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 “Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed 
in a language comprehensible to everyone” 

Albert Einstein 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF 1H-NMR SERUM PROFILING METHODS FOR HIGH-THROUGHPUT METABOLOMICS 
Rubén Barrilero Regadera 
 



  

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF 1H-NMR SERUM PROFILING METHODS FOR HIGH-THROUGHPUT METABOLOMICS 
Rubén Barrilero Regadera 
 



ABSTRACT  

The irruption of metabolomics is replacing the traditional approach of clinical diagnostics focused 

on single biomarkers, such as glucose or cholesterol, with the profiling of complex metabolite 

patterns reflecting metabolic activity in multiple biological pathways. Blood serum/plasma is one 

of the main biological matrices used in NMR-based metabolomics as its collection is minimally 

invasive, requires minimal sample manipulation and provides hundreds of metabolites encoding 

multisystemic biological information.  

High-throughput 1H-NMR profiling of serum/plasma allows a quantitative multi-compound 

analysis including lipoprotein classes and constituent lipids, albumin, and a large variety of low-

molecular-weight metabolites (LMWM), including amino acids, creatinine, glycolysis-related 

metabolites, and ketone bodies, with a cost similar to standard lipids. The large physicochemical 

heterogeneity of these compounds requires the acquisition of three 1H-NMR measurements 

concerning the following molecular species: macromolecules, LMWM and lipids, where each 

measurement involves physical (sample extractions) and spectroscopic (editing NMR techniques) 

filters. However, molecular interactions and spectral complexity hamper a reliable metabolite 

profiling, which remains mostly manual. Developing robust and more automated methods of 

metabolite profiling is therefore desirable to consolidate high-throughput 1H-NMR in the clinical 

practice. 

In our first work, we calibrated and evaluated regression models to estimate the concentration of 

lipids used in the routine clinical practice (known as “lipid panel”). These lipids are still the main 

measurements and therapy targets of cardiovascular disease risk. Whereas most of the previous 

models have been calibrated using lipoprotein fractioning, our models were built using clinical 

enzymatic-colorimetric measurements in order to better reflect the clinical standards. Ultimately, 

these NMR-based regression models would lead to incorporate the standard clinical lipid panel in 

high-throughput 1H-NMR profiling of serum and plasma. To do so, we developed and validated 
1H-NMR regression models of clinical measurements of total serum cholesterol and triglycerides, 

and cholesterol content of LDL, HDL and non-HDL particles, using 785 native serum/plasma 

samples comprising healthy subjects and subjects suffering from several dyslipidaemias. Different 

combinations of 1D and 2D 1H-NMR experiments and chemometric techniques were evaluated. 

Moreover, our models used indistinctly plasma and serum samples, which were collected in four 

different clinical centres. Our lipid predictions performed similar to previous models based on 
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small and more homogeneous cohorts, but the diverse matrix and physiological conditions found 

in our samples made our models highly generalizable. 

In our second work, we addressed the quantitative issues affecting the “NMR-invisible” low-

molecular-weight metabolites (LMWM) in 1H-NMR spectra of native serum. LMWM bind to 

proteins in native serum; consequently, their signals are totally or partially attenuated. These signal 

losses compromise absolute quantifications even if sophisticated signal deconvolution methods are 

used. In order to reduce protein binding effects on LMWM quantification, we developed a method 

to partially release bound LMWM from proteins. Our method relies on promoting competition for 

ligand-binding sites of proteins by the addition of a small quantity of deuterated 

trimethylsilylpropanoic acid (TSP). In order to precisely quantify the extent of these interactions, 

we performed our quantifications using a multidimensional CPMG approach, which avoids the 

signal attenuations due to T2 relaxations inserted with 1D CPMG filters. The application of both 

strategies showed that TSP addition increases in approximately 30% the signal for clinically-

relevant binding metabolites phenylalanine, leucine and isoleucine. Moreover, competitive binding 

strategies are fully compatible with high-throughput analysis.  

Finally, our third work addressed the quantitative profiling of serum lipids with 1H-NMR. Whereas 
1H-NMR profiling of LMWM can be carried out with bioinformatics tools that allow automatic 

signal deconvolution based on specific metabolite signal patterns, similar solutions are not 

available for 1H-NMR profiling of lipids. In this context we present LipSpin, a freely-distributed 

software for the semiautomatic profiling of 1H-NMR spectra of lipids. Using a collection of signal 

patterns based on mathematical and reference spectral models, a constrained lineshape fitting 

analysis provides the quantification of 15 different lipid-related variables about major lipid classes 

in serum (fatty acids, triglycerides, phospholipids and cholesterols). Lipid quantifications obtained 

with LipSpin agreed with those from conventional techniques and were applied to a dietary 

intervention study. 
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1.1. Metabolomics 

The scientific techniques and approaches applied to molecular biology and biochemistry have 

experienced a dramatic change with the irruption of omics sciences. This revolution took place in 

the 1990s, and especially with the first determination of the human genome and the availability of 

automated micro-array methods [1]. The integration of omics sciences has motivated the new field 

of “systems biology” [2,3]. 

In the upper layers of the “omics cascade”, genomics, transcriptomics and proteomics involve the 

global study of genes and proteins in a cell or organism, which are subject to epigenetic regulation 

and post-translational modifications [4]. The complete understanding of a biological system at this 

level is however uncertain; it is often difficult to relate observed gene expression changes to 

conventional end-points such as disease diagnosis or pharmaceutical evaluation, and proteomics 

technologies are still slow and labour-intensive [1]. Downstream, metabolomics deals with the 

comprehensive study of the metabolome. The metabolome can be defined as the complete 

complement of all small molecule (<1500 Da) metabolites found in an organism, cell system, tissue 

or biofluid [5]. These metabolites includes lipids, sugars, and amino acids. Metabolites serve as 

substrates and products of enzymatic reactions, and are influenced by gene and environmental 

factors, providing a bridge between genotype and phenotype [6]. Moreover, metabolic responses to 

changes in the microenvironment are extremely rapid compared with proteins or mRNA, reflecting 

the actual biological state, which is particularly important for the assessment of rapid and 

progressive diseases [7]. The closer relation with real-world end-points and the availability of low-

cost high-throughput techniques have raised the interest in metabolomics. At the time of writing, the 

number of hits returned by the Web of Science citation indexing service containing “metabolomics” 

or “metabonomics” (interchangeable terms for the purpose of this study) was c.a. 25k. Fig. C1.1 

illustrates the rapid growth of this emergent discipline.  

Metabolomics have been applied to multiple research fields including disease diagnostics, 

biomarker discovery, drug discovery and development, toxicology, food science and nutritional 

studies [8–10]. The basis of most of these applications has a common aspect that alterations in 

metabolism due to functional responses of a biological system to any given condition result in 

changes in the abundance of groups of metabolites that form characteristic patterns, which can be 

used to derive insights into the underlying biological state [7]. 
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Fig. C1.1 Number of publications per year containing either metabolomics or metabonomics, returned 

by the Web Of Science (https://www.webofknowledge.com/). The asterisk indicates the number of papers 

published up to September 2017 

The main analytical platforms applied to metabolomics are mass spectrometry (MS) and nuclear 

magnetic resonance spectroscopy (NMR). These techniques have different characteristics and they 

are usually combined to increase the detected metabolite coverage [11]. MS highlights by its 

outstanding sensitivity (in the range of femtomoles) and mass resolution [12], and is commonly 

coupled to gas or liquid chromatography to provide an extra dimension where the compounds are 

separated based on their different physicochemical properties. Because of these characteristics, the 

tandem chromatography and MS provides the identification and quantification of hundreds of 

metabolites in a single analysis. However, the need of multiple internal standards for quantitative 

analysis, intensive sample preparation and time-consuming chromatography hamper its use in high-

throughput analysis and large-scale studies. On the contrary, NMR is quantitative in nature and 

extremely robust, providing high analytical reproducibility. Besides, NMR is non-destructive and 

requires minimal sample manipulation, keeping the sample intact for future analysis. As the main 

drawbacks of NMR, the low resolution and sensitivity compared with MS techniques, in the range 

of μmoles [13], limits the number of detected metabolites in biological samples. 
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1.2. High-throughput NMR-based metabolomics 

As mentioned above, NMR has some interesting features that make this technique especially 

suitable for high-throughput analysis in large-scale metabolomics studies; the quantitative nature 

results from the fact that the peak areas in the NMR spectrum are directly related to the molar 

concentration of a specific nucleus (generally 1H). Additionally, NMR allows the metabolic 

profiling of biofluids and intact tissues without metabolite extraction or separation. 

1.2.1. Fundamentals of NMR  

When the sample is introduced in the spectrometer, some nuclear spins in the sample are aligned 

with the surrounding constant magnetic field (low energy state) and the rest against it (high energy 

state). The distribution of spins between these two states can be altered by a radiofrequency (RF) 

pulse of a specific frequency known as Larmor frequency, which depends on the observed nucleus 

(1H, 13C, 31P, etc.). Once the RF pulse is switched off, the energy loss of any excited spin to recover 

its equilibrium state, known as relaxation, is recorded. The obtained signal is known as the free 

induction decay (FID) and contains the sum of the relaxations of all the excited spins. Generally, 

several scans (i.e. FIDs) are recorded to increase sensitivity and cancel out random thermal noise 

and transients. Finally, the FID is Fourier transformed (FT) to the more informative frequency 

spectrum.  

Importantly, spins in a molecule experience a slightly different magnetic environment (i.e. a slightly 

different Larmor frequency) depending on the surrounding nuclei. The different magnetic 

environments make a molecule show a set of signals dispersed along the frequency axis of an NMR 

spectrum, which are related to its functional groups (e.g. methyl, methylene, allyl, etc.). This 

spectral signature characterises the different molecular species and reveals their structural 

composition. Another important aspect is that relaxation depends on the molecular motion: the more 

rigid a molecule (or rather, a molecular moiety where the spin is located), the shorter the relaxation. 

Moreover, shorter relaxations imply broader peaks in the NMR spectrum. 

One-dimensional (1D) NMR spectroscopy is the most common in NMR metabolomics as it can be 

carried out in few minutes and provides enough information from the different molecular species 

and their abundance, as previously mentioned. More complex RF pulse sequences allow modifying 

the observable spectral information based on physicochemical properties. It is usually referred as 

“NMR spectral editing”. In case of extensive signal overlapped that difficult the analysis using 1D 
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NMR spectra or if structural information is sought, 2D or 3D NMR experiments provide additional 

dimensions generally based on spin-spin coupling patterns or different motional properties. Fig. 

C1.2 shows proton 1D (90º pulse) and 2D (COSY) spectra of 3-hydroxybutyric acid in PBS. 

 

Fig. C1.2 Detail of signals in one-dimensional spectra obtained with a standard (90° pulse) 1H-NMR 

experiment and two-dimensional 1H-1H COSY of 3-hydroxybutyric acid in PBS solution. Cross peaks in 

the 2D spectra (peaks out of the diagonal) represent coupled protons over 2 or 3 bonds. Signals 

numbered 2 to 4 in the 1D spectrum correspond with protons attached to labelled bonds in the molecular 

structure 

The reader is referred to the following textbook for further information about NMR principles, main 

NMR experiments and their applications in metabolomics [14]. 

1.2.2. Spectral pre-processing 

After NMR acquisition, there are some spectral corrections that should be applied in order to get 

reliable results from spectral analysis [15]. Prior the FT, zero-filling of FID provides high spectral 

resolution, i.e. smooth peaks, which is a critical step for reliable fingerprinting and spectral 

integration analysis. Then, window apodization is applied to the FID to increase the signal-to-noise 

ratio (S/N), usually with a Lorentzian function of 0.3-1 Hz line broadening [8], or to improve peak 
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resolution, using a shifted sine-bell or a Gaussian function [16]. After the FT, the spectral line has to 

be phase-corrected to provide a pure absorptive spectrum. Then, baseline corrections may still be 

needed to eliminate residual phase artifacts or broad background signals. Finally, spectral shifts in 

NMR acquisitions require referencing the whole spectrum to a signal of known chemical shift 

(frequency scale in ppm), usually an internal standard or any other signal not affected by sample 

conditions. Additionally, lineshape distortions produced by inhomogeneous magnetic fields can be 

corrected by reference deconvolution [17]. Examples of pre-processing corrections in spectral 

appearance are shown in Fig. C4.2. This spectral pre-processing workflow is commonly 

implemented in the software platforms of main NMR vendors. Alternatively, free software packages 

are available such as matNMR [18], NMRPipe [19] or MVAPACK [20]. 

1.2.3. 1H-NMR profiling of biofluids 

Biofluids are commonly used in metabolomics studies because they contain hundreds to thousands 

metabolites and samples can be obtained in a non-invasive (e.g., saliva, urine) or minimally invasive 

manner (e.g., blood plasma or serum, cerebrospinal fluid) [21]. Moreover, sample preparation for 

NMR experiments on biofluids only requires the addition of phosphate buffer in a small volume of 

deuterated solvent, and the addition of an internal standard for chemical shift reference and 

quantitative normalization. Commonly used internal standards are trimethylsilylpropanoic acid 

(TSP) or 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) for aqueous solvents and 

tetramethylsilane (TMS) for organic solvents. 

Among the possible nuclei that can be analysed with NMR, proton (1H-NMR) is the most used in 

metabolomics because of its high sensitivity, fast relaxation, natural abundance, and its nearly 

ubiquitous presence in organic metabolites [21]. 1H-NMR spectra of biofluids consists of a 

conglomerate of severely overlapped signals from a vast number of compounds at very different 

concentrations, making a reliable identification and quantification a challenging task. Additionally, 

the spectral complexity is amplified by chemical exchange processes. For instance, pH, ionic 

strength, and metal ion composition affect specific groups of metabolites, causing chemical shifts 

variations between samples [14]. Spectral misalignments can be reduced using one of the multiple 

algorithms available [22]. Chemical exchange also affects quantification, such as the decrease of 

urea signal due to proton exchange with water [8]. Similarly, small molecules binding to protein 

show severe attenuation and broadening of their signals [23]. 

With the aim of helping identification, several public libraries include lists of compound peaks, raw 

NMR files of standard compounds, and typical concentration ranges in common biofluids [24,25]. 
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Concerning metabolite quantification, the first step comprises the quantification (in area units) of 

the signals assigned to known metabolites. Integrating isolated signals is the classical approach; 

however, this approach is very sensitive to baseline distortions and it is not recommended for 

overlapping peaks. Alternatively, spectral deconvolution with lineshape fitting analysis provides a 

more robust quantitative method, in which a 1H-NMR spectrum is defined by a finite number of 

Lorentzian/Gaussian lineshapes following quantum mechanical rules (chemical shifts, coupling 

constants, etc.) and some baseline functions [26]. An example of lineshape fitting analysis is shown 

in Fig. C4.3b. Using lineshape fitting, overlapping signals can be efficiently resolved and baseline 

effects omitted. Lineshape fitting is commonly carried out with commercial software packages such 

as Chenomx NMR Suite [27], Mnova [28], and PERCH NMR software [29], although free solutions 

such as BATMAN [30], DOLPHIN [31] and BAYESIL [32] are also available. Finally, 

normalization of the signal areas with a reference compound of known concentration allows 

calculating molar concentrations of the detected compounds. The aforementioned internal standards 

TSP, DSS, and TMS are commonly used. However, TSP and DSS signals are affected by protein 

binding and they are usually placed in coaxial inserts in PBS solution, which comprises the 

quantitative precision due to media incompatibilities between the sample and the coaxial insert. 

Similarly, TMS is highly volatile and should be avoided for quantitative purposes. Different 

alternatives have been presented to overcome the problems of common internal standards [33,34]. 

Other strategies imply the use of a calibrated synthetic signal, such as ERETIC, QUANTAS or 

PULCON [15], which can be introduced artificially in NMR acquisition or after spectral pre-

processing.  

1H-NMR profiling is a laborious process that requires intensive data manipulation (spectral pre-

processing, identification and quantification). This process is still mainly carried out manually, even 

though analyst-dependent variations have been determined to be c.a. 20% [21]. In order to avoid 

this source of error and consolidate high-throughput NMR-based metabolomics, extensive 

automation of 1H-NMR profiling workflow is required. 

1.2.4. 1H-NMR profiling of blood serum/plasma: the three 
molecular windows 

Blood is the primary body fluid connected to systemic metabolism. Blood composition reflects even 

minimal changes in the whole metabolism and is therefore the natural choice for studies related to 

vascular and systemic diseases, as well as for nutritional assays [35,36]. Blood contains molecules 

of various size and mobility: proteins, lipids, lipoproteins, cholesterols, low-molecular-weight 
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metabolites and ions, and their concentrations range from nM to mM. Blood plasma is blood 

without blood cells, while blood serum is blood plasma without the blood clotting proteins 

(fibrinogens) [37]. Although plasma has a lower risk of uncontrolled and incomplete clotting [14], 

serum seems to be the preferred blood derivative for 1H-NMR profiling, as serum spectra lack of 

interference signals assigned to clotting proteins and anti-coagulant additives. In order to ensure 

inter-laboratory reproducibility, protocols for serum/plasma sample preparation have been 

previously described [8]. In the following, the term serum will refer to both blood-derived matrices. 

The complexity of 1H-NMR spectra of serum, where sharp peaks from low-molecular-weight 

metabolites (LMWM) are severely overlapped with broad signals from macromolecules (mainly 

lipoproteins and albumin), prevents the use of a single 1H-NMR experiment to fully characterise the 

biochemical diversity of blood. Instead, Ala-Korpela and co-workers proposed the implementation 

of a three molecular windows model involving different 1H-NMR experiments and sample 

preparations [38]. The model allows the comprehensive high-throughput quantification of 

lipoprotein classes and constituent lipids, albumin, and a large variety of low-molecular-weight 

metabolites, including amino acids, creatinine, glycolysis-related metabolites, and ketone bodies, 

with costs comparable with standard lipid measurements [38]. In the following lines, this model will 

serve to illustrate the common strategies involving a comprehensive 1H-NMR profiling of serum 

samples (Fig. C1.3). 

1.2.4.1. Lipoprotein window 

Lipoprotein window implies the acquisition of any 1H-NMR experiment of native serum, in which 

the broad signals produced by macromolecules (proteins and lipoproteins) are visible. Water 

presaturation is required when using native serum to suppress the large residual signal from water 

protons. Water presaturation is typically applied in an NMR experiment known as NOESY-presat. 

This pulse sequence is identical to the 1st time increment of the 2D-NOESY experiment [39]. A 

NOESY-presat 1H-NMR spectrum of fasting serum is dominated by a broad background signal 

from protein (mostly albumin) and several broad peaks assigned to lipid moieties from the 

lipoprotein subclasses VLDL, LDL and HDL [40], with minor contribution of LMWM peaks (Fig. 

C1.3). 

Lipoprotein subclasses share the same constituents in different proportions; consequently, their 

spectral signatures are very similar showing large overlap. However, magnetic susceptibility 

anisotropy in the lipoprotein shell generates a subtle chemical shift dispersion of lipoprotein signals 

according to their size [41]. Lineshape fitting and regression methods have taken advantage of this 
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spectral dispersion to quantify the number of particles in each lipoprotein subclass and their lipid 

content (mainly cholesterol and triglycerides) [35]. Alternatively to a standard NOESY-presat 

experiments, diffusion-edited 1H-NMR spectroscopy provides a filtered spectrum in which fast-

diffusing LMWM signals are removed [42] (Fig. C1.3). This NMR strategy has been suggested to 

benefit lipoprotein analysis [43] and has been applied to some regression models of lipoprotein 

lipids [44,45]. Even more, recent studies have shown that the inclusion of a diffusion dimension 

with 2D 1H-NMR diffusion experiments could provide more reliable deconvolution of lipoprotein 

signals and estimation of constituents lipids [46,47], on the basis that diffusion dimension provides 

a direct measure of lipoprotein sizes. These multidimensional data structures usually requires the 

application of multivariate curve resolution methods (MCR) [48] or multi-way techniques such as 

PARAFAC [49] or N-PLS [50]. 

 

Fig. C1.3 Methyl and methylene regions in the three molecular window model and examples of 

molecular species that are analysed with each window 

Other compounds that have been quantified using the lipoprotein window are albumin [38] (in 

signal area) and total glycoproteins using the composite signal at 2 ppm from N-acetyl methyl 

groups of mobile N-acetylglucosamine (GlcNAc) residues [16]. 
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1.2.4.2. LMWM window 

The dominant protein background with thousands of resonating protons per molecule, hampers the 

analysis of low-molecular-weight metabolites (LMWM) in a standard 1H-NMR spectrum of native 

serum. The use of T2-edited 1H-NMR experiments, such as the Carr-Purcell-Meiboom-Gill 

sequence (CPMG), improves the detection of LMWM by removing or decreasing the broad signals 

from fast-relaxing molecules such as proteins and lipoproteins [51] (Fig. C1.3) (note that T2-edited 

NMR can be understood as the reciprocal of diffusion-edited NMR). Then, signal deconvolution 

and quantification can be carried out with available software packages that implement automatic 

lineshape fitting algorithms based on LMWM signal libraries [30–32,52]. 

However, reliable quantifications are compromised by the fact that some LMWM are bound to 

albumin, consequently, their signals are “NMR-invisible” or significantly decreased [26,37,53–55]. 

Partial release of these metabolites from albumin can be achieved by strong acidification or twofold 

dilution of serum in D2O [13,54,55], at the expense of modifying the native conditions. 

Deproteinization methods are usually applied to LMWM analysis [56]. Deproteinization avoids the 

use of T2-edited 1H-NMR experiments and has been reported to increase the coverage of quantified 

LMWM from the approximately 30 compounds in native serum to 67 compounds in deproteinized 

serum [57]. It should be also noted that all the resonance intensities, including those of the LMWM, 

are reduced with a CPMG filter by its own spin-spin relaxation time (T2), adding additional 

(sometimes negligible) quantitative error [26].  

Alternatively to lipoprotein window, LMWM window has been applied to the quantification of total 

glycoproteins [38] and albumin, although albumin concentration in LMWM window is indirectly 

derived from changes in chemical shift position of some LMWM signals caused by the albumin-

induced bulk magnetic susceptibility [58]. 

1.2.4.3. Lipid window 

A detail analysis of serum lipids requires the breakdown of protein and lipoprotein complexes and 

their lipid extraction. Contrary to the high-throughput dogma, current lipid extraction procedures are 

manual and require time-consuming centrifugation steps (the reader is referred to [59] for 

information about lipid extraction, storage and NMR sample preparation). Methods for combined 

LMWM and lipid extractions have also been proposed [8]. Lipid analysis is usually performed with 

a standard (90° pulse) 1H-NMR experiment and its spectrum provides information about fatty acid 

families, free and esterified cholesterol, triglycerides, choline phospholipids and total 
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glycerophospholipids [60]. Contrary to the LMWM, free software packages for the automatic 

deconvolution and quantification of 1H-NMR lipid extracts are still not available, consequently, 

most of the studies of 1H-NMR lipids are carried out using spectral integration and fingerprinting 

analysis [61–65]. The lack of automatic tools is motivated by the complex signals arising from the 

multiple couplings patterns in the long carbon chains and the similarity of the spectra of lipid 

species with respect to the limited structural carbon chain information [66].  

1.2.5.  Applications of 1H-NMR profiling of blood 
serum/plasma in clinical research 

1H-NMR profiling of blood serum has led to a deeper understanding of disease pathogenesis and the 

identification of metabolic biomarkers for disease diagnosis or treatment monitoring. Based on the 

reported findings, 1H-NMR serum profiling could improve the clinical diagnosis of several types of 

cancer disease [67], inflammatory bowel diseases [67], inborn errors of metabolism [33], 

Alzheimer’s disease [60], type-2 diabetes [38,67] and cardiovascular disease [38], among many 

others [68]. Besides, 1H-NMR serum profiling has been found to reveal the metabolic effects of 

physical activity [38] and dietary interventions [69,70].  

1.3. Thesis motivation and objectives 

The doctoral thesis presented in this document is the result of the research conducted in the Signal 

Processing for Omic Sciences (SIPOMICS) research group, belonging to the Department of 

Electronic, Electrical and Automation Engineering at the Rovira i Virgili University (URV), and the 

Metabolomics Platform (http://metabolomicsplatform.com/), a joint research facility created by 

URV and the CIBER of Diabetes and Metabolic Diseases (CIBERDEM, 

http://www.ciberdem.org/). The Metabolomics Platform is also part of the Pere Virgili Health 

Research Institute (IISPV, http://www.iispv.cat/), a major medical research organization in the south 

of Catalonia that undertakes numerous research initiatives in the country. 

The main objective of the Metabolomics Platform is to provide technical support to biomedical and 

clinical research groups in the field of metabolomics. Studies carried out by these groups usually 

comprise large sample cohorts and aim at the discovery of new metabolic biomarkers, metabolic 

disease patterns, metabolic changes associated to drugs, age, diets, nutritional supplements, etc. In 

an initial stage, most of these studies demand the analysis of biofluids, such as urine and blood 

serum, because of their low-cost and easy availability. The large number of samples and measured 
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metabolites, and the technical challenges of metabolomics methods and platforms motivate the 

automation of sample preparation and data analysis processes in order to generate reliable biological 

information. 

Since 2012, the Metabolomics Platform has been developing a set of strategies to replace the time-

consuming and error-prone manual 1H-NMR profiling of serum samples with automatic or 

semiautomatic bioinformatics tools. These high-throughput strategies are based on the three 

molecular windows model previously described and comprise Liposcale, an advanced lipoprotein 

test based on 2D diffusion-ordered 1H NMR spectroscopy and Dolphin, a tool for automated 

targeted LMWM profiling using 1D and 2D 1H-NMR data. The present work aims at 

complementing the previous developments and design methodological and computational strategies 

to deal with issues affecting quantitative high-throughput 1H-NMR serum profiling. More 

concretely, the main objectives of this thesis are the following: 

• Develop prediction models for the quantitative estimation of standard lipids (also known as 

“lipid panel”) using 1D and 2D 1H-NMR spectra of native serum/plasma samples and 

linear regression methods, and evaluate their generalization in large-scale analysis 

including samples with lipid and lipoprotein abnormalities. This will ultimately replace the 

need of clinical biochemical measurements. 

• Design methodological and computational strategies to improve the quantification of 

LMWM by 1H-NMR that is affected by protein binding in native serum. 

• Develop an open source bioinformatics package for the profiling of serum lipids using 1D 
1H-NMR and evaluate its functionality with conventional techniques and clinical studies. 

1.4. Organization of the document 

Chapter 1 provides a general background of the field of application and the common strategies 

applied to 1H-NMR profiling of blood serum samples in metabolomics. This chapter also exposes 

the motivations for implementing robust data analysis workflows and introduces the multiple issues 

affecting reliable metabolic quantifications, which motivate the development of the multiple studies 

presented in this thesis.  

Chapters 2 to 4 contain the three scientific articles published or submitted for publication during the 

realization of this thesis. Each article is related to each one of the objectives defined in Chapter 1. 

Therefore, Chapter 2 describes the development of prediction models of standard lipids based on 
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1H-NMR spectra of native serum/plasma, i.e., total cholesterol and triglycerides in serum and 

cholesterol content of pro- and anti-atherogenic LDL and HDL lipoproteins, respectively. It 

evaluates if the inclusion of a second NMR dimension related to molecular sizes and N-way 

chemometrics methods could improve lipid estimations. The use of large heterogeneous cohorts 

comprising lipid and lipoprotein abnormalities allows the generalization of the results, which are 

compared with classical colorimetric-enzymatic measurements and evaluated in the classification of 

several dyslipidaemias. The results have been published in Metabolomics journal. 

Chapter 3 explains the quantitative issues in 1H-NMR profiling of serum derived from the “NMR-

invisibility” of some LMWM binding to serum proteins. It also presents both a competitive binding 

and a multidimensional 1H-NMR strategy to increase their “NMR-visibility” and achieve 

quantifications closer to their absolute concentrations in serum. These strategies are evaluated from 

synthetic models to human plasma cohorts. Finally, the benefits for quantitative high-throughput 
1H-NMR profiling of serum are discussed. This article has been published in Journal of Proteome 

Research. 

Chapter 4 explains the current limitations of 1H-NMR profiling of serum lipids and presents 

LipSpin, a new open source package that allows the semiautomatic profiling of lipophilic extracts of 

serum samples using 1H-NMR. The article briefly describes the main software functionalities, its 

possibilities and limitations. Moreover, results of the different analytical and clinical validations 

with established methods and a dietary intervention study are presented. This article has been 

submitted to Analytical Chemistry journal. 

Finally, Chapter 5 and 6 contain the general discussion and the conclusions of this thesis, 

respectively. 
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2.1. Abstract 

New approaches are increasingly being used for studying and evaluating coronary heart disease 

(CHD), especially since the irruption of metabolomics. The classical approach is to use 

enzymatically-measured standard lipids and these are still the main markers for assessing risk of 

CHD. Since metabolomics relies on advanced analytical technologies, such as MS and NMR, 

using them to estimate standard lipids would be of great interest because there is no need for 

additional biochemical measures. The present study evaluates partial least squares (PLS) and N-

way partial least squares (N-PLS) regression models to predict standard lipid concentrations by 

using serum and plasma sample sets from various clinical centres. Information provided by editing 

NMR techniques and 2D diffusion NMR was incorporated in these models using four different 

data structures. Firstly, the models were calibrated and validated with three of the four sample sets 

(n=591) involved. Then the best estimation models were selected and applied to the left-out 

sample set. This evaluation of a new sample set gave correlation coefficients of predicted versus 

biochemical variables above 0.86 and %rRMSE lower than 18%. These values are similar to those 

found by other studies although, in our case, the results are more general because we used a higher 

number of samples (n=785) from different sample sets, different clinical centres and different 

blood matrices (serum and plasma). Finally, we compared the performance of NMR predicted 

lipids and enzymatically measured lipids in a clinical case study. 

2.2. Introduction 

Measurement of standard lipid concentrations in fasting blood is one of the main methods used for 

assessing risk of coronary heart disease (CHD) as indicated by the National Cholesterol Education 

Program (NCEP) in the guidelines of the Adult Treatment Panel III (ATP III) [1]. Conventionally, 

standard lipids are total plasma cholesterol (TC), total plasma triglycerides (TG), high-density 

lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). The primary 

target for cholesterol-lowering therapy is LDL-C. However, in cases of high triglycerides (>200 

mg/dL), non-HDL cholesterol (non-HDL-C) is preferred as very low-density lipoprotein 

cholesterol (VLDL-C) is added to LDL-C and better represents the concentrations of all 

atherogenic lipoproteins [2]. In routine biochemical assays, TC, TG and HDL-C are measured by 

enzymatic methods (in the case of HDL-C only after a process of precipitation), whereas LDL-C is 

calculated using the Friedewald equation [3] and non-HDL-C is calculated by subtracting HDL-C 
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from TC. LDL-C calculated using the Friedewald equation is valid only when the concentration of 

triglycerides is less than 400 mg/dL, whereas non-HDL-C is not influenced by this limitation. 

Metabolomics offers further insights into the study of CHD by discovering new pathologic 

markers. The ability of these new markers to evaluate CHD risk is usually compared and 

complemented with standard lipids [4,5]. Therefore, it seems useful to estimate standard lipids 

with common analytical platforms used in metabolomics. 

Lipid moieties of plasma lipoproteins are highly visible in NMR fingerprints [6,7]. However, 

lipoprotein subclasses have a similar lipid composition and their resonances in NMR spectra 

overlap. For this reason, spectral areas cannot be directly integrated to quantify the concentration 

of individual lipid classes. Differences in magnetic susceptibility associated with lipoprotein sizes 

cause subtle variations in chemical shift [8]. Multivariate analysis methods based on different 1H-

NMR spectra take advantage of those shifts found in lipid peaks to quantify lipid classes [9]. 

Editing NMR techniques can be used to simplify the spectral information and highlight a group of 

compounds on the basis of their physiochemical properties. Furthermore, systematic variation in 

the editing parameter yields a 2D spectrum, from which the observed physical property can be 

extracted and used to improve the estimation of a compound in a mixture [10,11]. 

Several studies have shown the feasibility of multivariate analysis, based on different 1H-NMR 

pulses, to predict cholesterol and triglycerides in plasma/serum and the main lipoprotein fractions 

[10,12–15]. However, they used only one serum (or plasma) sample set obtained from one clinical 

centre and, in most cases, a limited number of samples. This raises concerns about the 

generalization of the reported models. Another factor to take into account is the blood matrix 

selected. Although serum is preferred in metabolomics because the common additives used in 

plasma (Li-heparin, EDTA or sodium citrate) can interfere, both matrices are used in metabolomic 

experiments. 

The present study evaluates the performance of partial least squares (PLS) and N-way partial least 

squares (N-PLS) regression models to predict TC, TG, LDL-C, HDL-C and non-HDL-C. These 

models use a group of data structures comprising editing NMR techniques, 2D NMR (based on 

diffusion gradients) and the combination of 1D NMR and diffusion coefficients derived from 2D 

diffusion NMR in order to explore multi-way relationships. We include a total of 785 samples 

belonging to 4 sample sets (2 serums and 2 plasmas) from different clinical centres, with the aim 

of obtaining generalizable prediction models for standard lipids. 
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2.3. Materials and methods 

2.3.1. Sample sets and biochemical analysis 

Four blood-derived sample sets from different clinical centres were used to calibrate, validate and 

evaluate the regression models. A detailed explanation of sample collection and handling of each 

set is given in Table C2.1.  

The first set comprises 325 serum samples from male and female subjects, aged 22-80. Of these, 

75% were suffering from diabetes mellitus type 2 (DM2) and 25% were a control group of healthy 

volunteers [16]. The second set comprises 147 plasma samples from healthy male subjects aged 

20-75 participating in a study on lipid changes with age [17]. The third set comprises 119 serum 

samples belonging to healthy male and female subjects (aged 33-45) undergoing a nutritional 

intervention [18]. The fourth set comprises 194 plasma samples belonging to male and female 

subjects (aged 39-64), most of them were healthy although some had abnormal lipid levels, and all 

of them were undergoing a four-month nutritional intervention. Fasting blood samples were 

collected at baseline and at the end of each four-month intervention period and lipid concentrations 

were measured using standard enzymatic automated methods and Friedewald equation. 

Table C2.1 Collection and handling procedure of plasma/serum samples 

Set Matrix Plasma/Serum 
extraction 

Storage 
time 

Frozen-
thaw? 

Aliquots of 
enzymatic lipids 

LDL (TG>400 
mg/dL) 

set 1 Serum 25 ºC, 2000 rpm, 
10 min 

2 years 
(-80 ºC) No Cabre et al. 2012 Direct 

measure 

Sample 
set 2 

Plasma 
EDTA 

4 ºC, 910 g, 
15 min 

8 years 
(biobank) No Sundl et al. 2007 No samples 

Sample 
set 3 Serum 

4 ºC, 2205 g  
(3500 rpm), 

15 min 

2 years 
(-80 ºC) No Abete et al. 2013 No samples 

Sample 
set 4 

Plasma 
EDTA 

4 ºC, 2500 rpm,  
15 min 

< 2 years 
 (-80 ºC) No Different from 

NMR aliquot Friedewald 

 

2.3.2. 1H-NMR measurements 
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For the NMR measurements, a double tube system was used to lock the field and reduce 

convection currents [19]. First, 430 μL of either serum or plasma was transferred to a 5 mm NMR 

tube. Then, the inner tube (o.d. 2 mm, supported by a Teflon adapter) containing D2O (99.9%) as 

the lock reference was placed coaxially in the NMR sample tube (o.d. 5 mm). Samples were kept 

at 4°C in the sample changer (SampleJet, Bruker®) until the moment of the analysis. At this point, 

the sample was pre-heated to 27°C for 1 minute and then to 37°C for 3 minutes inside the magnet. 

It was kept at that temperature during acquisition. All the samples were prepared by the same 

NMR technician. 

A set of 1H-NMR spectra was acquired for serum/plasma profiling of each sample [11,20]. The set 

consists of one standard spectrum and a group of edited NMR spectra: a T2-relaxation-edited 

CPMG spin-echo spectrum with total reduction of the protein background, a 1D diffusion-edited 

spectrum with suppression of the low molecular weight compounds and a 2D diffusion spectrum 

to improve separation in the diffusion dimension due to variety of molecular sizes in the 

plasma/serum mixture. All 1H-NMR spectra were recorded on a Bruker Avance III 600 

spectrometer operating at a proton frequency of 600.20 MHz using a 5 mm CPTCI triple 

resonance pulse field gradient cryoprobe. 

Standard 1H-NMR spectra were obtained using a 1D NOESY-presat sequence to suppress the 

residual water peak. The τ1 time was set to 4 μs and τm (mixing time) to 100 ms. Relaxation-edited 

spectra were obtained using the CPMG spin-spin T2 relaxation filter, with a total filter time of 410 

ms. 1D diffusion-edited spectra were measured using a diffusion-editing pulse sequence with 

bipolar gradients and longitudinal eddy-current delay (BBPLED). The diffusion time was 120 ms 

(Δ), the bipolar sine-shaped gradient pulses were 2.6 ms (δ) in length and had a strength of 34.5 

G/cm (G1), and an eddy current delay (τ) of 5 ms. For 2D diffusion spectra, a double stimulated 

echo (2D DSTE) pulse program including bipolar gradients and LED delay was used. This pulse 

avoids convention artefacts present in diffusion measurements when sample temperature is 

different from ambient temperature [21]. The gradient pulse strength was increased linearly from 5 

to 95% of the maximum strength of 53.5 G/cm (0.535 T/m) in 32 steps. An eddy current delay (τ) 

of 50 ms, a diffusion time (Δ) of 120 ms and bipolar sine shaped gradient pulses of 6 ms (δ) in 

length were applied to obtain a reasonable amount of diffusion of the lipoprotein signals in the raw 

serum or plasma (see Fig. C2.1a). 
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Shimming was performed for each sample before acquisition. At 50% height, the width of a single 

line at the glucose doublet (5.2 ppm) was reported to have a mean of 2.34 Hz (±SD: 0.59 Hz) in 

CPMG spectra without line broadening. 

The 90° pulse length was calibrated for each sample [22] and varied from 9.64 μs to 12.44 μs. This 

length was applied in the four NMR experiments. The spectral width was 20 ppm, and a total of 64 

transients were collected into 32k data points for each time signal. The total acquisition time per 

sample was 90 minutes and only 3 samples were discarded because of receiver overflow. 

 

Fig. C2.1 (a) 2D DSTE spectrum of a plasma sample in the region from 0.5 to 2.8 ppm and 32 pulse 

gradients from 5 to 95% at the maximum strength of 53.5 G/cm, (b) fitting of the observed intensity 

attenuation (y-axis, logarithmic scale) when different gradients are applied (x-axis, quadratic scale) at 

two ppm’s in the methyl region and their associated diffusion coefficients and (c) “diffusion-weighted” 

spectrum for methyl and methylene regions. Spectral regions where diffusion coefficients fitted with a 

mean Pearson’s correlation coefficient lower than 0.95 were ignored (set to zero in all the samples) 
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After acquisition, free induction decays were Fourier-transformed by applying an exponential 

window function with 1 Hz line broadening, which reduces the presence of noise in the models 

without compromising the resolution of broad signals from lipids. Baseline correction and 

automatic phasing were done using in-house scripts written in MATLAB (MathWorks Inc.). The 

GlcNAc (N-Acetylglucosamine) peak at 2.04 ppm [7] was used as a reference for these spectra. 

‘Digital ERETIC’ (Digital Electronic REference To access In vivo Concentrations, Bruker®) was 

used for normalization. This signal was calibrated against a sealed reference sample of known 

concentration before measuring every batch of samples. 

In order to check the variation associated with the sample preparation and NMR analysis, five 

aliquots of a serum sample were measured sequentially. 

2.3.3. Calculation of a “diffusion-weighted” NMR spectrum 

As well as the aforementioned 1H-NMR measurements, a “diffusion-weighted” NMR spectrum 

was obtained as a simplification of the second dimension of a 2D diffusion spectrum. It consists of 

a 1D pseudo-spectrum where diffusion coefficients (y-axis) are plotted versus ppm’s (x-axis). The 

diffusion coefficient (D) is extracted for every point in the frequency axis of a 2D DSTE spectrum, 

where signal intensity follows an exponentially damped attenuation: 

𝐼 = 𝐼0𝑒−𝑘𝐷𝐺
2 

where k=(2aɣδ)2(Δ-5δ/4-τ), a=(2/π) is a gradient shape factor for the half-sine shape, G is the 

gradient strength in G/cm, δ is the gradient length and I and I0 are the NMR signal intensities for G 

and 0 gradient strength, respectively. In our case, we obtained the diffusion coefficient from the 

slope of the linear regression of the logarithm of intensities when the square of the increasing 

gradient strength (Fig. C2.1b) is used. Fig. C2.1c depicts an example of a “diffusion-weighted” 

NMR spectrum for methyl and methylene regions. Spectral regions where diffusion coefficients 

fitted with a mean Pearson’s correlation coefficient lower than 0.95 were ignored (set to zero in all 

the samples), as they were heavily influenced by noise. 

2.3.4. Implementation of multivariate data analysis methods 

Correlation heat-maps were calculated as part of the variable selection procedure before the 

prediction models were built. These heat-maps were obtained as correlations between all the points 

in the spectra of sample sets 1, 2 and 3 and every lipid class determined by standard enzymatic 
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methods: TC (ChEBI:50404), TG (ChEBI:17855, mostly ChEBI:47776), LDL-C (ChEBI:47774), 

HDL-C (ChEBI:47775) and non-HDL-C). The procedure was adapted from the one indicated for 

one-dimensional STOCSY [23]. Heat-maps were constructed for each 1D 1H-NMR experiment. 

For the 2D diffusion experiment, the gradient of 14.71 G/cm was selected as a 1D spectrum (so 

that the double stimulated effect could be evaluated). This gradient shows optimal signal-to-noise 

ratio and little contribution from low molecular weight metabolites. Fig. C2.2 represents an 

example of heat-maps using TC concentrations. The regions strongly correlated to lipids are red 

(positive correlation) and blue (negative correlation). 

 

Fig. C2.2 Heat-maps showing the correlations between 1D 1H-NMR spectra and biochemical 

measurements of TC where 0 means no correlation and 1 and -1 mean total correlation and total 

anticorrelation, respectively. Resonances from lipids are labelled in the graph: C18 from cholesterol 

(0.5-0.72 ppm), methyl from fatty acids (0.72-1.08 ppm), methylene from fatty acids (1.08-1.42 ppm), 

protons attached to beta and alpha carbons of fatty acids (1.42-1.63 and 2.16-2.25 ppm, respectively), 

allylic hydrogens from fatty acids (1.88-2.1 ppm), bisallylic hydrogens from fatty acids (2.64-2.84 ppm), 

choline (3.17-3.28 ppm), triglycerides and phosphatidylcholine glycerol backbone (3.62-3.73; 3.84-3.92; 

4.02-4.09; 4.21-4.32 and 5.1-5.2 ppm) and olefinic hydrogens from fatty acids (5.2-5.5 ppm) 

After the variables of interest had been selected, several data structures were designed to be the 

inputs of PLS and N-PLS models. These data structures aim to explore the efficiency of using 

spectral information by itself and in conjunction with extra information from diffusion coefficients 

for the prediction of lipids. Four data structures were used and PLS or N-PLS methods applied. 
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The first structure, known as “Dataset 1”, consists of 1D 1H-NMR spectra. This structure is used as 

input for PLS. It is a two-way array in which each spectrum is regarded as an object and intensities 

as independent variables. 

The second structure, known as “Dataset 2”, combines 1D 1H-NMR and "diffusion weighted NMR 

spectra." It is a single two-way array, in which each object is a vector with the concatenation of 

both types of spectra. Because of significant differences in magnitude scales, 1D 1H-NMR spectra 

and diffusion coefficient “diffusion-weighted” NMR spectra were normalized separately by the 

mean of their standard deviations. This structure is used as input for PLS. 

The third structure, known as “Dataset 3”, is a three-way array in which each object is a 2D 

diffusion spectrum. Only 13 out of the 32 gradients were used. Low gradients were left out so that 

resonances due to low molecular weight metabolites would not interfere, whilst larger gradients 

were discarded because of their low signal-to-noise ratio. This structure is used as input for N-PLS 

[24].  

The fourth structure, known as “Dataset 4”, considers the same inputs as Dataset 2 (normalized 1D 
1H-NMR spectra and “diffusion-weighted” NMR spectra) but the ppm scales of both spectra are 

aligned and arranged in a three-way array. This use of “diffusion-weighted” NMR spectra can be 

regarded as a compressed version of Dataset 3 in which the diffusion coefficients codify the 

intensity attenuation at each ppm. Again, this structure is used as input for N-PLS. 

In order to test the effect of the most commonly used pre-processing methods in linear regressions 

[25], both autoscaling (AS) and mean-centring (MC) pre-processing were applied before the 

models were built. 

To evaluate the performance of the prediction models, we used Pearson´s correlation coefficient 

(r) and the relative Root-Mean-Square Error expressed as a percentage (%rRMSE):  

%𝑟𝑅𝑀𝑆𝐸 = �
1
𝑛
��

𝑦𝑝𝑟𝑒𝑑−𝑦𝑒𝑥𝑝
𝑦𝑒𝑥𝑝

�
2𝑛

𝑖=1

∗ 100 

where ypred and yexp are the predicted and experimental lipid concentration, respectively, and n is 

the number of samples. Due to the large dynamic ranges of the dependent variables (i.e. lipid 

concentrations), this error is used as it penalizes large deviations at lower values. 
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Multivariate analysis was performed with PLS_Toolbox version 5.8.3 (Eigenvector Research Inc.) 

under MATLAB Version 7.10 (MathWorks Inc., Natick, MA). 

2.4. Results 

2.4.1. Implementation and validation of the prediction 
models 

Correlation heat-maps reveal that those experiments based on diffusion NMR (BBPLED and 

DSTE) contain more information about standard lipids. This is a clear consequence of filtering 

signals from low molecular weight metabolites in diffusion-edited NMR experiments, some of 

whose resonances overlap lipid peaks. Consequently, models based on 1D NOESY-presat and 

CPMG were discarded. 

Although other studies base their analysis almost exclusively on methyl and methylene peaks, 

correlation heat-maps show large correlations in other spectral regions, such as the choline peak 

from phospholipids (at 3.2 ppm). Consequently, 14 peaks attributable to lipids were included as 

2772 spectral points, from the initial 32k points (listed in Fig. C2.2). 

Sample sets 1, 2 and 3 (n=591) were used to calibrate and validate the models based on the data 

structures listed in section 2.3.4. A previous step of outlier detection was applied for these samples 

as follows: for each of the sample sets individually, 50% of the samples were used for calibration 

and the other 50% for the validation of a PLS based on BBPLED and an N-PLS based on 2D 

DSTE. Both types of model were built for each lipid. The halves were swapped and the procedure 

was repeated. This was done for 100 permutations of random halves and the RMSE of validation 

for each sample was averaged. Since errors were found to be normally distributed, Grubbs' test 

was used to detect outliers for a confidence interval of 95%. When detected in at least one model 

(PLS or N-PLS) and at least one lipid, samples were considered as outliers and were discarded for 

future calibration. No more than 5% (n=27) of the samples were considered outliers and excluded. 

The aim of this part of the study was to establish the data structure that provides the best 

predictions for each lipid class. A total of 50% of the samples were used for calibration and the 

other 50% for validation so that the number of latent variables (LVs) could be chosen. LVs were 

established as a compromise between maximum explained variance and minimum RMSE in 

validation without over-fitting the model. This process was repeated 100 times with random 
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subsets of samples for each half. It ensures that the results were not biased by a single calibration 

or validation subset. It also enabled the statistical significance between model predictions to be 

tested. 

Table C2.2 shows the mean error for validation samples over the 100 permutations. The lowest 

error for each lipid class is highlighted in bold. It can be observed that we cannot achieve the best 

prediction for all standard lipids using a single data structure. To clearly evaluate the differences in 

the mean errors between the models, we analysed the statistical significance of the results using 

Student’s t-tests. Considering a significance level of 0.05, we found that PLS models based on 

Dataset 1 (BBPLED) best predicts all the cholesterol measures whereas TG is better adjusted by 

N-PLS models based on Dataset 3 (2D DSTE). This improvement in TG could be attributed to an 

enhancement in TG visibility due to longer relaxation effects appearing in the double stimulated 

sequence. 

Since a 2D NMR spectrum requires longer acquisition times than a 1D spectrum (n-times longer 

than 1D, where n is the number of gradients) and only improves TG prediction slightly, Dataset 1 

was established as the reference data structure to be used for the prediction of all the lipid classes 

in future samples. Moreover, differences in errors between pre-processing methods are still 

significant at p<0.05, but considering that TG and LDL-C show larger errors, we decided to select 

the mean-centred method as the reference pre-processing method because it predicted these lipids 

slightly better. 

Table C2.2 Mean %rRMSE of 100 permutations of validation subsets of samples sets 1, 2 and 3 for the 
models based on Datasets 1-4 and their mean-centred (MC) and autoscaled (AS) versions 

 %rRMSE Dataset 1 
BBPLED (PLS) 

%rRMSE Dataset 2 
BBPLED+D (PLS) 

%rRMSE Dataset 3 
2D DSTE (NPLS) 

%rRMSE Dataset 4 
BBPLED+D (N-PLS) 

             

 MC AS MC AS MC MC AS 

TC 7.28 7.27 8.30 7.88 10.04 8.17 7.56 

TG 14.88 15.57 15.19 15.57 14.03 14.89 15.29 

HDL-C 9.66 9.35 11.26 10.53 11.69 11.18 10.20 

LDL-C 13.24 13.70 14.54 14.26 17.32 14.41 13.86 

non-HDL-C 9.34 9.31 10.17 9.95 12.94 10.15 9.51 

Best regression models for each lipid class (those with low %rRMSE) are given in bold. 
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Fig. C2.3 Correlation plot of predicted versus experimental values for Total Cholesterol (TC), Triglycerides (TG), HDL Cholesterol, LDL Cholesterol and 

non-HDL Cholesterol for the test on sample set 4 
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Fig. C2.4 Correlation plot of predicted versus experimental values for TC, TG, HDL-C, LDL-C and non-HDL-C for the test on sample set 3 (serum) 
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Once the data structure had been chosen, the reference models based on Dataset 1 were built with 

all the samples of sample sets 1, 2 and 3 and the number of LVs was selected as the mean LV 

value out of the 100 permutations. 

2.4.2. Evaluation of prediction models with a new sample set 

Sample set 4 (n=194) was used to evaluate the robustness of the reference models over a new 

sample set. Plots of predicted values versus reference concentrations are shown in Fig. C2.3. 

Pearson's correlation coefficients (denoted as R in Fig. C2.3) between the concentrations measured 

by enzymatic methods and the predicted concentrations were 0.92, 0.98, 0.86, 0.93 and 0.92 

whereas %RMSEs were 6.2%, 13.1%, 17.5%, 12.5% and 9.1% for TC, TG, HDL-C, LDL-C and 

non-HDL-C, respectively. In general, these results are in agreement with those in Table C2.2 

except for HDL-C, which shows a larger deviation.  

Because sample set 4 is a plasma set, in order to evaluate the performance in serum samples, we 

replicated the reference models, but this time they were trained with sample sets 1, 2 and 4 and the 

blind validation was carried out using the serum sample set 3 (Fig. C2.4). 

The influence of sample preparation and NMR analysis was evaluated for the 5 aliquots of one 

serum sample (see section 2.3.2). The coefficient of variance (CV) for each lipid class was 1.28%, 

7.28%, 5.67%, 2.12% and 3.15% for TC, TG, HDL-C, LDL-C and non-HDL-C, respectively. 

These values may partly explain the larger errors found for TG and HDL-C predictions and the 

considerable vulnerability of the models to variations in these lipids.  

2.4.3. Example of a clinical application of predicted lipids 

Since standard lipids are mainly used to characterize CHD risk, we evaluate the ability of our 

predicted lipid values to classify patients according to several lipid abnormalities involved in 

CHD. 

Samples in sample set 4 were classified into groups according to the presence or absence of 

hyperlipidaemias. The concentrations limits for each group were taken from ATP III guidelines [1] 

and each sample was assigned to a group using the TG and TC blood levels measured by 

enzymatic methods. Four groups were considered: normolipidaemic (TC<200 mg/dL and TG<150 

mg/dL), hypercholesterolaemic (HC) (TC>240 mg/dL), hypertriglyceridaemic (HTG) (TG>200 

mg/dL) and both HC and HTG. Samples that did not belong to any of the above groups were 
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considered borderline. They were introduced into the model but not considered for the analysis of 

groups. A first Principal Component Analysis (PCA) was then carried out using enzymatic 

measurements of TC, TG, HDL-C, LDL-C and non-HDL-C as the descriptors. A biplot graph 

(Fig. C2.5a) shows clustering of groups and the distribution of these clusters around the 

descriptors. A statistical analysis of cluster separation was made using the Mahalanobis distance 

between centroids as described in [26] and significant cluster separation was found between the 

four groups (p<0.001). 

 

Fig. C2.5 PCA analysis of hyperlipidaemia clustering of patients in sample set 4 using lipids determined 

by enzymatic test (a) and predicted (b). Samples are classified as follows: normolipidaemic (TC<200 

mg/dL and TG<150 mg/dL), HC (TC>240 mg/dL), HTG (TG>200 mg/dL) and both HC and HTG. 

Samples not included in the previous groups were considered borderline and they are indicated as grey 
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crosses. Significant cluster separation was found between the four groups in the left PCA (p < 0.001) 

and in the right PCA (p < 0.01). (c) ROC curves for hyperlipidaemias for p < 0.05 

A second PCA (Fig. C2.5b) was performed with the same classified samples but using PLS-

predicted lipids as PCA descriptors. At first glance, both biplot graphs depict a similar clustering 

of groups and distribution of variables. The computation of Mahalanobis distances gives as good a 

separation between groups (p<0.01) as that found for the PCA built with enzymatic measurements. 

This example highlights that both procedures for determining lipids can give similar clinical 

outcomes and suggests that PLS-predicted lipids could replace enzymatically measured lipids in 

metabolomic experiments. 

The robustness of classifications using predicted lipids was also evaluated using ROC curves. The 

area under-the-curve (AUC) for the four groups was 0.95, 0.97, 0.99 and 0.97 for 

normolipidaemic, hypercholesterolaemic (HC), hypertriglyceridaemic (HTG) and both HC and 

HTG. These values show that the predicted lipids have a good capacity to diagnose each 

dyslipidaemia individually. Fig. C2.5c shows the ROC curve and the AUC of predicted lipids for 

each of the groups in PCA. 

2.5. Discussion 

Previous studies have shown the feasibility of using multivariate techniques to predict lipids in 

total plasma and in the main lipoprotein fractions. Table C2.3 summarizes the findings of these 

studies and compares them with the results reported herein. HDL-cholesterol prediction was 

slightly worse than in the aforementioned reports. This result could be attributable to the additional 

precipitation step because of the variability associated with the precipitation reagents used in HDL 

isolation [27]. Although LDL-C and non-HDL-C depend on HDL-C concentration, these lipids do 

not reflect this variability because of the greater contribution of TC to their numerical calculation. 

To improve HDL-C predictions, it could be better to calibrate regression models against direct 

HDL-C measurements which have shown less inter-laboratory variation [28]. To fully comply 

with NCEP recommendations, it has been suggested that the CDC reference procedure should be 

used to calibrate and validate the models for predicting HDL-C [29]. 
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Table C2.3 Summary of the main characteristics in studies of predictions of standard lipids using multivariate methods and NMR spectroscopy 

Reference Matrix Nº samples 
1H-NMR 

Experiment Model TC 
(Pearson's r) 

TG 
(Pearson's r) 

HDL-C 
(Pearson's r) 

LDL-C 
(Pearson's r) 

Bathen et al. (2000) plasma 44 (calibration and full CV) 
+ 8 (blind test) 

simple 90° pulse PLS 0.99 (blind) 0.98 (blind) 0.88 (blind) 0.97 (blind) 

Petersen et al. (2005) plasma 103 (calibration and full CV) diffusion-edited PLS 0.98 (CV) 0.91 (CV) 0.94 (CV) 0.9 (CV) 

Dyrby et al. (2005) plasma 11 (calibration and full CV) 2D diffusion-edited NPLS Not evaluated Not evaluated 0.91 (CV) 0.82 (CV) 

Vehtari et al. (2007) plasma 75 (calibration and 10-fold CV) simple 90° pulse Bayesian Not evaluated Not evaluated 0.93 (CV) 0.94 (CV) 

Mihaleva et al. (2014) serum 190 (calibration and fold CV) 
+ 100 (blind test) 

diffusion-edited PLS Not evaluated Not evaluated 0.98 (blind) 0.92 (blind) 

Present article Plasma and serum 591 (calibration and fold CV) 
+ 194 (blind test) 

diffusion-edited PLS 0.92 (blind) 0.98 (blind) 0.86 (blind) 0.93 (blind) 

Key: CV, cross-validation; PLS, partial least squares; NPLS, N-way partial least squares; TC, total cholesterol; TG, triglycerides; HDL-C, high density lipoprotein cholesterol; LDL-C, 
low density lipoprotein cholesterol. 
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Moreover, although the diffusion-edited technique is the best for standard lipid predictions, the 

inclusion of the diffusion dimension derived from 2D NMR experiments (here we used 2D DSTE) 

has not been found to improve these predictions (except in the case of TG). These results do not 

agree with those of [10] for standard lipids. They achieved slightly better results than those of 

previous studies by using 2D diffusion NMR. Unfortunately, direct comparison is not very reliable 

as different sample sets were used in each study. In the present study, the four data structures were 

evaluated with the same samples, so the results of the models are directly comparable. Considering 

the results presented here, we suggest using simpler and cheaper 1D NMR experiments instead of 

2D diffusion NMR experiments in order to get better predictions of standard lipids.  

Finally, the results show that prediction models of standard lipids perform well when sample sets 

from different clinical centres are involved, similar to models built and validated using samples 

from the same metabolomic study. Additionally, plasma and serum were used. Standard lipid 

prediction models prove to be robust against possible biases caused by different blood collection 

and treatment protocols applied in clinical practice and different blood matrices (serum and 

plasma). This validates the generalization of the method presented. The method is also very useful 

for metabolomic centres that handle samples from different clinical centres, and where mixed 

serum and plasma samples are received for the same experiment. 

2.6. Concluding remarks 

This study has evaluated the performance of standard lipid prediction models based on 1H-NMR 

spectroscopy. We conclude that models based on diffusion-edited NMR yield the best results but 

that the inclusion of the diffusion dimension only improves predictions of TG. We recommend the 

use of 14 peaks as they have proved to correlate with all the standard lipids and, consequently, 

they are assumed to improve the estimation of lipids. The prediction results were similar to those 

of previous studies but, in this case, the use of sets from different clinical centres and both serum 

and plasma has led to generalizable results. In practice, this means that common regression models 

could be used as a general tool for quantifying the lipid panel in metabolomic studies, regardless of 

the blood matrix used or the origin of samples.  
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3.1. Abstract 

Quantitative profiling of low-molecular-weight metabolites (LMWM) by 1H-NMR is routinely 

used in high-throughput serum metabolomics. First, the protein background is attenuated using a 

T2 filter, then the LMWM signals are resolved by line-shape fitting. However, protein binding 

modifies the motional properties of LMWM and their signal partially attenuates with the T2 filter, 

along with the protein background. Consequently, the quantified LMWM signals do not reflect the 

total concentration in serum but the non-binding part. Here, we present a novel strategy based on 

binding competition to promote the release of the “NMR-invisible” metabolites from serum 

proteins and achieve quantifications closer to total concentrations. The study focuses in five 

clinically relevant amino acids with different binding properties (valine, isoleucine, leucine, 

tyrosine and phenylalanine). We analyzed their binding affinity to human serum albumin (HSA) in 

serum mimic samples and promoted the release of their bound fraction by TSP titration. 

Furthermore, we used a novel combination of pseudo-2D CPMG and multivariate curve resolution 

analysis, allowing the separation of LMWM and protein signals and providing LMWM 

quantifications corrected for transverse relaxation effects. We found that TSP concentrations larger 

than 3 mM released most of the bound fraction and validated these findings in real serum/plasma 

samples. 

3.2. Introduction 

High-throughput 1H-NMR profiling of serum is extensively used in large-scale epidemiological 

studies since it offers dozens of identifiable metabolites measured with a cost per sample 

comparable to that of standard lipid measurements [1]. Profiling of low molecular weight 

metabolites (LMWM) commonly implies suppressing protein signals using a CPMG (Carr-

Purcell-Meiboom-Gill) sequence [2,3], designed to take advantage of large differences in T2 

relaxation times between macromolecules (proteins and lipoproteins) and LMWM [4]. Next, the 

LMWM signals (partially attenuated by the T2 filter depending on their transverse relaxation [5]) 

can be resolved based on known molecular characteristics [6–9]. However, complex biological 

samples, as in the case of serum and plasma, involve multiple sources of chemical exchange, such 

as metal ion chelation, protonation, proton exchange with water and molecular binding, leading to 

signal modifications, such as spectral shifts, amplitude decrease and line broadening [10].  
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In this respect, the ability of plasma proteins to bind small molecules potentially affects the 

quantitative NMR analysis of LMWM by two simultaneous exchange processes. For metabolites 

showing weak binding to proteins (Kd > 1 mM), the rate of exchange between bound and unbound 

(“free in solution”) state is fast on the NMR timescale; the T2 relaxation time of the observable 

LMWM signal is composed by the weighted T2 relaxation times of both the “free” metabolite and 

the metabolite weakly-bound to protein [11]. Thus, the resulting T2 relaxation time is shorter than 

the “free” one and the attenuation introduced in the CPMG experiments is increased [12]. For 

metabolites showing strong binding to protein (Kd < 0.1 μM), the rate of exchange between bound 

and unbound state is slow on the NMR timescale and this is reflected in short T2 relaxation times 

and broad line-shapes for the bound part, similar to the proteins ones. Consequently, these “T2-

shortened” signals are also suppressed in CPMG experiments [12]. This situation has been referred 

as the “NMR-invisible” pool of metabolites in serum [13,14]. For instance, previous studies 

demonstrated that lactate, 3-hydroxybutyrate, acetoacetate, pyruvate and 2-hydroxybutyrate were 

partly “invisible” in 1H-NMR spectra of plasma and bovine serum albumin [14,15]. Nicholson, et 

al. [16] identified phenylalanine, tyrosine, histidine and citrate binding to plasma proteins in 

untreated plasma samples of normal individuals, causing a decrease in the expected signal. In both 

studies, a partial release of binding metabolites was obtained upon acidification. More recently, 

Jupin, et al. [17] confirmed the previous findings in a human serum albumin (HSA) model and 

added creatinine and lysine to the list of the known binding metabolites. They also found an 

increase of the signals of these metabolites in a fatted-HSA model. Moreover, protein binding 

could compromise inter-subject analysis, since regulating factors of protein binding such as those 

mentioned above (pH level and FFA/HSA ratio) are commonly altered under abnormal conditions, 

such as diabetes [18]. 

A common approach to avoid protein binding relies on serum deproteinization methods. Protein 

denaturation with organic solvents are commonly used for large metabolite recovery [19], at the 

expense of structural alteration of proteins. Conversely, ultrafiltration preserves the protein 

structure, but most of the bound metabolites coprecipitate with proteins [20]. Both deproteinization 

approaches are time-consuming, require moderate manipulation of samples and limit the 

characterization of macromolecular content such as lipoproteins and glycoproteins in the native 

environment. 

An alternative way to reduce protein binding affecting LMWM relies in binding competition. This 

approach consists in the addition of an exogenous molecule that competes with endogenous 

metabolites for the binding domains in proteins. Moreover, using binding competition avoids the 
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sample pre-treatment and the separation of the protein content involved in deproteinization. 

Traditionally used in pharmacology, binding competition has also been evaluated in metabolomics 

to study the affinity of endogenous and exogenous molecules to serum proteins. For instance, 

Jupin, et al. [21] reported that HSA-binding metabolites can be released under the addition of fatty 

acids and Daykin, et al. [22] used ibuprofen to release and measure the citrate bound to HSA. 

These studies highlight the potential of binding competition in quantitative metabolomics and the 

need of further characterization of competitive compounds in order to selectively or non-

selectively release the “NMR-invisible” pool of metabolites. 

However, using competitive binding still requires the application of a T2 filter in order to suppress 

the protein background signal, at the expense of introducing T2-dependent attenuations in the 

“visible” LMWM signals as indicated above. In this sense, the use of an additional NMR 

dimension based on differences in T2 relaxation (e.g. by acquiring a series of CPMG or Hahn 

spin-echo experiments with increasing tau delays) and multivariate curve resolution (MCR) allows 

separating components by their different T2 relaxation times [23] and provides T2 relaxation 

decays, from which T2-corrected concentrations can be derived. 

Hence, in this study we present two strategies to improve the “NMR-visibility” of metabolites 

involved in protein binding. The first strategy promotes the release of the binding metabolites by 

the addition of the exogenous compound 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid (TSP) 

commonly used as internal standard in 1H-NMR and with known affinity to HSA [24]. The second 

strategy consists of the application of MCR analysis to a series of CPMG experiments with fixed 

spin-echo delay and increasing number of loops (from now on, we refer to this concept as pseudo-

2D CPMG), in order to extract the signal of the “NMR-visible” part of a metabolite and calculate 

its associated T2 relaxation time, which in turn allow the calculation of T2-corrected 

quantifications. This study mainly focuses on the quantification of five amino acids that are 

relevant in metabolic diseases (valine, isoleucine, leucine, tyrosine and phenylalanine) [25–27], 

some of them previously reported to bind to HSA and/or serum protein at different degrees 

[16,17]. The developed method has been optimized in a “serum mimic” composed by the mixture 

of 20 metabolites and HSA. HSA was used since it accounts for over 50% of total plasma protein 

content and its extraordinary ligand binding capacity due to its several low- and high-affinity 

ligand-binding sites dominated by hydrophobic and electrostatic interactions [28,29]. Finally, we 

validated our findings in human serum and plasma samples.  

3.3. Experimental section 
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3.3.1. Materials 

All chemical products were purchased from Sigma–Aldrich (Steinheim, Germany). The complete 

list of metabolite standards is listed in Table C3.1. We used two types of HSA in this study: 

globulin free (< 1 %) and fatty acid free (< 0.02 %, product number A3782) and globulin free (< 1 

%) containing fatty acids (product number A8763). The lack of free metabolites in HSA and fHSA 

was visually confirmed by acquiring a standard one-dimensional (1D) 1H NMR spectrum of each 

type in PBS, using a single 90° pulse experiment with water presaturation. Stock solutions were 

prepared in 50 mM phosphate buffer solution (PBS) at pH 7.4, consisting of 11 mM of NaH2PO4 

and 39 mM of Na2HPO4 dissolved in 9 parts of MILLI-Q® H2O and 1 part of D2O (99.9 atom % 

D). 3-(trimethylsilyl)propionic-2,2,3,3-d4 (TSP) sodium salt was prepared as a stock solution of 58 

mM in PBS. 

Table C3.1 Composition of serum mimic, reference T2-relaxation times and chemical shifts of 
quantified signals 

Compound 
CAS 

number 
Concentration (mM) 

T2 aqueous 
 solutiona (s) 

Chemical shift 
(ppm) 

3-hydroxybutyric acid 150-83-4 0.077 1.95 1.18 (d) 
Alanine 56-41-7 0.427 1.97 1.47 (d) 
Arginine 74-79-3 0.114 ND - 
Asparagine 70-47-3 0.082 1.80 2.81-2.96(m) 
Citrate 77-92-9 0.114 1.02 2.65 (d) 
Glucose (α, β) 50-99-7 4.971 1.58, 1.05 5.23 (d), 3.90(d) 
Glutamic acid 56-86-0 0.097 ND - 
Glutamine 56-85-9 0.510 3.21 2.45 (m) 
Histidine 71-00-1 0.131 3.47 7.06 (s) 
Isoleucine 73-32-5 0.061 1.48 0.93 (t) 
Lactate 79-33-4 1.489 2.65 4.1 (q) 
Leucine 61-90-5 0.099 1.38 0.95 (dd) 
Lysine 657-27-2 0.179 0.83 3.02 (t) 
Phenylalanine 63-91-2 0.078 3.61 7.32-7.44 (m) 
Proline 147-85-3 0.198 ND - 
Serine 56-45-1 0.160 ND - 
Threonine 72-19-5 0.128 2.95 3.58 (d) 
Tryptophan 73-22-3 0.055 3.04 7.53 (d), 7.72 (d) 
Tyrosine 60-18-4 0.055 3.03 6.89 (d) 
Valine 72-18-4 0.212 1.61 1.25 (d) 
HSA 70024-90-7 0.600 0.006-0.012 - 
a From pure standards in PBS solution at pH 7.4 and 310K and measured using pseudo-2D CPMG. The T2-relaxation time 
was obtained by fitting an exponential function to the decaying intensity 
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3.3.2. Serum mimic and TSP titration 

The serum mimic mixture was designed to characterize the binding properties of a set of LMWM 

in conditions that mimic the human serum, and was designed to take into account the naturally-

occurring binding competition between the different serum metabolites. The serum mimic sample 

consisted of a mixture of the 20 most concentrated polar metabolites in serum, including the five 

target amino acids (L-Phenylalanine, L-Valine, L-Isoleucine, L-Leucine, L-Tyrosine), and HSA in 

PBS, all of them at the concentration range found in serum from healthy population [30]. The 

composition of the serum mimic, the chemical shifts of the signals used for quantification of each 

metabolite and a reference T2 of these metabolites in PBS solution are listed in Table C3.1. TSP 

was added to the serum mimic at concentrations ranging from 0.3 mM to 12 mM. The final 

volume for all samples was 700 μL. 

3.3.3. Spiked human serum samples  

Fasting blood from a healthy volunteer was collected and centrifuged immediately at 3000 rpm for 

15 min at 21°C to obtain serum that was stored at -80°C until NMR analysis. Lipid, total albumin 

and total protein content in serum were determined using enzymatic and colorimetric assays, 

respectively (Spinreact S.A.U., Spain), adapted to a Cobas Mira Plus autoanalyzer (Roche 

Diagnostics, Spain). Lipid levels were 1.41 mM for triglycerides and 4.95 mM for total 

cholesterol, HSA (molecular weight: 66,437 Da) was 0.78 mM and total protein was 0.78 g/L. 

Spiked serum samples were prepared by the addition of 70 μL of diluted mixtures of the five target 

amino acids in PBS (L-Phenylalanine, L-Valine, L-Isoleucine, L-Leucine, L-Tyrosine) to 530 μL 

of serum. The spiked concentrations of these amino acids were 0 (only PBS was added to the 

serum), 0.5, 1, 2 and 4 times the concentration reported in healthy human serum [30] (see Table 

C3.1). The standard additions were repeated including TSP at a fixed concentration of 6 mM in all 

the standard solutions. In order to obtain robust calibration curves and evaluate the relative 

standard deviation (%RSD), we replicated three times the minimum and the maximum 

concentration points (0 and 4 respectively). Finally, we checked the effect of sample dilution on 

protein binding by a two-fold dilution of the samples without TSP in PBS. 

3.3.4. Plasma samples for validation 

The validation sample set comprised 83 plasma samples from male and female subjects, with a 

mean age of 58 (±12.2) suffering from rheumatoid arthritis. Blood samples were withdrawn from 

the antecubital vein of each participant at the time of recruitment after 12 h overnight fast. EDTA 
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plasma was prepared from venous blood collected into sterile, evacuated tubes (BD, Vacutainer®). 

Plasma was immediately separated by low-speed centrifugation at 4°C and frozen at -80°C until 

analysis. Previous to the analysis, 275 μL of each plasma sample was two-fold diluted in PBS to a 

final volume of 550 μL. After a first NMR analysis, each sample was mixed with 20 μL 6 mM 

TSP and analyzed again. The study was approved by the ethical committee of the Sant Joan 

University Hospital (Reus, Spain) and all participants gave written informed consent prior to their 

inclusion in the study. 

3.3.5. NMR analysis 

 Samples were transferred into a 5-mm NMR tube before analysis. All the samples were measured 

at 310K in a Bruker Avance III 500 MHz spectrometer using 1H-CPMG-presat experiment with 

T2 filters ranging from 0 to 2.1 s in 10 non-linearly distributed steps (0, 0.007, 0.013, 0.02, 0.046, 

0.12, 0.21, 0.42, 1.05, and 2.1 s corresponding to 0, 8, 16, 24, 56, 144, 256, 512, 1280 and 2560 

loops, respectively) with a fixed spin-echo delay of 400 μs. The relaxation delay between scans 

was 5 s in order to avoid most of the attenuation due to longitudinal relaxation. During this time, 

water signal was irradiated with a low-power RF pulse. The acquisition time was 3.5 s and the free 

induction decays (FIDs) consisted of 65536 complex data points. The spectral width was 20 ppm. 

For each spectrum 32 scans were recorded resulting in a total acquisition time of each sample of 

50 min. After acquisition, the FIDs were zero-filled (131072 real data points) and apodized by an 

exponential window function with 1 Hz line broadening, prior to Fourier Transformation. LMWM 

signals were assigned based on bibliography [31] and previously confirmed in 1D and 2D NMR 

measurements of serum/plasma samples. Calculated signal areas were converted into molar 

concentrations using the PULCON procedure [32]. Briefly, a synthetic signal was added in the 

spectrum of a sealed reference sample containing 2 mM of sucrose (Part no. Z10036, Bruker 

BioSpin AG, Fällanden, Switzerland) and its area was converted into molar concentration. Next, 

this calibrated signal was inserted in the spectrum of all the samples to convert signal areas into 

molar concentrations compensating by the individual acquisition parameters. The reference sample 

was measured under the same conditions described above and immediately before the rest of the 

samples to avoid instrumental drifts. 

3.3.6. T2 relaxation-based decomposition by multivariate 
curve resolution (MCR) 
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 Each pseudo-2D CPMG spectrum consists of 10 spectra (one for each T2 filter) with 131072 

spectral points each. For each signal to analyze, we created a matrix D of dimension 10 × n, where 

n is the number of points in the spectral window that contains the target LMWM signal. Since the 

target LMWM signal is normally superimposed on the broadband protein signal, the individual 

components were separated using multivariate curve resolution – alternating least squares (MCR-

ALS) in the bilinear model [33]: 

 
𝐷 = �𝑐𝑖

𝑘

𝑖=1

𝑠𝑖𝑇 + 𝜀 (1) 

where ci is a 10 × 1 column vector containing the concentration profile (intensity decay due to T2 

relaxation) for component i, si is a n × 1 column vector containing the pure spectral profile for 

component i and ε the non-modeled residual matrix (10 × n sized). We considered two components 

(k=2): one for the LMWM signal (i.e. the weighted averaged signal with the free and weakly-

bound contribution of that metabolite) and the other for the protein signal (containing also the 

metabolite contribution in slow-exchange binding). The optimization process starts with an initial 

estimation of ci, based on the equation of the transverse relaxation (T2 relaxation): 

 
𝐼𝑖(𝑡) = 𝐼𝑖(0) ∗ 𝑒−

𝑡
𝑇2𝑖 (2) 

Where, Ii(0) is the intensity at 0 s and T2i is the T2 relaxation time of the signal for component i, 

and t is the time elapsed, in seconds, after the 90° pulse of the CPMG sequence. For the initial 

estimation of ci, T21,2 were set to 1 s and 0.01 s, since these values are expected to fall into the 

range of the T2 for LMWM and proteins, respectively, and I1,2(0) were set to 1. The concentration 

profile ci results from taking the corresponding Ii(t) at the experimental CPMG times defined in the 

“NMR analysis” section. Then, the optimization process runs an iterative sequence until the 

convergence criterion is satisfied: first, s1,2 are calculated from the original matrix D and c1,2 by 

least squares estimation. Secondly, c1,2 are recalculated from D and s1,2 by least squares estimation. 

The resulting c1,2 are then adjusted to exponential decays by least squares approximation of Eq. 

(2). Finally, the residual ε is calculated to evaluate the convergence criterion and the sequence is 

repeated again. Once the optimization process converges, the MCR-ALS returns the bilinear 

model, I1,2(0), and T21,2 that provide the minimal residual solution, where T21,2 are the 

experimental relaxation times calculated for both the LMWM and the protein signal. The script 

was written in Matlab software (ver. 7.5.0. The Mathworks, Inc., Natick, MA, USA) and adapted 

from the MCR module in DOSY toolbox [34]. 
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3.3.7. Calculation of T2-corrected concentrations 

The T2-corrected area for each component i was obtained by scaling each individual spectral 

profile to the intensity at 0 s filter (multiplying si by Ii(0)). Conversion from areas to molar 

concentrations was made using the PULCON procedure mentioned above.  

 

Fig. C3.1 Schemes of bilinear decomposition by MCR (left) and bilinear decomposition by MCR with 

additional line-shape fitting (right). In the left case, the original matrix was decomposed by MCR 

providing the two-ways (spectral profile “c” and relaxation decay “s”) of each underlying component 

(LMWM and protein signals). In the right case, the protein background component obtained with 

MCR was first subtracted from the original matrix D to provide the resulting D’ (i.e., D’ does not have 

protein signal). Then, line-shape fitting was applied to each slide in the D’ matrix (representing a 1D 

spectrum with a specific T2 filter) in order to deconvolve the spectral profile of each overlapping 

LMWM. Finally, the decrease in the area of these spectral profiles was plotted against the T2 filters 

and the relaxation decays (T2-relaxation times) obtained from the decaying rate 

3.3.8. Line-shape fitting step for overlapped metabolites 

 In the case of overlapping resonances from different metabolites, such as leucine and isoleucine, 

MCR provides the component for protein background and a single component composed of both 
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metabolites due to their similar T2 relaxation times, where the apparent T2 relaxation time is the 

weighted average of their individual T2 relaxation times. Instead of using this component to 

characterize the resulting “composite” LMWM signal, the outcome of the MCR decomposition 

was used in a different manner. First, the MCR component of protein background was subtracted 

from the original matrix D. Then, the individual metabolite signals in every slice of the new 

“protein-removed” D’ matrix were deconvolved using an in-house Matlab-based constrained 

lineshape fitting (CLS) algorithm of Lorentzian models (see Soininen, et al. [35] for additional 

information about the CLS method). The T2 relaxation time associated with each metabolite was 

calculated from the decaying areas using Eq. (2) and T2-corrected concentrations calculated as 

described before. These procedures are graphically shown in Fig. C3.1. 

3.4. Results and discussion 

3.4.1. Characterization of protein binding interactions in 
serum mimic under TSP titration 

Fatty acid free HSA was initially used in the serum mimic in order to recreate the case with the 

largest amount of bound metabolites. For each point of the TSP titration, we acquired a pseudo-2D 

CPMG spectrum and calculated the T2-corrected concentration and the T2 relaxation time of each 

metabolite. Next, the recovery ratio (representing the “visible” fraction) was calculated as the ratio 

between T2-corrected concentration and the total concentration of each metabolite included in the 

serum mimic. Fig. C3.2 shows the recovery ratios and the T2 relaxation times of the five target 

amino acids (valine, isoleucine, leucine, phenylalanine and tyrosine) as a function of the TSP 

concentration. It is noteworthy to mention the significant decrease in the T2 relaxation times of 

LMWM in the serum mimic compared to the same LMWM in PBS (Table C3.1), as a 

consequence of the reduction of molecular mobility due to fast-exchange binding of LMWM to 

HSA and an increase in viscosity of the media [36]. At the initial point in Fig. C3.2a (no TSP 

addition), more than half of the phenylalanine signal was lost by slow-exchange binding to protein. 

Analogously, only 62%, 63% and 79% of the signals of tyrosine, leucine and isoleucine, 

respectively, were “NMR-visible”. Conversely, no signal loss was observed for valine resonances. 

Due to the use of T2-corrected concentrations, these signal losses can only be imputed to the 

binding to HSA in slow-exchange regime. Despite quantitative discrepancies, the integrity of 

valine signal and the strong decrease of phenylalanine and tyrosine signals conform with previous 

findings [16,17]. The significant decrease of leucine signal in our study contrasts with the mild 
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decrease previously reported [17,21]. The quantitative discrepancies between our results and the 

reference literature could be attributed to dissimilarities in the composition of the serum mimic, the 

sample conditions (temperature and ionic strength) or the methodologies used for the analysis 

(integration vs. line-shape fitting, 1D CPMG vs. pseudo-2D CPMG and TSP normalization vs. 

PULCON). To our knowledge, the affinity of isoleucine to HSA binding is reported for the first 

time here. Fig. C3.2a also shows a continuous release of binding metabolites from HSA with the 

increase of TSP concentration. As seen in the figure, a TSP concentration of 3 mM in the sample 

released most of the five amino acids, with recoveries that remained nearly constant for larger 

concentrations of TSP, suggesting no further competition between TSP and the five amino acids 

for slow-exchange binding to HSA. Even after most of the signal of the five amino acids was 

recovered, the continuous increase of T2 relaxation times in Fig. C3.2b suggests further 

competition for fast-exchange binding to HSA. Nevertheless, the fast-exchange binding of the five 

amino acids to HSA appears to tend to an equilibrium state after the addition of 3 mM of TSP, as it 

is derived from the decrease of the slopes after this point.  

 

Fig. C3.2 (a) Recovery or “visible” ratios (calculated as the ratio between the T2-corrected 

concentrations and the total concentration in the serum mimic) for the five amino acids as a function of 

the TSP concentration. Most of the release was obtained at 3 mM TSP. The nuclei used for the 

quantification of each amino acid are indicated in Table C3.2. (b) T2 relaxation times as a function of 

the TSP concentration, showing the effect of TSP addition in fast-exchange interactions between 

metabolites and HSA. As a reference, the horizontal dashed-lines indicate the T2 relaxation times 

obtained from standard solutions of each metabolite in PBS (Table C3.1). Key: VAL, valine; ILE, 

isoleucine; LEU, leucine, TYR, tyrosine; PHE, phenylalanine 
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Table C3.2 summarizes the recoveries of 16 metabolites included in the serum mimic without the 

addition of TSP and at the TSP concentration of 3 mM. The recovery ratios without TSP allow 

classifying the 16 metabolites based on their degree of affinity to HSA in slow-exchange regime. 

At this point, citrate, lysine and tryptophan were mostly bound to HSA as confirmed by the lack of 

“visible” signals assignable to these metabolites. A second group of metabolites (lactate, 3-

hydroxybutyrate, phenylalanine, tyrosine, leucine and isoleucine) were partly bound to HSA with 

recoveries between 13 and 80%. Finally, alanine, asparagine, threonine, glutamine, histidine, 

valine and glucose showed non-binding properties. This cluster pattern agrees with previous 

findings [17,21] for most of the metabolites in common, with the larger differences found for 

histidine and lysine. Nevertheless, direct comparison between studies should be taken prudently 

due to the multiple experimental dissimilarities exposed in previous lines.  

Table C3.2 Recovery ratios for points at 0 and 3 mM of TSP (HSA) and 0 mM of TSP (fatted-HSA) 
from the titration series in the serum mimic 

  HSA  Fatted HSA 

Compound Quantified H’s 
Recovery1 at 0 

mM TSP (%) 

Recovery1 at 3 

mM TSP (%) 

 Recovery1 at 0 mM 

TSP (%) 

Citrate half α(CH2) 0 0 56 

Lysine ε(CH2) 0 0 122 

Tryptophan H7, H6 ring 0 0 58 

Lactate β(CH3) 13 96 89 

3-hydroxybutirate ɣ(CH3) 26 108 94 

Phenylalanine H2-H6 ring 34 101 105 

Tyrosine H3, H5 ring 62 100 92 

Leucine δ(CH3) 63 89 92 

Isoleucine δ(CH3) 79 98 87 

Alanine β(CH3) 95 97 105 

Asparagine half β(CH2) 107 103 101 

Glucose (α, β) 
H1(α),  

half CH2-C6 (β) 
107 106 97 

Glutamine ɣ(CH2) 103 103 107 

Histidine H2, H5 ring 130 136 108 

Threonine β(CH) 103 108 102 

Valine ɣ(CH3) 104 102 104 
1Recovery ratios calculated as the ratio between the T2-corrected concentration and the total added to the serum mimic 

The capacity of HSA to selectively bind some LMWM could be explain by two types of 

interactions [16]: a first group of LMWM could bind due to hydrophobic characteristics, for 
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example, the aliphatic chain in the case of lysine, leucine and isoleucine, and the aromatic ring, 

such as the case of phenylalanine, tyrosine and tryptophan. The binding of a second group of 

LMWM could be explained by electrostatic forces and all these metabolites have in common that 

they cannot take a zwitterionic form. Examples of these metabolites are the alpha-hydroxy acids 

lactate or citrate. The results also denoted significant effects due to binding competition between 

metabolites. For instance, we have previously observed valine partially bound to HSA at the 

selected concentrations in a simple valine-HSA model in PBS (Fig. C3.3), probably displaced by 

binding competition with other metabolites in the serum mimic.  

 

Fig. C3.3 Recovery ratios of valine as a function of valine addition to HSA solution. The recovery ratios 

were calculated as the ratio between the T2-corrected concentration and the total added. HSA 

concentration was fixed to 0.3 mM. Recoveries below 1 for lower ratios of valine-HSA mixture suggest 

slow-exchange binding between valine and HSA. Vertical dashed-line shows a reference value for a 

common VAL:HSA concentration ratio in serum of healthy population 

Analogously to the results found for the five target amino acids, a TSP concentration of 3 mM was 

also found to release the maximum amount of most of the metabolites in the serum mimic. 

Nevertheless, lysine, citrate and tryptophan, reported to be released from HSA under the addition 

of other exogenous molecules [22,37–39], were not released by the TSP addition. The case of 

lysine and tryptophan could be explained by the non-polar nature of a long aliphatic chain and an 

indole ring, respectively. The case of citrate, however, could be explained by electrostatic forces 

arising from the three carboxylic groups. An accumulated error ±10 % along the whole workflow 

analysis was assumed; this value is broadly accepted in quantitative NMR and could explain 

recoveries exceeding 100 %. 
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Furthermore, since HSA is a free fatty acid transporter in serum, we replicated the experiment 

replacing the HSA by fatted-HSA to further study the interactions in the serum mimic. As seen in 

Table C3.2, in the serum mimic with fatted-HSA most of the studied metabolites were in “free” 

state before TSP addition, even for the strongest ligands, such as lysine, citrate and tryptophan, 

whose recoveries were above the 50%. These results are in line with previous studies [17,21], and 

confirm the higher binding affinity of HSA to circulating fatty acids compared to LMWM, that is 

likely explained by the hydrophobic interactions arising from their long aliphatic chain [40]. 

 

Fig. C3.4 Comparison between CPMG spectra (120 ms filter) of an intact serum sample and with the 

addition of TSP at 6 mM. To favour the visualization, spectra are split (top-aliphatic, bottom-aromatic) 

and appropriately scaled. Uninformative regions have been excluded. Signals showing clear differences 

between conditions are labelled. Key: ILE, isoleucine; LEU, leucine, 3HB, 3-hydroxybutyrate; LAC, 

lactate; ACE, acetate; ACAC, acetoacetate; PYR, pyruvate; CIT, citrate; GLY, glycine; PHE, 

phenylalanine 
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3.4.2. Quantitative analysis of LMWM release under TSP 
addition in real serum 

Fig. C3.4 compares the spectra of intact serum and the same serum with 6 mM TSP, acquired 

using a CPMG sequence with a 120 ms T2 filter. TSP concentration was fixed at 6 mM 

considering the results of the serum mimic experiment and taking into account the additional HSA 

and the rest of the protein content (mostly globulins) in real serum. Signals showing clear 

differences in intensity are indicated in the figure. In accordance with the results obtained with the 

serum mimic, the signal intensities of phenylalanine, lactate, 3-hydroxybutyrate, leucine and 

isoleucine increased by the addition of TSP. Phenylalanine represents an extreme case in which its 

aromatic signal, barely detected in the intact sample, was clearly identified in the sample with 

TSP. Unlike the serum mimic, a slight release of citrate was observed in real serum. We also found 

other metabolites not included in the serum mimic, such as acetate, acetoacetate, pyruvate and 

glycine showing a similar behavior, some of them previously reported to have binding affinity to 

serum proteins [14,21]. Since TSP has a short aliphatic chain, it is not expected to compete with 

free fatty acids or promote large conformational changes in proteins [41]. This fact is illustrated in 

Fig. C3.4 by the intense sharp signal at 0 ppm corresponding to the excess of TSP not bound to 

HSA. Moreover, the deuterated form of TSP avoids interfering signals in 1H-NMR spectra. 

A detailed analysis based on T2-corrected concentrations and T2 relaxation times was carried out. 

We built calibration curves based on standard additions of the five target amino acids, with and 

without TSP (Fig. C3.5). The recovery ratios derived from the calibration curves and the T2 

relaxation times are shown in Fig. C3.6. Significant increments in the recovery ratios (p<0.001, 

n=9, Welch's t-test) were found for isoleucine (79% to 109%), leucine (59% to 85%) and 

phenylalanine (41% to 75%) after the addition of TSP. In accordance with the results in serum 

mimic, valine signal presented minimal variation with TSP addition, indicating that most of the 

serum valine is in “free” state and thus revealing insignificant protein binding. Conversely to the 

serum mimic results, tyrosine was not completely released by TSP addition in the real serum, 

being the calculated “NMR-visible” fraction ca. 50% of its total content in the sample. This fact 

could be attributed to different binding mechanisms among the protein species in serum. Similarly, 

Jupin, et al. [17] observed dilution reducing the quantity of lysine weakly-bound to proteins in real 

serum but not in a HSA model. In the case of T2 relaxation times (Fig. C3.6c), all the metabolites 

except valine were significantly increased after TSP addition (p<0.001, n=9, Welch's t-test), 

suggesting a larger extent of fast-exchange interactions between LMWM and proteins in serum. 
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Fig. C3.5 Calibration curves of valine, isoleucine, tyrosine, leucine and phenylalanine in the following 

cases: intact serum (blue circles), 6 mM TSP serum (green squares) and two-fold diluted serum (red 

diamonds). The curves represent the T2-corrected concentrations as a function of the spiked 

concentration of each amino acid. The intersection in the y-axis indicates the observable concentration 

(i.e. the “NMR-visible”). The intersection in the x-axis represents the total concentration in sample (i.e. 

the “NMR-visible” plus the “NMR-invisible” part). The ratio between both concentrations (i.e. 

recovery ratio) is represented by the slope of the curve. Robust curves were calculated averaging the 

curves obtained by exchanging the replicates at the extremes (n=9). Using these 9 curves in each 

condition, statistical significance was tested using a parametric Welch's t-test and relative standard 

deviations (RSD) were 0.08 as average and below 0.15 in all the cases 

3.4.3. Quantitative analysis of LMWM release under sample 
dilution in real serum 

The effect of sample dilution in the release of binding metabolites was also investigated. Dilution 

is typically used in NMR-based metabolomics that demands large volumes of sample and has been 

reported to promote the release of bound ligands in serum [21]. As shown in Fig. C3.6a, although 

the amount of the “visible” fraction of all the metabolites increased with two-fold dilution of 

serum, it also provided lower release of binding metabolites than TSP addition, except for the case 

of tyrosine where the recovery increased from 49% to 62% and valine that showed similar 

recoveries using both approaches. Moreover, large dilution of the sample is not recommended 
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since it compromises the already poor sensitivity of NMR, as some metabolites could reach the 

acceptable quantification limit [42]. In the case of fast-exchange regime (Fig. C3.6c), dilution 

provided larger T2 relaxation times for valine (1.13 s) and tyrosine (0.65 s) than TSP addition 

(1.02 and 0.52 s respectively), similar for leucine and isoleucine and much lower in the case of 

phenylalanine (0.17 versus 0.4 s).  

 

Fig. C3.6 Effects on the NMR signals of the five target amino acids under the addition of TSP at 6 mM 

and sample dilution compared with the intact serum samples. (a) Mean (±SD) recovery ratios. (b) Fold-

changes comparing the mean recovery ratios in TSP-added (green) and diluted samples (white) with 

the mean recovery ratios in intact samples. (c) Mean (±SD) T2 relaxation times and (d) Fold-changes 

comparing the mean T2 relaxation times in TSP-added (green) and diluted samples (white) with the 

mean T2 relaxation times in intact samples. Asterisks indicate a significant difference respect to the 

intact case (p<0.001, n=9, Welch's t-test). Key: VAL, valine; LEU, leucine; ILE, isoleucine; PHE, 

phenylalanine; TYR, tyrosine 
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Fig. C3.7 Bar graphs representing (a) the mean (±SD) concentrations and (c) the mean (±SD) T2 

relaxation times of valine (VAL), leucine (LEU), isoleucine (ILE), phenylalanine (PHE) and tyrosine 

(TYR) for intact plasma samples and the same samples with 6 mM TSP from the validation sample set 

(n=83). Asterisk indicates a significant difference in means for a p<0.001 (Student's t-test). (b, d) Fold 

changes between sample conditions for mean concentrations and mean T2 relaxation times, 

respectively 

3.4.4. Validation in plasma samples 
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In order to evaluate the possible generalization of the previous findings, we compared the T2-

corrected concentrations and T2 relaxation times of 83 plasma samples before and after the 

addition of TSP at 6 mM. Fig. C3.7 summarizes the results for the five target amino acids. Fig. 

C3.7a compares the mean T2-corrected concentrations (±SD) between the samples with and 

without TSP addition. Analogously with the results obtained with the spiked serum, significant 

increments (p<0.001, n=83, Student's t-test) were found for isoleucine, leucine and phenylalanine, 

but not for valine and tyrosine. Signal increases in the plasma samples (Fig. C3.7b) were similar to 

those found in the serum experiment (Fig. C3.6b), showing a high correlation of r=0.93 despite the 

different blood-derived matrices used in both experiments (Fig. C3.8). Concentration changes (as 

fold changes) for the rest of the profiled metabolites can be found in Table C3.3. In addition, the 

T2 relaxation times of the five amino acids, except for tyrosine, were significantly increased 

(p<0.001) after the TSP addition (Fig. C3.7c). These T2 relaxation times were larger than those in 

the serum experiment (Fig. C3.6c); however, the fold-changes were lower (Fig. C3.6d and Fig. 

C3.7d). These differences could be attributed to the dilution of plasma samples. 

Table C3.3 Concentration change (as fold change) of quantified metabolites in the validation sample set 
after TSP addition compared to intact samples 

Compound fold change 
Valine -0.02 
Leucine 0.33 
Isoleucine 0.21 
Phenylalanine 0.82 
Lactate 0.44 
Citrate 0.40 
Alanine -0.01 
Tyrosine 0.13 
Creatinine 0.05 
Creatine -0.02 
Formate -0.05 
Acetate 0.45 
Acetoacetate -0.10 
Pyruvate 0.43 
Glucose α 0.02 
Glucose β 0.04 
Histidine -0.07 
Glutamine -0.06 
NAG 2.03 ppm 0.08 
NAG 2.07 ppm 0.06 
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Fig. C3.8 Scatter plot and correlation between concentration changes (as fold changes) of real serum 

and plasma samples. Fold changes are extracted from Fig.C3.6b and Fig.C3.7b, respectively. Key: 

VAL, valine; LEU, leucine; ILE, isoleucine; PHE, phenylalanine; TYR, tyrosine 

3.4.5. T2 relaxation effects and implications of T2 relaxation-
based decomposition in protein binding monitoring 

We have seen how T2 relaxation times varied depending on the conditions of the samples such as 

dilution and the presence of TSP. Ideally (i.e. not allowing transverse T2 relaxation) this 

dependency should not affect the quantification of the “visible” LMWM concentration, however, 

the arbitrary T2 filter of a CPMG sequence introduce this variation into the analysis in form of 

signal attenuation and can mislead the conclusions of recovery ratios under the effect of releasing 

agents. In order to illustrate how the effect of T2 attenuations could change the outcome of the 

study, we reproduced in Fig. C3.9 the calibration curves of phenylalanine in the human serum 

experiment using quantifications based on a 120 ms CPMG filter instead of T2-corrected 

quantifications. Using this approach, we found recoveries of 11% and 50% for samples without 

and with 6 mM of TSP respectively (fold-change of 3.54), instead of the 41% and 75% using T2-

corrected quantifications (fold-change of 0.83). This fact would partially explain some numerical 

discrepancies between our results and previous results in HSA models [17], which reported 16% of 

“visible” phenylalanine in a HSA-based serum mimic, whereas this percentage increased up to 

41% with our method.  
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Fig. C3.9 Calibration curves of phenylalanine spiking to intact serum (blue circles) and serum 

including 6 mM TSP (green squares) calculated using a 120 ms T2-filter CPMG experiment. 

Phenylalanine signal was resolved using line-shape fitting and PULCON procedure. Comparison with 

curves in Fig. C3.5 denotes that the T2-filter introduces attenuations (seen as a general decrease of 

slopes), moreover, these attenuations are dependent on the conditions (intact and TSP-added sample), 

and increase the relative gap between slopes 

So far, we have exposed that using pseudo-2D CPMG spectra would be desirable to obtain 

quantifications not affected by T2 attenuations. However, this approach is not cost and time-

efficient for most applications, such as high-throughput 1H-NMR metabolomics, in which one-

dimensional CPMG spectra are normally used. In order to correct for the T2 attenuations found in 

a 1D 1H-CPMG of serum, Bharti, et al. [43] suggested applying corrections based on T2 references 

to the LMWM concentrations, after acidifying the sample in order to increase the LMWM in free 

state. Adding TSP has been proved to reduce fast-exchange interactions between LMWM and 

serum proteins, making the relaxation properties of LMWM resemble more the ones in free state. 

Therefore, TSP addition could substitute the suggested acidification previous to T2 corrections, 

while avoiding the risk of protein denaturation related to acidification processes.  

3.5. Concluding remarks  

Competitive binding has been proved to be a valid strategy for reducing the impact of protein 

binding in quantitative 1H-NMR profiling of low molecular weight metabolites in serum. In this 
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study, we have reported that the addition of a small quantity of TSP increases the “NMR-

visibility” of most of the binding metabolites and also reduces the influence of T2 relaxations due 

to fast-exchange interactions. Based on our experiments, we observed 0.83, 0.45 and 0.38-fold 

increases of the measurable signal of phenylalanine, leucine and isoleucine, respectively, whereas 

valine and tyrosine “visibility” were barely modified. This method is compatible with high-

throughput 1H-NMR metabolomics, since it only requires the addition of TSP in the D2O 

commonly used in NMR sample preparation workflows. The study also highlights the benefits of 

using pseudo-2D CPMG spectra and bilinear decomposition in order to characterize binding 

competition without the presence of T2 attenuations. We therefore suggest the use of this 

methodology to test other exogenous binding compounds, in order to develop a chemical 

“cocktail” that maximize the release of the “NMR-invisible” metabolome in serum. This 

methodology could also aid to investigate the clinical implications of the bound/unbound ratios of 

the LMWM in serum. Simultaneously, the clinical impact of increasing the “NMR-visibility” of 

metabolites and the evaluation of indirect effects of the addition of exogenous compounds in 

serum (both clinical and analytical) have to be investigated. 
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4.1. Abstract 

The structural similarity among lipid species, and the low sensitivity and spectral resolution of 

nuclear magnetic resonance (NMR) have traditionally hampered the routine use of 1H-NMR lipid 

profiling, which remains mostly manual and lacks free bioinformatic tools. However, whereas 

other analytical platforms in metabolomics require multiple calibration steps, NMR is the only 

purely quantitative technique. 1H-NMR lipid profiling provides fast screening of major lipid 

classes (fatty acids, glycerolipids, phospholipids and sterols) and some individual species, and has 

been used in numerous clinical and nutritional studies, leading to improved risk prediction models. 

In this article, we present LipSpin, a free and open-source bioinformatics tool for quantitative 1H-

NMR lipid profiling, based on constrained lineshape fitting analysis of lipid signals with voigt 

profiles and standard-based models. When given the optimal experimental conditions, LipSpin 

allows the characterization of severely overlapped spectral regions and complex coupling patterns. 

LipSpin provides the most detailed quantification of fatty acid families and choline phospholipids 

to date. Moreover, analytical and clinical results with LipSpin quantifications conform with other 

techniques commonly used for lipid analysis. 

4.2. Introduction 

Lipids play an important role in multiple cellular functions, including: membrane composition and 

anchoring, protein trafficking, signalling, and energy reservoirs [1]. The vast number of different 

species [2] and their influence in homeostatic processes and disease states have motivated the 

advent of lipidomics, a branch of metabolomics focused on the large-scale analysis of lipids in 

biological systems [3]. Lipid profiling provides a powerful means to monitor and understand lipid 

imbalance in pathophysiological conditions such as inflammatory disorders, metabolic syndrome, 

diabetes, cardiovascular diseases, neurodegenerative diseases and cancer, among others [4], 

leading to improved risk prediction models [5]. Similarly, lipid profiling has been applied to assess 

the health benefits of diets and nutritional supplements [5,6], and the effects of drug therapies in 

clinical trials [5]. Moreover, lipid profiling has become an important tool in food technology for 

the determination of nutritional and technological properties of foodstuff [4,6]. 

From the analytical perspective, techniques based on chromatography and mass spectrometry 

(MS) are the most widespread in lipidomics [7], as they provide a comprehensive characterization 

of all the constituent species based on their different physico-chemical properties. Contrary to MS, 
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the detailed characterization of lipid species by proton nuclear magnetic resonance spectroscopy 

(1H-NMR) is unfeasible, as magnetically-equivalent molecular structures of lipids give largely 

overlapped resonances [6]. However, 1H-NMR spectra of lipids from most biological matrices 

provide a fast overview of major lipid classes (fatty acids, glycerolipids, phospholipids and sterols) 

and some individual species [8]. Additionally, 1H-NMR has some interesting features for high-

throughput lipid profiling and large-scale metabolomics studies: no derivatization or compound 

separation is required, the spectral area is equivalent to the molecular abundance, and its spectral 

linearity avoids the use of multiple internal standards. In other words, 1H-NMR is fully 

quantitative and requires minimal sample preparation. Another advantage is that NMR is non-

destructive and intact lipids can be stored for further analysis. Complementary, 31P-NMR 

spectroscopy is another technique commonly applied when further characterization of 

phospholipid species is sought [9]. 

The classical strategy to extract biochemical information from 1H-NMR lipid spectra is 

fingerprinting analysis. 1H-NMR fingerprinting usually implies a data reduction by spectral 

binning and the use of multivariate techniques, such as principal component analysis (PCA) or 

self-organizing maps (SOM), in order to reveal the underlying lipid patterns. This exploratory 

approach is partially valid as most of the signals from non-polar structures are aligned between 

samples, and has been largely applied to lipophilic extracts of serum, lipoproteins and tissues from 

human and animal models [10–13]. However, 1H-NMR fingerprinting is subjected to unwanted 

variances from misalignments of polar signals and baseline distortions, and signal overlaps might 

obscure valuable information. More robust quantitative strategies have also been applied to 1H-

NMR spectra of lipids. These include: calibration curves [14], a combination of spectral 

subtraction and least-squares solution of linear systems with reference models [15], bucket 

integration [16], and lineshape fitting analysis based on Gaussian/Lorentzian models [17–19]. To 

our knowledge, there has been only one attempt to systematically apply lineshape fitting analysis 

in 1H-NMR spectra of lipophilic extracts [17]. This solution consists of a constrained lineshape 

fitting strategy developed on PERCH NMR software and not publicly released. The solution has 

been implemented as a part of the high-throughput NMR workflow of serum in a metabolomics 

platform and run over numerous studies, revealing new biomarkers for early atherosclerosis, type 2 

diabetes mellitus, diabetic nephropathy, coronary heart disease, and all-cause mortality [20]. 

In this article, we present LipSpin, a new freely-distributed and open-source software for 

semiautomatic profiling of 1H-NMR spectra of lipid extracts. LipSpin integrates all the necessary 

steps to convert raw NMR data into quantitative information of lipid composition of a collection of 
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samples, without the need for additional software. Using a collection of signal patterns based on 

mathematical and reference spectral models, a constrained lineshape fitting analysis provides the 

quantification of 15 different lipid signals among major lipid classes (fatty acids, triglycerides, 

phospholipids and cholesterols). LipSpin has been optimized for serum and plasma, and validated 

in standard mixtures and lipophilic extracts of human plasma samples. Additionally, 

quantifications with LipSpin have been applied to a dietary intervention study. 

4.3. Experimental section 

4.3.1. Preparation of lipid mixtures 

Lipid mixtures were designed to evaluate LipSpin quantifications in a set of calibrated samples 

and within a broad range of concentrations. We prepared ten different mixtures of varying 

concentrations of five standard lipids, namely cholesterol (CAS: 57-88-5), cholesteryl linoleate 

(CAS: 604-33-1), glyceryl trioleate (CAS: 122-32-7), phosphatidylcholine (18:0/18:0) (CAS: 816-

94-4), and phosphatidylethanolamine (from bovine liver, CAS: 383907-31-1). Neutral lipids and 

phospholipids were purchased from Sigma-Aldrich (Steinheim, Germany) and Avanti Polar Lipids 

(Alabaster, AL), respectively. These standard lipids provide a representation of major lipid classes 

(cholesterols, triglycerides and phospholipids) and aliphatic structures in lipophilic extracts of 

biological samples. The composition of mixtures is detailed in Table C4.1. Standard stock 

solutions and mixtures were prepared in a solution of CDCl3:CD3OD:D2O (16:7:1, v/v/v), 

immediately before NMR analysis. 

Table C4.1 Composition of lipid mixtures 

 

4.3.2. Preparation of plasma lipid extractions 

Additional analytical and clinical validation were based on two sets of plasma samples: the first set 

consisted of 15 plasma samples from healthy adult volunteers in fasting state, recruited at Sant 

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10

Cholesterol 0.57 0.70 0.39 0.87 0.30 0.52 0.65 0.70 0.48 0.35

Cholesteryl linoleate 0.37 0.15 0.44 0.17 0.49 0.29 0.42 0.44 0.22 0.56

Phosphatidylcholine (18:0/18:0) 0.42 0.64 0.30 0.58 0.61 0.19 0.55 0.25 0.22 0.17

Glyceryl trioleate 0.27 0.42 0.54 0.32 0.22 0.59 0.17 0.25 0.47 0.29

Phosphatidylethanolamine (bovine liver) 0.38 0.19 0.24 0.21 0.28 0.35 0.26 0.40 0.54 0.49

Compound
Concentration (mmol/l)
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Joan University Hospital (Reus, Spain). Venous blood was withdrawn into EDTA tubes and 

centrifuged immediately for 15 min at 4 °C and 1500g to obtain plasma. Total plasma cholesterol, 

triglycerides and phospholipids were determined using enzymatic and colorimetric/fluorimetric 

assays adapted to a COBAS 6000 autoanalyzer (Roche Diagnostics, Rotkreuz, Switzerland). The 

second set consisted of plasma samples from 26 healthy adults who participated in a dietary 

intervention as previously described [21]. Briefly, volunteers were randomised to receive a 6-week 

dietary intervention with either saturated fatty acids (SFA) or omega-6 polyunsaturated fatty acids 

(n-6PUFA), with all participants supplemented with 4x1g fish oil capsules (rich in omega-3 fats). 

Plasma samples were obtained at baseline and following intervention, resulting in a total of 52 

plasma samples that were kept at -80°C in separate aliquots for 1H-NMR and gas chromatography 

analyses. The fatty acid composition was determined using gas chromatography coupled with a 

flame ionization detector as described in [21], and total plasma cholesterol, phospholipids and 

triglycerides were determined using enzymatic colorimetric/fluorimetric methods. 

Lipids were obtained from 100 μL of freshly thawed plasma aliquots using the BUME extraction 

method [22]. BUME was optimised for batch extractions with diisopropyl ether (DIPE) replacing 

heptane as the organic solvent, since the 1H-NMR fingerprint of heptane highly overlaps fatty acid 

signals. After the extraction procedure, the lipophilic phase was completely dried in N2 stream 

until evaporation of organic solvents and frozen at -80 °C until NMR analysis. 

4.3.3. NMR sample preparation and data acquisition 

Dried lipid extracts were reconstituted in a solution of CDCl3:CD3OD:D2O (16:7:1, v/v/v) 

containing tetramethylsilane (TMS) at 2 mM as a chemical shift reference, and transferred into 5-

mm NMR glass tubes. 1H-NMR spectra were measured at 600.20 MHz using an Avance III-600 

Bruker spectrometer equipped with a 5 mm CPTCI triple resonance pulse field gradient cryoprobe. 

A 90° pulse with water presaturation sequence (zgpr) was used. We performed measurements at 

286 K, which shifts the residual water signal to the non-informative region at around 4.51 ppm. 

The relaxation delay between scans was set to 5 s to avoid most of the attenuation due to 

longitudinal relaxation [18]. During this time, water signal was irradiated with a low-power RF 

pulse. The acquisition time was 3 s and the free induction decays (FIDs) consisted of 64 k complex 

data points, leading to a spectral width of 18.6 ppm. For each spectrum, 128 scans were recorded 

resulting in a total acquisition time per sample of 17 min. After the acquisition, the FIDs were 

zero-filled to 128 k real data points and apodized by an exponential window function with 0.3 Hz 

line broadening prior to Fourier transformation.  
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4.3.4. 1H-NMR lipid profiling and quantification 

Quantification of lipid signals in 1H-NMR spectra was carried out with LipSpin, an in-house 

software based on Matlab (ver. 7.5.0. The Mathworks, Inc., Natick, MA, USA) (see Results 

section for details). Briefly, samples were imported as FIDs and Fourier-transformed after zero-

filling to increase peak resolution. Then, spectra were phase-corrected by flattening void spectral 

regions (regions: 9 to 7.8; 6.8 to 5.6; 0.5 to 0.2 and -0.2 to -1 ppm), baseline-removed using cubic 

Hermite interpolation with automatic detection of baseline points, and shift-referenced to TMS 

signal at 0 ppm. Finally, signals assigned to lipids in Fig. C4.1 were quantified with lineshape 

fitting analysis. After the quantification process, signal areas (in arbitrary units) can be converted 

into molar concentrations, for example, by using an internal standard of known concentration 

[19,23], a calibrated synthetic signal introduced in the spectrum [23] or normalising by external 

measurements. The last option is suggested, as it corrects the variability of recovery volumes in 

manual extractions and avoids errors caused by the high volatility of common internal standards, 

such as TMS [23]. In this study, signal areas were converted to mM before statistical analysis by 

using total cholesterol concentrations determined with other methods and applying the following 

equation: 

𝑀𝑥 = 𝐴𝑥 ∗
𝑀𝑐ℎ𝑜𝑙

𝐴𝑐ℎ𝑜𝑙
 

Where Achol and Ax refer to the 1H-NMR areas of total cholesterol and signal x, respectively, and 

Mchol and Mx refer to the molar concentration of the externally-measured total cholesterol and 1H-

NMR signal x.  

4.3.5. Statistical analysis 

Analytical validation of 1H-NMR lipid quantifications was performed by linear regression and 

Pearson’s (r) correlation with analogous measurements obtained with other methods. Clinical 

validations were carried out using the dietary intervention study, comparing lipid concentrations at 

baseline and 6 weeks with paired t-test or Wilcoxon signed-rank test, for parametric and non-

parametric data distributions, respectively. Changes with a p-value<0.05 were considered 

statistically significant. Statistical analyses were performed using Matlab (ver. 7.5.0. The 

Mathworks, Inc., Natick, MA, USA). 
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Fig. C4.1 1H-NMR spectrum of lipophilic extract of plasma with labelled signals used for quantification with LipSpin in the nutritional study. Other 

regions not included in the analysis but typically used in lipid analysis to estimate FA chain length and number of insaturations are (Kriat et. Al, 1993): 

methylene protons at 1.27 ppm, diallylic protons at 2.84 ppm (other PUFA than linoleic acid) and olefinic protons at 5.4 ppm (double bond
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4.4. Results 

4.4.1. Lipspin: a computational workflow for 1H-NMR 
quantification of lipids 

LipSpin is a graphical user interface (GUI) software that allows the quantitative profiling of 1H-

NMR spectra of lipid extracts for metabolomics assays in a user-friendly manner. The 

computational workflow covers all the necessary steps for preparing and analysing a batch of 

samples in a semiautomatic mode (Fig. C4.2), requiring minimal user intervention and no 

programming skills. Lipid quantifications relie on lineshape fitting analysis of spectral regions, 

from which individual signal areas are obtained. LipSpin has been written in Matlab (ver. 7.5.0. 

The Mathworks, Inc., Natick, MA, USA). The program source code and user manual can be freely 

downloaded from https://github.com/rbarri/LipSpin. A standalone version of LipSpin is provided 

on demand by contacting the corresponding author. The current release is provided with a set of 

signal patterns specifically optimized for blood serum lipids (Table C4.2), however, it can be 

easily adapted for lipophilic extracts of animal and plant tissues, cells or other biofluids. 

Hereinafter, a brief explanation of each of the main modules of LipSpin is given. 

Data import. LipSpin imports data samples from either, raw FIDs or 1D spectra from Topspin or 

other third-party software exported in Bruker format. When FIDs are the input mode, LipSpin 

importer requires the root directory containing all the samples and the experiment number, 

following the Bruker folder structure. Using this import option, specific zero filling and window 

apodization can be applied prior to Fourier transformation. When 1D spectra are the input mode, a 

processing number must be provided (following Bruker nomenclature). After this step, users are 

required to select the samples to be loaded from the list of available samples in the indicated 

directory. 

Spectral pre-processing. Once the samples are loaded and the spectra are displayed in the main 

screen (Fig. C4.3a), some spectral corrections may be needed derived from spectral 

misalignments, baseline and phase distortions. LipSpin integrates a set of routines that 

automatically correct by all this factors prior to lineshape fitting analysis: phase correction, 

baseline correction, chemical shift referencing, spectral alignment and reference deconvolution. 
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Fig. C4.2 Spectral analysis workflow in LipSpin  

Phase correction should be applied before any other pre-processing step and it is an essential 

requirement for proper performance of the lineshape fitting algorithm. It sets the spectral line in 

pure absorptive mode. LipSpin provides two different methods to correct zero- and first-order 

phase. The first method seeks maximising the entropy of the spectrum [24] whereas the second is 

based on a least-squares problem; it minimises the residuals between a horizontal line (i.e. a flat 
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baseline) and a set of user-defined spectral regions, in which no signals are expected. If the 

spectral baseline presents drifts or rolls, the baseline correction tool removes these artifacts by 

interpolating functions (cubic spline, cubic hermite or polynomials) to a set of user- or 

automatically-defined points expected to lie in the x-axis. Then, spectra can be referenced to an 

internal peak and aligned between them, by maximising their correlation with a mean reference 

spectrum. Finally, signal shape distortions, such as those produced by magnetic field 

inhomogeneities, could be reduced by reference deconvolution [25] using a synthetic or best-shape 

peak (among all the spectra) as a reference. 

 

Fig. C4.3 (a) LipSpin main screen. (b) examples of graphical outcome of the fitting procedure for CH3 

methyl region at 0.9 ppm (left) and allylic hydrogens from unsaturated fatty acids at 2.03 ppm (right) 
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Table C4.2 Spectral regions and signals included in the signal patterns 

 
a. Signals used for lipid quantifications are given in bold. 
b. BUME extraction could leave solvent residues: butanol triplet (7.35) at 0.929 ppm, diisopropyl ether (DIPE) 

doublet (6.7) at 0.8647 ppm and ethyl acetate (EtAc) singlet at 2.066 ppm. 
c. Water suppression used in our NMR experiments affected signal intensities of glycerol sn-1,3 and therefore 

signals from glycerol backbone sn-2 were used for quantification of TG and GPL 
d. Rarely observed in 1H-NMR spectra of human serum and plasma samples 

Key: FC, free cholesterol; EC, ester cholesterol; FA, fatty acids; SFA, saturated fatty acids; EPA, eicosapentaenoic acid; 
ARA, arachidonic acid; DHA, docosahexaenoic acid; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty 
acids; PE, phosphatidylethanolamine; SM, sphingomyelin; LPC, lysophosphatidylcholine; PC, phosphatidylcholine; TG, 
triglycerides; GPL, glycerophospholipids; PLA, plasmalogen; s, singlet; d, doublet; t, triplet; m, multiplet 

Signal pattern (ppm) Signal assignmenta Model Protons Chemical shift (ppm) J-Coupling (Hz)

FC voigt 3 0.694 s
CE voigt 3 0.691 s

chol C26 voigt 3 0.868 d (6.6)
chol C27 voigt 3 0.873 d (6.6)

SFA voigt 3 0.886 t (6.9)
ω9 voigt 3 0.888 t (6.9)
ω7 voigt 3 0.898 t (6.9)
ω6 voigt 3 0.900 t (6.9)

chol C21 voigt 3 0.922 d (6.6)
ω3 voigt 3 0.982 t (7.2)
FC standard  - 0.982 m
CE standard  - 0.982 m

EPA standard 2 1.697 m
ARA standard 2 1.699 m
chol standard 0.5 1.973 m
chol standard 0.5 2.001 m
chol standard 0.5 2.018 m

MUFA standard 4 2.024 m
chol standard 0.5 2.040 m

linoleic voigt 4 2.063 qua (7.05)
FA DHA α-methylene

(2.45 - 2.40)
DHA standard 4 2.420 m

linoleic voigt 2 2.783 t (7.0)
PUFA voigt - 2.817 t (7.0)
PUFA voigt - 2.827 t (7.0)
PUFA voigt  - 2.854 t (7.0)
PUFA voigt - 2.862 t (7.0)

PE Alkyl
(3.18 - 3.12) PEd standard 2 3.152 m

SM voigt 9 3.192 s
LPC voigt 9 3.201 s
PC voigt 9 3.208 s
TG standard 2 4.332 m

GPL (except LPC) standard 2 4.412 m
TG standard 1 5.237 m

GPL (except LPC) standard 1 5.288 m
SM standard 1 5.708 m

PLAd standard 1 5.922 m

PL Cholines
(3.25 - 3.18)

Glycerol backbone sn-2
(5.33 - 5.15)

PL Olefinic
(6 - 5.65)

Glycerol backbone sn-1,3c

(4.45 - 4.31)

C18 cholesterol
(0.73 - 0.65)

FA Methylb

(0.95 - 0.85)

FA ω3 Methyl
(1.01 - 0.95)

FA ARA+EPA β-methylene
(1.75 - 1.66)

FA Allylicb

(2.10 - 1.93)

FA Diallylic
(2.94 - 2.70)
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Pattern definition. The quantification procedure requires the definition of a set of parameters for 

each spectral region subject to analysis. Required parameters are spectral margins, baseline signal 

(to compensate for residual baseline distortions or spurious broad signals) and model definitions of 

underlying signals. Individual signals can be defined using either Voigt profiles (combination of 

Lorentzian and Gaussian functions) or spectral templates from spectra of standard lipids, whereas 

initial values and fitting constraints must be provided for each signal property (chemical shift, 

linewidth, Gaussian ratio and J-coupling). Besides, users are requested to choose between applying 

the constrained lineshape fitting analysis or bucket integration, in which case, only spectral 

margins are considered. Bucket integration should be restricted to isolated signals without baseline 

artifacts to guarantee quantitative results. 

The released version of LipSpin includes a collection of signal patterns including the analysed 

regions in this study (see Table C4.2 and Fig. C4.1 for detailed information about regions and 

signals). These signal patterns were created for a 600 MHz spectrometer at 286 K and 

CDCl3:CD3OD:D2O (16:7:1, v/v/v) solvent on the basis of literature values [16,26], and using 

spectra of standard lipids acquired in our lab or downloaded from public databases [27,28]. It is 

worth noting that NMR spectra of lipids could be subjected to inter-laboratory differences, 

consequently, users are encouraged to adjust these patterns or create new ones to meet their 

specific requirements. With the aim of defining the spectral templates, LipSpin includes several 

spectra of standard lipids representing most common lipid structures in serum, including palmitic 

acid (CAS: 57-10-3), stearic acid (CAS: 57-11-4), oleic acid (CAS: 143-19-1), linoleic acid (CAS: 

60-33-3), eicosapentaenoic acid (CAS: 10417-94-4), arachidonic acid (CAS: 506-32-1), 

docosahexaenoic acid (CAS: 6217-54-5), phosphatidylcholine (CAS: 63-89-8), lyso-

phosphatidylcholine (CAS: 17364-16-8), sphingomyelin (CAS: 383907-87-7), cholesterol (CAS: 

57-88-5), cholesteryl linoleate (CAS: 604-33-1) and triglycerides (CAS: 122-32-7), among others. 

CLS fitting. Once the spectra are prepared and the signal patterns are properly defined, the 

quantification procedure, consisting in a constrained lineshape fitting algorithm [29], is applied for 

every defined region in all the included samples. If bucket integration was chosen for a region, the 

sum of the points within the margins is computed instead. The option “Correct signal width by” 

allows compensating for linewidth variations within samples due to differences in shimming and 

viscosity, taking linewidth variations from a previously quantified signal as a reference (normally 

a well-resolved singlet or solvent signal). If a valid “Figures path” is provided, a .png file will be 

created for every quantified region and sample, so that users can visually inspect the algorithm 

performance. Finally, the result chart displays the quantified signal areas, which can be exported in 
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.csv format for further analysis with spreadsheet programs or statistical tools. Additional 

parameters from the fitting procedure are also provided in this chart so that users can refine the 

pattern settings if additional runs are required.  

4.4.2. Analytical validation with lipid mixtures 

Initially, we analysed ten mixtures of five standard lipids at different concentrations (Table C4.1), 

representing most of the common signals in 1H-NMR spectra of lipophilic extracts of biological 

samples.  

Fig. C4.4 shows the 1H-NMR spectra of individual standards, highlighting the signals modelled for 

lineshape fitting analysis. Contribution of these signals to the total spectral area of each standard 

(in number of protons) is detailed in Table C4.3. Fig. C4.3b represents the graphical solution of 

applying lineshape fitting analysis to methyl and allylic FA regions at 0.89 and 2.02 ppm, 

respectively, for one of the mixtures. The left figure exemplifies a region with multiple 

overlapping resonances from methyl groups of fatty acids, which are grouped and spatially 

distributed according to the position of the first double bond. Since these signals follow the 

multiplicity rule of NMR, they were modelled as triplets of voigt profiles. Some doublets from 

cholesterol methyl groups are also observed. In the right figure, the complexity of the couplings 

hampers a mathematical definition and each signal was modelled using spectral templates from 

standard lipids.  

Table C4.3 Contribution of assignable protons to the total spectral area (in number of protons) of each 
individual standard used in lipid mixtures 

 
Key: FC, free cholesterol; EC, ester cholesterol; SFA, saturated fatty acids; EPA, eicosapentaenoic acid; ARA, arachidonic 
acid; MUFA, monounsaturated fatty acids; PE, phosphatidylethanolamine; PC, phosphatidylcholine; TG, triglycerides; 
GPL, glycerophospholipids 

C18 
(FC)

C18 
(CE)

SFA 
CH3

ω9 FA 
CH3

ω6 FA 
CH3

ω3 FA 
CH3

ARA+
EPA

MUFA Linoleic 
Acid

PE PC TG Total 
GPL

Cholesterol (C8667) 3.0

Cholesteryl linoleate (C0289) 3.0 0.6 2.7 2.0

Phosphatidylcholine 18:0/18:0 (850365P) 6.0 9.0 0.9

Glyceryl trioleate (T7140) 9.1 11.0 1.0

Phosphatidylethanolamine from bovine 
liver (840026P)

3.9 2.4 0.6 1.6 0.6 0.4 2.0 0.8

Contribution to total spectral area (number of protons)
Compound (Supplier ref.)
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Fig. C4.4 1H-NMR spectra of standard lipids used in lipid mixtures with detail of regions used for 

quantification of individual lipids with LipSpin 
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Fig. C4.5 Scatter plot and linear regressions of NMR quantification and lipid concentrations in table S1 

for lipid mixtures 
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Table C4.4 lists the correlations between the quantified 1H-NMR areas with LipSpin and the 

concentrations of the standard lipids listed in Table C4.1. The corresponding scatter plots and 

linear regressions are shown in Fig. C4.5. The excellent correlations (r≥0.88, p<1e-3) and the 

linearity of the regressions (with slopes that approximate 1) demonstrate that LipSpin successfully 

extracts and quantifies each individual signal, preserving the quantitative nature of NMR 

spectroscopy. Only SFA quantification deviates from the expected values, with a slope of 1.8. This 

deviation could be attributed to sample contamination. We observed that the use of chloroform 

with plastic tubes generates residues from degradation that include visible signals at methyl and 

methylene regions. 

Table C4.4 Pearson's r correlations and regression slopes of NMR quantifications and concentrations 
in Table C4.1 for lipid mixtures (n=10) 
Lipid Pearson’s r p-value slope 
Saturated FA 0.88 7.3e-04 1.8 
ω-9 FA 0.98 2.4e-07 1.2 
ω-6 FA 0.96 9.3e-06 1.2 
ω-3 FA 0.91 2.3e-04 0.8 
MUFA 0.98 1.3e-06 1.1 
ARA+EPA 0.98 1.6e-06 1.3 
Linoleic acid 0.99 7.8e-09 0.8 
Free Cholesterol 0.98 1.2e-06 1.0 
Cholesterol Ester 0.96 7.3e-06 0.9 
Phosphatidylcholine 0.99 7.1e-09 1.0 
Phosphatidylethanolamine 0.99 1.4e-08 0.9 
Total Phospholipids 0.96 1.2e-05 1.0 
Triglycerides 0.98 9.2e-07 1.1 
Key: FA, fatty acids; MUFA, monounsaturated fatty acids; EPA, eicosapentaenoic acid; ARA, arachidonic acid 

4.4.3. Analytical validation with plasma lipids 

Further evaluation of 1H-NMR quantifications with LipSpin was carried out using two sets of 

human plasma samples. For the first set comprising 15 samples of healthy adults, only 

enzymatically-measured lipids were available, i.e. total cholesterol, triglycerides and total 

phospholipids. These lipids are the primary constituents of lipoprotein structures and their 

distribution provides an overview of lipoprotein composition in blood [30]. First, 1H-NMR 

cholesterol signals at 0.69 ppm from C18 protons of free and esterified forms were resolved with 

LipSpin, and added up to give total cholesterol area. Then, 1H-NMR areas of total phospholipids 
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and triglycerides were obtained from C2 protons of glycerol backbone at 5.25 ppm. Correlation 

analysis in Fig. C4.6 showed an excellent agreement between techniques (r≥0.89, p<1e-5), even 

though 1H-NMR areas were not converted into molarity before comparison.  

 

Fig. C4.6 Scatter plot and regression line of enzymatically-measured total cholesterol, phospholipids 

and triglycerides, and the same lipids using LipSpin quantifications in plasma of 15 healthy volunteers 

For the second set, comprising 52 samples from a dietary intervention, fatty acid composition was 

available from GC-FID after methylation. 1H-NMR is unable to provide information of individual 

fatty acid species due to their structural similarity. Instead, 1H-NMR provides quantitative 

information on the main fatty acid families in lipid samples: the subtle separation between ω-6, ω-

7, ω-9 and saturated (SFA) signals in the crowded methyl region at 0.89 ppm allows their 

individual quantification, ω-3 resonance appears downshifted to 0.98 ppm, and monounsaturated 

fatty acids (MUFA) can be resolved from its upshifted resonance in the allylic region at 2.02 ppm. 

In all cases, overlapping cholesterol residues need to be included in the signal patterns. Linoleic 

acid (18:2n-6) and docosahexaenoic acid (22:6n-3, DHA) can be uniquely determined from 

singular resonances at 2.78 and 2.42 ppm, respectively. Moreover, combined quantification of 

arachidonic and eicosapentaenoic acid (ARA+EPA) can be obtained from β-methylenes at 1.69 

ppm. 1H-NMR quantifications of cholesterol, triglycerides and phospholipids were done as 

previously mentioned. After the analysis with LipSpin, ω-6 and ω-7 areas were combined because 

of large ambiguity between these signals in the fitting process, whereas total fatty acids were 

computed as the sum of ω-3, ω-6, ω-7, ω-9 and SFA.  

Table C4.5 shows the correlation between NMR quantifications (in molar concentration) and GC-

FID lipids. Outlier detection was first applied to remove extreme and large residual samples to a 

final population no less than 44 samples in all cases. Most of the lipids correlated well (r>0.8, 

p<0.01), despite some discrepancies for SFA (r=0.62, p<0.01) and total phospholipids (r=0.68, 

p<0.01), attributed to contamination in lipid reconstitution, as previously mentioned. In general, 

NMR concentrations of fatty acids were larger than GC-FID due to discrepancies in quantitative 
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normalization. Nevertheless, the relative (mean) distribution of each fatty acid family agreed with 

typical values in human plasma for both techniques (data not shown) [31]. Scatter plots and linear 

regressions are available in Fig. C4.7. 

 

Fig. C4.7 Scatter plot and linear regressions of quantified lipids with LipSpin and the same lipids 

acquired with GC-FID and enzymatic methods from human plasma samples in the dietary intervention 

study  
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Table C4.5 Pearson's r correlations of NMR and GC-FID/enzymatic concentrations of lipids in the 
dietary intervention study (n≥44) 
Lipid Pearson’s r p-value 
Total FA 0.83 3.5e-12 
Saturated FA 0.62 4.0e-06 
ω-9 FA 0.89 1.5e-16 
ω-6 + ω-7 FA 0.89 4.3e-15 
ω-3 FA 0.86 1.3e-13 
MUFA 0.96 1.3e-23 
ARA+EPA 0.90 6.4e-18 
DHA 0.96 4.9e-26 
Linoleic acid 0.95 4.6e-23 
Total cholesterol 0.86 1.1e-15 
Triglycerides 0.94 2.1e-24 
Total phospholipids 0.68 1.1e-07 
Key: FA, fatty acids; MUFA, monounsaturated fatty acids; EPA, eicosapentaenoic acid; ARA, arachidonic acid; DHA, docosahexaenoic acid 

4.4.4. Application in a nutritional study 

Since analytical validations based on linear regressions and correlations are subject to small 

sample deviations, we further evaluated the performance of NMR-quantified lipids in clinical 

samples. 1H-NMR quantifications obtained from a dietary intervention study above were used to 

evaluate changes in plasma composition after consumption of two fatty acid-enriched diets, and 

compared with changes observed from GC-FID and enzymatic methods [21]. Fig. C4.8 shows the 

mean concentrations at baseline and post-intervention time points and their corresponding log2 

fold-changes. Lipid modifications observed with 1H-NMR agree with previous results from GC-

FID and enzymatic methods, such as the significant increase in total cholesterol (TC) and 

eicosapentaenoic acid (EPA) after the diet enriched with SFA, and a similar change in 

docosahexaenoic acid (DHA) and triglycerides (TG) in both diets. Moreover, 1H-NMR lipids 

confirm the lower incorporation of omega-3 fatty acids in the n-6PUFA diet, as expected from the 

reported metabolic competition between ω-3 and ω-6 [21]. 

4.5. Discussion 

Metabolite profiling by 1H-NMR has been largely investigated during the last decades after the 

first complete spectral assignments of biological matrices appeared. Most of these efforts have 

focused on the analysis of low-molecular-weight metabolites (LMWM), for which a variety of 

freely available bioinformatics tools have been recently developed [32–35]. Lipid profiling, 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF 1H-NMR SERUM PROFILING METHODS FOR HIGH-THROUGHPUT METABOLOMICS 
Rubén Barrilero Regadera 
 



however, has been given less attention and, to date, there has been no freely available software 

solution. This preference for LMWM compounds relies on two principal reasons that favour high-

throughput analysis: first, LMWM profiling can be performed directly on total serum and urine, 

reducing sample manipulation and inter-sample variability, and second, LMWM are structurally 

singular, which makes signal identification and modelling more straightforward. 

 

Fig. C4.8 Left vertical bar graphs: mean concentrations (± standard deviation) of NMR-quantified 

lipids before and after a dietary intervention enriched with SFA (top) and n-6PUFA (bottom), asterisks 

indicate significant changes between time points (* p-value < 0.05; ** p-value < 0.01). Right horizontal 

bar graphs: log2 fold-change for each lipid in the SFA (top) and n-6PUFA (bottom) enriched diets. 

Fold-changes are calculated as the ratio between post-Intervention and baseline concentrations. 

Keywords: FA (fatty acids); SFA (saturated fatty acids); MUFA (monounsaturated fatty acids); ARA 

(arachidonic acid); EPA (eicosapentaenoic acid); FC (free cholesterol); CE (cholesterol ester); TC 

(total plasma cholesterol); TG (triglycerides); PC (phosphatidylcholine); SM (sphingomyelin); Total 

PL (total plasma phospholipids) 

Concerning sample preparation, we used BUME, a method for lipid extraction of serum samples 

that can be automatized with liquid handling robots. Lipid recovery with BUME is comparable to 

Folch methods [36], but automatic extraction increases sample reproducibility and reduces 

contamination exposure. Besides, spontaneous phase separation in BUME avoids the long 

centrifugation times required with other methods. To our knowledge, this is the first time BUME 
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has been applied to NMR experiments. The excellent correlation between 1H-NMR lipid areas and 

external concentrations in Fig. C4.6 reflects the low variability induced by BUME extractions. The 

main disadvantage is the long time required to completely evaporate the organic solvents; 

however, residual signals can be easily modelled and subtracted in the fitting process. 

Regarding the ability to extract quantitative information, the success of lineshape fitting strategies 

relies on the discrimination of structurally-similar lipid compounds that, in turn, depends on the 

spectral dispersion achievable. It is well-known that spectral dispersion increases with 

spectrometer frequency. LipSpin has been optimized for a 600 MHz spectrometer and, from our 

experience, resolving highly overlapped regions becomes cumbersome with lower frequencies. 

The development of higher frequency spectrometers offers new perspectives on lineshape fitting of 

lipids. For instance, Soininen et al. [37] demonstrated that complete characterization of choline 

phospholipids at 3.2 ppm can be achieved for LDL fractions using a 800 MHz NMR, without the 

need of lipid extraction. Additionally, a proper optimization of sample solvents can also improve 

spectral dispersion. We have included a small volume of D2O in lipid reconstitution. D2O affects 

polar groups of phospholipids, maximises spectral separation between choline phospholipids at 3.2 

ppm, and reduces the spectral overlap between glycerol backbone signals from phospholipids and 

glycerolipids at 5.25 ppm. Besides, D2O has been previously used to avoid lipid aggregation [38]. 

LipSpin exploits the above advantages and, together with the constrained lineshape fitting 

analysis, increases the lipid coverage commonly obtained in previous studies of serum and plasma 

[12,17,19]. For instance, LipSpin allows a detailed characterization of saturated and unsaturated 

FA families from methyl peaks. Similarly, phosphocholine families (PC, LPC and SM) can be 

separated and quantified individually at the 3.2 ppm region. Although ω-6 and ω-7 FA were 

modelled separately, their low relative intensity compared with surrounding signals and large 

overlap made individual quantifications inaccurate and they have been considered together. To our 

knowledge, individual quantification of ω-9 FA and LPC are reported here for the first time. 

Moreover, the use of spectral templates allows modelling complex signals with high-order 

coupling patterns. Our results have shown the high agreement between 1H-NMR quantifications of 

FA with LipSpin and traditional techniques such as GC-FID, even though the extraction methods 

were different and the same information was not compared in all cases; whereas GC-FID gives 

information on specific lipids above the detection limit, 1H-NMR adds signals from magnetically-

equivalent lipids (even the less concentrated). Hence, whereas quantification of a specific FA 

family with GC-FID contains the summation of the most concentrated species, 1H-NMR 

quantification considers all the species in that FA family. Moreover, similar clinical outcomes in a 
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nutritional study have been reached using both techniques, whereas additional information 

provided with 1H-NMR could support other previous findings [21]. For instance, the significant 

increase in SM for the SFA enriched diet compared with the n-6PUFA diet agrees with the 

reported increase in LDL-C, which is consistent with the higher SM content of LDL particles [39]. 

The decrease in total phospholipids (total PL) and total fatty acids (total FA) in the SFA diet could 

be related to the increase in HDL-C, as this lipoprotein type has lower lipid content [30]. 

Other signals not considered in our study and typically included in 1H-NMR profiling of lipids can 

be easily quantified with LipSpin using bucket integration. For instance, the large methylene 

signal at 1.27 ppm, diallylic protons at 2.84 ppm and olefinic protons at 5.4 ppm from FA have 

been used to estimate FA chain length and degree of unsaturation [40]. Although these estimations 

are valid for relative comparison between samples, they are based on assumptions about serum 

composition in healthy subjects and could not be generalizable to all cases. Additionally, other 

reported signals in plasma lipids, such as 7-lathosterol [19], could be easily incorporated to 

LipSpin with the pattern creation tool, once proper signal assignments have been made. 

Experimental time is another fundamental aspect for high-throughput 1H-NMR lipid profiling. 

Despite the 128 scans used for each spectrum in this study, it is possible to reduce acquisition time 

to approximately 4 minutes using 32 scans, without loss of precision for most of the quantified 

signals. In the case of serum lipids, only the quantification of the low concentrated ARA+EPA and 

DHA (tens of mM) could be compromised by the reduction of signal-to-noise ratio (S/N). When 

these lipids need to be reliably quantified, a better compensation for intensity loss could be done 

by increasing the sample volume. In the case of BUME, linearity is preserved up to 0.1 mL of 

serum; one possibility is extracting and pooling several 0.1 mL aliquots. This approach could be a 

cheaper and more effective option when automatic extraction methods and enough sample volume 

are available, as S/N increases proportionally with volume, unlike the square root dependency on 

the number of scans. 

4.6. Concluding remarks 

The incorporation of methodologies in routine analysis requires the development of automatic 

procedures and tools to simplify their use. The inherent limitations of 1H-NMR of lipid samples 

with the non-availability of bioinformatics tools have hampered the incorporation of 1H-NMR 

profiling in lipidomics studies. LipSpin provides the first open-source semiautomatic tool for 

quantitative analysis of lipids based on constrained lineshape fitting, with the aim of being 
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included in metabolomics workflows. No programming skills are required and no additional 

software is needed, however, profound knowledge of lipid spectra and signal assignments is 

expected, since experimental conditions usually vary between laboratories and signal patterns need 

to be adapted to specific conditions. Experimental conditions used in this study (solvents, 

acquisition temperature and good shimming of samples) have been optimised to obtain the 

maximum spectral dispersion. This key factor allowed LipSpin to quantify 15 different lipid 

signals in plasma lipophilic extracts, some of them rarely reported before, providing results that 

agree with commonly used techniques. This collection of signals could be modified under different 

experimental conditions, biological matrices or sample populations, and users are encouraged to 

create and publish their specific signal pattern. 
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Absolute metabolite concentration in molar units is crucial for comparison across multiple studies 

and even analytical platforms [1]. Epidemiology and large-scale studies with serum/plasma 

samples benefit from the quantitative nature of NMR spectroscopy and the minimal sample 

preparation required, providing a trade-off between metabolite coverage and measurement cost per 

sample [2]. The metabolite coverage provided by 1H-NMR profiling of serum/plasma includes 

several routine clinical markers such as various cholesterol measurements, triglycerides, 

apolipoproteins A-I and B, creatinine, albumin, and glucose. This fact would ultimately avoid the 

use of multiple clinical assays [2]. Although multiple efforts in sample preparation protocols [3] 

and automatic data analysis have been made, quantitative 1H-NMR profiling of serum/plasma is 

largely influenced by sample characteristics, molecular interactions and interlaboratory variability. 

These questions should be addressed to definitely consolidate NMR spectroscopy in clinical 

routine. 

5.1. Lipoprotein analysis: a step towards 
generalization 

Analysis of serum lipoprotein sizes, particle numbers and lipid content is one of the main 

applications in NMR metabolomics. It was boosted by the change of paradigm of cardiovascular 

risk assessment, where only standard lipids could not precisely reflect the development of a 

cardiovascular event in patients with diabetes or metabolic syndrome [4]. Besides, lipoprotein 

analysis with 1H-NMR avoids the tedious physical separation by ultracentrifugation. It is usually 

carried out by decomposing the methyl peak into the individual lipoprotein peaks or by linear 

regression models. However, different methods have showed numerical discrepancies [5], 

probably because of the lack of consensus about the calibration reference, spectral regions 

included, NMR experiments and blood-derived matrix. Besides, most of these methods have been 

built with small and homogeneous sample sets, and previous studies have reported some 

differences between deconvolution models for normal lipid and dyslipidemic samples [6]. The 

question is then obvious: is it possible to generalise the analysis of lipoprotein and lipoprotein 

lipids by 1H-NMR? 

We tried to answer this question in chapter 2 by calibrating and evaluating prediction models of 

standard lipids (i.e. lipid panel). We chose these lipids as they are still the main measurements for 

coronary heart disease assessment and therapy targets, according to the European Atherosclerosis 

and Cardiology Societies, and The National Cholesterol Education Program (NCEP) through their 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF 1H-NMR SERUM PROFILING METHODS FOR HIGH-THROUGHPUT METABOLOMICS 
Rubén Barrilero Regadera 
 



third report of the Adult Treatment Panel (ATP). We used 785 samples from four different clinical 

assays. With the aim of generalizing the results to different populations, samples contained a large 

representation of lipid-related abnormalities including several hyperlipidaemias, metabolic 

syndrome and diabetes mellitus type 2. Up to the date of publication of our study, the largest 

sample set used was 290 serum samples of healthy subjects [7]. Moreover, our study is the first 

applying indistinctly serum and plasma samples from different clinical centres. In line with our 

results, a recent study has demonstrated that matrix effect represents less than 2% of the total 

spectral variance in an inter-subject analysis [8].  

The NMR experiments and the spectral regions that allow the best deconvolution and prediction 

models is another unresolved question. Whereas 1D 1H-NMR models rely on the chemical shift 

separation of lipoprotein subclasses due to their different structural composition [9], 2D diffusion 
1H-NMR models include an extra dimension directly related to lipoprotein sizes [6]. Furthermore, 

the utility of other lipid signals than methyl is uncertain although some studies suggest that other 

regions such as choline could discriminate even better [10]. We evaluated different NMR 

experiments in several steps. First, we applied correlation analysis of different 1H-NMR spectra 

with standard lipids to conclude that diffusion-based spectra best correlate with standard lipids. 

This is mainly explained because the lack of anticoagulant and LMWM signals improve the 

visibility of lipid signals. This fact could also explain the observed compatibility between plasma 

and serum samples in our models. Additionally, we observed strong correlations in 14 signals 

containing lipid information (fatty acid moieties, cholesterol methyl groups, glycerol from 

triglycerides and phospholipids and choline groups) that could potentially improve lipid regression 

models. Taking into account these considerations, 1D and 2D Diffusion 1H-NMR-based regression 

models using different chemometrics methods and pre-processing modes were built and evaluated 

over the same samples. Interestingly, the best results were obtained with 1D diffusion-edited 1H-

NMR spectra, suggesting that diffusion dimension in 2D Diffusion 1H-NMR could be redundant 

and that the high complexity introduced in the multi-way structures could hamper the ability to 

find the underlying explanatory models. The results showed in 2.4 agreed with previous studies 

although HDL-C was slightly worse [7,11–14], probably because HDL-C signal visibility was 

compromised in hyperlipidemic samples or because different precipitation reagents were used in 

HDL-C isolation. 

Although our study only applies to standard lipoprotein lipids, it could indicate the ability to 

generalise more complex models of NMR-based lipoprotein analysis to different population 

cohorts. More importantly, the excellent estimation presented here would allow the inclusion of 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF 1H-NMR SERUM PROFILING METHODS FOR HIGH-THROUGHPUT METABOLOMICS 
Rubén Barrilero Regadera 
 



these clinical lipids in the high-throughput 1H-NMR measurements catalogue and avoid the 

multiple enzymatic-colorimetric assays. Moreover, it would allow the analysis of discordances 

between LDL-C and non-HDL-C with other LDL-related measurements, such as LDL-P, by using 

the same platform, and would make possible to better stratify cardiovascular risk and, 

consequently, select the more convenient therapy targets [15]. 

In parallel, it would be desirable to extend our study to other clinically-relevant lipoprotein 

variables such as apolipoproteins B and A1. Apolipoprotein B has been suggested a better risk 

marker than LDL-C. Our preliminary results (not reported in this thesis) using a subpopulation of 

approximately 500 samples gave Pearson’s correlations (r) between immunoassay and NMR-

derived measurements of r=0.95 and r=0.78 for apolipoproteins B and A1, respectively. Another 

important aspect would be to incorporate automatic and holistic methods of variable selection to 

reduce redundant or noisy-prone spectral regions and provide more robust regression models [16]. 

5.2. Unravelling the “NMR-invisible” 
metabolome 

Along with lipoprotein analysis, low-molecular-weight metabolite (LMWM) profiling is the other 

main application of NMR in high-throughput metabolomics. This success relies on the ability to 

provide quantitative information about dozens of polar metabolites in intact serum with the only 

requirement of a CPMG filter for spectral protein removal. Moreover, some LMWM have been 

found to play an important role in disease development. For instance, high levels of some amino 

acids can be used to identify individuals at risk of developing type 2 diabetes [17] and 

cardiovascular disease [18]. Consequence of this has been the development of multiple automatic 

or semiautomatic tools for 1H-NMR profiling of LMWM [19]. These tools provide reliable 

deconvolution and quantification of highly overlapped signals by fitting known molecular 

fingerprints. 

However, native serum is governed by complex physicochemical interactions that affect 

quantification by 1H-NMR spectroscopy. Among them, protein binding of LMWM compromises 

the “NMR-visibility” of LMWM in a CPMG spectrum. This situation generates two potential 

problems: the first is the impossibility to profile largely bound metabolites adequately. The second 

implies that clinical outcomes using 1H-NMR profiling could be misled if quantified LMWM 

deviate from their absolute content in serum. This would especially be the case if comparing 
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healthy subjects with subjects with abnormal albumin content or elevated free fatty acids (FFA), as 

FFA compete with LMWM to be carried by proteins through the bloodstream [20]. Although 

serum dilution is recommended to increase LMWM visibility in 1H-NMR spectra [21], the only 

method that has shown to recover most of the LMWM content in proteins is deproteneization [22]. 

Besides, serum dilution accentuates the low sensitivity of NMR. On the contrary, a protein-free 

serum increases substantially the metabolite coverage, but the time-consuming processes required 

confronts with high-throughput metabolomics needs. Using native or deproteinized serum is still a 

matter of debate in most metabolomics platforms. 

An unexplored alternative has been proposed in chapter 3. Trimethylsilylpropionic acid (TSP), a 

well-known binding molecule used in 1H-NMR for spectral referencing, was used to compete for 

ligand-binding sites of proteins and promote the release of binding LMWM. Our approach is fully 

compatible with high-throughput NMR metabolomics: it does not involve additional sample 

manipulation (TSP can be added to the D2O required for locking the NMR) and is a low-cost 

solution (less than 0.15 euros/sample). Section 3.4 demonstrates that adding TSP increases in 

approximately 40% the signal of some clinically-relevant amino acids when applying a typical 1D 

CPMG filter. Our method has been proved to be more effective than sample dilution that only 

provides a 10% of additional signal. It also performs similarly in serum and plasma, despite their 

different protein content. Additionally, competitive binding does not affect spectral S/N.  

Previous studies of protein binding and “NMR-invisible” LMWM based their findings on one-

dimensional T2-edited CPMG spectra. A CPMG experiment consists of a fixed T2 cutoff filter, 

where each signal is differently attenuated according to its own T2-relaxation. It is noteworthy to 

mention that T2-relaxation varies according to the free-to-bound ratios, i.e. T2 attenuations in 

CPMG spectra are lower for LMWM not binding to protein. Moreover, molar concentrations are 

normally calculated by normalising LMWM signal areas with the signal area of a reference 

compound, which can have very large T2-relaxation differences. Based on these considerations, it 

is expected a significant quantitative error if using common CPMG spectra that could lead to 

misinterpretations of the protein binding interactions. In this article, we originally used for the first 

time multivariate curve resolution with multispectral 1H-NMR to precisely characterise the “NMR-

invisibility” of LMWM at different degrees of protein binding. Our multispectral approach has 

shown an effective strategy to obtain reliable quantifications without this T2 variation. 

Further research in competitive binding for 1H-NMR profiling involves analytical and clinical 

considerations: 
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• It should be evaluated if the increase in “NMR-visibility” of disease biomarkers improves 

disease risk prediction/diagnosis. Protein binding phenylalanine, leucine and isoleucine in 

type 2 diabetes patients could be good candidates. 

• It is required a comprehensive profiling of TSP-added samples in order to update the 

metabolite coverage under these conditions.  

• It should be analysed the analytical impact of TSP addition in quantitative 1H-NMR 

serum/plasma profiling, such as in lipoprotein deconvolution or prediction models, as 

lipoproteins could also bind TSP.  

• The characterization of other competitive-binding reagents and the combination with 

alternative methods, i.e. sample dilution or soft acidification, should be explore in order 

to maximise the free LMWM and obtain quantification closer to absolute. 

5.3. Automating 1H-NMR lipid profiling 

Contrary to lipoprotein and LMWM analysis, serum lipid analysis has been given less attention in 

high-throughput NMR metabolomics due to two important aspects. First, lipid analysis cannot be 

performed in native serum, which implies one extraction procedure and additional NMR 

measurements. Moreover, the long centrifugation times required and the fact that the lipophilic 

phase settle in the lower layer of the triphasic separation [23,24] hamper the automation of lipid 

extraction procedures. Second, NMR is unable to identify structural aspects of lipids, such as the 

specific sn position of a fatty acid residue in a glycerol moiety, and specific lipid species, such as 

PC(18:0/18:2). The catalogue of lipid species in mammalians comprises thousands of 

combinations of glycerol-, sphingosine- and cholesterol-based moieties with multiple fatty acids 

species, which spectral signatures are not as distinctive as in the case of LMWM. Moreover, the 

complexity of lipid structures gives NMR signals with high complex coupling patterns. These 

aspects discourage metabolomics groups to develop automatic tools for 1H-NMR lipid profiling 

and favour MS platforms for lipidomics analysis.  

Despite the inherent limitations of NMR-based lipids, 1H-NMR lipid profiling benefit from its 

main analytical advantage respect to other platforms: the absolute quantification. NMR 

quantification brings the possibility of applying lipid analysis to large-scale studies between 

different laboratories and analytical platforms [1]. Moreover, 1H-NMR spectra of serum lipids 

provides information of the abundance of major lipid families (fatty acids, glycerolipids, 

glycerophospholipids and sterols) without prior separation, that has proved valuable in clinical 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF 1H-NMR SERUM PROFILING METHODS FOR HIGH-THROUGHPUT METABOLOMICS 
Rubén Barrilero Regadera 
 



research, such as the study of Alzheimer’s disease [25], human pancreatic cancer [26] and inborn 

errors of metabolism [27]. In Chapter 4, we present several strategies to improve the automation of 
1H-NMR lipid profiling. 

The limitation imposed by manual extraction procedures can be partially palliated using BUME, a 

recent lipid extraction method that can be automated with standard liquid handling 96-well robots 

[28]. Ultimately, automation would induce less variation in sample preparation. The main 

drawbacks of using BUME for 1H-NMR are the long evaporation times and the multiple signals 

introduced by the organic solvents. Fortunately, most of these signals do not overlap lipid signals 

or are easily modelled in the lineshape fitting analysis, except for heptane that can be replaced with 

diisopropyl ether. 

Respect to the complex signals, it is first interesting to increase spectral dispersion to facilitate 

spectral deconvolution. The use of high-magnetic field spectrometers is known to increase spectral 

dispersion that could aid to separate highly-overlapped signals [29]. However, cutting-edge 

spectrometers are still prohibitive. Instead, we optimised the solvent composition to obtain 

maximum separation for a common 600 MHz spectrometer. Reconstituting lipids in 

CDCl3:CD3OD:D2O (16:7:1, v/v/v) solution provided enough signal separation to resolve choline 

families and increase separation in other overlapping signals. Once the spectral conditions are the 

best case scenario, we developed LipSpin, a tool for the semiautomatic deconvolution of the 1H-

NMR lipid spectra. The software is open source aimed to be complemented by other developers in 

order to boost lipid analysis with NMR in high-throughput metabolomics. LipSpin relies on the 

classical lineshape fitting approach of Lorentzian/Gaussian functions, but also reference spectral 

models for signals with complex coupling patterns. In section 4.4 we run analytical validations of 

the whole workflow against conventional techniques, showing large inter-platform agreement. 

Moreover, the clinical utility of NMR-based lipids was evaluated satisfactory in a dietary 

intervention study. In resume, LipSpin allows the reliable quantification of 15 different lipid-

related variables in plasma: Cholesterol (free and esterified), fatty acids (saturated, omega-9, 

omega-6, omega-3, monounsaturated, arachidonic + eicosapentanoic, docosahexaenoic and 

linoleic), phospholipids (phosphatidylcholine, lysophosphatidylcholine, sphyngomyeline, total 

glycerophospholipids) and triglycerides. This list represents absolute quantitative data with the 

abundance of several lipid classes and some individual species. Additionally, qualitative 

information about mean FA chain length and number of double bonds fatty acid can also be 

extracted. 
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Although LipSpin has been optimised and proved with plasma lipids, the universality of the 

mathematical approach in NMR makes LipSpin be applicable to other biological matrices. In 

parallel, it would be desirable to characterise the biochemical composition of other biofluids 

(cerebrospinal fluid, bile, etc.) and tissues, as well as to increment the collection of signal patterns 

with new signal definitions and reference spectra. LipSpin is also suitable for plant and food lipids. 

Additionally, the lineshape fitting algorithm could benefit of more sophisticated quantum 

mechanical models that have been applied to other in-house constrained total lineshape fitting 

approaches [30], from probabilistic models with prior information of signal characteristics [31] 

and from parallel computing of lineshape fitting analysis in multiple samples [32]. 
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General Conclusions 
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This section summarizes the conclusions of the doctoral thesis. 

Work 1: Design and evaluation of standard lipid prediction models based on 1H-NMR 

spectroscopy of human serum/plasma samples 

The first study has demonstrated the ability to quantify standard lipids used in the routine clinical 

practice (total cholesterol, triglycerides, HDL cholesterol, LDL cholesterol and non-HDL 

cholesterol) by PLS regression models based on diffusion-edited 1H-NMR spectra of serum and 

plasma samples. Correlations between NMR-predicted lipids and enzymatically-measured lipids 

were similar to previous studies with small and homogeneous cohorts. However, our models are 

more generalizable as they were calibrated and validated using large and heterogeneous sample 

sets, including subjects with normal and abnormal lipid and lipoprotein profiles, different blood-

derived matrices (plasma and serum), and samples obtained at different clinical centres. Other 

findings of this study include: 

• 14 lipids signals in 1H-NMR spectra of plasma/serum showed large correlation with 

standard lipids; consequently, they were used to build the regression models. 

• Lipids signals in diffusion 1H-NMR spectra showed larger correlation with standard lipids 

than lipid signals in non-editing or T2-editing 1H-NMR spectra. 

• For most standard lipids, regression models based on 1D diffusion-edited 1H-NMR 

spectra gave the best predictions. Regression models including the additional diffusion 

dimension (i.e. those using 2D diffusion 1H-NMR spectra) only improved triglycerides 

predictions. Consequently, there is no need for increasing measurement times using 2D 

NMR experiments. 

• Plasma and serum samples can be indistinctly used for standard lipid predictions with 1H-

NMR regression models. 

• Scaling spectral data in regression models by mean-centring and auto-scaling gave similar 

results. 

Work 2: Unravelling and quantifying the “NMR-invisible” metabolites interacting with 

human serum albumin by binding competition and T2 relaxation-based decomposition 

analysis 

The second study has quantitatively determined the impact of human serum protein binding in the 

“NMR-visibility” of five low-molecular-weight metabolites (LMWM) that have been found to 

early predict the development of diabetes mellitus type 2. Only c.a. 90%, 80%, 50%, 60% and 
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40% of valine, isoleucine, tyrosine, leucine and phenylalanine signal, respectively, could be 

quantified in native serum, whereas the remaining signal was merged with the protein background 

signal due to slow-exchange binding with serum protein. The addition of 6 mM TSP allowed the 

quantification of c.a. 99%, 109%, 51%, 85%, 75% of valine, isoleucine, tyrosine, leucine and 

phenylalanine signal, respectively. These results assumed a quantitative error of approximately 

10%. Our findings with TSP highlight that competitive protein binding in human serum (i.e. 

forced competition for protein ligand-binding sites between endogenous low-molecular-weight 

metabolites and an exogenous compound) could be an alternative to other methods based on serum 

deproteneization to improve LMWM quantifications. Moreover, the competitive binding approach 

is fully compatible with high-throughput NMR. Other findings of this study include: 

• Isoleucine has been found to bind to serum protein for the first time. 

• Competitive binding with TSP showed to be more effective at LMWM signal recovery 

than two-fold sample dilution in most of the cases. 

• Multivariate curve resolution of multidimensional spectra (pseudo 2D CPMG) provides 

T2-corrected quantifications, which allows determining only the LMWM “NMR-

invisible” signal due to slow-exchange with protein. Moreover, information about fast-

exchange binding with protein can be extrapolated from the T2 decays of the LMWM. 

• LMWM T2-relaxations are lengthened as fast-exchange of LMWM with protein is 

reduced with TSP addition. It ultimately implies less T2-attenuation in 1D CPMG 

spectra. 

• Results in human serum were consistent with results in synthetic serum models with 

human serum albumin, except for the case of tyrosine, which remained the same after 

TSP addition in the human serum. Similarly, tyrosine was the only signal increased with 

sample dilution but not with TSP addition. 

• Similar mean effects in “NMR-invisibility” before and after TSP addition were observed 

in 85 plasma samples. 

Work 3: LipSpin: a new bioinformatics tool for quantitative 1H-NMR lipid profiling 

The third study has presented LipSpin, a new bioinformatics tool for quantitative 1H-NMR lipid 

profiling. This tool allows the quantification of 15 lipid-related variables of major lipid classes in 

lipophilic serum extracts (fatty acids, triglycerides, phospholipids and cholesterols). Both IDE 

independent standalone and open source versions of LipSpin are publicly available. LipSpin 

includes all the required steps to convert raw NMR data into quantitative lipid variables in a 
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semiautomatic (only requires minimal parameter adjustments before algorithm execution) and 

user-friendly way (no programming skills are required). It also allows batch processing of multiple 

spectra and is versatile, since signal patterns collection can be modified or expanded. Other 

findings of this study include: 

• BUME, the lipid extraction method used in this study, allows automation of plasma lipid 

extraction with liquid handling robots. Solvent signals from the extraction procedure have 

low interference with lipid signals. 

• Lipid reconstitution in CDCl3:CD3OD:D2O (16:7:1, v/v/v) solution maximises the 

spectral dispersion (especially for lipids with polar head groups). 

• Lipid quantifications obtained with LipSpin have shown large correlation with 

conventional techniques such as GC-FID and enzymatic-colorimetric measurements. 

Moreover, the clinical utility of these quantifications have been validated in a dietary 

intervention study. 
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LipSpin user manual
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Installation 

LipSpin is released as original m-files and standalone versions. In order to execute LipSpin, follow 
the instructions depending on the version you have received. 

M-files 

M-files coding LipSpin can be downloaded from github repositories and loaded in the MATLAB 

IDE. Matlab scripts and functions have been developed with MATLAB v7.10 and compatibility 

with other versions cannot be guaranteed. Note that some functionalities of LipSpin require 

external toolboxes commonly supplied with most MATLAB versions such as Statistics, 

Optimization and Signal toolboxes. In order to execute LipSpin in the MATLAB IDE follow the next 

steps: 

1. Download LipSpin folder and copy it in your local computer. 

2. Copy the above directory in the MATLAB path variable (include subdirectories). 

3. Type “lipspin” in the MATLAB command window. 

Standalone version 

LipSpin can also be provided as a standalone version on demand, which can be run in Microsoft 

Windows OS without having MATLAB installed. Standalone LipSpin only requires Matlab Compiler 

Runtime (MCR) to be installed in your local computer. MCR contains all the necessary MATLAB 

libraries called by LipSpin. MCR version is optimised for each LipSpin compilation, consequently, 

be sure of using the right version of the MCR by asking the developer of your compiled LipSpin 

standalone version. 

1. Verify if the required version of the MATLAB Compiler Runtime (MCR) is installed in your 

computer. 

2. If the MCR is not installed, run MCRInstaller.exe provided with your LipSpin version. 

Now, MCR should have created a folder in “Program Files” folder and a new variable in 

the windows PATH environment variable. 

3. Run LipSpin.exe. 
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Import NMR data 

NMR data can be imported as either time-domain “free induction decays” (FID) or Fourier 

transformed 1D NMR spectra from the tab “File” in the menu bar of the main screen. LipSpin 

allows loading multiple NMR data files at once, providing that all share the same time or spectral 

axis scale. Only Bruker files are supported in current versions of LipSpin but other NMR 

manufacturer formats are expected to be included in future releases. 

 

Import FID 

By converting NMR spectra from FID, the user can load raw data directly from NMR acquisition 

while avoiding the use of additional software other than LipSpin for data processing. The Import 

window includes the following options: 
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• Path files: full path of the directory where the sample folders are located. In the 

example below, it refers to the full path of User, (for example C:\User). 

 

• File name filter: filters the list of samples to those having this string in their folder 

names. In the example above, entering “Sample” will remove Test_1 from latter 

selection. 

• Experiment number: following the Bruker folder structure, LipSpin requires the 

experiment number where the fid file is located (in the example above: 11, 12 or 13). 

• Zero filling: increases the spectral resolution of the NMR spectra by multiplying the data 

length by 2n, where n is a natural number included in the “F2” field. **Note: Increasing 

the data size will increase RAM demand and could slow down the program and the OS 

execution. Recommended values: 0-2. 

• Multiply first point by 0.5: this option is aimed to reduce the DC offset in the NMR 

spectra. In most of the cases, it produces negligible effects. 

• Apodization: allows applying none, Gaussian or Lorentzian windowing to FID before 

Fourier transformation (FT). Gaussian is aimed to increase peak resolution and could be 

suitable for peak identification in large overlapped regions. If Gaussian window is 

applied, LB should be a value close to the negative of the peak width in Hz (measured at 

half height, e.g: -2) and a good starting point for GB could be 0.2 to 0.4. Lorentzian is 

aimed to increase the S/N ratio and is the common choice for quantitative spectral 

analysis. Common values for LB using Lorentzian window range between 0.3 and 1. 

• Import: opens a selection window that lists the samples in “Path files” after filtering by 

“File name filter”. Selected samples will be loaded into the main window. 
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Import spectra 

This option allows loading spectra that have been previously converted from FID using third-party 

software. Refer to the previous section “Import FID” for explanation of Path files, File name filter 

and Experiment number fields. Additionally, this window includes: 

• Processing number: folder name of processed spectra (1D file). In the example below, 

folders 1 and 2 contains different processed spectra from the same FID. Note that 

LipSpin requires the processing folders to be in a pdata folder. 
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Main LipSpin Window 

Once the spectra have been imported, they are displayed in the main LipSpin window. 

 

The toolbar contains typical MATLAB navigation tools that allow zooming, panning and displaying 

data point coordinates. A png snapshot can also be saved from the “Save Figure” tool. The undo 

button allows reverting last action (only once). 

 

For the aim of aiding sample identification, right-clicking in a spectral line will show/hide a tag 

with its sample name. Users can also restrict visualization to only selected samples in the “Visible 

sample(s)” list. 
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Right-clicking the tag “chemical shift (ppm)” below the x-axis will swap the axis scale in ppm for 

the axis scale in Hz. This feature is interesting for determining J-coupling constants and line 

widths. 

Finally, the checkbox list in the “included sample(s)” panel allows indicating the samples that will 

be included if a spectral pre-processing or lineshape fitting is carried out. 

General options 

The General options window is accessible from the menu bar and allows setting the general 

options of LipSpin. These options are permanently saved in the options.nmrcfg file which should 

be located in the same folder of LipSpin script (m-files) or LipSpin.exe (standalone version). 

• Max. error (%) stopping criterion: threshold that will stop lineshape fitting iterations 

based on minimum %RMSE. 

• Max. number of iterations: maximum allowed iterations of lineshape fitting algorithm 

without fulfilling the maximum %RMSE stopping criterion. 

• Default path for standard spectra: directory with “.nmrstd” files to be automatically 

loaded in the current session. 

• Default path for signal patterns: directory with “.nmrsgnl” files. 

• Normalise imported spectra by acquisition parameters (NS, RG, P1): checking this box 

will normalise spectra base on their specific acquisition conditions: number of scans 
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(NS), receiver gain (RG) and 90º pulse length (P1). **Note: this is mandatory for 

quantitative inter-sample comparison if the spectra are not normalised using internal 

standards. 

 

Preparing the NMR spectra 

Preparing the NMR spectra for quantitative analysis implies several processing steps including 

phase correction, baseline correction, shift reference, spectral alignment and line-shape 

enhancement. 

Phase correction 

Phase correction is available from the tab “Autophase” in the “Pre-processing” option of the 

menu bar. Phase correction should be applied before any other processing step and it is an 

essential requirement for proper performance of the lineshape fitting algorithm. It sets the 

spectral line in pure absorptive mode.  
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• Select method: LipSpin provides two different methods to correct zero- and first-order 

phase: 

o Entropy: maximises the entropy of the spectrum. This method provides modest 

results but it works well for standards and spectra with few peaks. More info in: 

Chen et al. (2002) (https://doi.org/10.1016/S1090-7807(02)00069-1)  

o Flat baseline: minimises the least-squares differences between a horizontal line 

and the spectral line for the defined regions, considered to have no peaks. An 

automatic version of region selection is included for this method (an example of 

the performance in the figure below). **Tip: for the best performance, select 

regions disperse along the whole axis scale and of similar length. Flat regions 

closer to the intense and separated peaks (chloroform and TMS) are the ones 

more affected by phase distortions, selecting them will provide the best phase 

correction.  
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• Regions: list of regions defined as [high_ppm low_ppm]. This regions are used to find 

the points used for baseline interpolation. 

Baseline correction 

Baseline correction is available from the tab “Baseline” in the “Pre-processing” option of the 

menu bar. Baseline correction interpolates polynomial functions to a set of points within the 

user- or automatically-defined regions. Baseline correction can be skipped for lineshape fitting as 

it includes baseline functions, but it should be thoroughly applied when quantification by bucket 

integration is used.  

• Select mode: select between four interpolation methods, all admitting automatic range 

detection. 

o Median subtraction: in the strict sense, this mode is not an interpolation 

method. It simply subtracts the median of a set of data points to all spectral 

data points. 

o Cubic spline and cubic Hermite: spline interpolations implemented with spline 

and pchip MATLAB functions where each piece is a third-degree polynomial. 

**Tip: Cubic Hermite provides best results for baseline correction as it reduces 

oscillation between data points. The example below shows the spectra before 

(left) and after (right) the baseline correction showing the intensity differences 

for the red spectrum and the general offset elimination.   
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o Polynomial: fits a polynomial of user-defined order to a set of points. 

Recommended orders: > 5. 

• Ranges: list of chemical shift ranges defined as [high_ppm low_ppm]. These regions are 

used to find the points used for baseline interpolation. 

 

Shift reference 

Shift reference is available from the tab “Chemical shift reference” in the “Pre-processing” option 

of the menu bar. This function shifts the spectra to align the most intense peak within a region to 
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the centre of that region. Spectra should be chemical shift referenced so that signal patterns for 

lineshape fitting are valid between different samples. It requires two parameters: 

• Chemical shift reference: reference ppm where the highest intensity peak has to be 

positioned. 

• Tolerance: ± ppm around the “chemical shift reference” within the peak is sought. 

Spectral alignment 

Spectral alignment is available from the tab “Align” in the “Pre-processing” option of the menu 

bar. This function shifts the spectra to maximise correlation (alignment) between samples by 

using cross-correlation MATLAB function. It allows correcting spectral misalignments of signals 

from polar groups due to pH or ionic strength discrepancies among samples. It requires three 

parameters: 

• Max ppm: maximum chemical shift used in spectral alignment. 

• Min ppm: minimum chemical shift used in spectral alignment. 

• Shift all spectrum [X] / Only region [ ]: If checked the calculated shifts are applied to the 

whole spectrum. Otherwise the algorithm only shifts the region between “Max” and 

“Min ppm”. 

Line-shape enhancement with reference deconvolution 

Line-shape enhancement is available from the tab “Reference deconvolution” in the “Pre-

processing” option of the menu bar. This optional function allows correcting lineshape distortions 

due to magnetic inhomogeneities or poor shimming by using a reference peak and providing that 

this peak has been previously aligned among spectra. **Note: reference deconvolution could not 

be recommended for low intensity signal as it decrease S/N and introduce unwanted wiggles in 

the spectral lines. More about reference deconvolution in Morris et al. (1997) 

https://doi.org/10.1016/S0079-6565(97)00011-3. 
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• Select reference signal: 

o Signal in dataset: select this option if spectral lineshapes will be corrected by 

using a signal (preferably solvent signals or singles) within a specific spectrum a 

as a reference. In such a case, select the spectrum with the signal of lowest line 

width and symmetrical shape in the “Reference spectrum” list after defining 

ppm boundaries.  

o Synthetic TMS signal: generates a synthetic TMS signal to be used as a 

reference peak. Figures below show the effect of using reference deconvolution 

with synthetic TMS signal in the methyl region (top) and the chloroform signal 

(bottom). 

• Boundaries: chemical shift limits (in ppm) for the spectral region used for reference 

deconvolution. 

• Reference spectrum (only for “signal in dataset” mode): spectrum in the dataset used 

as reference. The button below allows the automatic selection of the spectrum with the 

best signal based on lowest line width and skewness. 
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Standard library 

The standard library comprises spectra of chemical standards of lipids that have been previously 

conditioned and saved with LipSpin to be used as reference templates in lineshape fitting. Using 

templates is recommended for complex signals such as high-order coupling patterns and 

multiplets that do not follow the multiplicity rules of first-order coupling (i.e. singlets, doublets, 

triplets, etc.) 

Saving a standard spectrum 

Any spectrum imported in LipSpin can be saved as a standard spectrum by pressing “Save 

standard” in the tab “Standard spectra” of the menu bar. It requires only one spectrum included 

in the “Included sample(s)” list. 
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**Tip: Prepare carefully your standard spectra. Be sure that your new standard spectrum is well 

phased and does not have baseline offsets in the signals that will be used as templates in 

lineshape fitting (otherwise baseline will be computed in signal quantification). Be sure they are 

well-referenced; a good practice is using an internal standard such as TMS in all your standards. 

Finally, keep in mind that templates from standards are mostly valid for samples acquired under 

the same experimental conditions (temperature, spectrometer frequency and solvent); 

otherwise the templates could be no longer valid. 

Load standards to current session 

Standard spectra need to be loaded before being used in lineshape fitting. By default, all the 

standards in the “Default path for standard spectra” of the “General options” will be loaded 

automatically after successfully importing sample spectra. These standards can be inspected 

from the “Load session standards” in the tab “Standard spectra” of the menu bar.  

Additionally, more standard spectra can be loaded and removed from the current session. 
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Editing signal patterns 

Create/load signal patterns 

Users can create their own patterns or use patterns from the library of patterns that are supplied 

with released versions of LipSpin. These patterns were created to be used with lipophilic extracts 

of human serum and plasma samples but they could be applied to other lipid samples. The 

“Signal patterns” panel in the main window lists all the patterns that will be applied to the fitting 

process after clicking the “Run” button. Users can create a new pattern by typing the name in the 

textbox and clicking the “Create” button. 

Setting pattern parameters 

The “Pattern settings” panel contains all the parameters that define a signal pattern.  

• Max ppm: left limit (in chemical shift) of the fitting region. 

• Min ppm: right limit (in chemical shift) of the fitting region. 

• Select mode: 

o Lineshape fitting: this mode uses the lsqcurvefit function from the optimization 

toolbox to adjust the signals defined in the signal pattern to the real spectral 

line. Baseline parameters are considered in this mode. Use this mode for 

overlapped signals or isolated signals that may benefit from baseline reduction. 

o Integration: sums all the point of the spectral line between “Max” and the “Min 

ppm”. 

• Baseline signals: check the signals to add the models to the baseline signal: 

o 1st poly: first-order polynomial (can take negative values). 

o Gaussian: spatially-distributed broad gaussian lines across the region (only 

positive). 

o Cosine: cosine series up to 12th term (only positive). 

**Note: be careful when using Gaussian and cosine baseline functions as they 

could model part of non-baseline signals and mislead other signal’s 

quantification. In this case, visual inspection of fitting solutions is a good way of 

getting insights. 
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• Signals: list with models (Voigt and templates) used for curve fitting the real spectra in 

the defined region. 

Create and edit signals 

Typing a name (not previously used) and pressing “New” will create a new signal. First, a small 

window will let choosing between creating a new signal based on “Voigt Model” (following first-

order coupling patterns) or a “Standard template”.  

 

• Voigt models 

Voigt models are based on complex peak structures of Voigt profiles (combination of Lorentzian 

and Gaussian profiles) following multiplicity patterns of first-order NMR couplings (i.e. singlets, 

doublets, triplets, etc), with intensity ratios that follow the Pascal’s triangle relations. “Init 

values” defines the initial values used in the optimization process. “Constraints” sets the limits 

between which each parameter can oscillate in the optimization process. 

o Center (ppm): Center of the Voigt profile in ppm units. 

o Width at half height (Hz): full width of the Voigt peak measured at its half 

height (FWHH). This value usually lies about 1 or 2 Hz. **Tip: switching the axis 

scale to Hz will help measuring this parameter. 

o Gaussian contribution (0-1): ratio of Gaussian shape in the Voigt profile. 

o J-Coupling (Hz): distance between peaks in the multiplet. 

o Multiplicity: number of peaks that form the multiplet. 

o Number of protons: number of H’s that raise the signal. 

o Copy these constraints to all signals: check and present constraints will be 

copied to the rest of the signals after pressing “Save”.  
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• Standard templates 

Standard templates allow using signals from standard spectra as fitting models. This choice is 

suitable for resonances with complex coupling patterns not following fist-order multiplicity rules. 

o Standard: select the standard spectrum from the list of standards in the current 

session. **Note: if this field is void after loading a saved pattern indicates that 

the standard is not loaded in the current session. Press “Run” button in the main 

window will show the name of the standard for this signal. 

o Center (ppm): signal position in sample spectra. 

o FWHH increase (Hz): increase the width at half height of the peaks in the 

template by the indicated factor in Hz. Typical values: 0-1. 

o Gaussian contribution (0-1): allow increasing the Gaussian shape of the 

spectral template. 

o Standard center (ppm): signal position in the standard spectrum used as a 

template. 

o Standard upper limit (ppm): left limit of the region of the standard spectrum 

used as a template 
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o Standard lower limit (ppm): right limit of the region of the standard spectrum 

used as a template. 

o Number of protons: number of H’s that raise the signal. 

 

 

 

Signal quantification 

Once the sample spectra are loaded and properly pre-processed, and when signal patterns have 

been properly configured and loaded, LipSpin is ready for quantifying the signals defined in the 

signal patterns for the included samples in the “Included sample(s)” list. Pressing “Run” button 

runs the quantification process in batch mode comprising all the included samples and for each 

sample all the signal patterns in the “Signal patterns” list. 

With “Correct signal width by”, the quantification process can adapt the “Width at half height” 

of all the signals for each sample according to the width variations of a previously fitted signal 

obtained from the “Results” table. This tool can be useful for correcting variations of linewidth 
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between samples that affect the whole spectrum (i.e. all the peaks in a spectrum). For instance, if 

linewidth varies severely between samples it could be better to fit first an isolated singlet (e.g. 

TMS peak at 0 ppm) and then apply FWHH variations of this signal to the rest of the signals, 

instead of setting large boundaries in the FWHH constraints. This feature needs a sample to be 

used as a reference, which should be the sample with narrowest signal. 

Inspecting quantification results 

If an existing “Figures path” is indicated, a .png file containing the graphical solution of the fitting 

process will be saved. In the example below, the red line indicates the sample spectrum, the 

green line the fitted spectrum, the blue lines the individual fitted signals and the black line the 

fitted baseline. The graph also shows the %RMSE of fitting as a goodness of fit indicator. 

 

Once all the samples and patterns have been analysed, the “Results” table is updated reflecting 

the quantified areas (normalised by the number of resonating protons) and several parameters 

related to the fitted solution for each signal (intensity, centre, FWHH, Gaussian contribution and 

J-Coupling). Inspecting these parameters could help to optimise subsequent analysis if needed.  
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Finally, the current table can be saved in a .csv file by pressing the “Export table” option.    
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