we explained that data can come from different sources and highlighted the active open 

discussion among researchers intended to show how the useful knowledge may be extracted from 

the collected data. In [152], authors argue that all collected data must be sent directly to 

centralized computing model like cloud computing. However, other authors mentioned that data 

collection approaches must be covered with further actions and strategies, which is more than 

only data collection from physical and non-physical devices [161]. In addition, these researchers 

believed that data collection can impose some challenges and difficulties for network traffic, data 

storage, energy utilization and so on [152]. These actions and strategies can be listed as shown as 

below:   

 Source Discovery Support: We believe that the data collection phase must be able to 

have some mechanisms for exploring new devices in your scenario. For example, there 

is some view in Internet of Things about source discovery system. In [161] mentioned 

that IoT devices and IoT applications are communicated with each other to announce 

which data is needed for services and then the services send their response about these 

needs. Indeed, those responses imposed devices to generate or update new data. 

 Data Collection strategies: The data collection approaches can be followed by specific 

strategies in your scenario. For example, in [161]authors said that data collection from 

all “Things” can be considered as: 

o Temporal data collection: It means that data managers can define some rules for 

data collection approaches like specific interval times for data collections. 

o Modal data collection: It means that data collection can be controlled by some 

rules to match with data manager’s demands like some collecting data through 

specific elements. 

 Mobility: In [161]authors emphasize that “things” of IoT devices can be moved 

everywhere per second. So, some solutions must be defined to enable IoT devices to 

access and transfer their information to IoT data stores. For example, a session-based 

synchronization system is proposed for mobile device to manage databases systems for 

running on mobile devices. Another example is Publisher/Subscribe-based systems is 

notification-based data for mobile devices. 
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5.1.1.3Objectives and challenges of an effective Data Collection phase 

According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data collection phase as part of a data management architecture. Some 

of these challenges, mainly those associated to the sensors and related technologies (for instance, 

reliability, accuracy, consumption, connectivity, etc.), are out of the scope of this research thesis. 

The main objectives and challenges listed here are these related to the resources organization and 

management. These are the following: 

 Collecting data directly from physical devices spread along the city, such as sensors, 

surveillance cameras, users’ smart phones and vehicles, and so on. This objective is 

highlighted several challenges as shown in below: 

o Data Volume: There is a huge number of data which are generated constantly by a 

huge network of physical devices.  

o Data Variety: Such huge number of physical devices generate data of different 

types, with different formats, accuracies, and so on. 

o Data Velocity: The massive data are being produced very fast and at more or less 

constant rates. 

 Collecting data indirectly from other city sources, for instance, data created in city’s 

local business or public institutions, and offered to the city as open data for smart 

services. Similarly, this data faced same challenges as shown in the previous objective 

(including data volume, data variety, and data velocity). 

 Data generation (and therefore collection) must be frequency adjusted to the 

requirements of the city business model, and this has to be managed effectively. 

 The data management architecture must provide fast access to real-time data for 

critical or real-time applications. 

 The data management architecture must provide efficient mechanisms for accessing 

large volumes of historical data for computational intensive applications.  

 The data management architecture must be able to manage data resources from mobile 

devices, thus managing mobility and all related issues, such as dynamicity, volatility, 

and so on. 

 The data management architecture must be able to explore and discover new data 

sources that may easily extend the available data scopes of the city. 

 Data are produced spread across city districts, so it seems an appropriate strategy to 

manage and organize the produced data through a distributed environment (distributed 

data management). 
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Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the challenges listed above. This will be described and discussed in subsection 

5.2. 

 

5.1.2 The Data Filtering phase 

The Data Filtering phase is located after the Data Collection phase in the Data Acquisition 

block as shown in Figure 5.4. This phase will be described in detail in the below subsections. 

 

Figure 5.4 The Data Filtering phase in the Data Acquisition Block 

 

5.1.2.1 Definition 

The data filtering phase plays an important role in today’s data world because data will be 

produced by many devices from different environments and scenarios every moment. So, these 

data can be redundant and useless for future access and storage. In [167], authors defined that the 

main objective of data selection and filtering logic is to provide the stability of their potentially 

huge data-handling systems and the usefulness of their Big Data. 

In point of our view, we believe that Data Filtering phase is responsible for performing some 

basic data transformations in order to optimize the volume of data flowing from the collection to 

the quality phases. Particular data transformations are specific of the context and business 

requirements. However, filtering, aggregation, curation, sorting, classification, or compression, 

are some data transformations that could be considered as well. 

 

5.1.2.2 State of the art 

There are many contributions related to data filtering techniques. In Big Data and M2M 

scenario, [167] mentioned that data filtering platforms can categorized into general purpose 

filtering methods, Quality-of-Information (QoI) assessment techniques, and filter based on data 

classification. In addition, the last two categories (QoI assessment techniques, and filter based on 

data classification),are considered as “look into” data methods because general methods (like 

general purpose filtering methods) have difficulties to synthesize with semantics of data. On the 

other hand, there are vertical (bottom-to-top) and horizontal approaches through data filtering 

concepts. Currently, horizontal solutions are recommend to be used by M2M area networks,  

because horizontal solutions can be controlled by an API easy to configure for extending 

functionalities and layers, as shown in Figure 5.5 [167]. 
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 General purpose filtering methods: This approach is normally considered as general 

data filtering methods which is mostly used for RFID data to handle some aggregation 

and filtering techniques. Basically, this approach follows some initial algorithms for 

performing removal and/or aggregation of duplicate data, erroneous data, outlier, and 

so on. Regarding some argument in M2M area networks, these algorithms are normally 

utilized for horizontal solutions and can organize fault tolerance in the network. 

However, there are some challenges about handling semantics of the data and the 

significant amount of data by these algorithms. 

 Quality-of-Information (QoI) assessment techniques: This approach is considered as 

“look into” methods. This techniques focus on the importance of the contained data by 

deploying some evaluation techniques based on QoI scores. These algorithms are 

highly recommended for vertical solutions in M2M area networks. 

 Filter based on data classification: This approach also belongs to the “look into” 

methods. This technique works with category of information rather than QoI scores. 

For example, Kobe solution used some standard of Machine learning to make 

classification of sensors data (including sound recordings, images and etc.) for further 

filtering purposes. 

 

Figure 5.5 Horizontal and Vertical filtering solutions [167] 

In [166], the authors said that there is system on a chip (SoC) in sensors to provide 

preprocessing abilities (some initial data filtering) for Wireless Sensors Network (WSN). Besides 

that authors explained something about data filtering in Smart Cities environments where they 

supposed that data filtering (including filters the unnecessary metadata and/or repeated data are 

also discarded [21]) is organized in cloud computing environment [159]. 

As mentioned above, data aggregation is a famous technique to handle data filtering and 

optimization in different scenarios. In fact, data aggregation provides a splendid facility as part of 

data management to do some kind of processing for gathering, reducing, mixing, or presenting 

information somehow as a summary [168]. The main objective of data aggregation techniques is 

reducing the amount of managed data, and can be obtained through diverse techniques, such as 
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data combination, data redundancy elimination, data compression, bandwidth reduction or power 

consumption reduction, just to name a few. 

Recently, data aggregation has been tailored with the concepts of data and information mining 

progression, business demands and human analysis techniques, where data must be explored, 

collected, and presented in a report-based and shortened format in their networks [169]. There are 

some different views to do data aggregation in theoretical and practical scenarios. Traditional 

views concentrated to specific network devices and resources such as Wireless Sensor Networks 

(WSN) to manage data aggregation approaches [170-172]. The other view extends the previous 

view to go beyond ubiquitous and distributed scenarios (instead of focusing on specific devices 

and network) such as big data [169], cloud and distributed computing [169, 173], web 

technologies [174, 175], or real-time systems [172] as shown more details in the following 

sentences. 

First, in WSN environments, sensors are located closer to the regions of the measured 

phenomena. So, it is very obvious the data aggregation techniques and approaches provide some 

help in such environments to perform data redundancy elimination, delay reduction, data accuracy 

(data quality), data security (reliability), traffic management, network scalability and minimizing 

overhead (bandwidth usage, processing requirements and power and energy wastage) [169, 171, 

176]. In [177], the authors propose more sophisticated aggregation algorithms by proposing some 

soft computing techniques based on artificial neural networks, genetic algorithms, fuzzy logic 

models, and particle swarm techniques. 

Second, in cloud computing environments, cloud computing provides (almost) unlimited, 

scalable as well as elastic resources. For this reason, cloud computing adopts some data 

aggregation approaches and techniques to produce high level and sophisticated final outcome. In 

[143], the authors provide a full data model from sensors nodes to cloud computing environments 

for a smart city scenario. This model has two main layers which are sensors nodes and cloud 

computing layers. The sensors nodes collect data from city and pass to the cloud computing layer. 

The cloud layer is responsible to data collection and aggregation, data filtering (including 

classification), and data processing (including preprocessing, processing, and decision making). 

Indeed, with respect to distributed data aggregation, a recent survey [173] presents a taxonomy 

for distributed data aggregation approaches. They propose two main taxonomies, named 

communication and computation. The communication taxonomy focuses on the communication 

aspects (including communication/routing strategy and network topology). It is divided into 

structured (including hierarchical and ring protocols), unstructured (including flooding/broadcast, 

random walk, and gossip routing protocols) and hybrid data aggregation approaches. 

Alternatively, the computation taxonomy encompasses to decomposable functions (including 

hierarchic, averaging, and sketches basis and principles methods), complex functions (including 

digests basis and principles methods) and counting (including deterministic and randomized basis 

and principles methods) data aggregation approaches. 

 

5.1.2.3Objectives and challenges of an effective Data Filtering phase 
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According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data filtering phase as part of a data management architecture. The 

main objectives and challenges are the following: 

 Several data cleaning or polishing techniques can be applied to the collected data in 

order to eliminate waste, duplication or other useless data. This processes provide 

higher data quality and contributes in better efficiency. 

 Several data aggregation techniques can be applied to the clean data in order to reduce 

the data volume and, therefore, reduce data traffic and storage requirements through the 

system network. 

 Several data compression techniques can be applied to the aggregated data in order to 

further reducing the data volume and, therefore, reduce drastically the system data set 

sizes. 

 These objectives contribute in simplifying the data challenges of : 

o Data Volume, because applying the data filtering techniques drastically 

reduces the data size.  

o Data Variety, because the clean data helps organizing the data. 

o Data Value, because an increase in data quality impacts in its value. 

Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the objectives and challenges listed above. It is out of the scope of this research 

thesis proposing new filtering methods. We just show how easy and efficient is applying existing 

algorithms to this architecture. This will be described and discussed in subsection 5.2. 

 

5.1.3 The Data Quality phase 

The Data Quality phase is third phase in Data Acquisition block as shown in Figure 5.6. In 

addition, the data that meets the required quality standards continues to the Data Description 

phase. The more details of the data quality phase will be described in the below subsections. 

 

Figure 5.6 The Data Filtering phase in the Data Acquisition Block 

 

5.1.3.1 Definition 

In general term, data quality literature clearly show non-agreement on a single definition but 

mainly data quality problems imposed by incorrect data entry, missing information or other 

invalid data [23]. In fact, if data value can be considered as good level, it will be saved in your 
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storage media. Otherwise, the data must be discard or changed [178]. Now, we are listed some of 

definitions of data quality which are referred by [179, 180]: 

 “Data Quality refers how well data meet the requirements of data consumers”. 

 “The currency of the data. That is the most recent time when it was updated”. 

 “The punctuality of the data item with respect to the application context”. 

 In IoT perspective, data quality refers to how collected data is suitable for providing 

ubiquitous services to meet  IoT user’s demands  

“Data Quality Dimension” is a set of data quality [14]. Adaptability, Availability, 

Compatibility, Flexibility and Reputation are some examples of data quality. In general, we go 

beyond several works [14, 47, 181-183] to extract some of most important data quality 

dimensions. As you can see in Table 5.1, accessibility, completeness, interpretability, relevance, 

timeliness, and understandability are the most important data quality dimensions in our review.  

 

Table 5.1 The most considered Data Quality Dimensions 

                           Reference                            

  Dimensions                                                                

[14] 

[182] [181] [183] [47] 
     Total            

(1 <= X <= 6) General Result 

(Access) Security                                 4 

Accessibility                            5 

Accuracy                                 4 

(Appropriate) amount (of data)                4 

Believability                            4 

Clarity                                  1 

Comparability                            1 

Completeness                             6 

Concise representation                   2 

Conciseness                              1 

Consistency             1 

Consistent representation                4 

Content                                  1 

Cost-effectiveness                       1 

Currency                                 2 

Ease of manipulation                     1 

Ease of operation                        2 

Efficiency                               1 

Flexibility                              2 

Format                                   1 

Free of error                            2 

Freedom from bias                        1 

Importance                               1 

Informativeness                          1 

Interpretability                         6 

Level of detail                          1 

Objectivity                              4 

Precision                                2 

Quantitativeness                         1 

Relevanc(e/y)                                6 

Reliability                              2 

Representational consistency             1 

Reputation                               4 

Scope                                    1 
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Sufficiency                              1 

Timeliness                               6 

Traceability                             1 

Understandability                        5 

Usableness                               1 

Usefulness                               1 

Value added                              3 

Variety of Data Sources                  1 

 

5.1.3.2 State of the art 

There are several works showing how data quality and data quality dimensioned can be 

estimated in different scenarios/environments as shown as below: 

 In general view, there are three common ways to find Data Quality dimensions (Intuitive, 

Theoretical and Empirical approach) as shown more details in below and Table 5.6 [14, 

181]: 

o The intuitive approach is taken when the selection of Data Quality attributes for any 

particular study is based on the researchers’ experience or intuitive understanding 

about what attributes are important. 

o The theoretical approach to Data Quality focuses on how data may become deficient 

during the data manufacturing process.  

o The empirical approach follows past experimental results 

Table 5.6 A comparison of Data Quality approaches 

Approach Advantages Disadvantages 

Intuitive  Selected most relevant attributes 

Do not see the voice of consumer 

Theoretical  
Provide a comprehensive set of data 

quality 

Empirical  Concentrate the voice of consumer 
The results cannot be proven via 

fundamental principles 

 

 In general [178], the author mentioned that modern data quality approach is trying to 

design a specific mechanism for making connection between customers and suppliers. This 

connection aims to provide matching between customers’ demands and the suppliers’ 

products. 

  In [178], author propose a model to enhance quality for data to applications. There are 

three main activities and techniques to increase data quality as shown as below: 

o Check points: The main objective of this activity is to check quality of the value 

obtained. Check points is allocated in a quality failures place to prevent reworking of 

the preceding activities. 
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o Feedback loops: This activity provide connection between data customers, 

applications and data customers to improve quality level of data after sending and 

receiving their feedback 

o Data destruction activities: This activity give helps to model for deleting deficient 

data in the system. So, if data level is not good enough and data cannot be repaired to 

meet the requirements, data must be discarded in this system.  

 In Big Data environments, the author mentioned that there is different level of collected 

data in terms of quality. Plus, distinct types of data analysis techniques and 

applications/services may request for different level of data qualities. So, the author 

introduced some proposed data preprocessing techniques to improve data quality in big 

data systems. Typical data preprocessing techniques can be listed in below [163]: 

o Integration: The data integration techniques provide such kind of mixing techniques 

for data residing in different sources. Traditionally, data integration approaches can be 

considered in traditional database as shown in two below main categories: 

 Data Warehouse (also known ETL): There is three main steps as extractions, 

transformation, and loading as seen more details in below: 

 The extraction step connects to the sources for choosing and collecting the 

appropriate data for further analysis processing. 

 The transformation step aims to the extracted data (by some designed rules 

through the application) for converting in to a united format. 

 The loading step receives the extracted data first and then will send data to a 

target storage infrastructure.  

 Data Federation: This method builds a virtual database to query and aggregate 

data from different sources. In addition, the virtual database provides a container 

of information or metadata which is referred to the actual data and its location.  

o Cleansing: The data cleansing techniques provide a specific process to recognize 

inaccurate, incomplete, or unreasonable data. And then those data will be discarded or 

changed which improve the quality level of data. The cleansing techniques must have 

five main steps as shown as below: 

 Describe and recognize type of errors; 

 Exploring and identify error examples; 

 Solve the errors; 

 Register error reported and their types; 

 Correct the way of data entry procedures to increase any further errors in future. 

o Redundancy elimination: The data redundancy elimination techniques try to remove 

redundant datasets. The redundant data imposed more pressure for data transmission, 
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data storage, data processing, and so on. Therefore, many researchers proposed some 

techniques for redundancy detection, and data compression. 

 In IoT, data quality problem can be referred in six main types as shown as below [180]: 

o Dropped readings: The ratio of successful delivery, between pervasive applications 

and their requested readings required, is reported with a minimum efficiency degree 

because of limited resources unstable communications. For instance, in [184] 

measured the dropping ratio.  

o Unreliable reading: There is some reason to be data unreliable such as impreciseness, 

calibration failure, fail dirty nodes and etc. 

o Multi-source data inconsistences: Handling IoT data is quite tough because IoT data is 

generated a number of different IoT devices (such as RFID, sensors and etc.) and with 

abundant data structured, unstructured, and semi-structured formats (such as text, 

image, numerical and etc.). 

o Data duplication: IoT devices installed everywhere to sense environments as much as 

they can. However, it sounds good but it makes an important challenge for IoT data 

which imposed by a number of redundant (duplicated) data. The duplicated data 

provides more costs for storage, processing, transmission, and etc.  

o Data leakage: It means that applications are retrieved and/or stored more data than 

their requirements.  So, this problem imposed different challenges for IoT like user´s 

privacy.  

o Multi-source data time alignment: There are number of applications/services in IoT 

environments which are integrated multiple data sources. In fact, it appears some 

complexities and difficulties to extract appropriate data in terms of time-alignment 

(real time and/or historical data). 

 In cloud computing, data quality and their related techniques (like data cleaning) acquire in 

cloud computing infrastructure [185]. 

 In smart city scenario, there are distinct devices and data formats providing different level 

of data quality. Data quality measurement usually is related to applications in one side 

[186]. On the other side, data quality of each data source can be assumed as on three 

depended factors [186]:  

o Data collection, from devices, is inaccurate; 

o A noisy environment and poor quality of data communication and processing can 

imposed problem for data quality 

o All observations and measurements are granularity in both spatial and temporal 

dimensions 

In our view, the Data Quality phase aims to appraise the quality level of collected data. It is 

responsible for guaranteeing both, Quality Control (QC) and Quality Assurance (QA), in 

particular: 
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 Checking the quality level of data and discarding or repairing low quality data, 

according to the provided policies (QC). 

 Monitoring the quality of data flows and, in case of continuous failures, proceeding 

according to the provided policies (QA). 

 

5.1.3.3Objectives and challenges of an effective Data Quality phase 

According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data quality phase as part of a data management architecture. 

However, some of the quality challenges are out of scope of this research thesis, such as 

appraising the application quality, because our architecture has been designed for managing data 

and we assume applications are not under the control of the architecture. The main objectives and 

challenges are the following: 

 Checking the quality level of data and discarding or repairing low quality data, 

according to the provided policies (QC). The particular quality methods required will 

depend on the city requirements. 

 Monitoring the quality of data flows and, in case of continuous failures, proceeding 

according to the provided city management policies (QA). 

 Additional difficulties arise when appraising data qualities when the data is getting 

large in volume [178].In addition, poor quality of data could impose irreparable 

damage to economy and society [14] because it can be acquired directly or indirectly 

incorrect analytic results, wrong decision making, and so on. 

 Inaccurate data collection can be imposed some irreparable damage for any scenario 

such as producing invalid data analysis and results [155]. Plus, data collection must be 

matched with the objective of each particular data analysis. 

 Covering some additional data problems, such as “dropped readings”, “unreliable 

reading”, “multi-source data inconsistences”, “data duplication”, “data leakage”, 

“multi-source data time alignment”, and so on. 

 These objectives contribute in simplifying the data challenges of : 

o Data Veracity, because applying successfully the data quality techniques may 

help improving the veracity of data.  

o Data Value, because an increase in data quality indeed impacts in its value. 

Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the objectives and challenges listed above. However, it is out of the scope of this 

research thesis proposing new data appraising methods. We just show how easy and efficient is 

applying existing algorithms to this architecture. This will be described and discussed in 

subsection 5.2. 
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5.1.4 The Data Description phase 

Figure 5.7 depicted that Data Description phase is the ultimate phase in the Data Acquisition 

block which we will describe more in the following subsections. 

 

Figure 5.7 The Data Description phase in the Data Acquisition Block 

 

5.1.4.1 Definition 

The Data Description phase is mainly related to the concepts of Metadata definition and 

organization. The Metadata defines a structured representation of the data and provides contextual 

and higher value information. This representation is related to some more description of the data 

(including the produced data) which it can be useful for future usage of this data [187]. 

 

5.1.4.2 State of the art 

Data description normally can be depicted with the concept of Metadata. In fact, Metadata is 

used for description of digital from several years ago. Besides that there is number of standards 

for Metadata description (for instance Dublin Core) which mainly refer to specific data sources 

(like web-based data). In addition, Metadata has two different types as shown as below [188]: 

 Long-term digital archives: It means that Long-term digital archives normally keep all 

metadata received to them with corresponding digital objects. And then this long term-

digital archives are tried to build a subset of obtained metadata to organize archive assets.   

 Preservation metadata: This kind of metadata defines processes and preservation actions 

applied to digital objects in the archives. 

There is some related work about data description in different scenario and environments: 

 In general, the author said that Metadata is able to presented in data models (for instance, 

the BBC´s SMEF TM) or description schemes (e.g. MPEG-7 and Dublin Core) or 

professional domain (for instance combination of SMPTE) or combination of media and 

Metadata (e.g. MXF or BWF) and so on [187]. 

 In Sensors Network, the author [189] discussed that traditional data management focus on 

metadata and data as two separate entities. So, there is not any support for joint real-time 

processing of metadata and sensor data. However, currently there is some view about 

“distributed metadata joint”. So, Global Sensor Networks (GSN) and Sensor Metadata 

Repository (SMR) proposed to handle Metadata in federated sensors networks. 
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 In Smart City, the author presented the Metadata in the Open Data platform through a 

standard OAI-PMH protocol. This solution get helps for data fusion between Smart Cities 

which are able to grab data by other data platforms or search engines [190]. 

 In Fog-to-Cloud computing, the author mentioned that it is possible to create and store 

metadata in the edge of network through Fog-to-Cloud scenario. So, the base of this idea 

(IPFS) has been built on top of the BitTorrent protocol and KadmeliaDHT which make 

facility to apply Metadata management in the edge of networks[191]. 

 

5.1.4.4Objectives and challenges of an effective Data Description phase 

According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data description phase as part of a data management architecture. The 

main objectives and challenges are the following: 

 Defining the appropriate metadata required according to the business model, such as 

timing information (creation, collection, modification, among others), positioning (city, 

country, GPS coordinates), authoring, privacy, and so on. 

 Tagging all collected data with the corresponding description for easing future retrievals 

and analyses, in order to facilitate raw data interpretation. 

 In case that standardization or normalization is required, some policies should be applied 

in order to guarantee the proper described of the produced data. Similarly, if 

reproducibility is required, an appropriate data description must be performed. 

Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the objectives and challenges listed above. However, it is out of the scope of this 

research thesis proposing new data description methods. We just assume that the particular city 

business model defines the metadata requirements. This will be described and discussed in the 

next subsection. 

 

5.2 The Data Acquisition Block in the F2CSmart City 

 
As shown in the previous chapter (Figure 4.5), the F2C data management architecture is able 

to efficiently handle the Data Acquisition block. So, the Data Acquisition block can be applied in 

Fog-Layer-1, Fog-Layer-2, and Cloud layer. The point is that each layer has the different 

computational capacity for applying the Data Acquisition block tasks and their related phases. In 

this section: i) first we show that the phases of the Data Acquisition block can be managed at 

different layers in the F2C data architecture; and ii) we present some details of the hierarchal 

distributed data optimization and filtering techniques which can be easily implemented as part of 

the Data Acquisition block and their related phases The data acquisition block in the F2C model 

can be seen in Figure 5.8. 
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Figure 5.8 Description Scenario of the Data Acquisition Block 

 

The Fog-Layer-1 is the main responsible for handling most of the related tasks in the Data 

Acquisition block in the F2C architecture. Similarly, the architecture is organized to manage the 

rest of the related task through Fog-Layer-2 and cloud layer. In addition, we assume that cloud is 

just responsible to handle the minimum amount of tasks related to data acquisition, instead of the 

traditional model[22]. So, we will explain some more details of the phases in the Data Acquisition 

block with tailoring to F2C in the below sentences. 

 Fog-Layer-1: 

o The set of Edge-data-sources (as part of Fog-Layer-1) is mainly responsible for the 

Data Collection phase. It means that all possible data will be sensed by the IoT devices 

in the city. And then, this all data will be transferred to their corresponding Fog-Device 

for further preprocessing techniques. 

o The set of Fog-Devices (as another part of Fog-Layer-1) aims to provide some facility 

to handle the first level of data optimization models (such as data aggregation 

techniques) for refining and cleaning dark data among all collected data. In addition, 

data compression can apply in this layer to compress the refined data. And then, the 

compressed data will be sent to the upper layer through the network communication. 
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    This layer is also able to check some level of data quality for collected data. In case, if 

the data does not meet the requirements to move to the next layer, the Fog-Device can 

register this history and look for solving this problem. If the problem does not solve in 

this layer, the data will be discarded in this layer. For example, in some cases the 

sensors or their communication faced with some problem (including calibration 

problem or network faults and attacks). So, in this case, the Fog-Device can detect this 

problem with exploring invalid data and can send the alert to the system manager for 

solving this abnormal problem. Plus, there is a possibility for Fog-Device to block the 

sensor node to prevent increasing any future faults. 

    This layer also is able to get help to the Data Description phase for tagging some 

metadata information over the collected data (such as ownership, data production date, 

and etc.). 

 Fog-Layer-2: 

o The Fog-Leader is responsible for applying some high-level degree of tasks for most of 

data acquisition phases' inquiries (including data filtering techniques, data quality, and 

data description). However, there is not any data collection tasks in this layer. 

The second level of the data filtering tasks (such as data aggregation, compression and 

so on) can be applied in this layer. Note that in this layer, the Fog-Leader receives 

collected data from all Fog-Devices belonging to his Fog-Area, so the Fog-Leader can 

easily implement some additional data aggregation techniques, and combine redundant 

information collected from the nodes in his area. 

Similarly, data quality is active in this layer. We have the higher level of checking 

quality in this layer for detecting and discarding the poor data. Additionally, the poor 

data will be discarded and reported in the system. 

In this layer, there is a possibility to add some more additional information to the 

related Metadata (such as data source path and etc.). 

 Cloud Layer: 

o Cloud technologies provide a splendid facility to complete all reminded tasks for all 

phases of the Data Acquisition block. 

The global behavior is as follows. Data are mainly collected al Fog-Layer-1 through the city 

sensors network. Unlike in other architectures where data are moved immediately to a centralized 

cloud (or similar) platform, data can be kept in this low layer. If a real-time or critical data access 

is required, data will be immediately provided with such layer, thus reducing considerably the 

latency and therefore providing optimal performance. Then the data will be filtered and appraised 

to meet the quality standards required. This process is performed at the same Fog-Layer-1 and can 

be as complex and sophisticated as desired because data are still available from there at any time. 

After some time (configurable according to the city business model) the data is transferred to the 

following upper layer. In the experimental section we show that data can be aggregated and 

compressed up more than 90% of their original size, so the amount of data that will be transferred 
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upwards is drastically reduced. In addition, note that such data transfer can be delayed as required, 

so an additional optimization that can be made is to send the data when the network traffic is low. 

This process is repeated at each fog layer until, finally, all data (aggregated and compressed, 

meeting high quality standards) reaches the cloud layer. In this layer all data is preserved and 

ready for future retrieval of historical data. 

The advantages of this data acquisition architecture are numerous, and can be summarized as 

follows: 

 Data can be effectively collected distributed throughout the whole city sensors 

network. 

 Data is ready to be used immediately and benefit from the advantages of locality, as 

opposed to a centralized platform where data must be read first to the cloud, and then, 

accessed from the cloud (two times a long distance transfer). 

 Data is effectively organized for future retrievals. 

 The amount of data to be transferred to higher layers is less than 10% of the total data 

collected thanks to the filtering phase, which efficiently aggregates and compresses the 

data. 

 Data transfer all higher layers can be done when the network load is low, therefore 

optimizing the global network traffic. 

 The data filtering and data quality processes are not limited in time, as long as data are 

already accessible from the lower layers and, therefore, any sophisticated or complex 

process can be performed. 

As can be seen, we can conclude that all objectives and challenges listed in each phase of this 

block have been successfully addressed in this data management architecture. 

 

5.3Experimental results: Estimating Data Acquisition in Barcelona 
 

In this section, first, we propose our F2C architecture for Barcelona city with respect to the 

main F2C architecture in the previous chapter (in Figure 4.10). Then, we describe the sensors data 

through Sentilo platform in Barcelona (including the data type and their related category). And, 

we appraise the current sensors data collection (including our methodology and results) in 

Barcelona city. And then we estimated the future data collection (consisting of our methodology 

and results) in Barcelona Smart City (including sensors and other types of data). Next, we 

described our data filtering measurement through data collection (including our methodology and 

results) in Barcelona Smart City. Then, we explained our data compressing measurement through 

data collection (including our methodology and results) in Barcelona Smart City. Indeed, we 

discussed our results in this section. 
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5.3.1F2C architecture for Barcelona 

The F2C architecture presented in Figure 4.10 was a three layer basic model (Layer-1, Layer-

2, and cloud) used to easily show the data management concepts in a simple architecture. 

However, the hierarchical architecture allows a flexible number of layers according to the city 

structure or the business model requirements. In this section, we aim to draw the F2C architecture 

for Barcelona Smart City. 

First, we focus about the urban structure of the city. As shown in Table 5.3Barcelona has ten 

main districts and seventy-three sections [192].In fact each main district covers by some main 

sections. For example, Ciutat Vella includes with four sections. So, as we said before, we make a 

match between our scenario (Figure 5.10) and the number of districts and sections (as shown in 

Table 5.7) in Barcelona city. So, each Fog-Area (in Fog-layer-1) represents one section of 

Barcelona city in one side. A number of sections (variable, depending on the district) are 

organized to become a district, so the corresponding Fog-Leaders (of each section) are grouped 

(in Fog-Layer-2) and managed by a Fog-Leader at to create the district (in Fog-Layer-3). Finally, 

the set of districts (all Fog-Leaders at layers 3) are grouped in the cloud-layer and therefore 

covering the whole city. 

Table 5.3 Numbers of districts and sections in Barcelona city 

 

Number Distericts Sections
1 el Raval 

2 el Barri Gòtic

3 la Barceloneta

4 Sant Pere, Santa Caterina i la Ribera

5 el Fort Pienc

6 la Sagrada Família

7 la Dreta de l'Eixample

8 l'Antiga Esquerra de l'Eixample

9  la Nova Esquerra de l'Eixample

10 Sant Antoni

11 el Poble Sec (1)

12 la Marina del Prat Vermell (2)

13 la Marina de Port  

14 a Font de la Guatlla

15 Hostafrancs 

16 la Bordeta

17 Sants - Badal

18 Sants

19 les Corts

20 la Maternitat i Sant Ramon

21 Pedralbes

22 Vallvidrera, el Tibidabo i les Planes

23 Sarrià

24 les Tres Torres 

25 Sant Gervasi - la Bonanova

26 Sant Gervasi - Galvany

27 el Putxet i el Farró

28 Vallcarca i els Penitents

29 el Coll 

30 la Salut

31 la Vila de Gràcia

32 el Camp d'en Grassot i Gràcia Nova  

33 el Baix Guinardó 

34 Can Baró

35 el Guinardó

36 la Font d'en Fargues

37 el Carmel

38 la Teixonera

39 Sant Genís dels Agudells

40 Montbau

41 la Vall d'Hebron

42 la Clota

43 Horta

44 Vilapicina i la Torre Llobeta

45 Porta

46 el Turó de la Peira

47 Can Peguera 

48 la Guineueta

49 Canyelles

50 les Roquetes

51 Verdun

52 la Prosperitat

53 la Trinitat Nova

54 Torre Baró 

55 Ciutat Meridiana

56 Vallbona 

57 la Trinitat Vella 

58 Baró de Viver  

59 el Bon Pastor 

60 Sant Andreu

61 la Sagrera

62 el Congrés i els Indians

63 Navas

64 el Camp de l'Arpa del Clot

65 el Clot

66 el Parc i la Llacuna del Poblenou

67  la Vila Olímpica del Poblenou

68 el Poblenou

69 Diagonal Mar i el Front Marítim del Poblenou

70 el Besòs i el Maresme 

71 Provençals del Poblenou

72 Sant Martí de Provençals

73  la Verneda i la Pau

Horta-Guinardó

Nou Barris

Sant Andreu 

Sant Martí 

Ciutat Vella 

Eixample 

Sants-Montjuïc 

Les Corts

Sarrià-Sant Gervasi 

Gràcia
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With respect to the urban structure of Barcelona city, we realized that our proposed 

architecture must have four layers regarding the number of districts and sections of Barcelona as 

shown in Table 5.7. Those four layers namely is called Fog-Layer-1, Fog-Layer-2, Fog-Layer-3, 

and cloud layer as shown in Figure 5.9. Plus, Fog-layer-2 assumes to be like numbers of the 

sections in Barcelona. Similarly, Fog-Layer-3 considers like numbers of the districts in Barcelona.  

Similarly, Fog-Leader-A (in Fog-Layer-2) is able to communicate with Fog devices in 

Barcelona Smart City. Additionally, Fog-Leader-1 (in Fog-Layer-3) can be contacted with the 

different numbers of Fog-Leader-A (in Fog-Layer-2). 

Fog-Layer-1

Fog-Layer-2

Cloud Layer

Fog-Leader-1

Fog-Area-1
Fog-Area-2

Fog-Area-3

Fog Device

Edge Data Sources Fog Device

Edge Data Sources

Fog-Leader-2

Fog Device

Edge Data Sources

Fog-Layer-3

Fog-Leader-A
Fog-Leader-B

Fog-Leader-C
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Figure 5.9 Description Scenario of Barcelona Smart City 

5.3.2 Description of the sensors’ deployment in Barcelona 

As explained in the previous chapter, Sentilo platform provides a piece of sensors data 

collection in Barcelona. Nowadays, Sentilo platforms generates five categories of information in 

the city which is namely Energy monitoring, Noise monitoring, Urban Lab monitoring and 

Garbage Collection monitoring and Parking Spots monitoring as shown in Figure 5.10. Recently, 

Sentilo has plan to extend their sensors network with two objectives. First, the Sentilo likes to 

have full coverage in all districts and zones of Barcelona city with their current types of sensors 

and information. And then, the Sentilo willing to catch more categories of information to sense 

the Barcelona city more than before like water meter, camera data and etc. So, in this section, we 

aim to calculate the current produced sensors data by Sentilo platform and analyze the amount, 

type, and frequency of the generated data by each type of sensor. And then, we will measure a 

number of sensors data for the future Sentilo platform and Barcelona Smart City and refine some 

more information to utilize for the data preservation block. 

 

Figure 5.10 Category of produced information through Sentilo platform 

In Sentilo platform, each category of information included with different type of information to 

cover objectives of their related category as shown in below: 

 Energy monitoring category: 

o Electricity meter 

o External ambient conditions 

o Gas meter 

o Internal ambient conditions 

o Network analyzer 

o Solar thermal installation 

o Temperature 
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 Noise monitoring category: 

o First type of noise:  

o Second type of noise 

o Third type of noise  

 Urban Lab monitoring management category: 

o Air quality 

o Bicycle flow 

o People flow 

o Traffic 

o Weather  

 Garbage Collection monitoring management 

o Glass container 

o Organic container 

o Paper container 

o Plastic container 

o Refuse container 

 Parking Spots monitoring management: 

o Parking 

 

5.3.3Estimating Current data collection in Barcelona 

In 2016, Sentilo installed 1,800 sensors in the city of Barcelona. Those installed sensors are 

able to collect information in five categories of information as shown in aforementioned sentences 

(including Energy, Noise, Urban Lab, garbage container and parking slots). Now, we aim to 

calculate the number of sensors data collection in Barcelona city (including current sensors data 

by Sentilo platform, future sensors data by Sentilo platform, and future data collection). 

In this section, first, we introduce about our methodologies to calculate the current sensors data 

collection by Sentilo platform in Barcelona. And then, we will calculate and show the numbers of 

the sensor data collection for each category of information through Sentilo platform in Barcelona 

city. 

 

5.3.3.1 Methodology 

1-Realizingsome sensors data information: 
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For each type of information, we get initial information about the current Sentilo platform as 

shown in in Table 5.4 (including the number of sensors devices, the different type of 

information, and frequency of sending and updating information). 

Energy monitoring category covers the different type of information (including electricity 

meter, external ambient conditions, gas meter, internal ambient conditions, network analyzer, 

and solar thermal installation temperature). Plus this category of information installed with 

541 physical sensors in the Barcelona city (including 28 sensors for “electricity meter”, 7 

sensors for “external ambient conditions”, one sensor for “gas meter”, 41 sensors for “internal 

ambient conditions”, 421 sensors for “network analyzer”, 36 sensors for “solar thermal 

installation”, and 7 sensors for “temperature”). Additionally, the frequency of sending and 

updating information would be different for each type of information in this category. In most 

of the case, the sensors data send and update their related information in every 15 minutes (for 

average data) or one minute (for instantaneous data). 

Noise monitoring category has three different type of information. This category covers by 53 

sensors in the city (including 3 for the first type of noise, 40 sensors for the second type of 

noise, and 10 sensors for the third type of noise information). In addition, the frequency of 

update and sending information has designed in every 15 minutes (for the first type of noise 

information) and every one minute (for the second and third type of information). 

Urban Lab monitoring category proposed with the different type of information (including air 

quality, bicycle flow, people flow, traffic, and meteo) on one side. On the other side, twenty-

one sensors are installed in the city (encompassing four sensors for air quality, two sensors for 

bicycle flow, four sensors for traffic, and seven sensors for meteo information). Further, there 

is specific rules for sending and updating information in this category. The rules are every 30 

minutes (for meteo information), every 15 minutes (for air quality information), every 10 

minutes (for people and bicycle flow information), and every one minute (for traffic 

information). 

Garbage collection category comes with different type of information which are glass 

container, organic container, paper container, plastic container, and refuse container. And, all 

those information sensed by 667 sensors in the Barcelona city (including 57 sensors for the 

glass container, 71 sensors for the organic container, 57 sensors for the paper container, 205 

sensors for the plastic container, and 277 sensors for the refuse container). In addition, this 

policy of update and sending information are same for all types of information which occur 

every 20 minutes or every 60 minutes. 

Indeed, Parking Spot category includes with parking information. There are 513 sensors in the 

city to sense the related information about parking spaces. In addition, the information will be 

sent and update every seven hours. Plus, in case if there is any change in the status of 

information, the information will be sent and updated immediately. 
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Type
Number of     

devices

Frequency of sending and updating 

information

Air quality 4 Every 15 minutes

Bicycle flow 2 Every 10 minutes

People flow 4 Every 10 minutes

Traffic 4 Every 1 minute

Meteo 7 Every 30 minute

Total 21

 

 

Table 5.4All categories of Sentilo sensors data in the current Smart City of Barcelona 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Energy monitoring 

 

 

 

 

 

(b) Noise monitoring 

 

 

 

 

 

 
(c) Urban Lab monitoring 

Type 
Number 

of    
devices 

Frequency of sending and updating 
information 

Electricity 
meter 

28 
Every 1 minute (instantaneous data) and 

every 15 minutes (average data) 

External 
ambient 

conditions 
7 

Every 1 minute (instantaneous data) and 
every 15 minutes (average data) 

Gas meter 1 
Every 1 minute (instantaneous data) and 

every 15 minutes (average data) 

Internal 
ambient 

conditions 
41 

Every 1 minute (instantaneous data) and 
every 15 minutes (average data) 

Network 
analyzer 

421 
Every 1 minute (instantaneous data) and 

every 15 minutes (average data) 

Solar thermal 
installation 

36 Every 15 minutes 

Temperature 7 Every 15 minutes 

Total 
541 

 

Type
Number of 

devices

Frequency of sending and updating 

information

3 Every 15 minutes

40 Every 1 minutes

10 Every 1 minutes

Total

Noise

53



    Hierarchical Distributed Fog- to-Cloud Data Management in Smart Cities 

 

 

116 

Type
Number of  

devices

Frequency of sending and updating 

information

Parking 513
Every change of status and                    

(always) every 7 hours

Total 513

 
 
 
 
 
 
 
 
 
 
 

(d) Garbage Collection monitoring 

 

 

 

(e) Parking Spots monitoring 

2- Calculating the produced data for each sensor per each transaction: 

For each type of information, we calculate how many data will be produced by each sensor 

per transaction. In this case, we assume that each type of data (in terms of the float or integer 

number) transfers 4 bytes or 2 bytes in fact. So, for instance as shown in Figure 5.11, the 

sensors data (for electricity meter) transfer 22 byte for each transaction because regarding 

Sentilo platform, each electricity meter sensors data attached with five float data (such as 

electricity meter, time, date, and etc.) and a single integer data (location code). 

(Float)
numeric data 

type

(Float)
numeric data 

type

(Float)
numeric data 

type

(Float)
numeric data 

type

(Float)
numeric data 

type

(Integer)
numeric data 

type

 

Figure 5.11Sensors Data Transfer Packet (Electricity Meter) 

3- Calculating the produced data for each sensor per day: 

Now, we aim to calculate the number of the produced data for each sensor per day as shown 

in Table 5.9. So, now we have two main parameters (number of the produced data per each 

transaction by each sensor and the frequency of sending and update information for each type 

of information). So, first, we must calculate data how frequent updating and sending 

information will happen per hour. And then, we can calculate easily the total produced data by 

the below formula: 

Total Produced Data by each sensor per day = Produced data per transaction * Frequency 
of sending and update information per hour 

4- Calculating the produced data for all sensors per day: 

Now, we aim to calculate how many data will be produced by all sensors per day as shown in 

Table 5.9.Similarly, we have two main parameters (total number of sensors devices and Total 

Type
Number of 

devices

Frequency of sending and updating 

information

Container 

glass
57 Every 20 minutes or Every 60 minutes

Container 

organic
71 Every 20 minutes or Every 60 minutes

Container 

paper
57 Every 20 minutes or Every 60 minutes

Container 

plastic
205 Every 20 minutes or Every 60 minutes

Container 

refuse
277 Every 20 minutes or Every 60 minutes

Total 667
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Produced Data by each sensor per day). So, we can calculate all the produced data per day in 

below formula. 

All Produced Data = Total numbers of sensors devices* Total Produced Data by each 
sensor per day 

5- Calculating the produced data for each category of sensors data per transaction: 

Similarly, as shown in Table 5.8, we aim to calculate how many data will be generated by all 

sensors for each category of sensors data in every single day. So, if we just accumulate all 

produced data for each category of information per transaction, we can reach to this number. 

6- Calculating the produced data for all categories of sensors data in every single day: 

Now, we would calculate how many data will be generated for all categories of information 

(all five categories of Sentilo data) in every day. So, we just need to accumulate all calculated 

number for each category of sensors data in every single day (as discussed in the previous 

description). 

 

5.3.3.2Results 

There is five category of information which we will show how much data will be produced for 

each of them as shown in below: 

 Energy monitoring category: 

The number of sensors (for each category)is as shown in below: 

o Electricity meter: 28 sensors 

o External ambient conditions: 7sensors 

o Gas meter: 1sensor 

o Internal ambient conditions: 41sensor 

o Network analyzer: 421sensors 

o Solar thermal installation: 36sensors 

o Temperature: 22 sensors 

As shown in Table 5.9, the data production (by each sensor at each transaction) 
is shown in below: 

o Electricity meter: 22 byte per transaction 

o External ambient conditions: 22 byte per day 

o Gas meter: 22 byte per day 

o Internal ambient conditions: 22 byte per day 

o Network analyzer: 242 byte per day 

o Solar thermal installation: 22 byte per day 
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o Temperature: 22 byte per day 

So, the total amount of the production data is 374 byte per transaction. 

As shown in Table 5.9, the data production (by each sensor per day) is shown in below: 

o Electricity meter: 2,112 byte per day 

o External ambient conditions: 2,112 byte per day 

o Gas meter: 2,112 byte per day 

o Internal ambient conditions: 2,112 byte per day 

o Network analyzer: 23,232 byte per day 

o Solar thermal installation: 2,112 byte per day 

o Temperature: 2,112 byte per day 

 

Therefore, the total amount of data is 35,904 byte which it must be transferred by each 
sensor at each transaction. 

As shown in Figure 5.12, the total data production per day is listed in the below for each 
type of information in this category. 

 

o Electricity meter: 59,136 byte per day 

o External ambient conditions: 14,784 byte per day 

o Gas meter: 2,112 byte per day 

o Internal ambient conditions: 86,592 byte per day 

o Network analyzer: 9,780,672 byte per day 

o Solar thermal installation: 76,032 byte per day 

o Temperature: 14,784 byte per day 

 

As we shown in Table 5.5, the total amount of data production is 11MB per day which it 
must be transferred to the upper layer for further usage. 
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Table 5.5 Produced sensors data through Sentilo in current Barcelona city 

Type 
Number of 

devices 

Sending data (byte) 

by each sensor at 

each transaction 

by each 

sensor per 

day 

Total amount of 

data per day 

Electricity meter 28 22 2,112 59,136 

External ambient 

conditions 
7 22 2,112 14,784 

Gas meter 1 22 2,112 2,112 

Internal ambient 

conditions 
41 22 2,112 86,592 

Network analyzer 421 242 23,232 9,780,672 

Solar thermal 

installation 
36 22 2,112 76,032 

Temperature 7 22 2,112 14,784 

Total 541 374 35,904 10,034,112 

 

 

Figure 5.12 Sending daily data in Energy monitoring category 

 Noise monitoring category: 

The number of sensors (for each category) is as shown in below: 

o First type of noise: 3 sensors  

o Second type of noise: 40 sensors  

o Third type of noise: 10 sensors  
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As shown in Table 5.6, the data production (by each sensor per day) is shown in below: 

o First type of noise: 22 byte  

o Second type of noise: 22 byte  

o Third type of noise: 22 byte  

So, the total amount of the production data is 66 byte per transaction. 

As shown in Table 5.6, the data production (by each sensor at each transaction) is shown in 

below: 

o First type of noise: 2,112 byte  

o Second type of noise: 31,680 byte  

o Third type of noise: 31,680 byte  

Therefore, the total amount of data is 65,472 byte which it must be transferred by each 

sensor at each transaction. 

As shown in Figure 5.13, the total data production per day is listed in the below for each 

type of information in this category. 

o First type of noise: 6,336 byte  

o Second type of noise: 1,267,200 byte  

o Third type of noise: 316,800 byte  

As we shown in Table 5.6, the total amount of data production is almost 1 MB byte per day 

which it must be transferred to the upper layer for further usage. 

 

Table 5.6 Produced sensors data through Sentilo in current Barcelona city 

Type 
Number of 

devices 

Sending data (byte) 

by each sensor at each 

transaction 

by each sensor 

per day 

Total amount of 

data per day 

Noise 

3 22 2112 6336 

40 22 31,680 1,267,200 

10 22 31680 316800 

Total 53 66 65,472 1,590,336 
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Figure 5.13 Sending daily data in Noise monitoring category 

 Urban Lab monitoring management category: 

The number of sensors (for each category) is as shown in below: 

o Air quality: 4 sensors 

o Bicycle flow: 2 sensors 

o People flow: 4 sensors 

o Traffic: 4 sensors 

o Weather: 7 sensors  

As shown in Table 5.7, the data production (by each sensor at each transaction) is shown in 

below: 

o Air quality: 144 byte 

o Bicycle flow: 22 byte 

o People flow: 22 byte 

o Traffic: 44 byte 

o Weather: 120 byte  

So, the total amount of the production data is 352 byte per transaction. 

As shown in Table 5.7, the data production (by each sensor per day) is shown in below: 

o Air quality: 13,824 byte 

o Bicycle flow: 3,168 byte 

o People flow: 3,168 byte 

o Traffic: 63,360 byte 
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o Weather: 34,560 byte  

Therefore, the total amount of data is 118,080 byte which it must be transferred by each 

sensor at each transaction. 

As shown in Figure 5.14, the total data production is listed in the below for each type of 

information in this category. 

o Air quality: 55,296 byte 

o Bicycle flow: 6,336 byte 

o People flow: 12,672 byte 

o Traffic: 253,440 byte 

o Weather: 241,920 byte  

As we shown in Table 5.11, the total amount of data production is 569,664 byte per day 

which it must be transferred to the upper layer for further usage. 

 

Table 5.7 Produced sensors data through Sentilo in current Barcelona city 

Type 
Number of 

devices 

Sending data (byte) 

by each sensor at each 

transaction 

by each sensor 

per day 

Total amount of 

data per day 

Air quality 4 144 13,824 55296 

Bicycle flow 2 22 3,168 6,336 

People flow 4 22 3,168 12,672 

Traffic 4 44 63,360 253,440 

Weather 7 120 34,560 241,920 

Total 21 352 118,080 569664 
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Figure 5.14 Sending daily data in Urban Lab monitoring category 

 Garbage Collection monitoring management 

The number of sensors (for each category) is as shown in below: 

o Glass container: 57 sensors 

o Organic container: 71 sensors 

o Paper container: 57 sensors 

o Plastic container: 205 sensors 

o Refuse container: 277 sensors 

As shown in Table 5.8, the data production (by each sensor at each transaction) is shown in 

below: 

o Glass container: 50 byte 

o Organic container: 50 byte 

o Paper container: 50 byte 

o Plastic container: 50 byte 

o Refuse container: 50 byte 

So, the total amount of the production data is 250 byte per transaction. 

As shown in Table 5.8, the data production (by each sensor at per day) is shown in below: 

o Glass container: 1,800 byte 

o Organic container: 1,800 byte 

o Paper container: 1,800 byte 

o Plastic container: 1,800 byte 
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o Refuse container: 1,800 byte 

Therefore, the total amount of data is 9,000 byte which it must be transferred by each sensor 

at each transaction. 

As shown in Figure 5.15, the total data production is listed in the below for each type of 

information in this category. 

o Glass container: 102,600 byte 

o Organic container: 127,800 byte 

o Paper container: 102,600 byte 

o Plastic container: 369,000 byte 

o Refuse container: 498,600 byte 

As we shown in Table 5.8, the total amount of data production is 1,200,600 byte per day 

which it must be transferred to the upper layer for further usage. 

Table 5.8 Produced sensors data through Sentilo in current Barcelona city 

Type 
Number of 

devices 

Sending data (byte) 

by each sensor at each 

transaction 

by each sensor 

per day 

Total amount of 

data per day 

Container glass 57 50 1,800 102,600 

Container organic 71 50 1,800 127,800 

Container paper 57 50 1,800 102,600 

Container plastic 205 50 1,800 369,000 

Container refuse 277 50 1,800 498,600 

Total 667 250 9,000 1200600 
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Figure 5.15 Sending daily data in Garbage Collection monitoring category 

 Parking Spots monitoring management: 

The number of sensors (for each category) is as shown in below: 

o Parking: 513 sensors 

As shown in Table 5.9, the data production (by each sensor at each transaction) is shown in 

below: 

o Parking: 40 byte 

So, the total amount of the production data is 40 byte per transaction. 

As shown in Table 5.9, the data production (by each sensor per day) is shown in below: 

o Parking: 4,000 byte 

Therefore, the total amount of data is 4,000 byte which it must be transferred by each sensor 

at each transaction. 

As shown in Figure 5.16, the total data production is listed in the below for each type of 

information in this category. 

o Parking: 2,052,000 byte 

As we shown in Table 5.9, the total amount of data production is 2,052,000 byte per day 

which it must be transferred to the upper layer for further usage. 
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Table 5.9 Produced sensors data through Sentilo in current Barcelona city 

Type 
Number of 

devices 

Sending data (byte) 

by each sensor at each 

transaction 

by each sensor 

per day 

Total amount of 

data per day 

Parking 513 40 4,000 2,052,000 

Total 513 40 4,000 2,052,000 

 

 

Figure 5.16 Sending daily data in Parking Spots monitoring category 

 

We conclude that currently there are several types of sensors in the Barcelona which is able to 

sense and produce five categories of information with their related data type. Then, we have 

estimated the amount sensors and data to deploy a ubiquitous Smart City in Barcelona, as shown in 

Table 5.9, 5.10, 5.11, 5.12, and 5.13 (a, b, c, d, and e). Consequently, we have measured the total 

number of data to be about 8 GB (8,583,503,168) per day from all sensors in the city. 

 

5.3.4Estimating Future data collection in Barcelona 

As we described so far, currently the total number of data to be about 8 GB (8,583,503,168) per 

day from all sensors in the city. Moreover, we must consider 320,925,019 sensors for a whole 

coverage in the city. It is worth noticing that this volume only measures data obtained from sensors, 

and does not consider other data obtained from other eventual sources. So, in this section, we aim 

to extend the data type in the future of Barcelona city, including sensors data and other data types. 

And then we argue that the numbers of the produced data with both sensors data and other data 

types in the city of Barcelona. 
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5.3.4.1Methodology 

Here first we present our methodology to estimate the future sensors data through Sentilo 

platform as shown in below: 

1- Estimating the number of sensors devices: 

According to the statistical department in the Barcelona’s City Hall, there were 70,717 

buildings, 40,000 containers, and 80,000 parking slots in 2014 [147, 193]. In addition, we have 

estimated that there are around 40,000 street corners in Barcelona. Thus, in this section, we 

present a projection of the number of sensors, and the corresponding expected generated data, 

assuming a complete sensors network deployment fully covering the Barcelona area. For 

instance with respect that information, we conclude that we must have 80,000 sensors for 

parking requirements in the Barcelona city as shown in Table 5.14. 

2- Calculating all produced data per day: 

As we said aforementioned, we have the number of sensors in our hand. On the other hand, we 

have also the number of sending data per each transaction and day for each category of 

information as shown in above sections. Therefore, we can calculate all produced data per day 

(with all sensors). 

All Produced Data = Total numbers of sensors devices * Total Produced Data by each sensor per 

day 

Next, we describe our methodology to add the new data type in future Smart City of Barcelona. 

And, we calculate the future data collection through those new data type in Barcelona city as shown 

in below: 

1- Realizing new data types and category: 

We checked some related work about other data type in another Smart City in the worldwide 

[194-200]. So, we realized that we can have two more main category of data (mobile 

application and camera) in Barcelona regarding our study in other Smart City and 

requirements of Barcelona city. Plus, energy monitoring management and vehicular mobility 

category can be added with new data types. Those are water meter and vehicular mobility 

data. 

2- Estimating the number of sensors devices and generated data: 

Here we used the official information about the equipment of Barcelona city to estimate the 

data number in the city of Barcelona as shown details in below: 

Regarding energy monitoring management category, we aim to estimate the number of water 

consumption in Barcelona city. In [194, 195], the author mentioned that 5,242,880 byte data 

will be produced for 61,263 households in Surrey city of Canada. So, in [196] reported that 

the number of households in each district of Barcelona city. For example, there are 40,159 

households is in Ciutat Vella. And then the total number of households are 654,979 

households in Barcelona city. 
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Regarding urban monitoring management category, we aim to estimate the number of 

vehicular mobility data in Barcelona city. In [198, 199], the author reported that 700 cars can 

send 4.03 GB data per day in the city of Koln at Germany. So, it means that each car can 

produce 5,800,000 bytes (0.0058 GB) data per day. So, regarding the [200], there are 

958,512 registered cars in Barcelona. And they mentioned that how many cars are available 

in each district. For example, there are 42,488 registered cars in Ciutat Vella. Therefore, we 

can estimate how much data will be produced in each district of Barcelona with comparing 

to information of Koln city. 

Regarding one of one of the famous mobile application in Barcelona [201], they reported 

this mobile application will be produced 293.691 MB data in three years among 800 active 

users. So, it means that each user will be produced almost 351.55 byte data per day. Now we 

see that the Barcelona has 1,604,555 numbers of the population [197]. And then if we 

assume that we can have three type of mobile applications in terms of user usage (including 

high, medium, and the low-level range of user usage), we can assume below definition for 

this three type of mobile applications as shown as below: 

 If our application has more than a million active users, we consider as the high-level 

range of user usage. 

 If our application has a range of 500,000 to 1 million active users, we consider as 

medium level range of user usage. 

 If our application has less than 500,000 active users, we consider as low level range of 

user usage. 

Indeed, we estimate that the high-level range of application will be produced 435.84 MB 

data per day. Similarly, the medium level range of application will be produced 251.45 MB 

data per day. And, the low-level range of application will be generated 83.82 MB data in the 

single day. 

Regarding camera data, in [202], the author said that each camera will be generated data 

around 60 to 120 MB per hour. So, we assume that each camera will be generated data 

around 90 MB in average. In [203], the author reported that there are 34,000 traffic lights in 

the city of Barcelona. So, we see that each traffic light has a single installed camera to 

capture the street in the city in one hand.  On the other hand, we have 80,000 parking slots in 

Barcelona as we stated before. So each parking slots can be covered with a camera. Indeed, 

we count the number of cameras in Barcelona airport (Terminal 1). So, in [204] mentioned 

that there are 166 check-in desks, 15 baggage carousels, and 12,000 parking slots. 

3- Frequency of sending and updating information: 

If in case we need to have the frequency of sending and updating information (in particular 

for water meter data), we assume the frequency of sending and updating information in 

Sentilo platform. For example, the water meter follows the frequency of sending and 

updating information like other type of energy monitoring category which happens in every 

15 minutes (for average data).  
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5.3.4.2Results 

Here first we present our results for future sensors data through Sentilo platform as shown in 
below: 

The number of sensor (for each category) is as shown in below: 

o Electricity meter: 70,717 sensors 

o External ambient conditions: 70,717 sensors 

o Gas meter: 70,717 sensors 

o Internal ambient conditions: 70,717 sensor 

o Network analyzer: 70,717 sensors 

o Solar thermal installation: 70,717 sensors 

o Temperature: 70,717 sensors 

As shown in Table 5.10, the data production (by each sensor at each transaction) is shown 

in below: 

o Electricity meter: 22 byte per transaction 

o External ambient conditions: 22 byte per day 

o Gas meter: 22 byte per day 

o Internal ambient conditions: 22 byte per day 

o Network analyzer: 242 byte per day 

o Solar thermal installation: 22 byte per day 

o Temperature: 22 byte per day 

So, the total amount of the production data is 374 byte per transaction. 

As shown in Table 5.10, the data production (by each sensor per day) is shown in below: 

o Electricity meter: 2,112 byte per day 

o External ambient conditions: 2,112 byte per day 

o Gas meter: 2,112 byte per day 

o Internal ambient conditions: 2,112 byte per day 

o Network analyzer: 23,232 byte per day 

o Solar thermal installation: 2,112 byte per day 

o Temperature: 2,112 byte per day 

Therefore, the total amount of data is 35,904 byte which it must be transferred by each 

sensor at each transaction. 
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As shown in Figure 5.17, the total data production is listed in the below for each type of 

information in this category. 

o Electricity meter: 149,354,304 byte per day 

o External ambient conditions: 149,354,304 byte per day 

o Gas meter: 149,354,304 byte per day 

o Internal ambient conditions: 149,354,304 byte per day 

o Network analyzer: 1,642,897,334 byte per day 

o Solar thermal installation: 149,354,304 byte per day 

o Temperature: 149,354,304 byte per day 

As we shown in Table 5.10, the total amount of data production is 2,539,023,168 byte per 

day which it must be transferred to upper layer for further usage. 

Table 5.10 Produced energy monitoring sensors data through Sentilo in future Barcelona city 

Type 

Number 

of 

devices 

Sending data (byte) 

by each 

sensor at 

each 

transaction 

by 

each 

sensor 

per 

day 

Total amount 

of data per 

day 

Electricity 

meter 
70,717 22 2,112 149,354,304 

External 

ambient 

conditions 

70,717 22 2,112 149,354,304 

Gas meter 70,717 22 2,112 149,354,304 

Internal 

ambient 

conditions 

70,717 22 2,112 149,354,304 

Network 

analyzer 
70,717 242 23,232 1,642,897,344 

Solar thermal 

installation 
70,717 22 2,112 149,354,304 

Temperature 70,717 22 2,112 149,354,304 

Total 495,019 374 35,904 2,539,023,168 
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Figure 5.17Future Sending daily data in Energy monitoring category (Sentilo Platform) 

 Noise monitoring category: 

The number of sensor (for each category) is as shown in below: 

o First type of noise: 10,000 sensors  

o Second type of noise: 10,000 sensors  

o Third type of noise: 10,000 sensors  

As shown in Table 5.11, the data production (by each sensor at each transaction) is shown 

in below: 

o First type of noise: 22 byte  

o Second type of noise: 22 byte  

o Third type of noise: 22 byte  

So, the total amount of the production data is 66 byte per transaction. 

As shown in Table 5.11, the data production (by each sensor per day) is shown in below: 

o First type of noise: 768 byte  

o Second type of noise: 31,680 byte  

o Third type of noise: 31,680 byte  

Therefore, the total amount of data is 65,472 byte which it must be transferred by each 

sensor at each transaction. 
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As shown in Figure 5.18, the total data production is listed in the below for each type of 

information in this category. 

o First type of noise: 7,680,000 byte  

o Second type of noise: 316,800,000 byte  

o Third type of noise: 316,800,000 byte  

As we shown in Table 5.11, the total amount of data production is 641,280,000 byte per day 

which it must be transferred to upper layer for further usage. 

Table 5.11Data Volume Estimation in Barcelona Smart City 

Type 
Number 

of devices 

Sending data (byte) 

by each 

sensor at 

each 

transaction 

by each 

sensor 

per day 

Total amount 

of data per 

day 

Noise 

10,000 22 768 7680000 

10,000 22 31,680 316,800,000 

10,000 22 31680 316800000 

 

 

Figure 5.18Future Sending daily data in Noise management category (Sentilo Platform) 

 Urban Lab monitoring management category:  

The number of sensor (for each category) is as shown in below: 

o Air quality: 40,000 sensors 

o Bicycle flow: 40,000 sensors 

o People flow: 40,000 sensors 
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o Traffic: 40,000 sensors 

o Weather: 40,000 sensors  

As shown in Table 5.12, the data production (by each sensor at each transaction) is shown 

in below: 

o Air quality: 144 byte 

o Bicycle flow: 22 byte 

o People flow: 22 byte 

o Traffic: 44 byte 

o Weather: 120 byte  

So, the total amount of the production data is 352 byte per transaction. 

As shown in Table 5.12, the data production (by each sensor per day) is shown in below: 

o Air quality: 13,824 byte 

o Bicycle flow: 3,168 byte 

o People flow: 3,168 byte 

o Traffic: 63,360 byte 

o Weather: 34,560 byte  

Therefore, the total amount of data is 118,080 byte which it must be transferred by each 

sensor at each transaction. 

As shown in Figure 5.19, the total data production is listed in the below for each type of 

information in this category. 

o Air quality: 552,960,000 byte 

o Bicycle flow: 126,720,000 byte 

o People flow: 126,720,000 byte 

o Traffic: 2,534,400,000 byte 

o Weather: 1,382,400,000 byte  

As we shown in Table 5.12, the total amount of data production is 4,723,200,000 byte per 

day which it must be transferred to upper layer for further usage. 
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Table 5.12Data Volume Estimation in Barcelona Smart City 

Type 

Number 

of 

devices 

Sending data (byte) 

by each 

sensor at 

each 

transaction 

by each 

sensor 

per day 

Total amount 

of data per 

day 

Air quality 40,000 144 13,824 552,960,000 

Bicycle 

flow 
40,000 22 3,168 126,720,000 

People 

flow 
40,000 22 3,168 126,720,000 

Traffic 40,000 44 63,360 2,534,400,000 

Weather 40,000 120 34,560 1,382,400,000 

Total 200,000 352 118,080 4,723,200,000 

 

 

Figure 5.19Future Sending daily data in Urban Lab monitoring category (Sentilo Platform) 

 Garbage Collection monitoring management  

The number of sensor (for each category) is as shown in below: 

o Glass container: 40,000 sensors 

o Organic container: 40,000 sensors 

o Paper container: 40,000 sensors 
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o Plastic container: 40,000 sensors 

o Refuse container: 40,000 sensors 

As shown in Table 5.13, the data production (by each sensor at each transaction) is shown 

in below: 

o Glass container: 50 byte 

o Organic container: 50 byte 

o Paper container: 50 byte 

o Plastic container: 50 byte 

o Refuse container: 50 byte 

So, the total amount of the production data is 250 byte per transaction. 

As shown in Table 5.13, the data production (by each sensor per day) is shown in below: 

o Glass container: 1,800 byte 

o Organic container: 1,800 byte 

o Paper container: 1,800 byte 

o Plastic container: 1,800 byte 

o Refuse container: 1,800 byte 

Therefore, the total amount of data is 9,000 byte which it must be transferred by each sensor 

at each transaction. 

As shown in Figure 5.20, the total data production is listed in the below for each type of 

information in this category. 

o Glass container: 72,000,000 byte 

o Organic container: 72,000,000 byte 

o Paper container: 72,000,000 byte 

o Plastic container: 72,000,000 byte 

o Refuse container: 72,000,000 byte 

As we shown in Table 5.13, the total amount of data production is 360,000,000 byte per day 

which it must be transferred to upper layer for further usage. 
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Table 5.13Data Volume Estimation in Barcelona Smart City 

Type 
Number 

of devices 

Sending data (byte) 

by each 

sensor at 

each 

transaction 

by each 

sensor 

per day 

Total 

amount of 

data per 

day 

Container 

glass 
40,000 50 1,800 72,000,000 

Container 

organic 
40,000 50 1,800 72,000,000 

Container 

paper 
40,000 50 1,800 72,000,000 

Container 

plastic 
40,000 50 1,800 72,000,000 

Container 

refuse 
40,000 50 1,800 72,000,000 

Total 200,000 250 9,000 360,000,000 

 

 

Figure 5.20Future Sending daily data in Garbage Collection management category (Sentilo 
Platform) 

 Parking Spots monitoring management: 

The number of sensor (for each category) is as shown in below: 

o Parking: 80,000 sensors 
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As shown in Table 5.14, the data production (by each sensor at each transaction) is shown 

in below: 

o Parking: 40 byte 

So, the total amount of the production data is 40 byte per transaction. 

As shown in Table 5.14, the data production (by each sensor per day) is shown in below: 

o Parking: 4,000 byte 

Therefore, the total amount of data is 4,000 byte which it must be transferred by each sensor 

at each transaction. 

As shown in Figure 5.21, the total data production is listed in the below for each type of 

information in this category. 

o Parking: 320,000,000 byte 

As we shown in Table 5.14, the total amount of data production is 320,000,000 byte per day 

which it must be transferred to upper layer for further usage. 

 

Table 5.14Data Volume Estimation in Barcelona Smart City 

Type 

Number 

of 

devices 

Sending data (byte) 

by each 

sensor at 

each 

transaction 

by each 

sensor 

per day 

Total amount 

of data per 

day 

Parking 80,000 40 4,000 320,000,000 

Total 80,000 40 4,000 320,000,000 
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Figure 5.21Future Sending daily data in Parking Spots category (Sentilo Platform) 

Next, we describe our results for the future data collection through those new data type in 

Barcelona city as shown in below: 

 Water meter data (in Energy monitoring category): 

In Table 5.15 and Figure 5.22 and 5.23we show that each district of Barcelona has 

different number of sending data per transaction and per day as shown in below:  

o Cituat Vella has 40,105 households which produced almost 3,432,180 byte data per 

transaction. 

o Eixample has 40,105 households which produced almost 9,588,540 byte data per 

transaction. 

o Sans-Montjuic has has 73,682 households which produced almost 6,305,696 byte 

data per transaction. 

o Les Corts has 32,771 households which produced almost 2,804,538 byte data per 

transaction. 

o Sarria-Sant Gervasi has 56,113 households which produced almost 4,802,143 byte 

data per transaction. 

o Gracia has 52,478 households which produced almost 4,491,060 byte data per 

transaction. 

o Horta-Guinardi has 68,958 households which produced almost 5,901,417 byte data 

per transaction. 

o Nou-Barris has 66,008 households which produced almost 5,648,956 byte data per 

transaction. 
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o Sant Andreu has 58,836 households which produced almost 5,035,177 byte data per 

transaction. 

o Sant Marti has 93,986 households which produced almost 8,043,310 byte data per 

transaction. 

Indeed, the total amount of the produced data is almost 56,053,022 byte per transaction. 

 

Table 5.15Water Meter Estimation in Barcelona Smart City 

 

 

Figure 5.22Future Sending daily data in Water meter information (All Districts of Barcelona) 

Type Number of house holds Sending data per transaction (byte)

61,263 5,242,880

Total 654,979 56,053,022.21 5,381,090,131.95 5,381.09

Ciutat Vella 40,105 3,432,180.96 329,489,372.55 329.49

 Eixample 112,042 9,588,540.57 920,499,894.75 920.50

Sants-Montjuïc 73,682 6,305,696.49 605,346,863.19 605.35

Les Corts 32,771 2,804,538.15 269,235,662.08 269.24

Sarrià-Sant Gervasi 56,113 4,802,143.63 461,005,788.85 461.01

Gràcia 52,478 4,491,060.78 431,141,835.00 431.14

Horta-Guinardó 68,958 5,901,417.15 566,536,046.68 566.54

Nou Barris 66,008 5,648,956.52 542,299,825.54 542.30

Sant Andreu 58,836 5,035,177.64 483,377,053.32 483.38

Sant Martí 93,986 8,043,310.31 772,157,790.01 772.16

Surrey, Canada

City, Country

Districts

Barcelona, Spain

Water meter

Sending data per transaction (byte) per day (every 15 minutes) Sending data per transaction (MB) per day (every 15 minutes)
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Figure 5.23Future Sending daily data in Water meter information 

 Mobile application data:  

As depicted in Table 5.16 and Figure 5.24, we estimated that the total amount of the 

produced data (in three years) is 844,361,625,000 byte in the Barcelona Smart City of 

Barcelona (including,477,247,875,000 byte data for high-level range, 275,335,312,500 

data for medium level-range and 91,778,437,500 byte data for low-level range). 

Similarly, almost 435 MB data will be produced for the high-level range in each 

transaction per day. And, almost 251 MB data will be generated for the medium-level 

range in each transaction per day. Finally, almost 83 MB data will be produced for low-

level range in each transaction per day. 

Table 5.16Mobile Application Estimation in Barcelona Smart City 

 

 

MB Byte MB Byte MB Byte MB Byte

800 293.691 293,691,000.00 14 14,000,000.00 97.897 97897000 0.268210959 268210.9589

Per user 0.36711375 367113.75 0.0175 17500 0.12 122,371.25 0.0003 335.26

More than 1 milion 477,247.88 477,247,875,000.00 22,750.00 22,750,000,000.00 159,082.63 159,082,625,000.00 435.84 435,842,808.22

500,000 to 1 milion 275,335.31 275,335,312,500.00 13,125.00 13,125,000,000.00 91,778.44 91,778,437,500.00 251.45 251,447,773.97

less than 500,000 91,778.44 91,778,437,500.00 4,375.00 4,375,000,000.00 30,592.81 30,592,812,500.00 83.82 83,815,924.66

Number of active users
Total amount of data in 3 years

Total amount of data in 3 years 

(compress version)

Sending data per transaction 

per year

Sending data per 

transaction per dayApplicationType

Mobile APP

City, Country

Barcelona, Spain

Coverage of users

Sample
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Figure 5.24Future Sending daily data in Mobile data information 

 Camera Surveillance data: we measured that the total amount of produced data (per day) 

is 272,550,960,000,000 byte (including, 26,310,960,000,000 byte data in the airport, 

172,800,000,000,000 byte data in the parking slots, and 73,440,000,000,000 byte data in 

the traffic lights) as shown in Figure 5.25 and Table 5.17. 

Table 5.17Camera surveillance data Estimation in Barcelona Smart City 

 

 

Figure 5.25Future Sending daily data in Camera Surveillance data information 

 Vehicular Mobility data:  

MB Byte MB Byte MB Byte MB Byte

34,000 90 90,000,000 2,160 2,160,000,000 3,060,000 3,060,000,000,000 73,440,000 73,440,000,000,000

80,000 90 90,000,000 2,160 2,160,000,000 7,200,000 7,200,000,000,000 172,800,000 172,800,000,000,000

Check-in desks 166 90 90,000,000 2,160 2,160,000,000 14,940 14,940,000,000 358,560 358,560,000,000

Baggage carousels 15 90 90,000,000 2,160 2,160,000,000 1,350 1,350,000,000 32,400 32,400,000,000

Parking slots 12,000 90 90,000,000 2,160 2,160,000,000 1,080,000 1,080,000,000,000 25,920,000 25,920,000,000,000

City, Country

Sending data per transaction (per 

hour/per camera)

Parking slots

Airport (Terminal 1)

Sending data per day (per 

hour/per camera)

Total amount of data per 

transaction
Total amount of data per day

Number of devices/equipments

Barcelona, Spain

Type of devices/equipments

Traffic lights
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In Table 5.18 and Figure 5.26 and 5.27, we show that each district of Barcelona has 

different number of sending data per transaction and per day as shown in below:  

o Cituat Vella has 42,448 registered cars which produced almost 244 GB data per day. 

o Eixample has 160,717 registered cars which produced almost 925 GB data per day. 

o Sants-Montjuic has 107,195 registered cars which produced almost 617 GB data per 

day. 

o Les Corts has 62,820 registered cars which produced almost 361 GB data per day. 

o Sarria-Sant Gervasi has 121,490 registered cars which produced almost 699 GB data 

per day. 

o Gracia has 66,193 registered cars which produced almost 381 GB data per day. 

o Horta-Guinardi has 92,706 registered cars which produced almost 537 GB data per 

day. 

o Nou-Barris has 76,470 registered cars which produced almost 440 GB data per day. 

o Sant Andreu has 75,619 registered cars which produced almost 435 GB data per 

day. 

o Sant Marti has 121,038 registered cars which produced almost 696 GB data per day. 

o Unknown location has 1,816 registered cars which produced almost 10 GB data per 

day. 

Indeed, the total produced data is almost 5,345 GB data per day with 928,512 registered 

cars. 

Table 5.18Vehicular Mobility data Estimation in Barcelona Smart City 

 

Number of cars Sending data per day (GB) Sending data per transaction (MB) per day Sending data per transaction (GB) per year Sending data per transaction (MB) per year

700 4.03 4030 1470.95 1470950

1 0.0058 5.757142857 2.101357143 2151.789714

Total 928,512 5,345.5762 5,345,576.2286 1,951,135.3234 1,951,135,323.4286

Ciutat Vella 42,448 244.3792 244,379.2000 89,198.4080 89,198,408.0000

 Eixample 160,717 925.2707 925,270.7286 337,723.8159 337,723,815.9286

Sants-Montjuïc 107,195 617.1369 617,136.9286 225,254.9789 225,254,978.9286

Les Corts 62,820 361.6637 361,663.7143 132,007.2557 132,007,255.7143

Sarrià-Sant Gervasi 121,490 699.4353 699,435.2857 255,293.8793 255,293,879.2857

Gràcia 66,193 381.0826 381,082.5571 139,095.1334 139,095,133.3571

Horta-Guinardó 92,706  537.6948 537,694.8000 196,258.6020 196,258,602.0000

Nou Barris 76,470 440.2487 440,248.7143 160,690.7807 160,690,780.7143

Sant Andreu 75,619 435.3494 435,349.3857 158,902.5258 158,902,525.7857

Sant Martí 121,038 696.8331 696,833.0571 254,344.0659 254,344,065.8571

Does not appear 1,816 10.4550 10,454.9714 3,816.0646 3,816,064.5714

City, Country

Barcelona, Spain

Districts

Koln, Germany
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Figure 5.26Future Sending daily data in Vehicular Mobility information (All Districts) 

 

Figure 5.27Future data byVehicular Mobilitydata type 

 

5.3.5 Data Filtering Measurements in Barcelona 

In this section, we aim to present how data filtering can be applied in real Smart City. So, we 

describe data aggregation and data compression in this example. As we know, we have the different 

type of data aggregation and data compression. Here we just say some sample of data aggregation 

and data compression which we are able to depict in our F2C model through Barcelona Smart City 

as shown in below sub sections. 

As we discussed in last sections, data aggregation is kind of process to optimize collected data 

with different techniques. Plus, data compression is able to provide more facility for reducing the 

size of data in transfer time. The F2C data model provides numerous facility to apply data 

aggregation and data compression techniques and algorithms in Smart City. Now, we present how 
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we can apply some basic aggregation and compression techniques as an example of optimization 

smodels in Smart City. 

 Redundant data elimination technique: In this technique, we focus on providing a basic yet 

effective solution to easily reduce the amount of duplicated data collected from the sensors 

layer. In fact, there is the number of redundant data which are produced by sensors every 

moment. For example, in the case of weather measurement, each sensor sends the current 

temperature measurements, but this type of data is prone to repetitions, so eliminating them 

may easily reduce such amount of data. 

 Compression: As data is collected and transmitted to an upper level delayed, there are some 

options to accumulate a reasonable amount of data and compute compression, in order to 

obviously reduce the amount of data transfer. 

 

5.3.5.1 Methodology 

Here we aim to describe our research methodology for our proposed data aggregation and data 

compression techniques in our F2C model as shown more details in below: 

1- Depicting our scenario to Smart City of Barcelona: 

According to the current distribution of districts and sections in Barcelona, we estimate that 

our Fog-layer-1 can be covered with 73 Fog-Area, which is matched with the number of 

sections in Barcelona. In this case, our Fog-Area covers almost 1 km2, which is a 

reasonable fog node size. In addition, the Fog-Leader can be defined as 10 main nodes 

which are matched with the number of the district in Barcelona. As shown in Figure5.28, 

the figure shows how the section and districts can be fixed in our F2C model with respect to 

data aggregation model.  

In our proposed model, data aggregation and compression can be applied in any layer of fog 

to cloud layer as shown in Figure 5.27 as shown more details in below: 

 Fog-Leader = 10; (each district of Barcelona has three sections. By other words, 

each Fog-Leader is responsible for the different number of Fog-Devices. For 

example, regarding the official report by city hall of Barcelona, Ciutat Vella district 

covers with 4 Fog-Aeras. However, Eixample includes with 6 Fog-Areas) 

 Fog-Area=73; (each section of Barcelona has three Fog-Devices. By other words, 

we assumed that each Fog-Area has three different number of Fog-Devices) 

 Fog-Device=219; (we assumed that each Edge-Data-Source has the same number of 

edge-data-sources) 

 Edge-Data-Sources=number of sensor devices. 

Therefore, for instance, Ciutat Vella district covers with four sections (Fog-Area), twelve 

Fog-Device, and almost 969 sensors devices (Edge-data-sources), in particular forthe 

electricity meter information under energy monitoring category. 



    Hierarchical Distributed Fog- to-Cloud Data Management in Smart Cities 

 

 

145 

2- The Different level of aggregation and compression in Smart City of Barcelona: 

With respect to our description scenario and the number of districts and sections in 

Barcelona, we assume that we have three different level of aggregation and compression 

from edge to cloud in the city of Barcelona. Therefore, in the Fog-layer-1 we can have 

aggregation in Fog-Device, Fog-Leader (Section), and Fog-Leader (District). Therefore, as 

shown in Figure 5.28, we apply four level of aggregation and compression in our model. 

However, we have the possibility to reduce the number aggregation and compression in our 

model. Plus, there is another possibility to have one more layer of data aggregation in the 

cloud. 

Fog-Layer-1

Fog-Layer-3

Cloud Layer

Edge-data-sources

Fog-Device

Fog-Leader (Section)

Fog-Leader (District)

First Level of aggregation and compression

Second Level of aggregation and compression

Third Level of aggregation and compression

Fog-Layer-2

 

Figure 5.28Level of Aggregation and Compression in Smart City of Barcelona 

3- Redundant data rate in Sentilo platform 

We calculated the redundant data rate in Sentilo platform. So, we monitored the content of 

produced data in one day. So, we explored that the redundant data rate for each category of 

information is different. As we observed, the redundant data for energy, noise, garbage, 

parking and urban is around 50%, 75%, 70%, 40%, and 30% respectively. For example, as 

you can see in Table5.19, we monitored garbage collection data category in Sentilo 
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platform. So, as you can see in this table there is almost 70% redundant data in this category 

per day. 

 

Table 5.19Redundant Data in Garbage Collection Monitoring 

 

 

4- Compression rate 

We can apply the data compression technique after using data aggregation techniques in 

order to further reduce the amounts of data to be transferred to higher layers. The Zip 

format, for instance, is one solution provided by PKWARE in 1989 [205]. In this 

experiment, we have used the Zip format in our model to perform compression at all layer. 

5- Estimation of Optimization data through Data Aggregation and Data Compression models: 

The data classification phase classifies and organizes all data collected from the different 

categories of sensors. In our use case, Sentilo provides five categories of information and 

services which are energy, noise, urban, garbage, and parking. Each category is divided into 

different types of information. For instance, the energy category contains electricity meter, 

external ambient conditions, gas meter, internal ambient conditions, network analyzer, solar 

thermal installation, and temperature. The noise category includes has three different types 

of information. The urban category encompasses to air quality, bicycle flow, people flow, 

traffic and weather. The garbage category has container glass, container organic, container 

paper, container plastic, and container refuse. And finally, the parking category has only 

one type of information. 

Container of 

Glass

Container  of 

Organic

Container of 

Paper

Container of 

Plastic

Container of 

Refuse

57 71 57 205 277

1:00 AM 65% 55% 68% 85% 88%

2:00 AM 65% 75% 72% 55% 80%

3:00 AM 71% 64% 89% 74% 82%

4:00 AM 62% 72% 79% 62% 69%

5:00 AM 75% 70% 62% 71% 78%

6:00 AM 60% 50% 76% 61% 80%

7:00 AM 60% 70% 69% 74% 82%

8:00 AM 80% 85% 68% 63% 75%

9:00 AM 72% 62% 75% 56% 72%

10:00 AM 74% 71% 80% 66% 81%

11:00 AM 74% 79% 66% 71% 69%

12:00 PM 60% 50% 77% 56% 69%

1:00 PM 80% 70% 79% 68% 73%

2:00 PM 70% 71% 83% 69% 81%

3:00 PM 71% 78% 84% 56% 78%

4:00 PM 74% 64% 84% 69% 66%

5:00 PM 66% 62% 62% 81% 67%

6:00 PM 65% 75% 88% 44% 75%

7:00 PM 72% 70% 77% 77% 72%

8:00 PM 78% 68% 70% 57% 69%

9:00 PM 63% 73% 76% 81% 77%

10:00 PM 62% 72% 81% 66% 82%

11:00 PM 70% 80% 77% 70% 79%

12:00 AM 74% 84% 79% 79% 81%

69% 70% 76% 67% 76%

Number of devices

Type of information

Period of sending 

information

Total number in each category

Total number in all category 72%
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The two basic data aggregation techniques explored will be implemented in all layer 

(including Edge-data-source, Fog-Device, Fog-Leader (in Fog-Layer-2), and Fog-Leader 

(in Fog-Layer-3)) as explained before. So, in the previous section, we calculate the number 

of produced data in each category. And then, regarding the redundant data rate for each 

category of information, we can calculate the total number of produced data after data 

aggregation and data compression in each layer as shown in Figure 5.28. Later, we will 

discuss more data aggregation and compression rate. 

 

5.3.5.2Results 

As shown in previous sections, we calculated that the Sentilo generated different amount of data 

per day for different categories of information (including, energy monitoring, noise monitoring, 

garbage collection, parking spot monitoring, and urban lab monitoring) as listed in below: 

 Energy monitoring category: 2,390,344,704 byte per day. 

 Noise monitoring category:  641,280,000 byte per day. 

 Garbage Collection category: 360,000,000 byte per day. 

 Parking Spot monitoring category: 320,000,000 byte per day. 

 Urban Lab monitoring category: 4,723,200,000 byte per day. 

We realized that each category of information produced the huge amount of the redundant data 

in every transaction (by different sensors) and per day. Therefore, we monitored a single day of 

data generation in Sentilo platform. Then, we observed that the redundant data for energy, noise, 

garbage, parking and urban is almost 50%, 75%, 70%, 40%, and 30% respectively. Therefore, we 

have an initial thought to absorb this amount of data through the layers of our F2C data 

management architecture. 

As we mentioned in the previous section, we applied two different techniques to reduce the 

number of data transfer among F2C layers. First, we used data aggregation techniques to eliminate 

the number of redundant data in the layer. Second, we used data compression techniques (for 

example, one solution proposed by PKWARE [205]) to compress data size after applying 

aggregation techniques. Note that data aggregation and data compression techniques can be 

implemented in each layer of F2C data architecture. Therefore, in the following paragraph, we will 

explain how much data will be reduced at each layer. 

The fog device is in the first level of our aggregation model. With respect to number of the 

redundant observation, we calculated that sensors data would be reduced to 1,194,834,432 bytes for 

energy monitoring, 160,320,000 bytes for noise monitoring, 108,000,000 bytes for garbage 

collection, 192,000,000 bytes for parking spot monitoring, and 3,306,240,000 bytes for urban lab as 

shown in Table 5.20 and Figure 29(blue lines).  Then, the amount of data can be further decreased 

to smaller sizes through data compression. Therefore, the data size will be 262,863,575 bytes for 

the energy monitoring, 35,270,400 bytes for the noise monitoring, 23,760,000 bytes for the garbage 

collection, 42,240,000 bytes for the parking, and 727,372,800 bytes for the urban lab as shown in 

Table 5.20 and Figure 29(green lines). 
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Similarly, the fog leaders at Fog-Layer-2 (city sections) play the second level for performing 

data aggregation and data compression techniques. Therefore, the data volume will be reduced to 

597,586,176 bytes for energy monitoring, 39,498,840 bytes for noise monitoring, 32,462,370 bytes 

for garbage collection, 115,106,400 bytes for parking spot monitoring, and 2,318,823,158 bytes for 

the urban lab as shown in Table 5.20 and Figure 29(blue lines).  Then, the number of data can be 

shifted to smaller sizes through data compression. Therefore, the data size will go to 131,468,959 

bytes for the energy monitoring, 8,689,745 bytes for the noise monitoring, 7,141,721 bytes for 

garbage collection, 25,323,408 bytes for the parking, and 510,141,095 bytes for the urban lab as 

shown in Table 5.20 and Figure 29(green lines). 

Next layer is the fog leaders at Fog-Layer-3 (city districts) to handle data compression and data 

compression techniques. In this layer, data size goes to 298,793,088 bytes for energy monitoring, 

9,874,710 bytes for noise monitoring, 9,738,711 bytes for garbage collection, 69,063,840 bytes for 

parking spot monitoring, and 1,623,176,211 bytes for urban lab after handling data aggregation as 

shown in Table 5.20 and Figure 29(blue lines).  Then, the number of data can be further reduced 

through data compression. Therefore, the data size will change to 65,734,479 bytes for the energy 

monitoring, 2,172,436 bytes for the noise monitoring, 2,142,516 bytes for garbage collection, 

15,194,045 bytes for the parking, and 35,098,766 bytes for the urban lab as shown in Table 5.20 

and Figure 29 (green lines). 

After these computations, we conclude that: i) aggregation efficiency rate at fog devices, fog 

leaders in Fog-Layer-2 (city sections), and fog leader in Fog-Layer-3 (city districts): is almost 

49.98%, 50.01%, and 50.08% efficiency rate for energy monitoring information. Similarly, the 

noise monitoring efficiency rate is 24.96%, 25.02%, and 25.05%. Then, the garbage collection rate 

is 29.99%, 30.05%, and 30.08%. In addition, the parking spot monitoring rate is 59.95%, 59.99%, 

and 60.01%. Indeed, the urban lab-monitoring rate is 68.93%, 69.13%, and 70.01%. ii) 

Compression efficiency rate is almost 22% for all layers (including Fog device, Fog-Leader (in the 

Fog-Layer-2 layer), and Fog-Leader (in the Fog-Layer-3 layer)). 

Indeed, the total efficiency rate (including redundant data elimination and compression) at fog 

devices, fog leaders in Fog-Layer-2 (city sections), and fog leader in Fog-Layer-3 (city districts) is 

as shown in below: 

   Energy Monitoring category: About 71.98%, 72.01%, and 72.08%.  

   Noise Monitoring category: Almost 46.96%, 47.02%, and 47.05%. 

   Garbage Collection category: Approximately 51.99%, 52.05%, and 52.08%. 

   Parking Spot Monitoring category: Almost 81.95%, 81.99%, and 82.01%. 

   Urban Lab Monitoring category: About 90.93%, 91.13%, and 92.01%. 
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Table 5.20Redundant Data Aggregation Model 

 

Ciutat Vella Eixample Sants-Montjuic Les Corts Sarria-Sant Gervasi Gracia Horta-Guinardo Nou Barris Sant Andreu Sant Marti

Fog Layer 2

2,112 2,112 682,176 2,046,528 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

149,354,304 149,354,304 149,396,544 149,396,544 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

2,112 1,056 170,544 255,816 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

149,354,304 74,677,152 37,349,136 18,674,568 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

2,112 2,112 682,176 2,046,528 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

149,354,304 149,354,304 149,396,544 149,396,544 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

2,112 1,056 170,544 255,816 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

149,354,304 74,677,152 37,349,136 18,674,568 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

2,112 2,112 682,176 2,046,528 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

149,354,304 149,354,304 149,396,544 149,396,544 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

2,112 1,056 170,544 255,816 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

149,354,304 74,677,152 37,349,136 18,674,568 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

23,232 23,232 7,503,936 22,511,808 90,047,232 135,070,848 180,094,464 67,535,424 135,070,848 112,559,040 247,629,888 292,653,504 157,582,656 225,118,080 1,643,361,984

1,642,897,344 1,642,897,344 1,643,361,984 1,643,361,984 90,047,232 135,070,848 180,094,464 67,535,424 135,070,848 112,559,040 247,629,888 292,653,504 157,582,656 225,118,080 1,643,361,984

23,232 11,616 1,875,984 2,813,976 11,255,904 16,883,856 22,511,808 8,441,928 16,883,856 14,069,880 30,953,736 36,581,688 19,697,832 28,139,760 205,420,248

1,642,897,344 821,448,672 410,840,496 205,420,248 11,255,904 16,883,856 22,511,808 8,441,928 16,883,856 14,069,880 30,953,736 36,581,688 19,697,832 28,139,760 205,420,248

2,112 2,112 682,176 2,046,528 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

149,354,304 149,354,304 149,396,544 149,396,544 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

2,112 1,056 170,544 255,816 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

149,354,304 74,677,152 37,349,136 18,674,568 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

2,112 2,112 682,176 2,046,528 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

149,354,304 149,354,304 149,396,544 149,396,544 8,186,112 12,279,168 16,372,224 6,139,584 12,279,168 10,232,640 22,511,808 26,604,864 14,325,696 20,465,280 149,396,544

2,112 1,056 170,544 255,816 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

149,354,304 74,677,152 37,349,136 18,674,568 1,023,264 1,534,896 2,046,528 767,448 1,534,896 1,279,080 2,813,976 3,325,608 1,790,712 2,558,160 18,674,568

Cloud Computing No Action 2,390,344,704 2,390,344,704 2,390,344,704 2,390,344,704

Fog Computing Data Aggregation 2,390,344,704 1,194,834,432 597,586,176 298,793,088

Cloud Computing No Action 2,390,344,704 2,390,344,704 2,390,344,704 2,390,344,704

Fog Computing
Data Aggregation and Data 

Compression
2,390,344,704 262,863,575 131,468,959 65,734,479

768 768 34,560 103,680 414,720 622,080 829,440 311,040 622,080 518,400 1,140,480 1,347,840 725,760 1,036,800 7,680,000

7,680,000 7,680,000 7,680,000 7,680,000 414,720 622,080 829,440 311,040 622,080 518,400 1,140,480 1,347,840 725,760 1,036,800 7,680,000

768 192 2,160 1,620 6,480 9,720 12,960 4,860 9,720 8,100 17,820 21,060 11,340 16,200 118,260

7,680,000 1,920,000 473,040 118,260 6,480 9,720 12,960 4,860 9,720 8,100 17,820 21,060 11,340 16,200 118,260

31,680 31,680 1,425,600 4,276,800 17,107,200 25,660,800 34,214,400 12,830,400 25,660,800 21,384,000 47,044,800 55,598,400 29,937,600 42,768,000 316,800,000

316,800,000 316,800,000 316,800,000 316,800,000 17,107,200 25,660,800 34,214,400 12,830,400 25,660,800 21,384,000 47,044,800 55,598,400 29,937,600 42,768,000 316,800,000

31,680 7,920 89,100 66,825 267,300 400,950 534,600 200,475 400,950 334,125 735,075 868,725 467,775 668,250 4,878,225

316,800,000 79,200,000 19,512,900 4,878,225 267,300 400,950 534,600 200,475 400,950 334,125 735,075 868,725 467,775 668,250 4,878,225

31,680 31,680 1,425,600 4,276,800 17,107,200 25,660,800 34,214,400 12,830,400 25,660,800 21,384,000 47,044,800 55,598,400 29,937,600 42,768,000 316,800,000

316,800,000 316,800,000 316,800,000 316,800,000 17,107,200 25,660,800 34,214,400 12,830,400 25,660,800 21,384,000 47,044,800 55,598,400 29,937,600 42,768,000 316,800,000

31,680 7,920 89,100 66,825 267,300 400,950 534,600 200,475 400,950 334,125 735,075 868,725 467,775 668,250 4,878,225

316,800,000 79,200,000 19,512,900 4,878,225 267,300 400,950 534,600 200,475 400,950 334,125 735,075 868,725 467,775 668,250 4,878,225

Cloud Computing No Action 641,280,000 641,280,000 641,280,000 641,280,000

Fog Computing Data Aggregation 641,280,000 160,320,000 39,498,840 9,874,710

Cloud Computing No Action 641,280,000 641,280,000 641,280,000 641,280,000

Fog Computing
Data Aggregation and Data 

Compression
641,280,000 35,270,400 8,689,745 2,172,436

1,800 1,800 329,400 988,200 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

72,000,000 72,000,000 72,000,000 72,000,000 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

1,800 540 29,646 26,681 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

72,000,000 21,600,000 6,492,474 1,947,742 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

1,800 1,800 329,400 988,200 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

72,000,000 72,000,000 72,000,000 72,000,000 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

1,800 540 29,646 26,681 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

72,000,000 21,600,000 6,492,474 1,947,742 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

1,800 1,800 329,400 988,200 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

72,000,000 72,000,000 72,000,000 72,000,000 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

1,800 540 29,646 26,681 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

72,000,000 21,600,000 6,492,474 1,947,742 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

1,800 1,800 329,400 988,200 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

72,000,000 72,000,000 72,000,000 72,000,000 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

1,800 540 29,646 26,681 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

72,000,000 21,600,000 6,492,474 1,947,742 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

1,800 1,800 329,400 988,200 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

72,000,000 72,000,000 72,000,000 72,000,000 3,952,800 5,929,200 7,905,600 2,964,600 5,929,200 4,941,000 10,870,200 12,846,600 6,917,400 9,882,000 72,000,000

1,800 540 29,646 26,681 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

72,000,000 21,600,000 6,492,474 1,947,742 106,726 160,088 213,451 80,044 160,088 133,407 293,495 346,858 186,770 266,814 1,947,742

Cloud Computing No Action 360,000,000 360,000,000 360,000,000 360,000,000

Fog Computing Data Aggregation 360,000,000 108,000,000 32,462,370 9,738,711

Cloud Computing No Action 360,000,000 360,000,000 360,000,000 360,000,000

Fog Computing
Data Aggregation and Data 

Compression
360,000,000 23,760,000 7,141,721 2,142,516

4,000 4,000 1,460,000 4,380,000 17,520,000 26,280,000 35,040,000 13,140,000 26,280,000 21,900,000 48,180,000 56,940,000 30,660,000 43,800,000 320,000,000

320,000,000 320,000,000 320,000,000 320,000,000 17,520,000 26,280,000 35,040,000 13,140,000 26,280,000 21,900,000 48,180,000 56,940,000 30,660,000 43,800,000 320,000,000

1,800 2,400 525,600 946,080 3,784,320 5,676,480 7,568,640 2,838,240 5,676,480 4,730,400 10,406,880 12,299,040 6,622,560 9,460,800 69,063,840

320,000,000 192,000,000 115,106,400 69,063,840 3,784,320 5,676,480 7,568,640 2,838,240 5,676,480 4,730,400 10,406,880 12,299,040 6,622,560 9,460,800 69,063,840

Cloud Computing No Action 320,000,000 320,000,000 320,000,000 320,000,000

Fog Computing Data Aggregation 320,000,000 192,000,000 115,106,400 69,063,840

Cloud Computing No Action 320,000,000 320,000,000 320,000,000 320,000,000

Fog Computing
Data Aggregation and Data 

Compression
320,000,000 42,240,000 25,323,408 15,194,045

13,824 13,824 2,529,792 7,589,376 30,357,504 45,536,256 60,715,008 22,768,128 45,536,256 37,946,880 83,483,136 98,661,888 53,125,632 75,893,760 552,960,000

552,960,000 552,960,000 552,960,000 552,960,000 30,357,504 45,536,256 60,715,008 22,768,128 45,536,256 37,946,880 83,483,136 98,661,888 53,125,632 75,893,760 552,960,000

13,824 9,677 1,239,598 2,603,156 10,412,624 15,618,936 20,825,248 7,809,468 15,618,936 13,015,780 28,634,716 33,841,028 18,222,092 26,031,560 190,030,386

552,960,000 387,072,000 271,471,980 190,030,386 10,412,624 15,618,936 20,825,248 7,809,468 15,618,936 13,015,780 28,634,716 33,841,028 18,222,092 26,031,560 190,030,386

3,168 3,168 579,744 1,739,232 6,956,928 10,435,392 13,913,856 5,217,696 10,435,392 8,696,160 19,131,552 22,610,016 12,174,624 17,392,320 126,720,000

126,720,000 126,720,000 126,720,000 126,720,000 6,956,928 10,435,392 13,913,856 5,217,696 10,435,392 8,696,160 19,131,552 22,610,016 12,174,624 17,392,320 126,720,000

3,168 2,218 284,075 596,557 2,386,226 3,579,339 4,772,453 1,789,670 3,579,339 2,982,783 6,562,122 7,755,235 4,175,896 5,965,566 43,548,630

126,720,000 88,704,000 62,212,329 43,548,630 2,386,226 3,579,339 4,772,453 1,789,670 3,579,339 2,982,783 6,562,122 7,755,235 4,175,896 5,965,566 43,548,630

3,168 3,168 579,744 1,739,232 6,956,928 10,435,392 13,913,856 5,217,696 10,435,392 8,696,160 19,131,552 22,610,016 12,174,624 17,392,320 126,720,000

126,720,000 126,720,000 126,720,000 126,720,000 6,956,928 10,435,392 13,913,856 5,217,696 10,435,392 8,696,160 19,131,552 22,610,016 12,174,624 17,392,320 126,720,000

3,168 2,218 284,075 596,557 2,386,226 3,579,339 4,772,453 1,789,670 3,579,339 2,982,783 6,562,122 7,755,235 4,175,896 5,965,566 43,548,630

126,720,000 88,704,000 62,212,329 43,548,630 2,386,226 3,579,339 4,772,453 1,789,670 3,579,339 2,982,783 6,562,122 7,755,235 4,175,896 5,965,566 43,548,630

63,360 63,360 11,594,880 34,784,640 139,138,560 208,707,840 278,277,120 104,353,920 208,707,840 173,923,200 382,631,040 452,200,320 243,492,480 347,846,400 2,534,400,000

2,534,400,000 2,534,400,000 2,534,400,000 2,534,400,000 139,138,560 208,707,840 278,277,120 104,353,920 208,707,840 173,923,200 382,631,040 452,200,320 243,492,480 347,846,400 2,534,400,000

63,360 44,352 5,681,491 11,931,132 47,724,526 71,586,789 95,449,052 35,793,395 71,586,789 59,655,658 131,242,447 155,104,710 83,517,921 119,311,315 870,972,601

2,534,400,000 1,774,080,000 1,244,246,573 870,972,601 47,724,526 71,586,789 95,449,052 35,793,395 71,586,789 59,655,658 131,242,447 155,104,710 83,517,921 119,311,315 870,972,601

34,560 34,560 6,324,480 18,973,440 75,893,760 113,840,640 151,787,520 56,920,320 113,840,640 94,867,200 208,707,840 246,654,720 132,814,080 189,734,400 1,382,400,000

1,382,400,000 1,382,400,000 1,382,400,000 1,382,400,000 75,893,760 113,840,640 151,787,520 56,920,320 113,840,640 94,867,200 208,707,840 246,654,720 132,814,080 189,734,400 1,382,400,000

34,560 24,192 3,098,995 6,507,890 26,031,560 39,047,340 52,063,119 19,523,670 39,047,340 32,539,450 71,586,789 84,602,569 45,555,229 65,078,899 475,075,964

1,382,400,000 967,680,000 678,679,949 475,075,964 26,031,560 39,047,340 52,063,119 19,523,670 39,047,340 32,539,450 71,586,789 84,602,569 45,555,229 65,078,899 475,075,964

Cloud Computing No Action 4,723,200,000 4,723,200,000 4,723,200,000 4,723,200,000

Fog Computing Data Aggregation 4,723,200,000 3,306,240,000 2,318,823,158 1,623,176,211

Cloud Computing No Action 4,723,200,000 4,723,200,000 4,723,200,000 4,723,200,000

Fog Computing
Data Aggregation and Data 

Compression
4,723,200,000 727,372,800 510,141,095 357,098,766

Cloud Computing No Action 8,434,824,704 8,434,824,704 8,434,824,704 8,434,824,704

Fog Computing Data Aggregation 8,434,824,704 2,622,834,432 1,463,333,735 862,546,313

Cloud Computing No Action 8,434,824,704 8,434,824,704 8,434,824,704 8,434,824,704

Fog Computing
Data Aggregation and Data 

Compression
8,434,824,704 1,091,506,775 682,764,928 442,342,243

Data Aggregation

No Action

No Action

No Action

Data Aggregation

Data Aggregation

Fog Layer 1
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All
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Data Aggregation
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Fog Computing

No Action

298,793,088

Total Number of 
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320,000,000

69,063,840
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Weather 40,000

Cloud Computing

Fog Computing

40,000

Cloud Computing

Fog Computing

Traffic 40,000

Cloud Computing

Fog Computing

Air quality 40,000

Cloud Computing

Fog Computing
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Cloud Computing

Fog Computing

Container 
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40,000

Cloud Computing

Fog Computing
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Container 

glass
40,000

Cloud Computing

Fog Computing
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40,000

Noise 
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Noise

10,000

Cloud Computing

Fog Computing

10,000

Cloud Computing

Fog Computing
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424,302
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40,000

Cloud Computing

Container 
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40,000

Cloud Computing

Fog Computing
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70,717

Cloud Computing

Fog Computing

Cloud Computing

Fog Computing

Total number 424,302

424,302
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70,717

Cloud Computing

Fog Computing
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installation
70,717

Cloud Computing

Fog Computing
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Total number

1,328,604

8,434,824,704
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70,717

Cloud Computing

Fog Computing
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Temperature 70,717

Cloud Computing

Fog Computing

Total number

Cloud Computing

Total number

80,000
4,723,200,000

1,623,176,211

1,552,906
8,434,824,704

413,501,909

Fog Layer 3

Fog-Leader

70,717

Cloud Computing

Fog Computing
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Data Aggregation

2,172,436

360,000,000

2,142,516

320,000,000

15,194,045

4,723,200,000

Fog -Leader

360,000,000

9,738,711

2,390,344,704
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(a) Energy Monitoring category 

 
(b) Noise Monitoring category 
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(c) Garbage Collection category 

 

(d) Parking Spot Monitoring category 
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(e) Urban Lab Monitoring 

Figure 5.29 Estimation of Data Aggregation and Compression Model 

 

5.3.6Discussion of results 

 We conclude that total amount of the data production (for each single day) will be listed 

in below:  

o Current sensors data by Sentilo platform: almost 0.0154 GB (15,446,712 byte). 

o Future sensors data by Sentilo platform: about 8 GB (8,583,503,168 byte). 

o Future data in Barcelona: 

 Water meter: almost 5.381GB (5,381,090,131 byte). 

 Mobile Application data: about 0.771 GB (771,106,506 byte). 

 Camera surveillance data: almost 272,550.960 GB (272,550,960,000,000 

byte). 

 Vehicular mobility data: 5,345 GB (5,345,000,000,000 byte). 

 We observed that traffic data type (in the Urban Lab category) has the maximum 

produced sensor data rate per day as shown in Figure 5.30. Oppositely, noise (type 1) 

sensor data type (in the Noise category) has the minimum produced data rate per day. 



    Hierarchical distributed data management based on Fog-to-Cloud computing in Smart Cities 

 

153 

 

Figure 5.30Estimation of total Sensors data in Barcelona 

 As shown in Figure 5.31, we realized that the camera data has the maximum data size in 

future Smart City of Barcelona. Additionally, mobile application data has the minimum 

produced data size in the future Smart City of Barcelona. 

 

Figure 5.31 Estimation of total future data generation in Barcelona 

 We estimated that the noise category (almost 75%) has the maximum data aggregation 

rate in one hand. On the other hand, urban lab category (almost 30%) has the minimum 

data aggregation rate. 
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 As shown in Figure 5.32, we appraised that total sensors data size (per day) are reduced 

from 8 GB to 3 GB in Fog-Device, 1 GB to Fog-Leader (sections), and 782 MB in Fog-

Leader (districts) with applying the average of data aggregation rate (almost is 55%). 

 

Figure 5.32 Estimation of total sensors data size with applying the data aggregation techniques 

 As shown in Figure 5.33, we estimated that total sensors data size (per day) are reduced 

from 8 GB to 6 GB in Fog-Device, 5 GB to Fog-Leader (sections), and 4 GB in Fog-

Leader (districts) with applying the data compression rate (is 22%). 

 

 

Figure 5.33Estimation of total sensors data size with applying the data compression techniques 

 As shown in Figure 5.34, we find that total sensors data size (per day) are reduced from 8 

GB to 1 GB in Fog-Device, 454 MB to Fog-Leader (sections), and 104MB in Fog-Leader 

(districts) with applying the data aggregation and compression rate (is 72%). 
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Figure 5.34Estimation of total sensors data size with applying the data aggregation and 
compression techniques 

 
5.4Summary and contributions 

 

In this Chapter, we had a deep study of all phases of the Data Acquisition block (including data 

collection, data filtering, data quality, and data description). We got information about the main 

definition, responsibility, benefits, and challenges of each phase. Finally, we conclude that there is 

not any complete model in the F2C scenario at Smart City to show the data acquisition block 

actions.  

Then, we illustrated the Data Acquisition block through our F2C data management 

architecture. The Data Acquisition block covers with different phases which are data collection, 

data filtering (including data cleaning, data aggregation, and data compression), data quality, and 

data description. In addition, we showed data collection phase is mostly done in Fog-Layer-1 (at 

Edge-Data-Sources terms). However, the data collection phase is able to organize at Fog-Layer-2 

(with medium performance level) and cloud layer (with minimum performance level). All other 

phases in the Data Acquisition block (including data filtering, data quality, and data description) 

can be also handled from the Fog-Layer-1 (some basic actions) and Fog-Layer-2 (more 

sophisticated actions), tothe cloud (advanced actions). 

Next, we focused on the data collection phase. So, we estimated that the total sensors data 

collected numbers (including current and future sensors data through Sentilo platform) in the city 

of Barcelona. So, we concluded the Sentilo platform (in Barcelona) generated almost 0.0154 GB 

(15,446,712 byte) sensors data in the current situation and 8 GB (8,583,503,168) per day sensors 

data in the future situation (with full coverage of sensors). In addition, we extended the type of 

information for the future Smart City of Barcelona. We estimated that 272562.457 GB data per 
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day (including 5.381GB of water data, 0.771 GB for mobile applications data, 272,550.960 GB for 

camera surveillance data, and 5,345 GB for vehicular mobility data) will be added to the future 

data collection in Barcelona city. 

Then, we proposed some filtering techniques (data aggregation and data compression) through 

the data filtering phase in our F2C data management architecture. So, in the case of Barcelona 

Smart City we have shown by applying redundant data elimination that, in some cases, the data 

reduction rate reaches 75%. Additionally, by applying data compression, the data reduction rate 

increases to up to 78%. Finally, we have explored that the total efficiency rate, by applying both 

redundant data elimination and data compression, moves to almost 92%, in some cases. Although 

many other data aggregation techniques could be easily applied in this architecture, these two 

basic techniques are enough to illustrate the facility and effectiveness of such optimizations in our 

model. 

We have listed the main contributions of this Chapter as shown in below: 

 To make the survey about the data acquisition block and related phases (including 

definition, related works, challenges, and responsibilities) in any scenario. 

  To illustrate data acquisition block and their phases through F2C data management 

architecture [206-208]. 

 To calculate the current sensors data production through Sentilo platform in the Smart 

City of Barcelona[209]. 

 To estimate the future sensors data production through Sentilo platform in the Smart 

City of Barcelona[209]. 

 To estimate the future data production (with more category of information) in the Smart 

City of Barcelona. 

 We have shown the facility and effectiveness of applying some data filtering techniques  

(including data aggregation and compression) through the collected data in the 

Barcelona Smart City [206, 207]. 

 To show the efficiency rate after applying the redundant data elimination and data 

compression techniques in the Smart City of Barcelona [206, 207]. 

The data acquisition block (through our F2C data management architecture) can provide some 

desirable advantages as described in below: 

 Organizing and managing the data collection phase in the Smart City. 

 Providing some data filtering facility (such as redundant data elimination techniques) 

for the collected data in the Smart City. 

 Appraising the data quality for the collected data in the Smart City. 

file:///F:/Final%20PhD/PhD/in%23_ENREF_206
file:///F:/Final%20PhD/PhD/in%23_ENREF_206
file:///F:/Final%20PhD/PhD/in%23_ENREF_207
file:///F:/Final%20PhD/PhD/in%23_ENREF_206
file:///F:/Final%20PhD/PhD/in%23_ENREF_207
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 Describing the collected data (including the production time, ownership, and etc.) for 

the future use in the Smart City. 

 Providing compressing techniques to compact the size of the collected data over the 

network communications in the hierarchal distributed environment at Smart City. 

 Enabling fast real-time access. 

 Providing traffic reduction at different level of distributed hierarchal architecture. 

 Having a better level of data quality by applying data filtering techniques. 

We proposed some publications for this Chapter in the reputable venues which can be sorted in 

the below: 

 A.Sinaeepourfard, J.Garcia, X.Masip-Bruin, E.Marín-Tordera, "Estimating Smart City 

Sensors Data generation and Future Data in the City of Barcelona", in IFIP Med-Hoc-

Net 2016, Vilanova i la Geltrú, Barcelona, Spain, June 2016.  

 A.Sinaeepourfard, J.Garcia, X.Masip-Bruin, E.Marín-Tordera, X.Yin, C.Wang,  "A 

Data LifeCycle Model for Smart Cities", IEEE conference on ICTC 2016, Korea, 

October 2016. 

 A.Sinaeepourfard, J.Garcia, X.Masip-Bruin, E.Marín-Tordera,"A Novel Architecture 

for Efficient Fog to Cloud Data Management in Smart Cities", IEEE ICDCS 2017, 

Atlanta, USA, June 2017. 

 A.Sinaeepourfard, J.Garcia, X.Masip-Bruin, E.Marín-Tordera,"Fog to Cloud Data 

Management in Smart Cities", IEEE FTC 2017, Vancouver, Canada, November 2017. 
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The Data Preservation Block 
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Digital information is generated constantly with an abundant of big data scenarios (such as 

smart cities) every moment around the world. This vast number of generated data must be 

recorded in data repositories for any future usage. Therefore, we can conclude that data 

preservation is a key in today´s information century [210]. In addition, cloud computing generally 

provides a variety and an unlimited amount of resources (through their data centers) to handle all 

the preservation requirements in any scenario (such as smart cities).  

In our view, the Data Preservation block is the responsible for data storage and the performance 

of any eventual action related to data curation or data classification. This data is ready for future 

dissemination, or for further processing. 

In this Chapter, we aim to present the following concepts: In section 6.1, we described the 

phases in the Data Preservation block. And, we say about all definition, state of the art, and 

challenges of each phase. In Section 6.2, we go beyond to the Data Preservation block in F2C. 

Then, we introduce the proposal of all phases in the Data Preservation block (including data 

classification, data storage, and data description). In section 6.3, we illustrate the data preservation 

block in the Barcelona Smart City. In Section 6.4 section, we estimated the number of the stored 

data in each data storage levels (from Fog area and sections to districts). Finally, we conclude the 

main contributions of this Chapter.  

 
6.1 Phases in the Data Preservation Block 

 
Digital information is generated constantly with abundant big data scenarios (like smart cities) 

around the worldwide in every moment. This huge number of generated data must be recorded in 

data repositories for any future usage. Therefore, we can conclude that data preservation is a key 

in this information century[210]. In addition, normally cloud computing provides varieties and 

unlimited resources (through their data centers) to handle all preservation requirements in any 

scenario (like smart cities). 

In our view, the Data Preservation block is the responsible for data storage and performing any 

eventual action related to data curation or data classification. This data is ready for future 

publication or dissemination, or for further processing. 

Figure 6.1 depicts that Data Preservation block comes with three main phases; Data 

Classification, Data Archive, and Data Dissemination. Related phases will be explained in details 

in the following sections. 

 

Figure 6.1 Phases in the Data Preservation Block 
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Main objectives of this block to be discussed are the following: 

 To classify and sort all received data before storing time. 

 To store data for the permanent and temporary reasons. 

 To publish data for further usage by end-users and provide an effective interface to 

facilitate data access. 

 

6.1.1 The Data Classification phase 

The Data Classification phase is the first phase of the Data Preservation block (as shown in 

Figure 6.2). This will be discussed in more details in the following subsections. 

 

Figure 6.2 The Data Classification phase in the Data Preservation Block 

 

6.1.1.1 Definition 

Data Classification provides an efficient organization for storing data. Generally, data 

classification follows by a specific standard (including a manual or systematic standard). Mainly 

this standard provides some facility to indicate data properties, data valuation and etc. There are 

existing work related to this, where the author has attempted to organize data in regards to their 

value (data valuation) to be stored in exact performance level storage devices [211]. In this work, 

the author created a method which links the business and storage infrastructure together. 

Therefore, this link can classify stored data by determining of their value. 

 

6.1.1.2 State of the art 

There is a different view to classify data for storing time. First, there is some related work 

which the author tries to organize data regarding their value (data valuation) to be stored in exact 

performance level storage devices [211]. In this work, the author made such a kind of a bridge 

method to create link between business and storage infrastructure. Therefore, this bridge can 

classify data stored data by determination of their value. The author has also mentioned that data 

valuation can be categorized into two main categories: i) File level: The file system represents the 

data which is processes granularity in the business server; ii) A large storage: block-based solution 

handles all the operations (including backup, restore, and etc.) instead of file based in datacenter. 

This paper depicts several related techniques to handle data classification through file level-based 
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or block-based solutions. Second, in another view, as we discussed in the previous chapter, there is 

a specific type of metadata which is able to attach more information about the published data 

(including the name of the data set, the unique identity, publisher, publisher organization, 

publishing time, and the link for accessing the data). Therefore, in [190] gave a particular example 

to show that this metadata provides facility to connect to the data by the following link: i) direct 

access to data (e.g. local open data platform); ii) accessing data after following user authorization 

(e.g. quasi-sensitive data and private cloud store); iii) indirect access to data (e.g. connecting to 

another open data platforms in other Smart City through your open data platform in your Smart 

City).  Indeed, the author (with focus on cloud computing environment) [212] mentioned that a 

variable data classification index has been set to classify stored data in cloud servers. The 

proposed index is able to determine the value of this index dynamically according to the 

specifications of stored data. In addition, the index utilizes three main parameters which are data 

confidentiality, data integrity, and data availability. 

In our view, some additional descriptive information could be also attached to this data related 

to the archiving policies, such as access permissions, privacy, expiry time, or sharing, use and 

reuse capabilities. In this phase, data provenance or data versioning could be considered. 

 

6.1.1.3 Objectives and challenges of an effective Data Classification phase 

According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data classification phase as part of a data management architecture. 

Some of these challenges, such as those associated with the automatic data valuation (as a concept 

of organizing data classification automatically), are out of the scope of this research thesis. The 

main objectives and challenges are the following: 

 Making an efficient classification data methods for indexing and searching the data. 

 Design an appropriate criteria (as following manual or systematic standard) for data 

classification (including data valuation, data properties and etc.) 

 Classifying and organizing data before storing, according to the city’s requirements and 

the business model. 

 Classifying the stored data (including new and old data) with some specific criteria 

(such as data production time) to ease of keeping track of their location according to the 

age (just collected, least recent, and historical) 

 Adding some additional metadata regarding storage, such as expiry time, usage and 

reuse capabilities, security level, and so on. 

 Implementing the corresponding management techniques in order to implement any 

data versioning, data lineage or data provenance. 
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 Data classification can get helps to increase the efficiency of data protection procedure 

and decrease energy consumption with eliminating any further unnecessary process in 

future. 

 To aim to organize and prepare data for efficient storage, by applying some 

optimization, such as classification, arrangement, compression, etc. 

 To classify data with specific standard which is mostly related to the value of data. 

 Create and manage the preservation metadata to describe process and preservation 

actions for digital objects. 

 These objectives contribute in simplifying the data challenges of : 

o Data Volume, because huge numbers of the data stored can be organized for 

any future use by applying the data classification techniques.  

o Data Variety, because the huge different type of the stored day can be 

categorized for any future use in the storages by demonstrating the data 

classification techniques. 

o Data Velocity, defining the specific criteria (in the data classification) can be 

quickly helped to organize the high-speed rate of the data creation at storing 

data over time. 

o Data Variability, providing the specific policies (in the data classification) can 

be efficiently helped to manage the different version of the produced data at 

storing data over time. 

Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the objectives and challenges listed above. We just show how easy and efficient is 

applying anF2C object store service model to store data in the distributed environments. This will 

be described and discussed in subsection 6.2. 

 

6.1.2The Data Archive phase 

The Data Archive phase is coming after Data Classification phase as shown in Figure 6.3. We 

will present more details about this phase as the following subsections. 

 

Figure 6.3 The Data Archive phase in the Data Preservation Block 
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6.1.2.1 Definition 

The digital preservation (archiving) means to save digital data for future access and usage 

regarding the user demands. There is some important parameters (such as robustness, safe, secure, 

and etc.) to have better performance for the archiving digital information. In addition, life time 

parameter plays an important role in the digital preservation. Currently, there is some view about 

distributed digital preservation which it goes beyond how digital data must be saved in the 

distributed storages over the network in any scenario.  

 

6.1.2.2 State of the art 

In[210], the author mentioned that digital preservation can be categorized in three different 

categories as shown as below : 

 Short-term preservation: This type of information is valid and accessible with a defined 

period of time (because of changes in technology) in fact. 

 Medium-term preservation: This type of information is valid and accessible beyond 

changes in technologies but it does not consider for the indefinite access.  

 Long-term preservation: This type of information is valid and accessible without any 

specific limitation. 

Plus, the same author ([210]) believes that digital preservation must provide: i) reliable devices 

for stored data; ii) Make a backup copy for data corruption; iii) Preserving Metadata. In particular, 

preserving metadata plays an important role for data archive. In addition, the metadata archives 

present the archived features resources for future usage. 

In [213], author proposed that file system prepare some specific procedure for data archive 

which is able to store, retrieve, and update data. So, this procedure can be handled the available 

space on the device(s) which contain it.  In addition, distributed file system (DFS) is kind of 

centralized view to handle file system beyond storing data infrastructure. In addition, the different 

type of distributed file system are Lustre, Kosmos, Hadoop, Google file system and etc. And then, 

other author mentioned that different type of file system can be seen in cloud computing 

environment which is distributed and parallel databases, cloud data serving systems, and data 

freshness[214]. 

Recently, an author proposed an object store service for a Fog/Edge computing infrastructure 

based on IPFS and Scale-out NAS[191]. The author used two different protocol to depict an object 

store service in Fog/Edge computing. The first proposed model is designed under IPFS 

(InterPlanetary File System) storage system. This model showed how data will be stored in the 

Edge of the network. Plus, this model used two famous protocols for scaling a large number of 

nodes (including Kademlia DHT and BitTorrent protocol). The DHT is a place for metadata 

management and object location access in IPFS at the edge of the network and is allocated in Fog 

computing node (which is on top of Edge nodes). Regarding the author’s argument, this model has 
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some challenges to read an object stored data locally through accessing the DHT in terms of 

accessing time and reading data from local data stored. Therefore, the second model is proposed to 

coupling IPFS and Scale-Out NAS systems. This model is kind of extension of a previous model 

for a large number of nodes. The idea provides the facility for each IPFS node of one site to access 

data stored by others nodes at the same time as shown in Figure 6.4. 

 

Figure 6.4 Coupling IPFS and Scale-Out NAS systems[191] 

 

6.1.2.3 Objectives and challenges of an effective Data Archive phase 

According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data archive phase as part of a data management architecture. The 

main objectives and challenges are the following: 

 Providing the reliable, secure and accessible platform to store all produced data for long 

term preservation objectives in the city. 

 Storing (large sets of) data collected and processed in the city. Data will be stored in 

temporal sites, distributed along the city, and a selection of data (aggregated) will be 

permanently stored in the cloud. 

 Organizing files and directories, and keeping track of which areas of the media belong 

to which file and which are not being used as the file system. 

 Providing efficient access to data depending on their age (including real-time, least 

recent, and historical data) for short-, medium- and long-term archiving of large 

volumes of digital resources in the digital repositories. 

 The repository architecture enables replacement and continuous upgrades of individual 

system components (subsystems, filesystems etc.) following the emergence of new 

technologies. 
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 This phase is responsible for the long term preservation, but also responsible for some 

additional tasks, such as data cleaning according to the corresponding expiry time, or 

implementing other business related policies. 

 These objectives contribute in simplifying the data challenges of : 

o Data Volume: Huge numbers of data are generated in the city. There are many 

challenges and difficulties to save efficiently the produced data (in terms of 

real-time, least recent, and historical data) in the distributed environments. 

o Data Velocity: Data is growing fast. So, the frequency of update, accessing data 

(such as real-time), and scalability are challenging concepts through distributed 

environments. 

Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the objectives and challenges listed above. We just depict how fast and useful is to 

store data through an F2C object store service model in the distributed environments. This will be 

described and discussed in subsection 6.2. 

 

6.1.3The Data Dissemination phase 

The Data Dissemination phase is the last phase in the Data Preservation Block. This phase will 

be explained in more details in the next subsections. 

 

Figure 6.5 The Data Dissemination phase in the Data Preservation Block 

 

6.1.3.1 Definition 

This phase is able to provide the facility for end-users to look forward to the produced data 

regarding their demands. In general view, the file system creates an Application Programming 

Interface (API) to get helps to end-users to save and access data over distributed storage devices 

and provide storage location transparency as well. Recently, distributed file system (DFS) build a 

specific mechanism (including the logical view of directories and files) to look for required data 

without any information about physical resides of data in the network [215]. In addition, 

distributed file systems are reported by several advantages for data disseminations which are listed 

as below: 

 Centralized view but distributed over networks. 

 Easing of update and open any file on any machine on the network. 
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 Ability to backups and centralized management. 

 Some additional facilities such as user mobility, location transparency, location 

independence and etc. 

 

6.1.3.2 State of the art 

In [216], author mentioned that distributed file system can be demonstrated with Stand-alone 

DFS Name Space (\\ServerName\RootName) and Domain-based Namespace 

(\\DomainName\RootName). The point is that the first model includes the name of the server 

name in the path but the last one starts with the domain name in the path. In addition, in Smart 

City environment, the author mentioned that CKAN is a great solution for disseminating data in 

open data platform [190]. In addition, In [217], they mentioned that the naming strategy is 

presented in distributed environments. This strategy has three main components (including 

certification, hashing, and identification) which provide facility to manage resources in the 

distributed environments. The certification is responsible to register any connected device to the 

distributed architecture. The Hash table is able to follow the naming scheme protocol for the 

distributed environment to store the name of devices into the table. Indeed, the identification gets 

help to the hash table to find the hash value of devices in the distributed environment. Finally, 

[191] said that an object store service model provides facility to manage the data location in an 

object store. So, the management of data location proposed by “write” and “read” scheme. 

In our view, this phase is the natural interface with the end-user for stored data. Additionally, 

this data can also be considered for processing, as part of the Data Processing block. 

 

6.1.3.3 Objectives and challenges of an effective Data Dissemination phase 

According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data dissemination phase as part of a data management architecture. 

The main objectives and challenges are the following: 

 Creating an efficient and flexible interface to get help to the users for accessing to the 

stored data in the distributed environments. 

 Data is distributed across the network. So, managing data (across the distributed 

network) provides some splendid facility for keeping track of their data location 

according to their data production time. 

 Providing and managing the access permissions, privacy, expiry time, or sharing, use 

and reuse capabilities 

 Designing a set of policies for the data expiry and life time in the distributed system. / 

Having a specific sharing policy for the distributed system 
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 These objectives contribute in simplifying the data challenges of : 

o Data Volume, because huge numbers of the data stored can be shared for any 

future use.  

o Data Variety, because the huge different type of the stored day can be 

accessible to the users. 

Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the objectives and challenges listed above. We will explain how easy it is to find 

the data in the distribute environments through an F2C object store service model to store data. 

This will be described and discussed in subsection 6.2. 

 

6.2The Data Preservation Block in F2CSmart City 
 

As shown in the previous Chapter, there are a huge number of data production over times in 

smart cities. In addition, F2C makes facility to provide real-time, least-recent, and historical data 

for data stakeholders. So, the Data Preservation block (through the F2C data management 

architecture) must be able to manage all complexity of the high data production (including real-

time, least-recent, and historical data). All above information highlighted that it is necessary to 

organize the complex system (including addressing data and sources, writing data, searching data, 

and etc.) of the Data Preservation block in F2C with an efficient interface. This interface must be 

able to get access to different data types in terms of time dimension (including real-time, last-

recent, and historical data). Plus, the interface must have possibility to find the appropriate data for 

the end-users.  

The F2C data management architecture can handle all phases of the Data Preservation block 

from Fog to cloud scenario. As shown in Figure 6.6, the Fog-Layer-1 covers with low capacity of 

resources to manage all phases in the Data Preservation block (including data classification, data 

archive, and data dissemination). And then, Fog-Layer-2 has more resources to organize all phases 

in the data preservation block. Indeed, cloud prepares the highest level of data sources (with 

almost unlimited resources) for all the related phases in the Data Preservation block. 

As shown in Figure 6.6, the light color of all phases are presented that the data actions 

(including data classification, data archive, and data dissemination) in the minimum progress at 

that layer. Oppositely, the dark color of all phases are showed that the data actions (including data 

classification, data archive, and data dissemination) in the maximum progress at that layer. 
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Figure 6.6 Description Scenario of Data Preservation Block 

In general terms, the data preservation block in the F2C architecture is the responsible of two 

main tasks: 

 Managing the storage of the collected data through the different hierarchy layer, and 

 Providing an efficient interface for the data usage, by maintaining the appropriate directory 

structures, and providing a flexible access interface according to the smart city applications 

requirements. This is named the F2C object Store Service model 

These two main tasks are described in the following subsections. 

 

6.2.1The F2C data storage architecture 

In Figure 6.7, we illustrate that there are different level of the data storage in F2C as shown in 

below: 

 Data storages in Fog-Devices (at Fog-Layer-1); 

 Data storages in Fog-Leader (at Fog-Layer-2); 

 Data storages in data centers (at cloud layer). 
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In fact, each layer has different capacity to store data in F2C. So, the data storage capacities are 

in the minimum level at Fog-Devices. And, the capacity of the data storages are getting more in 

the Fog-Leader at Fog-Layer-2. Finally, the capacity of the data storages are almost in the 

unlimited size in the data centers at cloud layer. 

The F2C data management architecture make further facility to organize the frequency of 

update for the stored data (from fog layers to cloud). It means that each produce data will able to 

move to the upper layer after some specific time slots. The time slots can follow the business 

requirements and city managers policies. 
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Figure 6.7 Data Storage level in the F2C data management architecture 

The real-time data generate in Fog-Layer-1 which are closest data to the physical devices and 

users in the smart cities. Plus, the real-time data is able to move to the upper layer (in Fog-Layer-

2) after some defined time by the city managers. The available data (in Fog-Layer-2) is namely 

called least-recent data. Similarly, the least-recent data (at Fog-Layer-2) will pass to highest level 

(cloud layer) after some defined time by the city managers. The cloud data consider as historical 

data. 
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F2C data management architecture provides facility to get access to different level of the stored 

data (including real-time, least-recent, and historical data) from fog to cloud environments. If a 

specific (or critical) data is required at real-time from a close location, it is obtained from the 

source (distributed); however if more complete data set is required, probably least recent, it is 

obtained from upper levels (thus with higher capacities). In addition, if the complete history of 

data is requested, probably historical data, it is available in more centralized nodes at top layer. 

Therefore, we realize that different type of the stored data can be reachable in the different layers 

of F2C as shown in below: 

 Fog-Layer-1: 

o Fog-Device: As shown in Figure 6.8, the Fog-Devices is responsible to real-time 

data.  

 Fog-Layer-2: 

o Fog-Leader: As shown in Figure 6.8, the Fog-Leader has the last-recent data. 

 Cloud: 

o Cloud storages: As shown in Figure 6.8, the cloud storages provide the historical 

data. 
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Figure 6.8Different types of the stored data in the F2C data management architecture 

 

6.2.2 TheF2C object Store Service model 

The F2C data management architecture follows Content Delivery Network (CDN) to put name 

for the stored data in the distributed environment. In the CDN naming, the data will be stored and 

called by their name. So, we define three dimension for the stored data which are location, time, 

and type of information. Indeed, we are able to call and search the request data with this three 

parameters in distributed hierarchal storages (including Fog-Device, Fog-Leader, and cloud 

environments). 

The object store service model aims to manage the data location in an object store. So, the 

management of data location goes beyond two main concepts which are “write” and “read”. In one 

hand, write concepts present part of an object store service model to depict how data will be stored 

in F2C model which we say more details in this section. On the other hand, read concepts 

introduce (as another part of an object store service) how data will be existed in our hierarchal 

distributed model through F2C computing which we give more details about this part in the last 

chapter. 
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In this section, we describe our scenario for the hierarchal distributed object store service 

model through F2C computing. And then, we have focus about write part at Fog-Layer-1, Fog-

Layer-2, and cloud computing as show in below subsection. 

 

6.2.2.1 Description scenario 

As we mentioned before, DHT makes facility to save address of the information of connected 

devices in the related hash tables. So, our scenario has two main objects which is defined as shown 

as below:  

 Client: The client is someone or device which requests to save or read information in a 

specific Edge-Data-Sources layer; 

 DHT (Distributed Hash Table): DHT is responsible to metadata management and Hash 

table of our scenario. So, in case the data is not available in the requested node, the 

DHT goes to other related hierarchal distributed DHT to find the address of the data. 

Indeed, if we do not find the data, we send a message (like “not found”) to the user. 

In our scenario as shown in Figure 6.9, DHT is located in all Fog-Devices (Fog-Layer-1), Fog–

Leaders (in Fog-Layer-2), and cloud layer. The idea is that DHT (in cloud) will be updated by all 

below DHT in our hierarchal distributed model (including Fog-Devices, and Fog-Leaders) 

frequently. The frequent update schedule is depend on the business requirement and city managers 

policies. 
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Figure 6.9 The object Store Service model for F2C computing model 

As we mentioned on top, DHT is responsible to all metadata and Hash tables of our data in the 

F2C model. So, in this case we have different cases as shown as below: 

 Current device (like  a specific sensor) willing to store some information in the 

distributed environment; 

  A new device (like a new sensor) aims to join to the closest Fog-Device to write their 

produced data in F2C architecture; 

 A new Fog-Device (including with the specific device) tries to send the generated data 

in the F2C architecture. 

All above different situation will be described in the following subsections as shown in below: 
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6.2.2.2 Write by a current sensor to the Fog-Device 

The first case is that there is a current sensor in our network which is already registered in our 

F2C data management architecture (in particular in DHT). And, the sensor generates some data to 

store in the nearest hierarchal distributed storage (in particular nearest Fog-Device) through the 

F2C data management architecture. Therefore, as shown in Figure 6.10, data will be sent to the 

nearest Fog-Device layer to store in the particular storage at this Fog-Device. So, the generated 

data will be stored in the Fog-Device and then the metadata information will be saved in the DHT 

at Fog-Layer-1 for future usage. Finally, all upper hash table will be update frequently with this 

new table of the DHT at Fog-Layer-1. Similarly, the stored data will be sent to upper storage 

layers (including Fog-Layer-2, and cloud) regarding the frequency of our update schedule. 

 

HT-2

Cloud Layer

Fog-Leader-1

Fog-Area-1

Fog Device

Edge Data Sources

Fog-Layer-1

Fog-Layer-2

HT-3

HT-1

Time

F2C Layers

C

S

 

Figure 6.10 Writing schema by a current sensor to the Fog-Device 

 

6.2.2.3 Write by a new sensor to current Fog device 

The next case is that a new sensor (as a physical device) wants to register to the F2C data 

management architecture as shown in Figure 6.11. In this case, first the sensor will be joined to the 

closest Fog-Device. And, the sensor will be registered their device information into the DHT of 

Fog-Device. Additionally, all upper DHT will be updated with this new information after some 

particular time. After all this procedure, the new sensor is able to save the produced data in the 

F2C data management architecture (like the previous procedure as shown in Figure 6.10). 
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Figure 6.11 Writing schema by a new sensor to current Fog device 

 

6.2.2.4 Write by a new Fog device to Fog-Layer-1 

Similarly, as shown in Figure 6.12, if a new Fog-Device requests to join to the F2C data 

management architecture, first the Fog-Device must be sent the their hash table information to the 

closest hash table in Fog-Layer-2. Additionally, the DHT (in cloud layer) will be updated by DHT 

in Fog-Layer-2 as a specific update time. Indeed, if any data stored in this Fog-Device, the stored 

data can be transferred to the storages of the Fog-Layer-2 layer (and then the cloud) regarding the 

update policy of the F2C data management architecture. 
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Figure 6.12 Writing schema by a new Fog device to Fog-Layer-1 

 
6.3Experimental results: Estimating data preservation in Barcelona 

 
In this section, first we describe our scenario in real Barcelona Smart City. Then, we calculate 

the data storage size in F2C (including the minimum, maximum, and total data storage capacity in 

F2C). And then, we argue about the discussion of the result. 

 

6.3.1Scenario Description 

In particular data archive phase in Barcelona, we depicted that there is different level of storage 

at Fog-Device, Fog-Leader for the sections of Barcelona (in Fog-Layer-2), Fog-Leader for the 

districts of Barcelona (in Fog-Layer-3), and cloud as shown in Figure 6.13. In addition, each layer 

transfers archived data from down to up at the specific defined time (as frequency of update). So, 

the different layers of data storage can be listed in below: 

 Fog-Layer-1: 

o Fog-Device: is responsible to real-time data.  

 Fog-Layer-2: 

o Fog-Leader: has last-recent data (related to the sections of Barcelona). 
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 Fog-Layer-3: 

o Fog-Leader: has last-recent data (related to the districts of Barcelona). 

 Cloud layer: puts all historical data in their storage environment for any future usage. 
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Figure 6.13 Data Storage level in Barcelona through F2C 

 

6.3.2 Estimating Data Storage Size in F2C 

As we described in the previous Chapter, we calculated the number of the sensors data 

production in Barcelona Smart City. So, we show total amount of the data production for each 

category of information (per day) in Barcelona Smart City as shown blow: 
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  Energy monitoring category: 2,390,344,704 byte per day. 

  Noise monitoring category:  641,280,000 byte per day. 

  Garbage Collection category: 360,000,000 byte per day. 

  Parking Spot monitoring category: 320,000,000 byte per day. 

  Urban Lab monitoring category: 4,723,200,000 byte per day. 

 Therefore, this amount of produced data must be saved in the different storage layers in the 

city of Barcelona as shown in Figure 6.13 as shown more details in below. 

In this section, we aim to show how much size of our storage at minimum and maximum size 

in different F2C layers from fog to cloud. And then, we will show how much the total size of the 

data in the different storages at F2C layers. Therefore, this section is organized as follow: first, we 

present our methodologies. Second, we show our results. And finally, we discuss about the results. 

 

6.3.2.1 Methodologies 

In this subsection, we present our methodologies for how we estimate the minimum and 

maximum and total size of the storage in F2C layers as shown in below: 

1- Estimation of the maximum and minimum data size in the data storage at F2C layers: 

We will appraise that the minimum and maximum data size in the data storage at F2C layers. In 

this way, first we will use the data type with the lowest and highest data production rate. And 

then, we will take the data type with the lowest and highest data aggregation rate. 

2- Estimation of the total produced data in the data storage at F2C layers: 

In the previous Chapter, we estimated the total data production numbers. So, the total data 

production numbers must be saved in each layer of F2C (including Fog-Devices, Fog-Leaders 

and cloud).  

3- Estimation of the data storage efficiency: 

As we talk above, we aim to calculate the capacity of the data storage after applying some 

optimization techniques (such as data aggregation). So, in this case we will present the data 

storage efficiency rate with respect the data aggregation efficiency rate (as shown in Chapter 5). 

Therefore, in this section we depict that how much data will be stored in different situation (the 

normal data volume, the aggregated data volume, the aggregated and compressed data volume) 

at F2C layers.  

 

6.3.2.2 Results 

All below figures in this section follows: the data will be produced by a sensor and then sent to 

the related Fog-Device which has capability to store the sensor data. And then, Fog-Device will 
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send the data to the related Fog-Leader (section) in Fog-Layer-2. Similarly, the Fog-Leader 

(section) will send the data to the related Fog-Leader (district) in Fog-Layer-3. Finally, all districts 

data will be sent to the data centers in the cloud.  

As shown in Figure 6.14, we aim to estimate the minimum data storage size (in terms of the 

lowest data production rate and highest data aggregation rate) at F2C layers. So, we selected the 

noise (first type) data type which has the minimum data production rate among all sensors data in 

Barcelona city (as shown in Figure 5.30). In addition, we chose the “Les Corts” district as a 

district with minimum sections in the city (as shown in Table 5.3).   

Figure 6.14 highlighted the produced data (by a noise sensor) is 768 byte per day. This amount 

of data (orange color) transferred to the Fog-Device storage. Fog Device storage is able to follow 

the data aggregation techniques to reduce the size of the data to the 192 byte per day (blue color). 

Further, the aggregated data can be compressed to reach to the 150 byte per day (gray color). 

Similarly, we have 105,216 (normal data volume), 26,304 (aggregated data volume), and 20,517 

(aggregated and compressed data volume) byte data in the Fog-Leader (sections) at Fog-layer-2. 

Additionally, we stored 311,040 (normal data volume), 77,760 (aggregated data volume), and 

60,653 (aggregated and compressed data volume) byte data in the Fog-Leader (districts) at Fog-

layer-3. Indeed, the all stored data (with same size) will be transferred to the data centers in the 

cloud. 

 

Figure 6.14Estimation of data storage size for the Noise I data type (Noise Category) 
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As shown in Figure 6.15, we aim to appraise the maximum data storage size (in terms of the 

highest data production rate and the minimum data aggregation rate) at F2C layers. So, we chose 

the traffic data type which is in the urban lab category as minimum data production rate among all 

sensors data in Barcelona city (as shown in Figure 5.30). In addition, we selected the “Nou Barris” 

district as a district with maximum sections in the city (as shown in Table 5.3). 

Figure 6.15 depicted the produced data (by a traffic sensor) is 63,360 byte per day. This amount 

of data (orange color) sent to the Fog-Device storage. Fog Device storage can provide the data 

aggregation techniques to reduce the size of the data to the 44,352 byte per day (blue color). In 

addition, the aggregated data can be compressed to reach to the 34,595 byte per day (gray color). 

Similarly, we have almost 35 MB (normal data volume), 25 MB (aggregated data volume), and 19 

MB (aggregated and compressed data volume) byte data in the Fog-Leader (sections) at Fog-layer-

2. Additionally, we saved around453 MB (normal data volume), 317 MB (aggregated data 

volume), and 247 MB (aggregated and compressed data volume) byte data in the Fog-Leader 

(districts) at Fog-layer-3. Indeed, the all stored data (with same size) will be sent to the data 

centers in the cloud. 

 
Figure 6.15Estimation of data storage size for the Traffic data type (Urban Lab Category) 

Now, we aim to estimate the total size of the data storage at F2C layers. As shown in below 

figures in this subsection, each figure shows sending data by normal data pushing (orange color), 

pushing aggregated data (blue color), pushing aggregated and compressed data (green color) 

through  different layers (including Fog-Device, Fog-Leader in Fog-Layer-2), Fog-Leader (inFog-

Layer-3), and cloud layer). 
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 Energy monitoring: 

As shown in Figure 6.16, the storage size for each layer is shown as below: 

o Edge-data-sources layer: this layer generated 2,390MB data per day.  

o Fog-Device layer: this layer stored almost 2,390MB (receiving data), 1,195 MB 

(receiving data and applying data aggregation), 263 MB (receiving data and applying 

data aggregation and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-2): this layer saved 2,391MB (receiving data), 597 MB 

(receiving data and applying data aggregation), 132 MB (receiving data and applying 

data aggregation and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-3): this layer recorded around 2,391 MB (receiving data), 

299 MB (receiving data and applying data aggregation), 66 MB (receiving data and 

applying data aggregation and compression) byte data per day. 

o Cloud layer: this layer received same amount of data from Fog-Leader (in Fog-Layer-3) 

layer. This layer provided almost 2,391 MB (receiving data), 299 MB (receiving data 

and applying data aggregation), 66 MB (receiving data and applying data aggregation 

and compression) byte for saving data per day. 

 

 

Figure 6.16 Estimation of data storage size (Energy Monitoring) 
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 Noise monitoring: 

As shown in Figure 6.17, the total data storage size (including sending data, data with 

aggregation and data with aggregation and compression) for the noise monitoring category 

as shown as below: 

o Edge-data-sources layer: this layer generated 642 MB data per day approximately.  

o Fog-Device layer: this layer saved almost 641 MB (receiving data), 160 MB (receiving 

data and applying data aggregation), 35 MB (receiving data and applying data aggregation 

and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-2): this layer stored around 642 MB (receiving data), 39 MB 

(receiving data and applying data aggregation), 8 MB (receiving data and applying data 

aggregation and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-3): this layer registered641 MB (receiving data), 9 MB 

(receiving data and applying data aggregation), 2 MB (receiving data and applying data 

aggregation and compression) byte data per day. 

o Cloud layer: Similarly, this layer took same amount of data from Fog-Leader (in Fog-

Layer-3) layer. This layer saved641 MB (receiving data), 9 MB(receiving data and 

applying data aggregation), 2 MB (receiving data and applying data aggregation and 

compression) byte for saving data per day. 
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Figure 6.17 Estimation of data storage size (Noise Monitoring) 

 Garbage Collection: 

In Figure 6.18, the garbage collection category must have the specific total data storage 

size (including sending data, data with aggregation and data with aggregation and 

compression) for each layer as shown as below: 

o Edge-data-sources layer: this layer produced 360 MB data per day.  

o Fog-Device layer: this layer stored around 360 MB (receiving data), 108 MB (receiving 

data and applying data aggregation), 24 MB (receiving data and applying data aggregation 

and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-2): this layer saved almost 360 MB (receiving data), 33 MB 

(receiving data and applying data aggregation), 7 MB (receiving data and applying data 

aggregation and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-3): this layer registered 360 MB (receiving data), 9 MB 

(receiving data and applying data aggregation), 2 MB (receiving data and applying data 

aggregation and compression) byte data per day. 

o Cloud layer: this layer received same amount of data for saving in the storage from Fog-

Leader (in Fog-Layer-3) layer. This layer recorded 360 MB (receiving data), 9 MB 

(receiving data and applying data aggregation), 2 MB (receiving data and applying data 

aggregation and compression) byte for saving data per day. 
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Figure 6.18 Estimation of data storage size (Garbage Collection) 

 

 Parking Spot: 

In Figure 6.19, the parking spot category must provide the specific amount of storage size 

for total received data in each layer as shown as below: 

o Edge-data-sources layer: this layer produced 320MB data per day.  

o Fog-Device layer: this layer stored around 320 MB (receiving data), 192 MB (receiving 

data and applying data aggregation), 42 MB (receiving data and applying data 

aggregation and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-2): this layer saved almost 320 MB(receiving data), 116 MB 

(receiving data and applying data aggregation), 26MB (receiving data and applying data 

aggregation and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-3): this layer registered 320 MB (receiving data), 69 MB 

(receiving data and applying data aggregation), 16 MB (receiving data and applying 

data aggregation and compression) byte data per day. 

o Cloud layer: this layer received same amount of data for saving in the storage from 

Fog-Leader (in Fog-Layer-3) layer. This layer recorded 320 MB (receiving data), 69 

MB (receiving data and applying data aggregation), 16 MB (receiving data and 

applying data aggregation and compression) byte for saving data per day. 
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Figure 6.19 Estimation of data storage size (Parking Spot) 

 Urban Lab: 

In Figure 6.20, we must prepare the below total data storage size for the urban category of 

information: 

o Edge-data-sources layer: this layer generated4,723MB data per day.  

o Fog-Device layer: this layer saved 4,723 MB (receiving data), 3,306 MB (receiving 

data and applying data aggregation), 727 MB (receiving data and applying data 

aggregation and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-2): this layer stored4,723 MB (receiving data), 2,318 MB 

(receiving data and applying data aggregation), 510 MB (receiving data and applying 

data aggregation and compression) byte data per day. 

o Fog-Leader (in Fog-Layer-3): this layer recorded4,723 MB (receiving data), 1,623 MB 

(receiving data and applying data aggregation), 357 MB (receiving data and applying 

data aggregation and compression) byte data per day. 

o Cloud layer: this layer recorded same amount of data for storing in the storage from 

Fog-Leader (in Fog-Layer-3) layer. This layer saved around 4,723 MB(receiving data), 

1,623 MB (receiving data and applying data aggregation), 357 MB (receiving data and 

applying data aggregation and compression) byte for saving data per day. 

 

Figure 6.20 Estimation of data storage size (Urban Lab) 
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6.3.3 Discussion of results 

 We observed that the minimum data storage size must be 768 byte at Fog-Device, 

105,216 byte at Fog-Leader (Section), and 311,040 byte per day at Fog-Leader (District) 

in Barcelona Smart City. However, this amount can be organized to move between layers 

through the specific frequency of update in F2C layers. 

 We realize that maximum data storage size must be 63,360 byte at Fog-Device, 35 MB at 

Fog-Leader (Section), and 453 MB at Fog-Leader (District) per day in Barcelona Smart 

City. In addition, this amount can be managed to move between layers through the 

specific frequency of update in F2C layers. 

 The data aggregation and compression techniques can get helps to reduce the amount of 

data in the data storage at each layer of F2C. 

 We estimate that total data storage size in maximum situation (for urban lab category) is 

as shown in below: 

o Fog-Device: 4,723MB data per day in normal data volume generation, 3,306 MB 

data per day (receiving data and applying data aggregation) and727 MB data per 

day (receiving data and applying data aggregation and compression). 

o Fog-Leader (section): 4,723 MB data per day in normal data volume 

generation,2,318 MB data per day (receiving data and applying data aggregation) 

and 510 MB data per day (receiving data and applying data aggregation and 

compression). 

o Fog-Leader (districts): 4,723MB data per day in normal data volume generation, 

1,623 MB data per day (receiving data and applying data aggregation) and357 

MB data per day (receiving data and applying data aggregation and 

compression). 

o Data centers (cloud layer):4,723MB data per day in normal data volume 

generation, 1,623 MB data per day (receiving data and applying data 

aggregation) and357 MB data per day (receiving data and applying data 

aggregation and compression). 

 We realize that total data storage size in minimum situation (for parking spot category) is 

as described in below: 

o Fog-Device: 320 MB data per day in normal data volume generation, 192 MB 

data per day (receiving data and applying data aggregation) and42 MB data per 

day (receiving data and applying data aggregation and compression). 

o Fog-Leader (section): 320 MB data per day in normal data volume generation, 

116 MB data per day (receiving data and applying data aggregation) and26 MB 

data per day (receiving data and applying data aggregation and compression). 
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o Fog-Leader (districts): 320 MB data per day in normal data volume generation, 

69 MB data per day (receiving data and applying data aggregation) and16 MB 

data per day (receiving data and applying data aggregation and compression). 

o Data centers (cloud layer):320 MB data per day in normal data volume 

generation, 69 MB data per day (receiving data and applying data aggregation) 

and16 MB data per day (receiving data and applying data aggregation and 

compression). 

 

6.4Summary and contributions 
 

In this chapter, we make a survey about the Data Preservation block and their related phases 

(including data classification, data storage, and data dissemination). We said about the definitions, 

responsibility, advantages, and challenges each phase. Indeed, we also mentioned that there is no 

any consideration about the Data Preservation block through F2C in Smart City scenario. 

Then, we proposed the Data Preservation block and their related phases through F2C for Smart 

City scenario. We showed that the Fog-Layer-1 is only able to provide the basic level of data 

actions for all phases of the Data Preservation block. Plus, the Fog-Layer-2 is responsible to apply 

more sophisticated data actions for all phases of the Data Preservation block. And then, the cloud 

layer prepares the advanced level of data actions for all phases in this block. 

And, we discussed about data storage levels (at Fog-Devices, Fog-Leader, and cloud), available 

types of the data stored (consisting of real-time, last-recent, and historical data), updating 

mechanism (from down to upper layers), naming mechanism (with respect to CDN), and an object 

stored services (including writing scheme for a current sensors data, a new sensor to current Fog-

Device, a new Fog-Device to Fog-Layer-1) through F2C for the Data Preservation block in Smart 

City. So, all the above discussion got helps to handle the data to classify, store, and disseminate 

through F2C architecture. 

Next, we presented the data storage level in Barcelona Smart City. So, we estimated the 

numbers of data which is saved in Fog-Devices, Fog-Leader (related to the sections of Barcelona), 

and Fog-Leader (related to the districts of Barcelona). And then, we showed the efficiency rate of 

applying data aggregation and data compression techniques through F2C at data storage levels in 

Barcelona. 

We have listed the main contributions of this Chapter as shown in below: 

 To illustrate the Data Preservation block and their related phases to handle the 

preservation system through F2C in the Smart City[138]. 

 To provide facility to store and get access to the real-time, last-recent, and historical 

data through our F2C data management in Smart City. 
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 To present the writing schema for an object store service model (as part of the 

distributed file system) for F2C data management architecture. 

 To show a naming mechanism to get access to the data in the Smart City (including 

three main dimensions which are data type, location, and time). 

 To introduce the updating frequency mechanism to send real-time to upper layer after 

the defined time. 

 To estimate the capacity of the data stored in each layer of F2C data management 

architecture in Barcelona Smart City. 

The data preservation block (through our F2C data management architecture) makes several 

advantages as shown in below: 

 To have access to the real-time, last-recent, and historical data through our F2C data 

management in Smart City. 

 To present the writing schema for an object store service model (as part of the 

distributed file system) for F2C data management architecture. 

 To organize the updating frequency mechanism through city manager policies and 

business models (for real-time, last-recent, and historical data).  

We published different publications for this Chapter in the reputable venues as shown in the 

below: 

 A.Sinaeepourfard, J.Garcia, X.Masip-Bruin, E.Marín-Tordera, X.Yin, C.Wang,  "A Data 

LifeCycle Model for Smart Cities", IEEE conference on ICTC 2016, Korea, October 

2016. 
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The Data Processing Block 
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On one hand, most of the related work mentioned that cloud computing is responsible to handle 

data processing for all collected data in Smart City [152, 159].  On the other hand, fog computing 

provides the facility to demonstrate data processing at any edge layer, according to the 

requirements of the application or service.  

In this Chapter, we aim to present the following concepts: In section 7.1, we show the phases in 

the Data Processing block. We also discuss all definition, state of the art, and objectives of each 

phase. In Section 7.2, we argue about the Data Processing block in F2C. Then, we introduce the 

proposal of all phases in the Data Processing block (including data process and data analysis). In 

section 7.3, we conclude the main contributions of this Chapter.  

 
7.1 Phases in the Data Processing Block 

 
Data Processing block is able to provide a subset of processing techniques to convert raw data 

to information which provides the facility to be used by different services. There are many existing 

references which mention that data processing mainly is acquired in the cloud computing 

environment in different scenarios such as smart cities [152, 159]. 

In our point of view, the Data Processing block is responsible for performing the main big data 

processing, extracting knowledge or generating additional value, through sophisticated data 

analysis techniques. The results of the processed data (higher value data) can be delivered to the 

end users, or stored for future additional data reuse or reprocessing. 

As shown in Figure 7.1, Data Processing block includes with Data Process and Data Analysis 

phases which will each be described below. 

 

Figure 7.1Phases in the Data Processing Block 

The most important objectives of this block, are as shown as below: 

 To provide a set of processes for the raw data to convert the data to meaningful 
information. 

 To get help for any future usage of the processed data by applying some appropriate data 
analysis and analytic techniques. 
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7.1.1 The Data Process phase 

The Data Process phase is the first phase in the Data Processing block as shown in Figure 7.2. 

We will discuss more about this phase as the following sentences. 

 

Figure 7.2 The Data Process phase in the Data Processing Block 

 

7.1.1.1 Definition 

Data process phase must be able to handle a sub set of processes in the system. Those processes 

must be able to cover all user requirements through the related services. In addition, a bunch of 

processing techniques (including parallel processing) must be able to provide such kind of initial 

feeds for several applications. 

 

7.1.1.2 State of the art 

As we mentioned above, many authors highlighted that cloud computing is a place to 

demonstrate data processing for all collected data in any big data environment such as a Smart 

City[152, 159] in one side. On the other side, in [163] said that there are three different types of 

process model which we can apply to any big data environments which are generic processing, 

graph processing, and the stream processing model. In addition, in [190], the author designed the 

BigETL for Smart City data processing to provide a high flexibility for processing different types, 

formats, and sizes of the data. The BigETL consists of multiple data processing systems in its 

underlying layer (supporting Spark, Hive, Linux Shell, SQL Engine, and Python environment). 

In[191], the author proposed an object store service model to read data from edge sources to 

provide data for services. As mentioned in the data preservation block, the author says that there 

are two different protocols to get an object store service (IPFS and Scale-out NAS) from edge to 

fog computing. First, IPFS is able to read the object through local stored data node or metadata 

management in DHT (located in Fog computing). However, there are some challenges to read an 

object with data stored locally through accessing the DHT in terms of accessing time and reading 

data from the local data stored. So, the second model is comprised of the combination of DHT and 

Scale-out NAS. This combination model can handle to read the data from edge to fog node more 

efficiently in terms of traffic and time.  

In our point of view, the Data Process phase provides a set of processes to transform (raw) data 

into more sophisticated data/information. These processes could include one or several internal 

steps, such as preprocessing or post-processing, depending on the particular business 
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requirements. Data considered for processing can be either real-time, just generated, data (from the 

Data Acquisition block), or historical archived data (from the Data Preservation block). The output 

of this phase is considered higher value data, meaning that this data is more mature than the 

original (raw) input data. 

 

7.1.1.3 Objectives and challenges of an effective Data Process phase 

According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data process phase as part of a data management architecture. The 

main objectives and challenges are the following: 

 Performing all data processing required in the application or service to convert raw data 

into some more sophisticated, higher level information, which provide smartness to the 

service. These processes could include one or several internal steps, such as 

preprocessing or post-processing, depending on the particular applications 

requirements. 

 Performing a set of data processing techniques which must be matched with the user 

requirements and business models. 

 These objectives contribute in simplifying the data challenges of : 

o Data Volume, Data Variety, and Data Veracity: because Smart City data 

(comes with abundant heterogeneous sources and data types and formats) 

imposed difficulties for data processing (including data with different level of 

qualities and different types of sensitive information) [190]. 
o Data Value: Grabbing value among large amounts of data by the set of efficient 

processing. 

o Data Velocity: Data is produced quickly. So, applying a set of efficient data 

processing are challenging concepts through distributed environments. 

Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the objectives and challenges listed above. We just present how the services can 

look for the required data(through an F2C object store service model) in F2C layers (traditionally 

most of service developer builds their services and applications through cloud environments). This 

will be described and discussed in subsection 7.2. 

 

7.1.2The Data Analysis phase 

The last phase of the Data Processing block is Data Analysis as shown in Figure 7.3. 
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Figure 7.3 The Data Analysis phase in the Data Processing Block 

 

 

 

7.1.2.1 Definition 

Big data paradigm imposes high speed generation of large amounts of data which we need to 

design data analysis techniques to discover insights of data [218, 219]. In a cloud computing 

environment, data analysis (consisting of different analytical techniques and methods) considers to 

be started their tasks after data processing [218]. 

 

7.1.2.2 State of the art 

There are several study to show the performance of data analysis in different scenarios. In 

cloud computing, there are three main techniques to overcome data analysis which are statistical 

analysis (including specific models for predication and summarizing datasets), data mining 

(consisting of a variety of techniques, clustering, classification, etc., to explore patterns and 

models present in the data), and machine learning (discovering relationships that are present 

within the data) [218]. In addition, [220] mentioned that a huge amount of data can be processed 

over very large clusters through data analysis techniques in cloud computing. Recently, there is 

some effort to handle big data analytics in the fog layer. So, this work proposed that fog engines 

can handle data analytics in the edge of networks [23]. 

In our point of view, the Data Analysis phase is responsible for developing all data analysis and 

data analytics for extracting knowledge and discovering new insights. This phase is the last step in 

the procedure of value generation, and it is usually the natural interface with the end-user. 

Alternatively, this data can also be considered for archiving and stored, as part of the Data 

Preservation block. 

 

7.1.2.3 Objectives and challenges of an effective Data Analysis phase 

According to the reviewed literature, a number of objectives and challenges can be defined in 

order to design an efficient data analysis phase as part of a data management architecture. The 

main objectives and challenges are the following: 
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 Performing all deep data analysis and data analytics algorithms for extracting 

knowledge and discovering new insights. Again, the analysis or analytics processes 

tightly depend on the users’ application or business models. 

 This phase also provides a user interface for accessing the results of data processing of 

an application or service.  

 Providing analysis and analytics techniques to estimate and predict the behavior of the 

systems and datasets. 

 These objectives contribute in simplifying the data challenges of : 

o Data Volume: because the huge number of data must be analyzed in the 

distributed environments. 

o Data Variety: because the efficient data analyses and analytics that must be 

applied to each data have a different type and format.  

o Data Value: Extracting value among the big amount of data through data 

analysis and analytics techniques. 

Our distributed hierarchical F2C data management architecture can effectively include and 

address most of the objectives and challenges listed above. This will be described and discussed in 

subsection 7.2. 

 

7.2The Data Processing Block in F2CSmart City 

 
Data processing can be performed at any F2C layer, according to the requirements of the 

application or service. For instance, critical real-time services will be executed at fog layer 1 in 

order to have a faster access to the (just generated) real-time data. Note that accessing data locally 

inside the boundaries of a fog node is much faster than moving the data to a centralized cloud data 

center and, after, reading these same data from the cloud to the local node. 

Alternatively, deep computing complex applications will be executed at the cloud layer. Note 

that i) in the cloud the computing resources are unlimited and, ii) the data set of a high 

performance computing application will presumably be very large and, therefore, be part of the 

historical data set stored at the cloud layer. Note that in this case, where computation requires very 

high capabilities, adding more latency to the first access to data will not be significant in the 

overall performance. 

For the other applications, they will be executed at the lowest fog layer that provides the 

required computing capabilities and the lowest fog layer that contains the required data set. As a 

general rule, the closer the layer, the faster the responses times. An additional consideration in this 

case is when the required data is not present in the current fog node at layer 1, but can be accessed 

from either a node at a higher layer or a neighbor fog node at the same layer 1. This option may 
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eventually be considered and solved using some sort of cost model to estimate the effects of both 

cases and proceed according to the lowest cost. 

The F2C model provides facilities to organize all phases of the data processing block from the 

fog to the cloud layers as shown in Figure 7.4. We have a bit sophisticated process stage in the 

Fog-Layer-2. And finally, the cloud provides the complete processing stage. 

Fog-Layer-1

Fog-Layer-2

Cloud Layer

Fog-Leader-1

Fog-Area-1
Fog-Area-2

Fog-Area-3

Fog Device

Edge Data Sources

Fog-Leader-2

Fog Device

Edge Data Sources

Fog-Leader-3

Fog Device

Edge Data Sources

Data Processing

Data Processing

Data Processing

 

Figure 7.4 Description Scenario of Data Processing Block 

 

7.2.1 An F2C object Store Service model for F2C computing model 

As we described in the previous chapter, an object store service model is responsible for 

organizing the data location in an object store. So, the read concepts (as part of an object store 

service) provide the facility to find data objects in our hierarchal distributed model through F2C 

computing which will be detailed further in this section. 

As you see in the previous chapter, the scenario is described. So, in this section, we depict our 

reading scheme to find the location of our object through F2C data management architecture. And 

then, we concentrate on how the reading scheme will be handled in each layer of Fog-Layer-1, 

Fog-Layer-2, and cloud computing as shown below. 

 

7.2.1.1 Read the requested data from DHT in Fog-Layer-2 
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As shown in Figure 7.5, the first case is that the client is located in the edge-data-sources layer 

and requests for data to Fog-Layer-2. So, the request will be transferred to Fog-Layer-2. And then, 

the related DHT (of the Fog-Leader-2) looks for the requested data. In this case, the path of stored 

data will be found in the DHT. So, the DHT will find the data in the related data storage. And 

then, the data will be sent to the client.  

HT-2

Cloud Layer

Fog-Leader-1

Fog-Area-1

Fog Device

Edge Data Sources

Fog-Layer-1

Fog-Layer-2

HT-3

HT-1

Time

F2C Layers

 

Figure 7.5Reading schema for an object Store Service model (Fog-Layer-2) 

 

7.2.1.2 Read the requested data from DHT in Cloud 

Again, the client will send a request for collecting data from edge-data-source. This request will 

pass to closet Fog-Layer-2 as shown in Figure 7.6 Then, the request data will not exist in the 

related DHT (in Fog-Layer-2). So, in this case, the message will be transferred to cloud layer. The 

cloud will look for the data in the DHT. Obviously, the cloud can find the path of the requested 

data because the cloud has all data path information in their glossaries. Indeed, the data will be 

found in the related storage and sent to the client. 

In addition, if in case the requested data cannot be found in the cloud layer as shown in Figure 

7.7, the cloud sends a message to the client to say that this data cannot exist in this F2C data 

management architecture. 
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Figure 7.6 Reading schema for an object Store Service model (cloud layer) 
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Figure 7.7 Reading schema for an object Store Service model (Not found in the cloud layer) 
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7.2.1.3 Estimation of reading data through layers of F2C 

There are different ways to connect Edge-Data-Sources, Fog Device, Fog-Leader, and cloud 

components to each other through different types of network communications (including wired 

and wireless connections) regarding the potential of the smart cities. In fact, services will be run 

somewhere in our F2C data management architecture to get their appropriate data for their future 

purposes. So, it is necessary to estimate that network latency rate to find out the suitable path to 

get the data for the services.  

In Figure 7.8, we proposed the different rate of the network latency rate between F2C layers 

(including from edge-data-sources to Fog-device, Fog-device to Fog-Leader, Fog-Leader to cloud 

layer). In fact, network latency shows any kind of delay that acquires in data communication over 

a network. We called the network a low-latency network when we have small rate of delay in our 

network. Otherwise, we say the network has high-latency over their network components.  

We observe that the network latency rate can be considered with the specific rate between 

layers as shown in more detail below. In addition, the base of this proposed network latency rate is 

in[191]: 

 The one-way network latency rate from one node (such as temperature sensor) in the edge-

data-source layer to another node (such as noise sensor) in the edge-data-source layer: 

L(Fog)=10~100ms; 

 The one-way network latency rate from one node in the edge-data-source layer to Fog-

Device layer: L(Fog)=10~100ms; 

 The one-way network latency rate from one Fog-Device layer to Fog-Leader: L(Core) 

=50~100ms; 

 The one-way network latency rate from one Fog-Leader node to cloud layer: L(Cloud) 

=100ms.In addition, this number is variable and unpredictable in most of the times. 
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Figure 7.8The one-way network latency rate in F2C data management architecture. 
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7.3Summary and contributions 
 

In this Chapter, we presented a survey about the Data Processing block and their related phases 

(including data process and data analysis). We discussed in detail about the definitions, state of the 

art, responsibility, advantages, and challenges of each phase.  

We then depicted the Data Processing block and their related phases through F2C for Smart 

City scenario. We showed that the Fog-Layer-1 only covers the basic level of data actions for all 

phases of the Data Processing block. Then, the Fog-Layer-2 is able to handle more sophisticated 

data actions for all phases of the Data Processing block. And, the cloud layer provides the 

advanced level of data actions for all phases in this block. 

Next, we mentioned the main concepts of an F2C object store service model for the reading 

scheme in the Data Processing block. We saw that there are different aspects of the F2C object 

store service model which includes reading data from different layers of the distributed hierarchy 

architecture in the smart cities. We showed all different scheme models by their related pictures in 

the aforementioned sentences. 

Indeed, we introduced the estimation of the reading data through layers of F2C. This means 

that we showed how much network latencies we have in the layers of F2C. However, some of 

these numbers are unpredictable and very dependent on the network communication architectures 

and the urban structure of the city. 

We have listed the main contributions of this Chapter as shown below: 

 We proposed the processing block (including data process, and data analysis phases) for 
F2C data management architecture [208]. 

 We made the survey about definition, state of the art, and challenges for the data 
processing block (including data classification, data storage, and data dissemination 
phases).  

 We generated a reading schema for an object Store Service model (distributed file 
system) for F2C data management architecture. 

 Proposing the one-way network latency rate in the layers of the F2C data management. 

The Data Processing block (through our F2C data management architecture) can provide some 

desirable advantages as described below: 

 There is the possibility to build the different types of services (with real-time, last-

recent, and historical data access) through data processing block in F2C data 

management architecture. 

 Providing an effective interface to get easy access to the related data for the services 

(including three main dimensions which are data type, location, and time). 
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The amount of information to be generated in a smart city (as an example of Big Data 

environment) is very high, but it will be even much higher in a near future. In fact, it is no doubt 

that data is becoming a valuable asset in the recent decades. Hence, the society as a whole is 

encouraged to use this asset for enriching its day-to-day activities, through more efficient and 

smart solutions in the smart cities. Furthermore, the strong data growth rate, the new and high 

demanding data stakeholders, and the new innovations and technologies are ascertaining many 

new challenges and complexities for data life management, from creation to consumption, in terms 

of different data formats always considering the enormous volume of data to be managed in the 

smart cities scenarios.  

In this thesis, we have shown the complexity of data management and highlighted the 

importance of Data LifeCycle (DLC) models as the initial point for designing an efficient and 

comprehensive data management architecture. For this reason, we have initially surveyed most 

existing DLC models proposed to be a high level solution to manage data life from production to 

usage. The result of this evaluation shows that there is no comprehensive DLC model to manage 

the data life from its production up to its consumption in today’s data world. So, we have 

presented the COmprehensive Scenario Agnostic DLC (COSA-DLC) model, and demonstrated its 

completeness with respect to the 6Vs challenges. This model is abstract, as it has not been 

designed for any specific scenario; however, it can be easily adapted to any particular scenario. As 

a follow up of this work, we have adapted the COSA-DLC model to a Smart City scenario with 

complex and flexible data management requirements. The new model has been named the Smart 

City Comprehensive DLC (SCC-DLC) model, and it is the seed of our data management 

architecture design. The advantages of our SCC-DLC model can be summarized as: 

 Can be applied to any Smart Cities scenario easily 

 Covers 6Vs challenges as a widely accepted concept of Big Data 

 Provides a comprehensive model for data management in Smart Cities 

 Gives some clues to developers and managers of Smart Cities to handle their enquiries 

regarding data life and stages (from creation to consumption) 

 Organizing and managing data without any limitation about hardware and software 

 Making facility to have standardization and globalization for the Data management 

model in the Smart Cities. 

 The model considers data during their whole data life cycles, from production to 

consumption and cleaning, including storage and processing. 

 

Next, we have presented a novel architecture for hierarchal distributed data management in 

smart cities based on a distributed hierarchical Fog to Cloud (F2C) resources management system. 

The F2C data management architecture is organized in three main blocks: the data acquisition, the 

data preservation and the data processing. For each block, we have described the main 

functionalities and defined the main objectives and challenges that must be addressed in order to 
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implement them in a smart city scenario. The advantages of this data management architecture are 

numerous, and can be summarized as: 

 This architecture can benefit from the combined advantages of both, the cloud and the 

fog computing technologies, these are high computing and storage capabilities from the 

cloud layer and reduced network traffic and communication latencies from the fog layers.  

 Real-time data accesses are much faster than in a centralized architecture. This higher 

speed is not only due to the reduced communication latencies of proximity, but due to the 

fact that accessing data from a centralized system requires the data to be moved first to 

the cloud, classified and stored there, and then moved back to the edge. So two times data 

transfer through the same path. 

 By reducing the data transmission length, the security risks and the probability of 

communication failure are both reduced and, additionally, privacy can be easily 

enhanced. 

 By having the just collected data available at fog layer 1, the network load is drastically 

reduced because some applications will be able to access these data locally, avoiding 

several remote data accesses through the network. 

 By having the just collected data available at fog layer 1, the transmission to the cloud is 

not urgent and, therefore, it can be delayed without any performance loss. This allows 

additional optimization implementations, such as: 

o Performing some data aggregation techniques to reduce the volume of data to be 

transmitted upwards, without any computational constraint, as data do not need to 

be sent immediately. 

o Adjusting the frequency of the data transmission in order to use the network in 

periods when the traffic load is low. 

 Traditional centralized systems define a low-frequency policy for data collection from 

sensors in order to reduce the total amount of data to be transmitted in the network. By 

having the real-time data available at fog layer 1, the data collection frequency can be 

increased at this level without overloading the network and, therefore, provide more 

precision and accuracy from the sensed data at no additional cost. 

 By defining a distributed storage hierarchy, data can be cached at different layers of the 

architecture and, for this reason, data access times can be easily reduced. 

 In addition, the F2C architecture can manage data according to their initial location, 

which enables exploiting some locality features required in Smart City IoT contexts. 

 From the processing and analytics point of view, this architecture allows a flexible 

interface in order to access the most convenient data for each service or application in an 

IoT context. 

 During processing time, the architecture hierarchy provides an efficient structure that 

allows the application to access the nearest (and therefore fastest) data from the original 

data source. 
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 And finally, thanks to the distributed nature of the F2C data management model, it allows 

performing additional data related optimizations, such as providing high levels of quality, 

keeping high security and privacy standards, as well as reducing the global network 

performance. 

The most obvious advantage is that high computing and storage capabilities from the cloud 

layer can be combined with reduced network traffic and communication latencies from the fog 

layers, while enhancing fault tolerance and security and privacy protection. However, by 

providing such a hierarchical and distributed model, some interesting additional advantages arise: 

 Real-time data accesses are much faster than in a centralized architecture; 

 The network load is drastically reduced because many data can be accessed and used 

locally; 

 Several aggregation techniques can easily be applied to further reduce the volume of data 

to be transferred through the network; 

 The data transmission frequency can be adjusted in order to use the network in periods of 

low traffic; 

 The data collection frequency from sensors can be increased at no additional cost, thus 

allowing higher precision and accuracy. 

 Several efficiency costs can be addressed through a distributed data management, such as 

cleaning useless data, reducing data storage size (eliminating useless data), and etc. 

Finally, we have explored and measured the effectiveness of this architecture by performing 

some analysis and calculation. First, with respect to the Data Acquisition block, we applied two 

basic data aggregation techniques, which are redundant data elimination and data compression, 

and compared to a real cloud based system from the smart city of Barcelona. We have shown that 

by applying redundant data elimination that, in some cases, the data reduction rate reaches 75%. 

Additionally, by applying data compression, the data reduction rate reaches an additional 78%. So 

the total efficiency rate, by applying both redundant data elimination and data compression, moves 

to almost 92%, in some cases. Note that these techniques are some of the most basic data 

aggregation techniques, and have been implemented to show the ease of application of such kind 

of optimizations in our architecture. If more sophisticated and specific techniques were used, then 

the performance would have been still better.  

Second, we estimated the storage capacity at each F2C layer in the smart city of Barcelona, and 

compared it with to a cloud based system. We have shown that the size of total storage capacity 

(in maximum situation) will be reduced from 4,723 MB at Fog-Device (in normal data volume 

generation) to 1,623 MB (by applying data aggregation) and 357 MB at cloud layer (by applying 

both data aggregation and compression). And third, we showed that the one-way network latency 

is around 10 to 100ms among fog layers, and almost unpredictable (most references mentioned to 

100 ms) from fog layers to cloud.  
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As a summary, this thesis presents numerous contributions with respect to other data 

management architectures analyzed so far, and extends the state of the art in the following topics: 

 COmprehensive Scenario Agnostic DLC (COSA-DLC) model:This model is abstract, as 

it has not been designed for any specific scenario; however, it can be easily adapted to 

any particular scenario or science or big data environment, where data complexity has to 

be addressed. In fact, adapting the COSA-DLC model just requires selecting those phases 

that are relevant according to the specific scenario requirements 

 Smart City Comprehensive Data LifeCycle (SCC-DLC) model:A data management 

architecture generated from a comprehensive scenario agnostic model, tailored for the 

particular scenario of Smart Cities. 

 The distributed hierarchical F2C data management architecture provides an interesting 

framework for data management in the context of smart cities, according to our Smart 

City Comprehensive Data LifeCycle (SCC-DLC) model proposal. The Comprehensive 

F2C data management architecture that considers all data life cycles, including three 

main blocks, named the data acquisition, the data processing, and the data preservation. 

Data acquisition is mainly performed at fog layer 1, as well as some basic data processing 

and data preservation actions. The fog layer 2 can enhance the data processing and data 

preservations capabilities of level 1 by providing higher computing capabilities. And 

finally, the cloud layer is the responsible of a more complex and more sophisticated data 

processing over a much broader set of (presumably historical) data, as well as the 

responsible for permanent data preservation.  

 In the data acquisition blockis mainly performed at fog layer 1to collect data from all 

sources and devices in the city. As long as the data are being collected, the following 

phases from the data acquisition block can also be performed at fog layer 1, where a 

reasonable amount of computing resources is available. For instance, the data filtering 

phase can apply filters to remove redundant data and can apply some data aggregation 

techniques to further reduce the amount of data to be managed. Data quality can also be 

implemented at this fog layer, assessing and guaranteeing higher data quality. And data 

description can be performed in order to tag data according to the city business model 

considered. 

 We have shown by applying redundant data elimination that, in some cases, the data 

reduction rate reaches 75%. Additionally, by applying data compression, the data 

reduction rate increases to up to 78%. Finally, we have explored that the total efficiency 

rate, by applying both redundant data elimination and data compression, moves to almost 

92%, in some cases. Although many other data aggregation techniques could be easily 

applied in this architecture, these two techniques are enough to illustrate the facility and 

effectiveness of such optimizations in our model. 
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 Data collected at fog layer 1 will be periodically moved upwards to layer 2, and data 

collected at layer 2 from a set of fog nodes at layer 1 will be combined and periodically 

moved upwards to the cloud level, which will collect the whole data set from the city. 

Note that data al fog layer 1 can be immediately used at this same level (real-time data), 

so there is not any need to move urgently these data to higher levels and, therefore, the 

frequency for the periodical upwards data movements can be strategically decided in 

order to accommodate it to the network traffic. So all this delayed updating mechanism 

allows optimizing many network aspects, such as network traffic and network 

congestion. 

 In the data preservation block, data are generated at fog layer 1, but gradually moved 

upwards to the fog layer 2, and upwards to the cloud layer, where they will be 

permanently preserved. So, data generated at fog layer 1 will be temporarily stored at this 

level, allowing real-time applications an instant access to these data. Similarly, data 

gathered at fog layer 2, consisting of data received from several fog nodes at layer 1, will 

be temporarily stored at this level 2. This will make up a set of less recent data (as it has 

been received after some period of time) but from a broader area, comprising the 

combination of the respective fog nodes’ areas at layer 1. Finally, data will be 

permanently preserved at cloud layer, unless any expiry time is defined. 

 The different phases included in the data preservation block will be mainly executed at 

the cloud level, where the permanent storage is performed. Note that these phases are not 

urgent and, therefore, their execution can be delayed to the time in which data are 

received to the cloud layer. This is the case of the data classification phase, responsible 

for classifying and ordering data before storing, and eventually implementing the 

appropriate techniques for data versioning, data lineage or data provenance. And the data 

dissemination phase, responsible for providing a user interface for public or private 

access to stored data, and responsible for implementing any protection, privacy or 

security policies according to the city business requirements. 

 In some cases, we estimated almost 70% storage reduction at layers (by applying data 

aggregation). Additionally, we appraised that around 91% storage reduction at layers (by 

applying both data aggregation and data compression). 

 In the data processing block, data processing can be performed at any F2C layer, 

according to the requirements of the application or service. For instance, critical real-time 

services will be executed at fog layer 1 in order to have a faster access to the (just 

generated) real-time data. Alternatively, deep computing complex applications will be 

executed at the cloud layer.  

As part of our future work we will explore more options related to all main blocks of our F2C 

data management (from Data Acquisition and Data Preservation to Data Processing), and continue 

developing other data life cycle phases of each block in our model, including extending our data 
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aggregation techniques, proposing some algorithms for checking data quality in F2C, practical test 

for applying data processing in the fog layers, real-time data analysis, proposing the algorithms for 

classifying data in the distributed data storage, providing a real interface for data dissemination 

and so on. 
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